CA1129008A - Rack entry vehicle communication system - Google Patents

Rack entry vehicle communication system

Info

Publication number
CA1129008A
CA1129008A CA341,956A CA341956A CA1129008A CA 1129008 A CA1129008 A CA 1129008A CA 341956 A CA341956 A CA 341956A CA 1129008 A CA1129008 A CA 1129008A
Authority
CA
Canada
Prior art keywords
vehicle
information
source
optical radiation
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA341,956A
Other languages
French (fr)
Inventor
Robert C. Burgener
Philip T. Martin
John J. Lord
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Interlake Inc
Original Assignee
Interlake Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interlake Inc filed Critical Interlake Inc
Application granted granted Critical
Publication of CA1129008A publication Critical patent/CA1129008A/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0242Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using non-visible light signals, e.g. IR or UV signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/0407Storage devices mechanical using stacker cranes
    • B65G1/0414Storage devices mechanical using stacker cranes provided with satellite cars adapted to travel in storage racks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S414/00Material or article handling
    • Y10S414/122Remote control handlers

Abstract

ABSTRACT OF THE DISCLOSURE

Improved apparatus for communicating information between a movable rack entry vehicle and a reference station by means of optical radiation,such as infrared radiation. A universal asynchronous receiver-transmitter is located on both the vehicle and the reference station so that information originating in parallel form can be communicated in serial form.

Description

BACKGROUND AND SUMMARY OF THE INVENTION
.
This invention relates to rack entry vehicles, and more particularly relates to apparatus for communicating information between a rack entry vehicle and a reference station.
There is a need for an accurate and reliable means of communicating information between a reference station and a movable vehicle. One field in which the need is acute is automatic storage systems. Such systems normally contain a large number of rows of racks on which loads are stored. The loads are normally retrieved by an unattended vehicle which moves on tracks between the rows of goods. The vehicle may be carried on a crane which moves up and down aisles between the rows. In order to effectively store and retrieve goods, the vehicle must be able to communicate with the aisle crane.
In the past, a communication link between the vehicle and the crane has taken the form of an umbilical cord or radio frequency communications. Either one of these approaches has disadvantages.
The umbilical cord necessitates cumbersome and expensive cord wlnding equipment. Radio communications require approval by the Federal Communications Commission and careful shielding designed to provide protection from the environment and protection from interference by other radio transmitters in the area. Since the racks are grounded, a radio signal is severely attenuated as it propagates through the warehouse. The attentuation necessitates increased transmitter power which normally is discouraged by the FCC. If a low power transmitter is used, expensive receivers are required.
In the event multiple vehicles are operated simultaneously, multiple carrier frequencies must be utilized in order to prevent interference between vehicles. This requirement substantially increases the cost of the overall system.
As a result, it is an object of the present invention to provide an improved communication system between a movable
-2-vehicle and a reference station.
It is another object to provide a system of the fore-going type suitable for use by a rack entry vehicle operating in a steel rack warehouse.
Yet another object is to provide a system of the fore- ;
going type in which optical radiation, such as infrared radiation, is used for the communicating medium.
Still another object is to provide a system of the foregoing type in which the optical radiation is pulsed in order to encode the information transmitted between the vehicle and the station.
Still another object of the present invention is to provide a system of the foregoing type in which information is processed in parallel form, but is transmitted and received in the serial form.
According to the invention there is provided in a vehicle for transporting loads among the racks of a warehousing system, improved apparatus for communicating variable information ;~ ~-between the vehicle and a reference station as the vehicle is moving along a vehicle path comprising: source means for gener-ating optical radiation; transducer means for converting optical radiation into corresponding electrical signals; means for supporting the source means and transducer means in alignment along an optical path as the vehicle is moved along the vehicle path; and transceiver means for modulating the generated optical ~`
radiation according to the information to be communicated and for converting the electrical signals resulting from received optical radiation into a useful form of information.
The invention will now be described in greater detail with reference to the accompanying drawings, in which:
FIGURE 1 is a partial perspective view of a high density warehousing system incorporating a storage and retrieval ~ ;

rack entry vehicle and communication link constructed in accord-ance with the principles of the present invention;
FIGURE 2 is a schematic side elevational view of a preferred form of the vehicle and link shown in FIGURE l;
FIGURE 3 illustrates the manner in which FIGURES 3A-3D
are arranged;
FIGURES 3A, 3B, 3C and 3D are electrical schematic drawings of a preferred form of transmitting and receiving circuitry made in accordance with the present invention; and FIGURE 4 is a diagram illustrating voltage waveforms generated by the like-lettered portions of the circuitry shown in FIGURES 3A-3D.

-3a-. : .. .~ . . , DESCRIPTION OF THE PREFERRED EMBODIMENT

FIGURE 1 illustrates a perspective partial view of a high density warehousing system in which a rack entry vehicle incorporating the principles of the present invention may be employed. The high density storage system includes at least one article storage rack structure having a plurality of elongate, generally horizontal bins Bl, B2, B3, B4 on top of and alongside of each other in the rack structure. Each of the bins opersto the open front of the storage rack 1. The open front of the rack faces a longitudinal aisle A extending across the face of rack 1.
Although not shown, it will be understood that the warehousing system may include additional racks and bins similar to rack 1 and may include more than one aisle.
A transfer vehicle 2 is located in aisle A for operation across open front OF of the rack to service the respective elongate bins.
Transfer vehicle 2 may either be mounted for ov~rhead operation or for floor operation in the aisle A. As shown in FIGURE 1, the transfer vehicle 2 operates on a pair of spaced parallel floor rails
3. Transfer vehicle 2 may be operated either remotely or by an operator who rides the transfer vehicle, and may be either manually or computer controlled.
Transfer vehicle 2 includes a mast structure 4 which extends the height of the bins in rack 1. An elevatable platform 5 is mounted on the mast structure 4 for movement up and down the structure and into alignment with given ones of the bins.
A rack entry vehicle 8 is moved into and out of the rack structure 1 and its bins Bl-B4 and onto and off platform 5.
Each of the bins as shown in FIGURE 1 preferably contains at the bottom thereof a pair of spaced U-shaped channels 9, 10 extending the length of the bins. The horizontally extending upper flange 11 of each of the channels 9 and 10 defines a horizontal surface .

.
,"

upon which a palletized load L rests when in storage in the storage rack 1. The horizontally extending lower flange 12 defines a hori-zontal surface upon which rack entry vehicle 8 rolls for movement in the bin.
Lift platform 5 also preferably includes a pair of rails 13 of angled construction having a horizontal flange 14 which is adapted to define an upward facing rail surface for receipt of the rack entry vehicle upon the lift platform. This upper surface of flange 14 is alignable with the horizontal surfaces 12 of channels 9 and 10 in ~ach of the bins.
The system thus far described is essentially conventional in rack entry vehicle high density storage systems. A description of the construction of the rack entry vehicle and communication link which forms the novel subject matter of the present invention will now follow.
Referring to FIGURE 2, vehicle 8 rolls on multiple wheels, two of which are identified as Wl and W2. The vehicle can roll back and forth on channels 9, 10 along a linear pa~h LP which keeps the vehicle within line-of-sight of a reference station RS which may be located on platform 5. Identical transmitting-receiving units 16 and 17 are located on the vehicle and station and are aligned along an optical path 18. Each of the transmitting-receiving (TR) units 16 & 17 is identical, and may be understood from the following des-cription of TR 16, shown in FIGURES 3A-3D.
Referring to FIGURE 3C, TR 16 includes a source 20 which pre-ferable takes the form of a diode which generates optical radiation in the infrared portion of the electromagnetic spectrum. As used in this specification and claims the term optical radiation refers to radiation in the infrared, visible and ultraviolet portions of the ;~
30 electromagnetic spectrum having wave lengths from about 10 3 to 18 8 meters. Referring to FIGURE 3A, TR 16 includes a detector circuit 22 which converts optical radiation into corresponding electrical signals. Circuit 22 comprises a phototransistor Darlington pair . : . , ., -:

shown as transistors 24, 25 and a biasing resistor 26. Transistors 24 and 25 are biased to saturate in response to a high intensity light, such as a light which is close to the detector circuit. Dri-ving transistors 24 and 25 into saturation limits the amplitude of the output signal from the detector circuit whenever a light source moves very close to circuit 22.
The remaining portion of the circuitry shown in FIGURES 3A-3D
is a transceiver which both transmits and receives information by means of diode 20 and detector circuit 22. The transceiver basically comprises a universal asynchronous receiver/transmitter (UART) 30, a UART output logic circuit 32, a UART reset circuit 46, a Baud rate generator 64, a driver circuit 74, a high gain amplifier 104, a com-parator 140, a blanklng circuit 144, and a pulse converter 160.
Referring to FIGURE 3B, UART 30 is preferably a model TMS 6011 manufactured by Texas Instruments, Inc. The circuit is interconnected by conductors 33B and 33C.
UART output logic circuit 32 comprises NOR gates 34, 35, and a NAND gate 37, inverters 39-41, a resistor 42, and a capacitor 43.
The circuit is interconnected by conductors 33A, 33D and 33E.
Eight bits of parallel encoded digital information is available to the UART on a transmitter input bus 44, and eight bits of parallel encoded digital information is produced by the UART on a receiver output bus 45.
UART reset circuit 46 comprises one shot multivibrators 48, 49, OR gates 51, 52, capacitors 54, 55, an inverter 57, and resistors 59, 60. The one shot multivibrators and OR gates may be implemented by model CD4098 manufactured by Radio Corporation of America. The reset circuit delays the resetting of the receiver output buffer within UART 30 to allow time to transfer the data from the buffer to bus 45.
Referring to FIGURE 3C, baud rate generator 64 comprises a BRG
model MC14411 manufactured by Motorola, Inc. and identified by number 66. The generator also includes a NAND gate 67, a crystal 68 and resistors 70 and 71. The baud rate generator is used to generate ~ .

3~

the frequency standard for UART 30. The generator also provides 2400 Hertz square wave pulses over a conductor 69. The pulses are used to demodulate the signals received by detector circuit 22. A switch 72 is closed to reset BRG 66.
Driver circuit 74 comprises a one shot multivibrator 76, an amplifier 78, diodes 80, 81, transistors 82, 83, capacitors 84-88 and resistors 90-97, all connected as shown. The driver circuit receives pulse position serial encoded information from UART 30 via conductor 33E. One shot 76 reduces the duration of the pulses to about 20 microseconds in order to drive diode 20.
The 20 microsecond pulses containing the serial data are transmitted to diode 20 over a shielded cable 99. Short duration pulses are used to prevent overheating of diode 20. The circuit is inter-connacted by conductors 100, 101, and 33E.
Referring to FIGURE 3~, high gain amplifier 104 receives electrical signals through a shielded cable 106 and comprises an opamp 108, an inductor 110, capacitors 112-120, resistors 123-137, and conductors 138A-138C, all connected as shown. Amplifier 104 amplifies the weak electrical signals received from transistor 25, and raises them to a level suitable for driving comparator 140.
Resistors 125, 126, 127 and 130 combine with capacitors 114 and -115 to form a frequency selective negative feedback network from the output of opamp 108 to its input. The network passes low frequencies, such as 60 Hertz and 120 Hertz, while attenuating higher frequencies. In this way, the gain of amplifier 104 is substantially reduced for low frequency signals which could be generated by detector circuit 22 from undesired sources such as ' room lights. This feature enables the system to reject light , sources that otherwise might interfere with the communication process. Opamp 108 has a capability to recover in about 3 micro-seconds and no more than 10 microseconds from being overdriven ,!,, ~ '; , - . , ,,, ~ " .

into hard saturation. This recovery characteristics of the amplifier is important to the overall dynamic range of the system, which will be discussed later. One appropriate opamp is a model MC 1733 manufactured by Motorola, Inc.
Referring to FIGURE 3D, comparator 140 is used to reject the noise which is amplified along with the serial data signals received from transistor 25. This rejection is accomplished by means of resistors 128, 132-136, and 157. Resistors 136 and 157 forrn a positive feedback network to the input of comparator 140.
This positive feedback introduces hysteresis into the comparator characteristics so that a deadband exists between the comparator turn-on and turn-off input signal levels. This hysteresis is enhanced by a small voltage across resistor 133 in series with resistors 128 and 135, which together set the input bias on comparator 140. Resistors 132 and 134 couple the voltage across resistor 133 to the inputs of comparator 140 to enhance the dead-band and assure that comparator 140 returns to the output-low state in the quiescent mode. Thus the comparator rejects noise signals which are below the turn-on levels. Additionally, once the comparator is turned on by a signal pulse, its turn-off by noise during a signal pulse is prevented by the positive feed-back-induced hysteresis. This hysteresis also prevents the compa-rator from triggering falsely on small distortions of the signal pulse waveforms, such as over and under shoots which can occur due to the saturation of amplifier 104 or the charge-up of coupling capacitors, such as capacitors 119 and 120.
The combination of circuits 22, 104 and 140 has a unique ability to operate over a wide range of liyht input signal levels.
The wide range of signal levels results from the fact that TR 16 and TR 17 can operate at distances frorn less than one inch to more than 100 feet, a distance ratio of 1200 to 1, and, because of inverse square law effects, a range of more than 1,400,000 to 1 in - - ~

light pulse intensity. This ability to operate under wide distance and signal strength ranges is accomplished by means of the controlled saturation characteristics and recovery times of the radiation detector circuit 22, amplifier 104, and comparator 140. It provides reliable circult operatlon when the dlstance between vehlcle and station ls changlng with time, an important capabillty for remote control of a movlng vehlcle.
The electrical pulses generated by comparator 140 are blanked by blanking circuit 144 while drive circuit 74 is pulsing diode 20.
The blanking circuit comprises a one shot multivibrator 146, a NOR -gate 147, an inverter 149, capacitors 151-153 and resistors 156-158. A blanking circuit is needed to avoid the transmission and receipt of the same pulses by the same unit. For example, if TR 16 is transmitting pulses to TR 17, the blanking circuit pre-vents the receipt by TR 16 of the pulses transmitted by TR 16.
If TR 16 receives the pulses transmitted by TR 16, it could inter-pret them as a communication from TR 17. This would result in an erroneous transmlttal of information which the blanking system avoids.
Pulse converter 160 comprises a 16 bit counter 162, a NOR
gate 164 and inverters 166, 167. The pulse converter converts the 20 microsecond data pulses from comparator 140 into longer duration pulses suitable for interpretation by UART 30.

OPER~TION
The operation of the system will be described assuming that information is transmitted from TR 16 to TR 17. Assuming that 8-bit information is avaialable in parallel form on transmitter input bus 44, the information is converted to pulse position serial form by UART 30 and logic circuitry 32 in a well-known manner. Driver circuit 74 converts the serial pulses received from circuit 32 on conductor 33E into 20 microsecond pulses ~ .

which transfer the serial information to diode 20. The trans-mittal of a voltage pulse to diode 20 represents a logical 1 and the absence of a voltage pulse at the proper time represents a logical 0.
This mode of operation is more clearly illustrated in FIGURE 4 in which waveform TRO represents the waveform produced at the TRO output of UART 30 in response to a logical 0 on the bit 0 conductor of bus 44 and a logical 1 on the bit 1 conductor of bus 44. The remaining portion of the waveform corresponding to bits 2-7 of bus 44 is omitted. In order to transmit data, TRO is switched between a lower voltage V0 and a higher voltage Vl. By switching between V0 and Vl, UART 30 converts the 8 bits of parallel data on bus 44 into serial data represented in pulse position form. The serial data is transmitted in 8 bit frames which are commenced by a start bit and terminated by a stop bit which has a duration twice as long as the duration of the start bit or the data bits. Each start bit and data bit (e.g., BIT O) has a duration of about 208 microseconds. For example, UART 30 generates a start bit during time period SRB by switching to voltage V0. Prior to such start bit, TR0 is maintained at voltage Vl for no less than the duration PSB of a prior stop bit.
The stop bit is generated during time period SPB by switching TRO
to voltage Vl. Referring to waveform 0, during a prior stop bit, a series of 20 microsecond pulses (such as PSBI, PSB2) are trans-mitted to diode 20 approximately every 208 microseconds. There must be at least two pulses in the series. Each of the 20 micro-second pulses results in a corresponding pulse of infrared radiation from diode 20.
The start bit eliminates the 20 microsecond pulses from wave-form ) during the time period SRB. (Waveform 0 shows the col-lector voltage of transistor 83 of circuit 74, FIGURE 4). As a result, diode 20 produces no radiation during time period SRB.

, The stop bit results in two 20 microsecond pulses sPsl, SPB2 that are transmitted to diode 20. The logical state of bit 0 of bus 44 is represented by maintaining TRO at voltage V0 during time period B0, and the logical state of bit 1 of bus 44 is represented by switching TRO to voltage Vl during time period Bl.
Since bit 0 represents a logical 0 state, it results in no corresponding output pulse to diode 20. Conversely, since bit 1 represents a logical 1 state, it results in a 20 microsecond pulse BTl which is transmitted to diode 20. Pulses in waveform 0 ~e.g., BTl~ are produced at consistent points in time during the corresponding time periods defined by TRO due to the operation of NAND gate 67 which receives timing pulses from generator 66 at the rates of 4800, 2400, 1200 and 600 Hertz. Pulses PSBl, PSB2, SPBl, SPB2 result in pulse position modulated infrared optical radiation which is transmitted through the atmosphere to the detector circuit 22R in TR 17 which corresponds to detector circuit 22. (The components of TR 17 which correspond to the identical components of TR 16 described above will be referred to by the suffix "R".) The detector circuit converts the radiation pulses (as well as background radiation noise N) into corresponding electrical signals which are amplified and filtered by amplifier 104R to produce waveform A (FIGURE 4). Waveform A shows the signal at the input of comparator 140. In waveform A, 20 microsecond pulses PSBRl, PSBR2, BRl, SPBRl and SPBR2 correspond to transmitted pulses PSBl, PSB2, BTl, SPBl and SPB2, respectively. Comparator 140R discriminates against the noise and amplitude difference in the pulses in order to generate a voltage waveform B. The output of comparator 140R is used to reset counter 162, as will be discussed below.
The 20 microsecond data pulses then are converted into pulses having approximately the same duration as those produced by output TRO in converter circuit 160R. In order to achieve this ~.2~

result, the QD output of counter 162R is reset to its zero state each time a reset pulse is received from comparator 140R.
As soon as the reset pulse is removed, the counter begins to receive count pulses (via lead 69) from the 2400 Hertz output of BRG66R. Referring to waveform PC, FIGURE 4, as soon as 8 pulses have been received, the QD output of counter 162R is switched to its 1 state and remains in that condition until a pulse is received from comparator 14OR. Waveform PC shows the QD output of counter 162R. For example, prior to time Tl, pulses PSBl and PSB2 have been resetting counter 162R prior to its counting 8 counts, thereby preventing QD from switching to its 1 state. At Tl, the absence of a pulse from comparator 140R allows the counter to count 8 pulses, to switch the QD output to the 1 state, and to remain in that state until a reset pulse is received from comparator 140R
at time T4.
The foregoing operation constructs an inverted image ~PC) of the TRO waveform which originally created the information trans-mitted from TR 16 to TR 17. Waveform PC is inverted by inverter 167R in order to produce waveform TROl which corresponds to original waveform TRO, but is shifted in phase. UART 30R is constructed so that it samples waveform TROl approximately at times T3 and T5 in order to determine the logic state of the bit O and bit 1 information. As can be seen from FIGURE 4, the bit O
and bit 1 information of waveform TROl is in the same logic state as the original information created on output TRO. The information is converted to parallel form on receiver output bus 45 and is available for use by TR 17. That is, bit O of bus 45 is switched to its O state and bit 1 of bus 45 is switched to its 1 state.
The use of pulse encoded optical radiation information offers a number of advantages which are unattainable by the prior art control techniques. It has been found that such communications are reliable and unaffected by ambient light ff`;~

conditions. There is no curnbersome electrical wiring which must be coiled and uncoiled as the vehicle moves. Since radio frequencies are not involved, there is no possibility of inter-ference from adjacent radio transmitters. Using the unique pulsing techniques described herein, it is possible to communi-cate between a reference station and a movable vehicle with a degree of accuracy and reliability previously unattainable.
Those skilled in the art will recognize that the single embodiment described in the specification may be altered and modified without departing from the true spirit and scope of the invention as defined in the accornpanying claims.

Claims (12)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. In a vehicle for transporting loads among the racks of a warehousing system, improved apparatus for communicating variable information between the vehicle and a reference station as the vehicle is moving along a vehicle path comprising:
source means for generating optical radiation;
transducer means for converting optical radiation into corresponding electrical signals;
means for supporting the source means and transducer means in alignment along an optical path as the vehicle is moved along the vehicle path; and transceiver means for modulating the generated optical radiation according to the information to be communicated and for converting the electrical signals resulting from received optical radiation into a useful form of information.
2. Apparatus, as claimed in claim 1, wherein the source means and transducer means are located both at the vehicle and at the station, whereby information can be transmitted from the vehicle to the station and vice versa.
3. Apparatus, as claimed in claim 1, wherein the source means comprises a source of infrared radiation.
4. Apparatus, as claimed in claim 3, wherein the source of infrared radiation comprises a diode.
5. Apparatus, as claimed in claim 1, wherein the transceiver means comprises parallel to serial converter means for changing information arranged in parallel form into serial output signals for driving the source means.
6. Apparatus, as claimed in claim 1, wherein the transceiver means comprises means for causing the optical radiation to be generated in the form of time-spaced pulses.
7. Apparatus, as claimed in claim 4, wherein the transducer means comprises a phototransistor sensitive to infrared radiation.
8. Apparatus, as claimed in claim 5, wherein the transceiver means comprises serial to parallel converter means for converting serial electrical signals into parallel form.
9. Apparatus, as claimed in claim 1, wherein the reference station is fixed in position and the vehicle moves in a linear path.
10. Apparatus, as claimed in claim 1, wherein the reference station is located on a crane which transports the vehicle among the racks.
11. Apparatus, as claimed in claim 1, wherein the transceiver means comprises: a high pass filter; and an amplifier capable of recovering from being driven into saturation in less than 10 microseconds.
12. Apparatus, as claimed in claim 1, wherein the vehicle path and optical path are parallel.
CA341,956A 1978-12-15 1979-12-14 Rack entry vehicle communication system Expired CA1129008A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US05/969,798 US4236255A (en) 1978-12-15 1978-12-15 Rack entry vehicle communication system
US969,798 1992-10-30

Publications (1)

Publication Number Publication Date
CA1129008A true CA1129008A (en) 1982-08-03

Family

ID=25516015

Family Applications (1)

Application Number Title Priority Date Filing Date
CA341,956A Expired CA1129008A (en) 1978-12-15 1979-12-14 Rack entry vehicle communication system

Country Status (9)

Country Link
US (1) US4236255A (en)
JP (1) JPS55123802A (en)
AU (1) AU5387179A (en)
CA (1) CA1129008A (en)
DE (1) DE2949944A1 (en)
FR (1) FR2444309A1 (en)
GB (1) GB2041197B (en)
NL (1) NL7908571A (en)
SE (1) SE7910149L (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8000904A (en) * 1980-02-13 1981-09-16 Europ Container Terminus INFRARED CONNECTION SYSTEM.
US4328623A (en) * 1980-08-28 1982-05-11 The Valeron Corporation Telemetry gage system
FR2510981B1 (en) * 1981-08-04 1985-10-18 Kone Ste Fse Ascenseurs AUTOMATIC HANDLING AND STORAGE EQUIPMENT
JPS58156869U (en) * 1982-04-10 1983-10-19 千蔵工業株式会社 automatic sliding door
JPS60180357A (en) * 1984-02-28 1985-09-14 Mitsubishi Electric Corp Data receiver for unattended truck
US4626995A (en) * 1984-03-26 1986-12-02 Ndc Technologies, Inc. Apparatus and method for optical guidance system for automatic guided vehicle
US4680811A (en) * 1984-12-13 1987-07-14 Veeco Integrated Automation Inc. Vehicle to fixed station infrared communications link
DE8510644U1 (en) * 1985-04-11 1985-05-30 proLogistik Gesellschaft für Informations- u. Steuerungssysteme mbH, 4600 Dortmund Device for the transmission of information from electronic media, in particular by means of infrared radiation
US4691385A (en) * 1985-09-05 1987-09-01 Caterpillar Industrial Inc. Optical communication apparatus for a vehicle
US5113962A (en) * 1986-01-21 1992-05-19 Calabrese Frank A Linear energy communicator
USRE33746E (en) * 1986-09-25 1991-11-19 Integrated Tech Systems, Inc. Programmable sprinkler system
DE3640770C2 (en) * 1986-11-28 2002-05-02 Rieter Ingolstadt Spinnerei Dolly
DE3644466A1 (en) * 1986-12-24 1988-07-07 Methling & Pooth Ohg Safety system for the aisles of a rack store
JPS63165205A (en) * 1986-12-25 1988-07-08 Itoki Kosakusho Co Ltd Automatic custody searching device
US4873671A (en) * 1988-01-28 1989-10-10 National Semiconductor Corporation Sequential read access of serial memories with a user defined starting address
GB2216358A (en) * 1988-02-26 1989-10-04 Siemens Ag Tracking moving object
US4863335A (en) * 1988-03-25 1989-09-05 Haines & Emerson, Inc. Automatic guided vehicle roll-handling system
US4924164A (en) * 1988-04-08 1990-05-08 J. N. Fauver Company, Inc. Software zoning of conveyor control
US5158310A (en) * 1989-07-26 1992-10-27 Tannehill John M Display system for shopping cart
GB8926618D0 (en) * 1989-11-24 1990-01-17 Hutchinson David Information transfer system
DE4002719A1 (en) * 1990-01-31 1991-08-01 Leuze Electronic Gmbh & Co Product identification appts. - has two way microprocessor units with optical transmission appts. for communication
DE4111736C1 (en) * 1991-04-08 1992-08-27 Mannesmann Ag, 4000 Duesseldorf, De
JPH0816289B2 (en) * 1991-07-01 1996-02-21 村田機械株式会社 Communication method of travel service device
US5450226A (en) * 1993-01-29 1995-09-12 Morrison Knudsen Corporation Inter-car optical coupling
US5396078A (en) * 1993-09-22 1995-03-07 Hewlett-Packard Company Printer with optical data link to carriage
US5646761A (en) * 1993-09-24 1997-07-08 Jolt. Ltd. Wireless communication system
US5506410A (en) * 1994-05-16 1996-04-09 Matsushita Electric Industrial Co., Ltd. Cordless movable apparatus using optical spatial tranceivers
US5677667A (en) * 1995-02-23 1997-10-14 Vehicle Enhancement Systems, Inc. Data communications apparatus for tractor/trailer using pneumatic coupler
US6127939A (en) * 1996-10-14 2000-10-03 Vehicle Enhancement Systems, Inc. Systems and methods for monitoring and controlling tractor/trailer vehicle systems
US6111524A (en) 1995-11-09 2000-08-29 Vehicle Enhancement Systems, Inc. Systems and methods for identifying tractor/trailers and components thereof
US7449993B2 (en) * 1995-11-09 2008-11-11 Vehicle Enhancement Systems, Inc. System, apparatus and methods for data communication between vehicle and remote data communication terminal, between portions of vehicle and other portions of vehicle, between two or more vehicles, and between vehicle and communications network
AT404463B (en) * 1996-07-16 1998-11-25 Tgw Transportgeraete Gmbh Order-picking arrangement
US20060000860A1 (en) * 2004-06-30 2006-01-05 Pieciak Kenneth F Rack mount assembly for vehicle roof racks
JP4986385B2 (en) * 2004-08-11 2012-07-25 日揮触媒化成株式会社 Scale-like composite particles and cosmetics containing the same
DE102009049563B4 (en) * 2009-10-09 2013-04-18 SSI Schäfer AG Shuttle channel warehouse, shuttle station, shuttle and procedures for operating the shuttle channel warehouse
NL2005441C2 (en) * 2010-10-01 2012-04-03 Vanderlande Ind Bv DEVICE FOR SORTING PRODUCTS.
SE539991C2 (en) * 2014-01-31 2018-02-20 Logevo Ab Freight storage arrangement in several floors

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2941346A (en) * 1953-11-02 1960-06-21 Perry Edward Gordon Method and apparatus for the remote control of a lawn mower
US3009525A (en) * 1955-12-08 1961-11-21 Liban Robert De Guidance systems
US2996137A (en) * 1958-01-29 1961-08-15 Chu Yaohan Automatic radar guided and computer controlled vehicles
BE571660A (en) * 1958-09-10
US3314189A (en) * 1964-08-10 1967-04-18 William P Carroll Remote, light actuated control means for models
US3838412A (en) * 1965-04-19 1974-09-24 Gen Electric Optical link for illuminated traveling message display sign system
US3824597A (en) * 1970-11-09 1974-07-16 Data Transmission Co Data transmission network
US3705387A (en) * 1971-01-11 1972-12-05 Kenneth Stern Remote control system for electro-mechanical vehicle
FR2167292B1 (en) * 1972-01-12 1982-04-09 Mills Const Sa
US3880299A (en) * 1972-07-17 1975-04-29 Rapistan Inc Warehousing system
JPS5321185B2 (en) * 1972-11-27 1978-06-30
JPS5332586B2 (en) * 1973-01-19 1978-09-08
CA1080307A (en) * 1976-01-29 1980-06-24 Andrew E. Deczky Optical telemetry for aluminium reduction plant bridge cranes
US4119948A (en) * 1976-04-29 1978-10-10 Ernest Michael Ward Remote meter reading system
US4095097A (en) * 1976-12-22 1978-06-13 Gerald F. Titus Pulsed light signal receiver
JPS53111975A (en) * 1977-03-10 1978-09-29 Murata Mach Ltd Method of feeding signals in stacker crane
US4150284A (en) * 1977-04-28 1979-04-17 Texas Instruments Incorporated Medical patient condition monitoring system
GB1595821A (en) * 1977-04-28 1981-08-19 Texas Instruments Inc Low-power light information transmission system

Also Published As

Publication number Publication date
NL7908571A (en) 1980-06-17
DE2949944A1 (en) 1980-07-03
US4236255A (en) 1980-11-25
AU5387179A (en) 1980-06-19
GB2041197A (en) 1980-09-03
JPS55123802A (en) 1980-09-24
GB2041197B (en) 1983-06-15
FR2444309A1 (en) 1980-07-11
SE7910149L (en) 1980-06-16

Similar Documents

Publication Publication Date Title
CA1129008A (en) Rack entry vehicle communication system
US4680811A (en) Vehicle to fixed station infrared communications link
CA2005549A1 (en) Transient electromagnetic apparatus for detecting irregularities on conductive containers
CA1215121A (en) Optical star repeater
GB1534786A (en) Data transmission system
US5790295A (en) Gated integrator preamplifier for infrared data networks
JPH05209999A (en) Remote operation method for shaft, espe- cially nuclear waste storage location deep underground
CA2047870A1 (en) Automatic power control apparatus
US4641371A (en) Multi-star fiber optic network
JPS6344642B2 (en)
CN101741935A (en) Light transmitting system and electronic device having the same
AU648299B2 (en) Method and device for returning to a normal link after using a standby link in a data communication system
DE3012236A1 (en) PROXIMITY WARNING DEVICE
JP3839118B2 (en) Information transmission apparatus and method for radiation waveguide system
ES479002A1 (en) Routing rail vehicles
HU219086B (en) Vehicle receiver with automatic gain control
US4274611A (en) Device for the detection of the position of a railway vehicle
US3691368A (en) Vehicle detection system and method
CA1197313A (en) Load detecting system for automatic storage apparatus
JP2002362706A (en) Conveying carrier
Personick Fundamental limits in optical communication
RU2042150C1 (en) Method and device for detecting moving objects
CA2000582A1 (en) Optical transmission device
US3904157A (en) Arrangement for measuring the distance between two successive objects
JPH04222403A (en) Remote travel controller for carrying truck

Legal Events

Date Code Title Description
MKEX Expiry