CA1216231A - Bispecific antibody determinants - Google Patents

Bispecific antibody determinants

Info

Publication number
CA1216231A
CA1216231A CA000418116A CA418116A CA1216231A CA 1216231 A CA1216231 A CA 1216231A CA 000418116 A CA000418116 A CA 000418116A CA 418116 A CA418116 A CA 418116A CA 1216231 A CA1216231 A CA 1216231A
Authority
CA
Canada
Prior art keywords
determinant
molecule
bispecific antibody
antigenic
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000418116A
Other languages
French (fr)
Inventor
Henry P. Paulus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Biomedical Research Institute Inc
Original Assignee
Boston Biomedical Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston Biomedical Research Institute Inc filed Critical Boston Biomedical Research Institute Inc
Application granted granted Critical
Publication of CA1216231A publication Critical patent/CA1216231A/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/04Homopolymers or copolymers of nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/46Hybrid immunoglobulins
    • C07K16/468Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/002Electrode membranes
    • C12Q1/003Functionalisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/563Immunoassay; Biospecific binding assay; Materials therefor involving antibody fragments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/805Test papers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/81Packaged device or kit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/817Enzyme or microbe electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/962Prevention or removal of interfering materials or reactants or other treatment to enhance results, e.g. determining or preventing nonspecific binding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/964Chemistry: molecular biology and microbiology including enzyme-ligand conjugate production, e.g. reducing rate of nonproductive linkage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/966Chemistry: molecular biology and microbiology involving an enzyme system with high turnover rate or complement magnified assay, e.g. multi-enzyme systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S435/00Chemistry: molecular biology and microbiology
    • Y10S435/969Multiple layering of reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S436/00Chemistry: analytical and immunological testing
    • Y10S436/807Apparatus included in process claim, e.g. physical support structures
    • Y10S436/808Automated or kit

Abstract

Abstract of the Disclosure A homogenous sample of identical bispecific antibody determinants, each determinant being composed of two L-H
half-molecules linked by disulfide bonds, each L-H
half-molecule being specific for a different antigenic determinant and including at least the F(ab')2 portion of a monoclonal IgG antibody. The bispecific antibody determinants are useful, e.g., in the formation of multilamellar assemblies and enzyme electrodes.

Description

23~
The IgG antibodies are known to consist of two half-molecules, each consisting of a light (L) chain and a heavy (H) chain. The H chains of the two halves are linked by disulfide bonds, which can be broken by selective redu~tion.
If this step is performed for two different IgG samples, the - half-molecules can be combined to form hybrid antibodies. This h-as been accomplished using intact rabbit globulins; Nisonoff et al. (1964) Science 134, 376-379.
Hybrids have also been formed using the F(ab')2 fragments of IgG antibodies, rather than intact antibodies;
i.e., the F(c) portions of the molecules, which do not provide immunospecificity, are, prior to hybridization, removed by digestion with an appropriate protease such as papain. This procedure has been described in Nisonoff et al. (1960) Arch.
Biochem. Biophys. 89, 230-244 and in Nisonoff and Rivers (1960) Arch. Biochem. Biophys. 93, 460-462. In a later discussion of the first paper Nisonoff wrote, in Current Contents (Nov. 2, 1981) 44, 25:
So far this procedure has had limited application, principally in the staining of cell surfaces with ferritin by using a hybrid of anti-ferritin antibody and antibody to a cell surface antigen. The use of hy~rid antibody has also been considered as a means of bringing a pharmacological agent specifically into contact with a desired tissue surface.
The use of such hybrids for the delivery of cytotoxic drugs has also been suggested in Raso and Griffin (1978) Fed.
Proc. 37, 1350.

(~ lZ't6Z3i Milstein ~1981) Proc. R. Soc~ Lond. B211, 393-412 sugg~sts the possibility of using "monoclonal antibodies as carriers of toxic substances for specific treatment of tumors,"
and states that "(i)t is possible that Fab fragments will be better targeting agents than intact antibody."
Hybrid antibodies have also been formed by fusing two cells, each -capable of producing different antibodies, to make a hybrid cell capable of producing hykrid antibodies. Such a method is described in Schwaber et al. (1974) P.N.A.S. USA 71, 2203-2207, Mouse myeloma cells were fused to human lymphocytes, and the resultant fused cells produced "hybrid antibody molecules containing components of mouse immunoglobulins assembled with human heavy and light chains~"
The human antibody component was not monoclonal, and was undefined.
Schwaber et al. also describes an in vitro experiment in which the mouse and human antibodies were reduced strongly enough to break bonds between L and H chains, and then "allowed to recombine randomly."
In Cotton et al. (1973) Nature 244, 42-43 there is described an experiment in which mouse myeloma cells were fused to rat tumor cells to produce fusions which produced "an extra component" which was "likely ... a hybrid mouse-rat light chain dimer" as well as "non-symmetrical molecules made up of one 25 light chain of each parental type."

~ lZ1~3~ ~

Another paper, Raso et al. (lg~l) Cancer Research 41, 2073-2078, describes the formation of an impure sample of rabbit antibody F(ab')2 fragments against human IgG F(ab')2 fragments; the rabbit antibody fragments were split by reduction and reassembled with antiricin A chain F(ab')2 fragments. The dual specificity dimers were used in targeted drug delivery experiments. The article states:

The 2 types of purified antibodies used for this work were isolated from conventional heteroantisera. Thus, a complicated array of affinity and specificity combination must arise upon annealing these 2 populations.
The advent of homogeneous hybridoma-derived antibodies will afford absolute control over the binding affinities of the constituent halves of a hybrid antibody, and this uniformity should greatly boost their ultimate effectiveness as delivery vehicles.
~ G f~ 75 / lL I C~ ~
The present invention provides a ~o~a~nou6-s-~mple-of identical bispecific antibody determinants, each bispecific determinant being composed of two L-H half molecules linked by disulfide bonds, each L-H half molecule being different from the other and being specific for a different antigenic determinant, and being composed of at least the F~ab')2 ~ortion of a monoclonal IgG antibody.
The bispecific antibody determinants of the invention are made according to the following procedure. Using conventional methods, two different monoclonal IgG antibody samples are produced, each antibody having one of two desired specificities. If desired, each sample is then exposed to an appropriate protease such as papain to cleave off the F(c) portion of the antibody molecules to produce F(ab')2 fragments. Each sample is then subjected to conditions sufficient to break at least some of the disulfide bonds linking the L-H half-molecules so that at least some of the antibodies are split into two half-molecules.
The two samples are then combined under conditions which permit at least some half-molecules of each determinant to chemically combine with at least some half-molecules of the other determinant to form the bispecific antibody determinants of the invention.
The bispecific antibody determinants molecules are then separated from the rest of the mixture. One separation method is contacting the mixture with an affinity matrix containing an antigen capable of specifically binding to either of the two halves of the bispecific antibody determinant, then eluting bound matrix-bound material, and contacting that material with an affinity matrix containing an antigen capable of specifically binding the other half-molecule. The material bound to this second matrix has the required dual specificity.
An alternative separation method can be used in a case where one of the halves of the bispecific antibody determinant has a specificity for an antigenic determinant which is a iZ16~3~L
macromolecule (a molecule having a molecular weight greater than about 1000 daltons). This method involves adding the macromolecular antigenic determinant to the sample containing the bispecific antibody determinant to be purified to form immune complexes which can be separated into subfractions having differen~ molecular weights by, e.g., gel filtration or electrophoresis. The subfraction having a molecular weight equivalent to the mole~ular weight of the complex of the desired bispecific antibody determinant with the macromolecular antigen is separated from the other subfractions, and, if desired, the macromolecular antigen is then removed using conventional methods.
In the drawings, Fig. l is a diagrammatic representation of two different antigenic determinants linked by a bispecific antibody determinant.
Figs. 2 and 3 are diagrammatic represenatations of electrodes employing bispecific antibody determinants.

Fig. 4 is a diagrammatic representation of a self-assembling network employing bispecific antibody determinants.
Fig. 5 is a diagrammatic representation of a multilamellar assembly useful for an assay method.
The bispecific antibody determinants of the invention 2S are useful for a wide range of applications. Referring to Fig.
1, these applications all flow from the ability of these ~L21~iZ3~

determinants to serve as highly specific linkers through specific sites A' and B', of any two antigenic determinants A
and B capable of stimulating antibody production in animals;
e.g., effective proteins, polypeptides, carbohydrates, nucleic acids, or haptens, either free or immobilized on surfaces or particles.
One application of the bispecific antibody determinants of the invention is their use as agents for bonding a desired antigenic entity to a desired surface which has a different antigenic determinant immobiliæed on it. For example, enzymes so immobilized on particles or membranes can be used as solid-state catalysts. Advantages of this type of immobilization over others are that antibodies can be selected which have no adverse effect on enzyme activity, and that pure enzymes can be immobilized from impure mixtures. Bispecific antibody determinants can also be used as highly specific bispecific reagents for immunoassay procedures which are used, e.g., in the diagnosis of medical disorders, or as molecular probes to study the relationships between antigenic determinants in biological systems.
An additional application of the bispecific antibody determinants is their use in electrodes. Currently-used enzyme electrodes frequently employ tissue slices as the enzyme source. For example, electrodes for measuring glutamine have been made using a conventional NH3 electrode in combination with kidney slices as the source of glutaminase, the enzyme ~Z1623~ ~
which breaks down glutamine to produce measurable NH3 ions;
Rechnitz (1981) Science 214, 2~7-2gl.
The present invention provides electrode apparatus for the measurement in a sample of an unknown amount of a substance which is acted on by one or more enzymes to evolve a measurable ion or compound, the ion or compound evolved being a measure of the unknown substance. The electrode apparatus includes means for measuring the measurable ion or compound, and, associated with that means, a membrane having associated therewith a plurality of molecules of each enzyme which acts on the substance to be measured and, bonded to the molecules of each enzyme, a plurality of identical, bispecific antibody determinants. Each determinant is composed of two different L-H half-molecules linked by disulfide bonds, and each half-molecule includes at least the F(ab')2 portion of a monoclonal IgG antibody. One said L-H half-molecule is specific for an antigenic site on the enzyme molecule to which it is bonded and the other half-molecule is specific for an antigenic determinant on the membrane to which the bispecific antibody determinant is bonded to become immobilizably associated with the membrane.
The electrode can be used to measure any substance which can be metabolized by an enzyme or combination of enzymes in a way which produces or consumes a measurable ion or compound such as NH3 , CO2, 2' or H , provided that -~` 1;21~23~L ~

each enzyme can bind specifically to a site on an immobilized bispecific antibody determinant.
The reaction can be one which requires more than one enzyme. It is required in such a case that all of the required enzymes be immobilized on bispecific antibody determinants which are immobilized in the electrode. Figs. 2 and 3 illustrate two modes of enzyme immobilization in a two-enzyme system in which the two enzymes catalyze consecutive reactions in the conversion of a substance to an ion or compound which can be measured by the appropriate ion or ccmpound-specific membrane electrode.
Referring to Fig. 3, membrane 2 of electrode 4 bears, on spacer arms 3 and 5, different haptens A and B, in the desired ratio, to which are immobilized different bispecific antibody determinants having, respectively, hapten-specific sites A' and B'. The second site on each bispecific antibody determinant is specific, respectively, for binding sites on enzymes C and D, which catalyze consecutive steps in the breakdown of the substance to be measured into a measurable compound or ion.
Referring to Fig. 4, membrane 6 of electrode 8 bears, on spacer 7, hapten A, to which is immobilized a bispecific antibody determinant having hapten A-specific site A' and a second site, B', which is specific for binding site B on one of the two enzymes necessary for the breakdown of the substances to be measured into a measurable compound or ion. The second ~2~23i bispecific antibody determinant has a site, C', specific for antigenic binding site C on the first enzyme, and a second site, D', specific for a different antigenic binding site D on the second enzyme required for the production of the measurable compound or ion. The advantage of the arrangement shown in Fig. 4 is that it assures that the two enzymes are closely linked so that the two reactions are efficiently coupled.
Enzyme electrodes made using bispecific antibody determinants possess several advantages over conventional enzyme electrodes. One advantage is their precise self-assembling property: the desired electrode assembly is generated simply by attaching the appropriate hapten or haptens to the membrane (either the electrode membrane or a separate membrane associated with the electrode) and then immersing the hapten-derived membrane into a solution containing the appropriate bispecific antibodies and enzymes. This ease of assembly also means that the electrode can be easily recharged after deterioration has occurred through prolonged use.
Another advantage of the electrodes is also a function of the specificity of the bispecific antibody determinants.
Any given enzyme will possess a number of antigenic sites capable of binding to a specific site of an antibody. However, coupling at many of these sites can cause inactivation of the enzyme. In the case of bispecific monoclonal antibody determinants, this problem is avoided because the determinants are selected so that they couple with the enzyme only at a site which does not cause deactivation of the enzyme.

6~

A further advantage is that assembly or recharging of the electrode can be done with impure enzyme mixtures beca~se the unique specificity of the bispecific antibody determinants assures the selection of the proper enzymes from the impure mixture.
In some instances the membrane containing the immobilized enzymes can be covered with a second semipermeable membrane to slow the deterioration of the electrode assembly, or the assembly can be stabilized by treatment with glutaraldehyde.
Yet another application for the bispecific antibody determinants is their use in the formation of self-assembling networks for use, e.g., as molecular microcircuits. Such a ne~work is illustrated diagrammatically in Fig. 4, wherein A, B, C, D, E, and F represent antigenic determinants and A', B', C', D', E', F', represent, respectively, corresponding antibody determinants. It can be seen that the number of linked specific determinants is virtually limitless and, further, that the network can be highly complex and in two or three ~0 dimensions. Most importantly, the network, no matter how complex, is entirely self-assembling in a uniquely defined way.
One example of such a self-assembling network is a multilamellar assembly for use, e.g., in chemical assays or in the production of specific chemicals in industrial processes.
Currently used assemblies for assays of substances in, e.g., serum, employ a series of layers of enzymes trapped between ~21623~

membranes of low porosity. The sample containing the substance to be measured is placed on the outer surface of the assembly and allowed to seep down through the layers, interacting successively with the trapped enzymes until, in the bottom layer, measurable result is produced, e.g. a flvorescence or a color change; this result is a measure of the substance being measured in the sample.
The multilamellar assembly of the invention employs bispecific antibody determinants to link two or more enzymes which can be sequentially acting, as illustrated in Fig. 4 (I-IV representing different enzymes). The low-porosity membranes of current assemblies are thus in many instances unnecessary, the spatial relationships among the enzymes already being fixed by théir attachment to bispecific antibody determinants. Furthermore, the use of bispecific antibody determinants to link enzymes enhances the efficiency of the reaction by reducing the diffusion time of intermediates.
- In the multilamellar assemblies of the invention, the antigenic determinants linked by the bispecific antibody determinants are, in some cases, not enzymes but other catalysts e.g., microbial cells. This will be the case in certain industrial processes, for example, in which the goal of the process is not the measurement of a compound but the production of a desired chemical via a series of chemical reactions.

~2~3~

The following specific examples are intended to more particularly point out the invention, without acting as limitations upon its scope.

Example 1 The following procedure is used to prepare a homogeneous sample of identical bispecific antibody determinants in which each bispecific determinant has a site specific for a unique antigenic site on the enzyme glucose oxidase, and a site specific for a unique antigenic site on the enzyme ~ -galactosidase.
The first step is the preparation of monoclonal antibodies against the two enzymes glucose oxidase and ~-galactosidase. This is done by first immunizing one group of BALB/C mice against each enzyme using standard immunization procedures.
Following immunization, spleen cells of immunized animals are prepared and fused with a derivative of MOPC-21 myeloma cells (SP2/O-Agl4) using the procedure described in Galfre et al. (1981) Methods in Enzymology 73, 3-46. The hybrid cells are selected in hypoxanthine-aminopterin-thymidine medium, cloned, and screened for production of antibodies against the desired enzymes by the method described in Galfre et al. Id. The clones found to produce antibodies against the desired enzyme are then screened to select a clone which Z3~

produces an antibody of the IgG class which has a high affinity for the enzyme and which does not cause inactivation of the enzyme. The clones of interest are stored until use under liquid nitrogen. Antibody is prepared by propagating the cloned cells in spinner flasks in Bulbeccos's modified Eagles' medium containing 5~ fetal calf serum. Alternatively, a higher antibody yield is obtained by the standard technique of growing the cells as ascitic tumors in the peritoneal cavities of pristane-primed mice.
The desired IgG antibodies against glucose oxidase and ~-galactosidase are then purified from medium or ascites fluid by affinity chromatography on protein A-Sepharose, as described in Ey et al. (1978) Immunochemistry 15, 429-436.
Each of the two purified antibodies is then converted to F(ab')2 fragments by treatment with pepsin according to the procedure of Hackett et al. (1981) Immunology 4, 207-215, as follows. Four mg of purified immunoglobulins (IgG), dissolved in 0.1 M acetate buffer, pH 4.6, are incubated with 40 ~g of pepsin at 37C. After 20 hours, the mixture is adjusted to pH
8.1 with Tris buffer, passed through a column of protein A-Sepharose, and then purified by gel filtration on Sephadex* G-50.
The two types of F(ab')2 fragments are then combined to form bispecific determinants, as follows. First, one (either one) of the fragments is subjected to mild reduction with lQ mM mercaptoethylamine hydrochloride at 37C for 1 hour * Trade Mark `A~

` ~21~23~

under a nitrogen atmosphere to separate the fragment into half-molecules without breaking the bonds between H and L chains.
The reducing agent is then removed by passing the mixture through a column of Dowex*-50 at pH 5. The effluent is then reacted immediately with 2 mM 5,5'-dithiobis (2-nitrobenzoic acid) in 0.02 M Na phosphate, pH 8.0, and 3 mM EDTA, as described in Raso and Griffin, J. Immunol. (1980) 125, 2610-2616. The Fabl-thionitrobenzoate derivative thus formed is then purified by gel filtration on Sephadex G0100 in 0.2 M
Na phosphate, pH 8Ø The other F(ab')2 fragment is likewise reduced and treated with Dowex-50, and the resulting Fab' derivative is mixed immediately with an equimolar amount of the Fab'-thionitrobenzoate derivative and incubated for 3h at 20C
to form a mixture containing a high yield of identiaal bispecific an~ibody determinants, each determinant being made up of two F(ab')2 L-H half molecules linked by disulfide bonds. To obtain a homogeneous sample of the identical b;specific antibody determinants, the mixture is passed through a column of Sepharose 4B equilibrated with 0.1 M Tris, pH 7.5, the Sepharose having covalently bonded to it ~-galactosidase.
The column is then washed with 0.1 M Tris, pH 7.5, and the anti-R-galactosidase determinants are then eluted with 0.1 M
glycine, pH 2.5, and then neutralized with Tris.

* Trade Mark ~`

3~
The eluate is then passed through a second column of Sepharose 4B which has glucose oxidase covalently bonded to it by CNBr activation. The col~mn is washed with 0.1 M Tris, pH
7.5, and the bispecific anti-glucose oxidase, anti-~-galactosidase determinants are then eluted with 0.1 M glycine pH 2.5, and then neutralized with Tris. The eluate constit~tes a homogenous sample of the desired identical bispecific antibody determinants.
Example 2 Using the same procedure employed in Example 1, a homogeneous sample of identical bispecific antibody determinants is prepared in which one antibody site is specific for a different antigenic site on the enzyme glucose oxidase from the site for which the bispecific antibody determinant of Example 1 is specific, and in which the second antibody site is specific for an antigenic site on Type I collagen.
Example 3 An enzyme electrode for the measurement of lactose is constructed according to the following procedure. First, a collagen membrane shaped to fit over a commercial 2 electrode is prepared by electrolysis of a collagen fibril suspension using platinum electrodes, as described in Karube et al. (1972) 47, 51-54.
A solution is prepared of the bispecific antibody determinants from Example 2 together with a 10-fold or higher molar excess of glucose oxidase, in 0.1 M phosphate buffer, pH

`23~

7.0; the glucose oxidase need not be pure. The collagen membrane is immersed in this solution and incubated for 1 h at 20C, after which time it is rinsed with buffer and then transferred to a solution containing the antibody from Example 1 together with a 10-fold or higher molar excess of ~-galactosidase in 0.1 M phosphate buffer, where it is incubated at 20C for 1 h. The membrane is then quickly rinsed in buffer and stabilized by immersion in 0.5% glutaraldehyde in 0.1 M phosphate buffer, pH 7.0, for 3 minutes.
The membrane is then placed over the oxygen-permeable teflon membrane of the commerical 2 electrode, rendering the electrode ready for use for the measurment of lactose, in a manner analogo~s to the method of measuring sucrose described in Satoh et al. (1976) Biotechnol. and Bioengineering 18, 269-272. A sample containing an unknown amo~nt of lactose is contacted with the membrane, and the immobilized ~-galactosidase catalyzes the breakdown of the lactose into glucose, which is then acted on by the immobilized glucose oxidase to release 2' which is measured as a measure of lactose in the sample.
In the preparation of the membrane described above, molar excesses of enzyme over antibody are employed because ~-galactosidase and glucose oxidase are each composed of several identical subunits. An excess of enzyme assures that, on average, only a single antigenic site on each enzyme molec~le is involved in complex formation. In the preparation f`. ~.`,'.
121623~ -of other electrode using monomeric enzymes, molar excesses of enzymes are not necessary. When equimolar amounts of enzymes and bispeci~ic antibody determinants are used, the reaction can be allowed to proceed in a single stage.
Example 4 The following is a description of an example of the type of assay assembly which employs the production of a colored or fluorescent substance, which can be measured colorimetrically, reflectometrically, or fluorometrically, as a measure of an unknown amount of a substance being assayed.
Fig. 5 is a diagrammatic representation of a colorimetric indicator for lactose. Biotin-substituted regenerated cellulose membrane 10 is used as the support for the immobilized enzymes which participate in the series of reactions by which lactose in a s-ample generates H2O2 to produce a colorimetrically measurable result, which is a measure of the amount of lactose in the sample.
The enzymes are immobilized, as shown in Fig. 5, by being bonded to three different bispecific antibody determinants, prepared according to the procedure described in Example 1. The first determinant has one site, A', specific for an antigenic site on the protein avidin, and the other site, B', specific for an antigenic site on the enzyme horseradish peroxidase. The second determinant has a site, C', specific for a different antigenic site on horseradish peroxidase, and the second site, D', specific for an antigenic .~ .

~6~3~ , site on glucose oxidose. The third determinant has an antibody site E', specific for a different antigenic site on glucose oxidase, and the second site, F', specific for an antigenic ~ site on ~-galactosidase.
Substituted cellulose membrane 10 is prepared by the cyanogen bromide procedure, e.g. Cuatrecasas et al. (1968) Proc. Nat'l. Acad. Sci. USA 61, 636-643, as follows.
Regenerated cellulose membranes are suspended in 0.1 M NaHCO3 at 4C and treated with an equal volume of 2.5% CNBr solution, the pH being continuously adjusted to 11 with 2N NaOH and the temperature kept at 4C. After 8 min, the cellulose membranes are washed with 0.1M NaHCO3 and then with water, 50~ acetone, and finally with 100% acetone. The cellulose membranes are then incubated at 4C for 20h in 0.2M NaHCO3, pH 9, containing 1 mg per ml of -N-biotinyl-L-lysine (Bayer et al.
(1974) Methods in Enzy_oloqy 34B, 265-267), followed by extensive washing with water.
The biotin-substituted cellulose membrane is then immersed in 0.1M phosphate buffer, pH 7.0, and incubated for lh at 20C with approximately equivalent molar amounts of avidin, horseradish peroxidase, and the bispecific antibody determinant having sites A' and B'. The membrane is then rinsed with buffer and transferred to a solution containing an approximately equivalent molar amount of the bispecific antibody determinant having sites C' and D', and a 10-fold molar excess of glucose oxidase. After 1 hour at 20C, the -- lg --23i (~

membrane is rinsed with buffer and transferred to a solution containing an approximately equivalent molar amount of the bispecific antibody determinant having sites E' and F', and a ~ 10-fold molar excess of ~- galactosidase, and incubated at 20C
for lh, followed by rinsing with buffer. If repeated use is anticipated, the membrane is stabilized by immersion in 0.5%
glutaraldehyde in O.lM phosphate buffer, pH 7, for 3 min.
The enzymes used in the above-described procedure need not be pure. In the example described, a molar excess of ~-galactosidase and glucose oxidase was necessary because these enzymes are composed of several identical subunits. In cases where only monomeric enzymes are used, molar excesses of enzymes are not necessary. When equimolar amounts of enzymes and bispecific antibody determinants are used, the reaction can be allowed to proceed in a single stage.
For the determination of lactose, membrane 10 is immersed in or wetted with a sample containing an unknown amount of lactose in O.lM phosphate buffer, p~ 7, and 0.01 o-dianisidine.
As shown in Fig. 5, lactose in the sample first acts on ~-galactosidose to form glucose, which in turn is acted on by glucose oxidase, in the presence of oxygen, to release H2O2, which, with peroxidase, oxidizes o-dianisidine to produce a yellow dye with absorbance at 460 mm. Various other chromogenic or fluorogenic substances can be substituted for o-dianisidine.
What is claimed is:

Claims (14)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OF PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A composition of identical bispecific antibody deter-minants, each said determinant comprising two L-H half-molecules linked by disulfide bonds, each said L-H half-molecule being specific for a different antigenic determinant, and comprising at least the F(ab')2 portion of a monoclonal IgG antibody.
2. A method of preparing a composition of identical bispecific antibody determinants, said method comprising the steps of providing samples of two different monoclonal IgG antibody determinants, each said determinant comprising two identical L-H
half-molecules linked by disulfide bonds, each said L-H molecule comprising at least the F(ab')2 portion of said monoclonal IgG
antibody, subjecting said antibody determinants in each sample to conditions sufficient to break at least some of said disulfide bonds linking said L-H half-molecules, whereby at least some of said determinants in each said sample are split into two half-molecules, combining said samples under conditions which permit at least some half-molecules of each determinant to chemically combine with at least some half-molecule of the other said determinant to form said identical bispecific antibody determinants, and separating said identical bispecific antibody determinants from said mixture.
3. The composition of claim 1 wherein at least one of said antigenic determinants is a protein.
4. The composition of claim 3 wherein said protein is an enzyme.
5. The composition of claim 1 wherein one said antigenic determinant comprises an antigenic site on a solid matrix, whereby said bispecific antibody determinant is capable of being immobilized on said solid matrix by binding to said matrix at said antigenic site.
6. The composition of claim 5 wherein said other antigenic determinant is an antigenic site on an enzyme.
7. The composition of claim 5, wherein said antigenic site on said matrix is a site on a haptenic molecule attached to said matrix, said bispecific antibody determinant is bonded to said haptenic molecule, the other said antigenic determinant comprises a first anti-genic site on a first protein molecule, said bispecific antibody determinant being bonded to said protein molecule, and there is bonded to said first protein molecule, at a second antigenic site on said protein molecule, a second bispecific antibody determinant different from the determinant bonded to said haptenic molecule, each said second determinant comprising two L-H half-molecules linked by disulfide bonds, each said L-H

half molecule being specific for a different antigenic determinant, one said antigenic determinant being a second antigenic site on said first protein molecule, each said half-molecule comprising at least the F(ab')2 portion of a monoclonal IgG antibody.
8. The composition of claim 7 wherein the other said antigenic determinant for which said second bispecific antibody determinant is specific is an antigenic site on a second protein molecule.
9. The composition of claim 8 wherein each said first and second protein is an enzyme.
10. The composition of claim 9 for the measurement of a substance, wherein said enzymes participate in a series of reactions which result in the production, from said substance, of a measurable effect which is a measure of said substance.
11. The composition of claim 1 wherein one half-molecule of each said bispecific antibody determinant is specific for an antigenic site on .beta.-galactosidase and the other half-molecule is specific for an antigenic site on glucose oxidase.
12. The composition of claim 1 wherein one half-molecule of said bispecific antibody determinant is specific for an antigenic site on glucose oxidase and the other half-molecule is specific for an antigenic site on Type I collagen.
13. The composition of claim 1 wherein one half-molecule of each said bispecific antibody determinant is specific for an antigenic site on peroxidase and the other half-molecule is specific for an antigenic site on glucose oxidase.
14. The composition of claim 1 wherein one half-molecule of said bispecific antibody determinant is specific for an antigenic site on peroxidase and the other half-molecule is specific for an antigenic site on avidin.
CA000418116A 1981-12-21 1982-12-20 Bispecific antibody determinants Expired CA1216231A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US332,881 1981-12-21
US06/332,881 US4444878A (en) 1981-12-21 1981-12-21 Bispecific antibody determinants

Publications (1)

Publication Number Publication Date
CA1216231A true CA1216231A (en) 1987-01-06

Family

ID=23300260

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000418116A Expired CA1216231A (en) 1981-12-21 1982-12-20 Bispecific antibody determinants

Country Status (12)

Country Link
US (1) US4444878A (en)
EP (1) EP0096076B1 (en)
JP (2) JPS58502182A (en)
AT (1) ATE21932T1 (en)
AU (1) AU549195B2 (en)
CA (1) CA1216231A (en)
DE (2) DE3249285T1 (en)
DK (1) DK379583A (en)
FI (1) FI68731C (en)
GB (1) GB2123030B (en)
NO (1) NO163255C (en)
WO (1) WO1983002285A1 (en)

Families Citing this family (200)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714681A (en) * 1981-07-01 1987-12-22 The Board Of Reagents, The University Of Texas System Cancer Center Quadroma cells and trioma cells and methods for the production of same
JPS58122459A (en) * 1982-01-14 1983-07-21 Yatoron:Kk Measuring method utilizing association of enzyme
US4659678A (en) * 1982-09-29 1987-04-21 Serono Diagnostics Limited Immunoassay of antigens
US4816567A (en) * 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
GB8314523D0 (en) * 1983-05-25 1983-06-29 Lowe C R Diagnostic device
GB8318575D0 (en) * 1983-07-08 1983-08-10 Cobbold S P Antibody preparations
US4783399A (en) * 1984-05-04 1988-11-08 Scripps Clinic And Research Foundation Diagnostic system for the detection of cytomegalovirus
US4818678A (en) * 1984-05-04 1989-04-04 Scripps Clinic And Research Foundation Diagnostic system for the detection of cytomegalovirus
DE3430905A1 (en) * 1984-08-22 1986-02-27 Boehringer Mannheim Gmbh, 6800 Mannheim METHOD FOR DETERMINING AN IMMUNOLOGICALLY BINDABLE SUBSTANCE
IL78034A (en) * 1986-03-04 1991-08-16 Univ Ramot Biosensors comprising antibodies bonded to glassy carbon electrode for immunoassays
JPH0721478B2 (en) * 1986-03-31 1995-03-08 財団法人化学及血清療法研究所 Working film for immunosensor
US5260203A (en) * 1986-09-02 1993-11-09 Enzon, Inc. Single polypeptide chain binding molecules
US5869620A (en) * 1986-09-02 1999-02-09 Enzon, Inc. Multivalent antigen-binding proteins
US4946778A (en) * 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
FR2604092B1 (en) * 1986-09-19 1990-04-13 Immunotech Sa IMMUNOREACTIVES FOR TARGETING ANIMAL CELLS FOR VISUALIZATION OR DESTRUCTION IN VIVO
US4844893A (en) * 1986-10-07 1989-07-04 Scripps Clinic And Research Foundation EX vivo effector cell activation for target cell killing
JP2682859B2 (en) 1987-07-27 1997-11-26 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼーション Receptor membrane
US5086002A (en) * 1987-09-07 1992-02-04 Agen Biomedical, Ltd. Erythrocyte agglutination assay
US5336603A (en) * 1987-10-02 1994-08-09 Genentech, Inc. CD4 adheson variants
US6710169B2 (en) * 1987-10-02 2004-03-23 Genentech, Inc. Adheson variants
US5389523A (en) * 1988-05-31 1995-02-14 The United States Of Americas, As Represented By The Secretary Of Commerce Liposome immunoanalysis by flow injection assay
US5601819A (en) * 1988-08-11 1997-02-11 The General Hospital Corporation Bispecific antibodies for selective immune regulation and for selective immune cell binding
SE8804074D0 (en) * 1988-11-10 1988-11-10 Pharmacia Ab SENSOR UNIT AND ITS USE IN BIOSENSOR SYSTEM
CA2006408A1 (en) * 1988-12-27 1990-06-27 Susumu Iwasa Bispecific monoclonal antibody, its production and use
US5116964A (en) 1989-02-23 1992-05-26 Genentech, Inc. Hybrid immunoglobulins
US6919211B1 (en) * 1989-06-07 2005-07-19 Affymetrix, Inc. Polypeptide arrays
US6406844B1 (en) 1989-06-07 2002-06-18 Affymetrix, Inc. Very large scale immobilized polymer synthesis
US5800992A (en) 1989-06-07 1998-09-01 Fodor; Stephen P.A. Method of detecting nucleic acids
US6955915B2 (en) * 1989-06-07 2005-10-18 Affymetrix, Inc. Apparatus comprising polymers
US6309822B1 (en) 1989-06-07 2001-10-30 Affymetrix, Inc. Method for comparing copy number of nucleic acid sequences
US5744101A (en) 1989-06-07 1998-04-28 Affymax Technologies N.V. Photolabile nucleoside protecting groups
US5424186A (en) 1989-06-07 1995-06-13 Affymax Technologies N.V. Very large scale immobilized polymer synthesis
US6416952B1 (en) 1989-06-07 2002-07-09 Affymetrix, Inc. Photolithographic and other means for manufacturing arrays
US6346413B1 (en) 1989-06-07 2002-02-12 Affymetrix, Inc. Polymer arrays
US6551784B2 (en) 1989-06-07 2003-04-22 Affymetrix Inc Method of comparing nucleic acid sequences
US5143854A (en) * 1989-06-07 1992-09-01 Affymax Technologies N.V. Large scale photolithographic solid phase synthesis of polypeptides and receptor binding screening thereof
US5925525A (en) * 1989-06-07 1999-07-20 Affymetrix, Inc. Method of identifying nucleotide differences
US5547839A (en) * 1989-06-07 1996-08-20 Affymax Technologies N.V. Sequencing of surface immobilized polymers utilizing microflourescence detection
US5491097A (en) * 1989-06-15 1996-02-13 Biocircuits Corporation Analyte detection with multilayered bioelectronic conductivity sensors
US5156810A (en) * 1989-06-15 1992-10-20 Biocircuits Corporation Biosensors employing electrical, optical and mechanical signals
US5897861A (en) * 1989-06-29 1999-04-27 Medarex, Inc. Bispecific reagents for AIDS therapy
US5270194A (en) * 1989-08-31 1993-12-14 Instrumentation Laboratory Spa Stabilized glucose oxidase from Aspergillus Niger
US5583003A (en) * 1989-09-25 1996-12-10 Agen Limited Agglutination assay
EP0420151B1 (en) * 1989-09-27 1996-04-10 Hitachi, Ltd. Anti-rhodopsin monoclonal antibody and use thereof
US6506558B1 (en) 1990-03-07 2003-01-14 Affymetrix Inc. Very large scale immobilized polymer synthesis
EP0834576B1 (en) * 1990-12-06 2002-01-16 Affymetrix, Inc. (a Delaware Corporation) Detection of nucleic acid sequences
WO1992018866A1 (en) * 1991-04-10 1992-10-29 Biosite Diagnostics Incorporated Novel conjugates and assays for simultaneous detection of multiple ligands
AU656181B2 (en) * 1991-05-03 1995-01-27 Pasteur Sanofi Diagnostics Heterobifunctional antibodies possessing dual catalytic and specific antigen binding properties and methods using them
JP3951062B2 (en) 1991-09-19 2007-08-01 ジェネンテック・インコーポレーテッド Expression of antibody fragments with cysteine present at least as a free thiol in E. coli for the production of bifunctional F (ab ') 2 antibodies
US6468740B1 (en) 1992-11-05 2002-10-22 Affymetrix, Inc. Cyclic and substituted immobilized molecular synthesis
US6025165A (en) * 1991-11-25 2000-02-15 Enzon, Inc. Methods for producing multivalent antigen-binding proteins
US5635177A (en) 1992-01-22 1997-06-03 Genentech, Inc. Protein tyrosine kinase agonist antibodies
US7381803B1 (en) 1992-03-27 2008-06-03 Pdl Biopharma, Inc. Humanized antibodies against CD3
US6129914A (en) * 1992-03-27 2000-10-10 Protein Design Labs, Inc. Bispecific antibody effective to treat B-cell lymphoma and cell line
GB9221657D0 (en) * 1992-10-15 1992-11-25 Scotgen Ltd Recombinant bispecific antibodies
GB2286189A (en) * 1992-10-15 1995-08-09 Scotgen Ltd Recombinant specific binding protein
WO1994012520A1 (en) * 1992-11-20 1994-06-09 Enzon, Inc. Linker for linked fusion polypeptides
ATE241642T1 (en) * 1993-02-04 2003-06-15 Denzyme Aps IMPROVED METHOD FOR REFOLDING PROTEINS
WO1995008637A1 (en) * 1993-09-21 1995-03-30 Washington State University Research Foundation Immunoassay comprising ligand-conjugated, ion channel receptor immobilized in lipid film
US5877016A (en) 1994-03-18 1999-03-02 Genentech, Inc. Human trk receptors and neurotrophic factor inhibitors
US6100071A (en) 1996-05-07 2000-08-08 Genentech, Inc. Receptors as novel inhibitors of vascular endothelial growth factor activity and processes for their production
US20020166764A1 (en) * 1997-08-12 2002-11-14 University Of Southern California Electrochemical sensor devices and methods for fast, reliable, and sensitive detection and quantitation of analytes
US6682648B1 (en) 1997-08-12 2004-01-27 University Of Southern California Electrochemical reporter system for detecting analytical immunoassay and molecular biology procedures
AU757800B2 (en) * 1997-11-21 2003-03-06 Inverness Medical Switzerland Gmbh Improvements in or relating to electrochemical assays
AU1539699A (en) 1997-11-24 1999-06-15 Johnson T. Wong Methods for treatment of hiv or other infections using a t cell or viral activator and anti-retroviral combination therapy
US6312689B1 (en) 1998-07-23 2001-11-06 Millennium Pharmaceuticals, Inc. Anti-CCR2 antibodies and methods of use therefor
US6545264B1 (en) 1998-10-30 2003-04-08 Affymetrix, Inc. Systems and methods for high performance scanning
JP5249482B2 (en) * 1999-06-16 2013-07-31 ボストン・バイオメデイカル・リサーチ・インステイテユート Immunological control of β-amyloid levels in vivo
AU2001283304B2 (en) * 2000-08-11 2005-05-05 Favrille, Inc. Method and composition for altering a T cell mediated pathology
US6911204B2 (en) 2000-08-11 2005-06-28 Favrille, Inc. Method and composition for altering a B cell mediated pathology
US7332585B2 (en) * 2002-04-05 2008-02-19 The Regents Of The California University Bispecific single chain Fv antibody molecules and methods of use thereof
US7332580B2 (en) * 2002-04-05 2008-02-19 The Regents Of The University Of California Bispecific single chain Fv antibody molecules and methods of use thereof
TWI353991B (en) 2003-05-06 2011-12-11 Syntonix Pharmaceuticals Inc Immunoglobulin chimeric monomer-dimer hybrids
WO2005035754A1 (en) * 2003-10-14 2005-04-21 Chugai Seiyaku Kabushiki Kaisha Double specific antibodies substituting for functional protein
WO2005035753A1 (en) * 2003-10-10 2005-04-21 Chugai Seiyaku Kabushiki Kaisha Double specific antibodies substituting for functional protein
JP2007521248A (en) 2003-12-10 2007-08-02 ミレニアム ファーマシューティカルズ, インコーポレイテッド Humanized anti-CCR2 antibody and methods of using the antibody
JP2007515493A (en) * 2003-12-22 2007-06-14 セントカー・インコーポレーテツド Method for generating multimeric molecules
DK1866339T3 (en) 2005-03-25 2013-09-02 Gitr Inc GTR-binding molecules and their applications
US10011858B2 (en) 2005-03-31 2018-07-03 Chugai Seiyaku Kabushiki Kaisha Methods for producing polypeptides by regulating polypeptide association
WO2006109592A1 (en) * 2005-04-08 2006-10-19 Chugai Seiyaku Kabushiki Kaisha Antibody substituting for function of blood coagulation factor viii
EP1899376A2 (en) 2005-06-16 2008-03-19 The Feinstein Institute for Medical Research Antibodies against hmgb1 and fragments thereof
EP1907001B1 (en) * 2005-06-17 2015-07-15 Merck Sharp & Dohme Corp. Ilt3 binding molecules and uses therefor
JP2009531324A (en) * 2006-03-20 2009-09-03 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Engineered anti-prostatic stem cell antigen (PSCA) antibody for cancer targeting
US11046784B2 (en) 2006-03-31 2021-06-29 Chugai Seiyaku Kabushiki Kaisha Methods for controlling blood pharmacokinetics of antibodies
EP3345616A1 (en) 2006-03-31 2018-07-11 Chugai Seiyaku Kabushiki Kaisha Antibody modification method for purifying bispecific antibody
AU2007345745C1 (en) * 2006-06-19 2013-05-23 Merck Sharp & Dohme Corp. ILT3 binding molecules and uses therefor
US8580263B2 (en) * 2006-11-21 2013-11-12 The Regents Of The University Of California Anti-EGFR family antibodies, bispecific anti-EGFR family antibodies and methods of use thereof
EP2175884B8 (en) * 2007-07-12 2017-02-22 GITR, Inc. Combination therapies employing gitr binding molecules
WO2009032949A2 (en) 2007-09-04 2009-03-12 The Regents Of The University Of California High affinity anti-prostate stem cell antigen (psca) antibodies for cancer targeting and detection
US9096651B2 (en) 2007-09-26 2015-08-04 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
US8317737B2 (en) * 2009-02-25 2012-11-27 The Invention Science Fund I, Llc Device for actively removing a target component from blood or lymph of a vertebrate subject
US8246565B2 (en) * 2009-02-25 2012-08-21 The Invention Science Fund I, Llc Device for passively removing a target component from blood or lymph of a vertebrate subject
MX342623B (en) * 2009-06-26 2016-10-06 Regeneron Pharma Readily isolated bispecific antibodies with native immunoglobulin format.
EP3560962A1 (en) 2010-07-09 2019-10-30 Bioverativ Therapeutics Inc. Processable single chain molecules and polypeptides made using same
HUE038305T2 (en) 2010-11-17 2018-10-29 Chugai Pharmaceutical Co Ltd Multi-specific antigen-binding molecule having alternative function to function of blood coagulation factor viii
US20130245233A1 (en) 2010-11-24 2013-09-19 Ming Lei Multispecific Molecules
LT2717898T (en) 2011-06-10 2019-03-25 Bioverativ Therapeutics Inc. Pro-coagulant compounds and methods of use thereof
WO2013012733A1 (en) 2011-07-15 2013-01-24 Biogen Idec Ma Inc. Heterodimeric fc regions, binding molecules comprising same, and methods relating thereto
MX359384B (en) 2011-10-11 2018-09-25 Genentech Inc Improved assembly of bispecific antibodies.
EP2802606B1 (en) 2012-01-10 2018-04-25 Biogen MA Inc. Enhancement of transport of therapeutic molecules across the blood brain barrier
KR102494534B1 (en) 2012-03-14 2023-02-06 리제너론 파마슈티칼스 인코포레이티드 Multispecific antigen-binding molecules and uses thereof
SG10201913874TA (en) 2013-03-15 2020-03-30 Biogen Ma Inc Factor ix polypeptide formulations
PT3050896T (en) 2013-09-27 2021-08-24 Chugai Pharmaceutical Co Ltd Method for producing polypeptide heteromultimer
WO2015070014A1 (en) 2013-11-08 2015-05-14 Biogen Idec Ma Inc. Procoagulant fusion compound
JOP20200094A1 (en) 2014-01-24 2017-06-16 Dana Farber Cancer Inst Inc Antibody molecules to pd-1 and uses thereof
JOP20200096A1 (en) 2014-01-31 2017-06-16 Children’S Medical Center Corp Antibody molecules to tim-3 and uses thereof
TWI777174B (en) 2014-03-14 2022-09-11 瑞士商諾華公司 Antibody molecules to lag-3 and uses thereof
WO2015142675A2 (en) 2014-03-15 2015-09-24 Novartis Ag Treatment of cancer using chimeric antigen receptor
EP3172237A2 (en) 2014-07-21 2017-05-31 Novartis AG Treatment of cancer using humanized anti-bcma chimeric antigen receptor
WO2016014553A1 (en) 2014-07-21 2016-01-28 Novartis Ag Sortase synthesized chimeric antigen receptors
WO2016014530A1 (en) 2014-07-21 2016-01-28 Novartis Ag Combinations of low, immune enhancing. doses of mtor inhibitors and cars
US9777061B2 (en) 2014-07-21 2017-10-03 Novartis Ag Treatment of cancer using a CD33 chimeric antigen receptor
US20170209492A1 (en) 2014-07-31 2017-07-27 Novartis Ag Subset-optimized chimeric antigen receptor-containing t-cells
JP6919118B2 (en) 2014-08-14 2021-08-18 ノバルティス アーゲー Treatment of cancer with GFRα-4 chimeric antigen receptor
BR112017003104A2 (en) 2014-08-19 2017-12-05 Novartis Ag cancer treatment using an anti-cd123 chimeric antigen receptor
US10577417B2 (en) 2014-09-17 2020-03-03 Novartis Ag Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy
TWI701435B (en) 2014-09-26 2020-08-11 日商中外製藥股份有限公司 Method to determine the reactivity of FVIII
MA40764A (en) 2014-09-26 2017-08-01 Chugai Pharmaceutical Co Ltd THERAPEUTIC AGENT INDUCING CYTOTOXICITY
TWI700300B (en) 2014-09-26 2020-08-01 日商中外製藥股份有限公司 Antibodies that neutralize substances with the function of FVIII coagulation factor (FVIII)
TWI716362B (en) 2014-10-14 2021-01-21 瑞士商諾華公司 Antibody molecules to pd-l1 and uses thereof
US20180334490A1 (en) 2014-12-03 2018-11-22 Qilong H. Wu Methods for b cell preconditioning in car therapy
EP3279216A4 (en) 2015-04-01 2019-06-19 Chugai Seiyaku Kabushiki Kaisha Method for producing polypeptide hetero-oligomer
IL254817B2 (en) 2015-04-08 2023-12-01 Novartis Ag Cd20 therapies, cd22 therapies, and combination therapies with a cd19 chimeric antigen receptor (car) - expressing cell
EP3286211A1 (en) 2015-04-23 2018-02-28 Novartis AG Treatment of cancer using chimeric antigen receptor and protein kinase a blocker
US11191844B2 (en) 2015-07-06 2021-12-07 Regeneran Pharmaceuticals, Inc. Multispecific antigen-binding molecules and uses thereof
WO2017019897A1 (en) 2015-07-29 2017-02-02 Novartis Ag Combination therapies comprising antibody molecules to tim-3
SI3317301T1 (en) 2015-07-29 2021-10-29 Novartis Ag Combination therapies comprising antibody molecules to lag-3
RU2018125603A (en) 2015-12-17 2020-01-21 Новартис Аг COMBINATION OF C-MET INHIBITOR WITH ANTIBODY MOLECULE TO PD-1 AND ITS APPLICATIONS
KR20180088907A (en) 2015-12-17 2018-08-07 노파르티스 아게 Antibody molecules to PD-1 and uses thereof
EP3398965A4 (en) 2015-12-28 2019-09-18 Chugai Seiyaku Kabushiki Kaisha Method for promoting efficiency of purification of fc region-containing polypeptide
WO2017125897A1 (en) 2016-01-21 2017-07-27 Novartis Ag Multispecific molecules targeting cll-1
KR20180118175A (en) 2016-03-04 2018-10-30 노파르티스 아게 Cells expressing multiple chimeric antigen receptor (CAR) molecules and their uses
EP3432924A1 (en) 2016-03-23 2019-01-30 Novartis AG Cell secreted minibodies and uses thereof
HRP20230457T1 (en) 2016-04-15 2023-07-21 Novartis Ag Compositions and methods for selective expression of chimeric antigen receptors
EP3448891A1 (en) 2016-04-28 2019-03-06 Regeneron Pharmaceuticals, Inc. Methods of making multispecific antigen-binding molecules
EP3464375A2 (en) 2016-06-02 2019-04-10 Novartis AG Therapeutic regimens for chimeric antigen receptor (car)- expressing cells
CN110461315A (en) 2016-07-15 2019-11-15 诺华股份有限公司 Cytokines release syndrome is treated and prevented using with the Chimeric antigen receptor of kinase inhibitor combination
BR112019001570A2 (en) 2016-07-28 2019-07-09 Novartis Ag chimeric antigen receptor combination therapies and pd-1 inhibitors
BR112019002035A2 (en) 2016-08-01 2019-05-14 Novartis Ag cancer treatment using a chimeric antigen receptor in combination with an inhibitor of a m2 pro-macrophage molecule
JP7125932B2 (en) 2016-09-06 2022-08-25 中外製薬株式会社 Methods of Using Bispecific Antibodies Recognizing Coagulation Factor IX and/or Activated Coagulation Factor IX and Coagulation Factor X and/or Activated Coagulation Factor X
US10525083B2 (en) 2016-10-07 2020-01-07 Novartis Ag Nucleic acid molecules encoding chimeric antigen receptors comprising a CD20 binding domain
US11535662B2 (en) 2017-01-26 2022-12-27 Novartis Ag CD28 compositions and methods for chimeric antigen receptor therapy
US20200048359A1 (en) 2017-02-28 2020-02-13 Novartis Ag Shp inhibitor compositions and uses for chimeric antigen receptor therapy
EP3589650A1 (en) 2017-03-02 2020-01-08 Novartis AG Engineered heterodimeric proteins
WO2018201051A1 (en) 2017-04-28 2018-11-01 Novartis Ag Bcma-targeting agent, and combination therapy with a gamma secretase inhibitor
EP3615055A1 (en) 2017-04-28 2020-03-04 Novartis AG Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor
JP7348844B2 (en) 2017-06-07 2023-09-21 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Compositions and methods for internalizing enzymes
US11312783B2 (en) 2017-06-22 2022-04-26 Novartis Ag Antibody molecules to CD73 and uses thereof
WO2019006007A1 (en) 2017-06-27 2019-01-03 Novartis Ag Dosage regimens for anti-tim-3 antibodies and uses thereof
SG11201913137VA (en) 2017-07-11 2020-01-30 Compass Therapeutics Llc Agonist antibodies that bind human cd137 and uses thereof
CN111163798A (en) 2017-07-20 2020-05-15 诺华股份有限公司 Dosing regimens for anti-LAG-3 antibodies and uses thereof
BR112020005834A2 (en) 2017-09-29 2020-09-24 Chugai Seiyaku Kabushiki Kaisha multispecific antigen binding molecule having blood clotting factor viii cofactor function (fviii) replacement activity, and pharmaceutical formulation containing said molecule as an active ingredient
WO2019089753A2 (en) 2017-10-31 2019-05-09 Compass Therapeutics Llc Cd137 antibodies and pd-1 antagonists and uses thereof
WO2019099838A1 (en) 2017-11-16 2019-05-23 Novartis Ag Combination therapies
EP3713961A2 (en) 2017-11-20 2020-09-30 Compass Therapeutics LLC Cd137 antibodies and tumor antigen-targeting antibodies and uses thereof
US20210038659A1 (en) 2018-01-31 2021-02-11 Novartis Ag Combination therapy using a chimeric antigen receptor
US20210147547A1 (en) 2018-04-13 2021-05-20 Novartis Ag Dosage Regimens For Anti-Pd-L1 Antibodies And Uses Thereof
WO2019210153A1 (en) 2018-04-27 2019-10-31 Novartis Ag Car t cell therapies with enhanced efficacy
WO2019226658A1 (en) 2018-05-21 2019-11-28 Compass Therapeutics Llc Multispecific antigen-binding compositions and methods of use
US20200109195A1 (en) 2018-05-21 2020-04-09 Compass Therapeutics Llc Compositions and methods for enhancing the killing of target cells by nk cells
WO2019227003A1 (en) 2018-05-25 2019-11-28 Novartis Ag Combination therapy with chimeric antigen receptor (car) therapies
US20210214459A1 (en) 2018-05-31 2021-07-15 Novartis Ag Antibody molecules to cd73 and uses thereof
SG11202011830SA (en) 2018-06-13 2020-12-30 Novartis Ag Bcma chimeric antigen receptors and uses thereof
US20210238268A1 (en) 2018-06-19 2021-08-05 Atarga, Llc Antibody molecules to complement component 5 and uses thereof
AR116109A1 (en) 2018-07-10 2021-03-31 Novartis Ag DERIVATIVES OF 3- (5-AMINO-1-OXOISOINDOLIN-2-IL) PIPERIDINE-2,6-DIONA AND USES OF THE SAME
WO2020021465A1 (en) 2018-07-25 2020-01-30 Advanced Accelerator Applications (Italy) S.R.L. Method of treatment of neuroendocrine tumors
BR112021008795A2 (en) 2018-11-13 2021-08-31 Compass Therapeutics Llc MULTISPECIFIC BINDING CONSTRUCTS AGAINST CHECKPOINT MOLECULES AND THEIR USES
CN113195539A (en) 2018-12-20 2021-07-30 诺华股份有限公司 Pharmaceutical combination
EP3897637A1 (en) 2018-12-20 2021-10-27 Novartis AG Dosing regimen and pharmaceutical combination comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives
WO2020165833A1 (en) 2019-02-15 2020-08-20 Novartis Ag 3-(1-oxo-5-(piperidin-4-yl)isoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
US10871640B2 (en) 2019-02-15 2020-12-22 Perkinelmer Cellular Technologies Germany Gmbh Methods and systems for automated imaging of three-dimensional objects
CA3123519A1 (en) 2019-02-15 2020-08-20 Novartis Ag Substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
WO2020172553A1 (en) 2019-02-22 2020-08-27 Novartis Ag Combination therapies of egfrviii chimeric antigen receptors and pd-1 inhibitors
SG11202110732XA (en) 2019-03-29 2021-10-28 Atarga Llc Anti fgf23 antibody
CA3157665A1 (en) 2019-10-21 2021-04-29 Novartis Ag Tim-3 inhibitors and uses thereof
JP2022553293A (en) 2019-10-21 2022-12-22 ノバルティス アーゲー Combination therapy with venetoclax and a TIM-3 inhibitor
BR112022010206A2 (en) 2019-11-26 2022-11-29 Novartis Ag CHIMERIC ANTIGEN RECEPTORS AND USES THEREOF
JP2023507190A (en) 2019-12-20 2023-02-21 ノバルティス アーゲー Use of anti-TGFβ antibodies and checkpoint inhibitors to treat proliferative diseases
IL293752A (en) 2020-01-17 2022-08-01 Novartis Ag Combination comprising a tim-3 inhibitor and a hypomethylating agent for use in treating myelodysplastic syndrome or chronic myelomonocytic leukemia
US20210222244A1 (en) 2020-01-17 2021-07-22 Becton, Dickinson And Company Methods and compositions for single cell secretomics
BR112022016633A2 (en) 2020-02-27 2022-12-13 Novartis Ag METHODS FOR PRODUCING CELLS THAT EXPRESS CHIMERIC ANTIGEN RECEPTOR
EP4135841A1 (en) 2020-04-15 2023-02-22 Voyager Therapeutics, Inc. Tau binding compounds
AU2021297099A1 (en) 2020-06-23 2023-01-05 Novartis Ag Dosing regimen comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives
CR20230009A (en) 2020-07-16 2023-01-25 Novartis Ag Anti-betacellulin antibodies, fragments thereof, and multi-specific binding molecules
WO2022026592A2 (en) 2020-07-28 2022-02-03 Celltas Bio, Inc. Antibody molecules to coronavirus and uses thereof
EP4188549A1 (en) 2020-08-03 2023-06-07 Novartis AG Heteroaryl substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
EP4204021A1 (en) 2020-08-31 2023-07-05 Advanced Accelerator Applications International S.A. Method of treating psma-expressing cancers
WO2022043558A1 (en) 2020-08-31 2022-03-03 Advanced Accelerator Applications International Sa Method of treating psma-expressing cancers
EP4240765A2 (en) 2020-11-06 2023-09-13 Novartis AG Antibody fc variants
US20240033358A1 (en) 2020-11-13 2024-02-01 Novartis Ag Combination therapies with chimeric antigen receptor (car)-expressing cells
EP4284510A1 (en) 2021-01-29 2023-12-06 Novartis AG Dosage regimes for anti-cd73 and anti-entpd2 antibodies and uses thereof
TW202304979A (en) 2021-04-07 2023-02-01 瑞士商諾華公司 USES OF ANTI-TGFβ ANTIBODIES AND OTHER THERAPEUTIC AGENTS FOR THE TREATMENT OF PROLIFERATIVE DISEASES
AR125874A1 (en) 2021-05-18 2023-08-23 Novartis Ag COMBINATION THERAPIES
WO2023044483A2 (en) 2021-09-20 2023-03-23 Voyager Therapeutics, Inc. Compositions and methods for the treatment of her2 positive cancer
WO2023092004A1 (en) 2021-11-17 2023-05-25 Voyager Therapeutics, Inc. Compositions and methods for the treatment of tau-related disorders
US20230383010A1 (en) 2022-02-07 2023-11-30 Visterra, Inc. Anti-idiotype antibody molecules and uses thereof
TW202400658A (en) 2022-04-26 2024-01-01 瑞士商諾華公司 Multispecific antibodies targeting il-13 and il-18
WO2023220695A2 (en) 2022-05-13 2023-11-16 Voyager Therapeutics, Inc. Compositions and methods for the treatment of her2 positive cancer
WO2024030976A2 (en) 2022-08-03 2024-02-08 Voyager Therapeutics, Inc. Compositions and methods for crossing the blood brain barrier
WO2024059739A1 (en) 2022-09-15 2024-03-21 Voyager Therapeutics, Inc. Tau binding compounds

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50155678A (en) * 1974-06-03 1975-12-16
FR2334107A1 (en) * 1975-12-05 1977-07-01 Pasteur Institut METHOD OF COUPLING BIOLOGICAL SUBSTANCES BY COVALENT BONDS
JPS5344622A (en) * 1976-09-30 1978-04-21 Mochida Pharm Co Ltd Immunologically measuring method
US4208479A (en) * 1977-07-14 1980-06-17 Syva Company Label modified immunoassays
JPS5921500B2 (en) * 1978-01-28 1984-05-21 東洋紡績株式会社 Enzyme membrane for oxygen electrode
JPS5510590A (en) * 1978-05-04 1980-01-25 Wellcome Found Enzyme immunity quantity analysis
US4235869A (en) * 1978-05-16 1980-11-25 Syva Company Assay employing a labeled Fab-fragment ligand complex
FR2437213A1 (en) * 1978-09-28 1980-04-25 Cm Ind CYTOTOXIC PRODUCTS FORMED BY COVALENT BINDING OF THE CHAIN TO RICIN WITH AN ANTIBODY AND THEIR PREPARATION METHOD
US4223005A (en) * 1979-02-15 1980-09-16 University Of Illinois Foundation Antibody coated bacteria
JPS5616418A (en) * 1979-07-20 1981-02-17 Teijin Ltd Antitumor protein complex and its preparation
US4278761A (en) * 1979-12-26 1981-07-14 President And Fellows Of Harvard College Enzyme assay and kit therefor
US4331647A (en) * 1980-03-03 1982-05-25 Goldenberg Milton David Tumor localization and therapy with labeled antibody fragments specific to tumor-associated markers
US4376110A (en) * 1980-08-04 1983-03-08 Hybritech, Incorporated Immunometric assays using monoclonal antibodies
US4474893A (en) * 1981-07-01 1984-10-02 The University of Texas System Cancer Center Recombinant monoclonal antibodies

Also Published As

Publication number Publication date
DE3249285T1 (en) 1984-10-04
GB8321513D0 (en) 1983-09-14
EP0096076B1 (en) 1986-09-03
ATE21932T1 (en) 1986-09-15
JPH0554066B2 (en) 1993-08-11
DE3273080D1 (en) 1986-10-09
US4444878A (en) 1984-04-24
NO163255B (en) 1990-01-15
GB2123030A (en) 1984-01-25
EP0096076A4 (en) 1984-05-03
GB2123030B (en) 1985-03-13
FI68731C (en) 1985-10-10
NO832989L (en) 1983-08-19
JPH07108919B2 (en) 1995-11-22
AU549195B2 (en) 1986-01-16
EP0096076A1 (en) 1983-12-21
NO163255C (en) 1990-04-25
FI832897A0 (en) 1983-08-11
DK379583D0 (en) 1983-08-19
FI68731B (en) 1985-06-28
FI832897A (en) 1983-08-11
WO1983002285A1 (en) 1983-07-07
JPH0690786A (en) 1994-04-05
JPS58502182A (en) 1983-12-22
DK379583A (en) 1983-08-19

Similar Documents

Publication Publication Date Title
CA1216231A (en) Bispecific antibody determinants
US5523210A (en) Bispecific antibody determinants
US4661444A (en) Homogeneous immunoassays employing double antibody conjugates comprising anti-idiotype antibody
CA1160566A (en) Immunological determination method
JPS58203919A (en) Manufacture of immunogloblin half molecule and crossbred antibody
EP0179872B1 (en) Bispecific antibody determinants
JPH01114758A (en) Manufacture of antibody fragment preparation containing no papain
US4876191A (en) Immobilization of biologically active substances with carrier bond antibody
CA1194415A (en) Immunoglobulin half-molecules and process for producing hybrid antibodies
JPH02221300A (en) Immuno affinity matrix
SU1158029A3 (en) Method of quantitative determination of triiodothyronine
JPH04221762A (en) Immunological measuring method
JPS61228353A (en) Immunological concentration determination method of amine, monochronal antibody and reagent set for executing said method
EP0228810A1 (en) Enzyme immunoassay method for epidermal growth factor
JPS59143960A (en) Removal of non-specific adsorbing component contained in enzyme labeled antibody
JPH0441307B2 (en)
JPS63117253A (en) Immunological sensor
JPH04249769A (en) Immunoassay
JPS6363859B2 (en)
JPH0225750A (en) Measuring kit and measuring method for human mn-superoxide dismutase
JPS63151856A (en) Immunological measurement reagent using monoclonal antibody for human protein s
JPS62238463A (en) Method for measuring plasmin-alpha2-plasmin inhibitor composite
JPH0246898B2 (en) AMIRAAZEORYOSHITAKOGENKETSUTEIKIGUJUBUTSUSHITSUSOKUTEIHO
JPH02114181A (en) Immunological measurement reagent for measuring human plasmin-alpha2-plasmin inhibitor complex
JPS62231170A (en) Labeling complex

Legal Events

Date Code Title Description
MKEX Expiry