CA1222653A - Ophthalmic instrument for measuring intraocular fluid pressure - Google Patents

Ophthalmic instrument for measuring intraocular fluid pressure

Info

Publication number
CA1222653A
CA1222653A CA000439890A CA439890A CA1222653A CA 1222653 A CA1222653 A CA 1222653A CA 000439890 A CA000439890 A CA 000439890A CA 439890 A CA439890 A CA 439890A CA 1222653 A CA1222653 A CA 1222653A
Authority
CA
Canada
Prior art keywords
instrument
fluid
pressure
conduit
transducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000439890A
Other languages
French (fr)
Inventor
Constantine D. Armeniades
Louise C. Moorhead
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of CA1222653A publication Critical patent/CA1222653A/en
Expired legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/00736Instruments for removal of intra-ocular material or intra-ocular injection, e.g. cataract instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/16Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring intraocular pressure, e.g. tonometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/03Detecting, measuring or recording fluid pressure within the body other than blood pressure, e.g. cerebral pressure; Measuring pressure in body tissues or organs

Abstract

Abstract:
The present invention relates to an ophthalmic instrument for measuring the relative pressure of fluid inside an ocular globe. The instrument is comprised of an elongated surgical instrument adapted to penetrate the ocular globe. A pressure sensor is mounted on the instrument for moving in response to relative pressure changes in the intraocular fluid. A transducer is provided, communicating with the pressure sensor, for generating a signal in response to movement of the pressure sensor. Finally, a unit is provided for transmitting the signal to a point external of the instrument.

Description

" ~ZZ'~6S3 ophthalmic instrument for measuring intraocular fluid pressure BACKGROUND OF THE INVENT ION

1~ Field of Invention The present invention relates to ophthalmic microsurgical instruments and, more particularly, to such surgical instrumentation which continuously monitors internal ocular globe fluid pressure during ophthalmic surgical procedures and the like.
2. General Background A large number of microsurgical procedures inside the eye are performed through "closed systems" which maintain the integrity and internal pressure of the ocular globe while microsurgical instruments are used to penetrate the eye through one or more small incisions. Exemplary functions performed by these instruments are:
Fragmentation - the cutting and separation of ocular tissue, such as the lens in cataract surgery or fibrous and membrane-like growths inside the vitreous (e.g., vitrectomy, membranectomy);
Emulsiication - the mechanical digestion oE tissue ~usually the lens) by means of ultrasound in order to facil1tate its removal through small incisions;
Irrigation (infusion) - the introduction o a saline solution into the operating field by means of gravity or positive pressure; and ~, ~2~6~i3 Aspiration (suction) - the removal of fluid and/or entrained tissue fragments by means of vacu~m.
The surgeon combines irrigation and aspiration to transport tissue fragments away from the operating field.
He or she also uses these functions to maintain intraocular pressure during the surgical procedure.
Control of pressure in irrigation and aspiration is extremely important. If the aspiration suction is too strong (due to excessive vacuum) it may damage endothelial cells during anterior chamber surgery or may cause retinal detachment in vitrectomy procedures. Too high an irrigation pressure or excessive variations in the pressure or flow rate of the irrigation fluid may traumatize ocular tissue.
With traditional instrumentation the level of irrigation flow and range of aspiration vacuum are adjusted by a surgical assistant in response to the surgeon's instruction. Available systems afford the surgeon direct control of these variables, usually by means of fingertip or footpedal switches, and provide visual or audio indications of aspiration pressure (vacuum) and irrigation flow. See, for example, U~;S.
patent 4,168,707 entitled "Control Apparatus for~
Microsurgical Instruments."
Generally, such pressure sensors are located in a remote instrument console located a distance of 1-2 meters from the operating site and connected to it ~hrough thin, flexible plastic tubing containing a saline solution.
Such remote monitoring of pressure has the po~ential of introducing significant errors in pressure measurements due to the compliance of the tubing and the inertia and viscosity o the fluid column interposed between the surgical site and pressure sensor location. Such errors hecome more pronounced when air bubbles and tissue fragments enter the flexible conduit which transmits fluid between the operative site and instrument console.

;12~653 Since a ~urgeon must depend primarily on visual observation and feel of the surgical site to guide him in controlling the level of suction and irrigation flow rate, knowledge of the accurate pressure or vacuum forces exerted on the tissue at the operating site would enha~ce greatly the ease and safety of the procedure.
Furthermore, accurate control of intxao~ular pre~sure both during intraocular surgery and at the time of final wound closure would help minimize postoperative overpressure and associated danger~ to the patient.
While there are many devices which are as~ociated with ophthalmic surgical procedures, none i~ Xnown which accurately monitors internal ocular pressure during surgery. For example, Russian patent 733,670 teaches the use of a strain gauge in the cutting tip of an ophthalmic surgical instrument and a variable audible signal is generated in response to tissue pressure encountered by the instrument when cutting, but internal pressure is not measured.
U.S. patent 3,945,375 is directed to an ophthalmic surgical instrument for removing tissue and includes a rotating fluted cutter housed in a probe adapted to, be inserted into a portion of the body fxom which tissu~ is to be removed. The instrument can supply irrigation fluid through the probe to the area being opexated upon and evacuate the material through the probe after being engaged by the cutter, but does not monitor internal pressure.
U.S. patent 4,117,843 teaches a system which controls the infusion of fluid to a closed operating field such as an eye at a selected predetermined pressure in addition to being able to sever material in the ield and for evacuating the severed material in a suspension or emulsion of the infusion fluid. However, internal pressure is not measured.
U.S. patent 4,168,707 relates to an electronic control for microsurgical instruments which i~ adapted for ,~22~53 use in intraocular surgery. Commands received from a surgeon's foot control unit control the various aspiration functions normally performed manually by a surgical assistant. A typical control system used to perform the infusion and aspiration functions required during intra-ocular survey is described in detail.
There are also various patents which deal with strain gauges that are used to measure blood pressure. See, for example, U.S. patents 2,959,056; 3,550,5~3; 3,946~724; and 4,274,423. Blood pressure transducers implantable in arteries or veins are described in U.S. patents 3,724,27 and 3,748,623. U.S. patents 4,274,423 teaches a catheter Eor use in determining pressures within blood vessels and the heart. And U.S. patent 4,175,566 is directed to a fluid velocity flow probe.
~.S. patent 3,776,238 relates to an instrument with two tubes that are mounted co-axially within one another with an opening adjacent the end of the outer tube.
Cutting of the vitreous and fibrous bands in the eye caused by hemorrhaging is performed by a chopping action of the sharp end of the inner tube against the inner surface of -the end of the outer tube and the bands are removed by suction through the inner tube. The removed vitreous is continuously replaced by a saline solution introduced into the eye through the instrument~
None of these prior art devic~s provides an ophthalmic microsurgical instrument which can monitor internal fluid pressure during ophthalmic surgery.
SUMMARY OF THE PRESENT INVENTION
The subject invention is directed to an apparatus for measuring in-situ fluid pressure of the ocular globe during ophthalmic surgery so that internal pressure can be accurately controlled.
In accordance with an aspect of the invention there is provided an ophthalmic device Eor measuring relative pressure of fluid inside an ocular globe, the device being oE the type adapted to cooperate with a fluid transEer means which is located external of the ocular globe and capable of supplying or removing intraocular fluid in ~0 response to predetermined signals, the device comprising:
(a) an elongated surgical instrument adapted to penetrate A

1~22653 4a -the ocular globe; tb) pressure sensitive means mounted on the instrument for moving in response to relative pressure changes in intraocular fluid; (c) transducer means com-municating with the pressure sensitive means for generating signals in response to movement of the pressure sensitive means; (d) signal means for transmitting signals to the fluid transfer means; and (e) first conduit means operatively connected between the fluid transfer means and the interior of the ocular globe so that fluid can be supplied to or removed from the ocular globe in response to said signals.
The apparatus of the present invention senses the intraocular pressure exerted on the tip of the micro-surgical instrument or local suction forces on tissue removed through aspiration. An electric signal generated A

5.~ Z653 in response to relative pressure changes can be used to regulate automatically aspiration vacuum level or irrigation flow rate within acceptable range~ for providing an extra measure of safety to those surgical procedures.
The instrument includes an elongated needle-like instrument with a pxessure transducer mounted in its tip in communication with the intraocular fluid after the instrument has entered the ocular globe. The transducer is capable of measuring eith~r the static pressure of ocular fluid surrounding the instrument relative to ambient atmospheric pressure or local suction force~ in the instrument opening exerted on diseased tissue as the tissue is aspirated.
The ocular instrument utilizes a miniatuxe pressure sensor located behind a thin, flexible diaphragm at a small opening near the tip of the instrument. The diaphragm can be constructed from natural rubber or other suitable elastomer and serves as a barrier between the channel containing the pressure sensor and the ex~ernal environment. The diaphragm is connected to the transducer and operates to transmit forces to the transducer ~s a result of pressure differences between these tw~
environments causing the diaphragm to move.
The transdu~er is a suitable, miniaturized pressure transducer with appropriate sensitivity and stability. An electric signal is generated by the transducer, which is transmitted to an instrument console where it is amplified and displayed. The signal can be used to activate known feedback control circuits to operate a valve for regulating or limiting suction vacuum or irrigation fluid flow through the same or another instrument.
Accordingly, it is an object of this i~vention to provide an ophthalmic surgical instrument which accurately and safely measures the pressure exerted by ocular fluids or tissues at the site of microsurgical activity.

i22Z~iS3 Another object of the invention is to provide an accurate pressure valve signal to feedback ~ontrol circuits which automatically regulates and/or limits suction vacuum or regulate~ the flow and pressure of the irrigation fluid responsive to sensed intraocular pressure.
The instrument which is the subject of the present invention provides a number of controls during anterior chamber or cataract sur~ery such a~, for example: (1) control of anterior chamber depth (space between cornea and iris); (2) better regulation of bleeding by pxe~i6e pressure tamponade; (3) accurate measurement of intraocular pressure through a second site during wound clo~ure; (4~ better control of s~ture tension during wound clo~ure to avoid astigmatism; and (5) better appro~imation of physiologic intraocular pressure after wound closure.
Controls afforded by the invention during vitreous surgery include: (1) measurement and control of aspiration forces applied to diseased tissue at the instant of excision and limitation of these forces to avoid retinal detachment; (2) regulation of vitreous pressure from a second site in order to control bleeding during surgery;
and (3) better approximation of physiologic intraoc~lar pressure after wound closure.
25 BRIEF DESCRIPTION OE' T}IE DRAWINGS
.... .. _ , For a better u:nderstanding of the nature and objects of the present invention, reference should be had to the following detailed description, taken in conjunction with the accompanying drawings, in which:
Figure 1 is a schematic section view illustrating a "closed system" surgical procedure in the eye;
Figure 2 is a sectional view of the tip of a microsurgical instrument for performing vitreous surgery;
~igure 3 is a ~ectional view of one embodiment o~ the invention where a pressure transducer is mounted to provide communication between the interior of the ocular 122;2653 globe and an internal conduit of an instrument of the type shown in Fig. 2;
Figure 4 is another embodiment of the invention in which the transducer communicates directly with the interior of the ocular globe;
Figure 5 is a sectional view looking alon~ lines 5-5 of Fig. 3; and Figure 6 is a sectional view looking along lines 6-6 of Fig. 4.
DETAIL~ED DESCRIPTION OF PREFERRED EMBODIMENTS
Fig. 1 illustrates an ocular globe or eye 12 which includes a lens 13, cornea 14, anterior chamber 15, iris 16, ciliar~ body 17, vitreous body 18, optic nerve 20, retina 21, sclera 22 and choroid 23. An instrument 25, the tip of which is shown in greater detail in Fig. 2, is a surgical needle 0.4 to l.Omm in outside diameter formed of stainless steel which is attached to a handpiece (not shown) for manipulation by the surgeon. The handpiece can be connected through a flexible plastic tube (not shown) either to a saline solution reservoir for irrigation (not shown~ or a pumping system for aspiration (not shown).
The details of elements not shown are known to those,,wi~h ordinary s~ill in the art and need not be described in detail in order to practice the invention.
The instrument 25 is a known irrigation~aspiration/
cutting tip and is shown in Fig. 1 as being inserted in the vitreous 18. Suction is used to aspirate diseased tissue 30 into a side opening 31 of the instrument 25. As shown best in Fig. 2, the tissue is cut by a curved micxoguillotine blade 32 which is actuated by the surgeon and slidable in the instrument 25. A saline solution or the like is discharged through outlets 33, 34, and infuses the operation site. The infusion, in combination with controlled suction through the opening 31, helps to draw the tissue fragments 30 into the instrument 25 ~or removal after they are cut by the blade 32. Arrows 36 in Fig. 2 12~226S3 illustrate both the di~charge of saline solution and suction action mentioned above.
The conventional instrumen~ shown .in Fig~. 1 and 2, however, has no pxovisions for measuring in-situ the suction force used to draw the diseased tissue 30 into the instrument 2S prior to cutting. Since the tissue removed by the vitrectomy procedures is usually located in the immediate vicinity of the retina 21, the danger of inadvertent damage to the retina 21 or other healthy tissue by excessive suction force during vitrectomy is considerable.
The embodiment of the invention illustrated in Figs. 3 and 5 solves this problem by enabling the suction force to be monitored constantly. An instrument similar to the one in Figs. 1 and 2 has been modified to measure pressure differences between the external and internal forces of its cutting/aspiration tip. The modified instrument is referred to generally by reference numeral 60 and includes an outer elongated housing 61 which surrounds an inner concentric guillotine 70 which carries a cutting blade 62 that cooperates wi~h an opening 66 for surgically removing tissue fragments as described above.
An inner bore or channel 63 operates to convey fluiids and/or tissue. Only the tip o~ such an instrument is shown in Fig. 3 and additional features such as the discharge outlets 33, 34, shown in Fig. 2 were omitted to simplify the description.
A pressure transducer 65 is mounted in a chamber 65a located near aspiration inlet 66, the chamber 65a being , bounded by two parallel diaphragms 67, 68, formed of silicon rubber inserts that are about lmm in diameter.
The diaphragms 67, 68, are connected to the instrument 60 by means of an epoxy resin.
Pressure transducer 65 is preferably a cantilever beam, piezo-resistive element known to the art which is capable of measuring intraocular pressure with the reguired sensitivity (~ lmm. Hg), stability and li~earity.

9 1;2~2~53 other ~ypes o~ piezo-xesistive transducers, as well as photo-electric sensors operating in conjunction with iber-optic light guides which transmit signals in the form o~ variations in light intensity caused by pressuxe S differences moving a reflective surface can also be used in conjunction with the i~vention without subs~antially altering the size, shape or function of the in~trument. An ' electxical signal generated by the transducer 6S is carried through wire leads 71 to a monitor/con~ole (not shown) which is known in the art and contains a suitable power supply as well as the necessary electrical circuits for conditioning, amplifying and displaying the pressure measurement.
The piezoelectric elements 67 are attached to a cantilever beam 65 and a rigid base 65c, which is anchored to the wall of <the instrument. Wire leads 71 which caxry electrical signals from the transducer 67, are connected to ~he exterior surface of the instrument 60 so as to avoid interference with the action of the guillotine cutter 70. The leads 71 are bonded to the instrument 60 so that they are part of its smooth outer surface.
The vitrectomy suction instrument 60 significantly enhances safety through sensitivity to suction force,and consequently intraocular pressure during surgery. As- the surgeon aspirates strands of diseased tissue into the opening 66, the local pressure difference measured between diaphragmg 67, 68, by the transducer 65 results in a relative pressure reading that reflects the forces exerted on the tissue strands as they en~er the aspiration inlet 66. These forces fluctuate cont~nuously because of differences in the viscoelastic properties of the manipulated tissue and the viscosity of the surrounding vitreous. The force level at any given time can fall in a range that departs considerably from the ave.rage force and the pressure in the vacuum line can be adjusted to accommodate these fluctuating force levels. By using the txansducer 65, a signal can be generated to activate -10- 12~6S3 momentarily a vacuum relief valve in a known way (not shown) when the local pressure exceeds preset lev~l~ to adjust the suction when the force level falls outside ~he permissible range. Thus, the instrument 60 operates to reduce considerably ~he danger of damage to healthy tissue by preventing excessive instantaneous peaks in local suction forces.
Referring to Figs. 4 and 6, another embodiment of the invention is illustrated, this one being directed to a surgical instrument which can measure intraocular pressure while performing an irrigation or aspiration procedure.
The instrument is generally designated by reference numexal 40 and is an elongated body 41 foxmed of surgical grade stainless steel with an outside diameter of approximately lmm. The body 41 is divided through substantially its entire length into two parallel channels 42, 43, that are separated by an internal wall 49.
Channel 43 is an irrigation/aspiration channel which is connected through a handpiece (not shown) to either a saline supply reservoir ~not shown) or a vacuum system ~not shown). The channel 43 has an outlet 44 located near the apex 45 of the tip of the instrument 40.
A transducer 50 is mounted in the portion of the channel 42 adjacent to the tip of the instrument 41, the channel 4Z being vented to the atmosphere at a suitable site away from the operating field. The transducer 50 is of the type described above for the embodiment of Figs. 3 and 5 and is connected to the instrument 40 through a base 55a. At the tip of the instrument 40, the transducer channel 42 terminates at a window ~6 which is located adjacent to the outlet 44. The window 46 is approximately lmm in diameter and is fitted with a diaphragm 47 ormed of silicon rubber. The diaphragm 47 is connected to the window 46 ~y means of epoxy resin. Wire leads designated by reference numeral 52 carry electrical signals generated by the transducer 65 to suitable instrumentation (not 1~2226S3 shown) for translating the signals into useful information for monitoring and regulating intraocular pressure.
The intraocular pressure probe 40 is suitable ~or ~he measurement and control of intraocular pressure during S closed system procedures in the anterior chamber 15 as well as in the vitreous chamber 19. The instrument 40 can be inserted at a site separate from ~he operating incision and remain in place throughout the entire procedure, providing to the surgeon an independent source of determining and/or controlling intraocular pressure ~or providing information used in tamponade, suture tension controls and final approximation of physiologic pressure a~ the end of wound closure.
The invention which is embodied in the instruments described above is useful in constantly monitoring both intraocular ~luid pressure and suction forces during ophthalmic surgery. By allowing the surgeon ~he benefit of this type of information, much of the guesswork is removed, resulting in safer and more accurate surgical procedures.
Although different embodiments of the invention may vary in detail they are still intended to be within;the scope of the inventive concept described above. T~e details described in ~he foregoing preferred embodiment are intended to be illustrative and not limiting in any sense.

Claims (18)

Claims:
1. An ophthalmic device for measuring relative pressure of fluid inside an ocular globe, the device being of the type adapted to cooperate with a fluid transfer means which is located external of the ocular globe and capable of supplying or removing intraocular fluid in response to predetermined signals, the device comprising:
(a) an elongated surgical instrument adapted to penetrate the ocular globe, (b) pressure sensitive means mounted on the instrument for moving in response to relative pressure changes in intraocular fluid;
(c) transducer means communicating with the pressure sensitive means for generating signals in response to movement of the pressure sensitive means;
(d) signal means for transmitting signals to the fluid transfer means; and e) first conduit means operatively connected between the fluid transfer means and the interior of the ocular globe so that fluid can be supplied to or removed from the ocular globe in response to said signals.
2. The device of claim 1, wherein the conduit means is formed in the instrument with an opening for com-municating with the intraocular fluid.
3. The device of claim 2, wherein the pressure sensitive means includes a flexible diaphragm, and the signal means includes a pressure transducer in physical contact with the diaphragm for generating an electrical signal in response to movement of the diaphragm caused by pressure differences in the intraocular fluid.
4. The device of claim 3, wherein the diaphragm is located on the outer surface of the instrument and the instrument includes a second conduit in which the trans-ducer is mounted, the second conduit communicating with the atmosphere so that the transducer can determine intra-ocular fluid pressure changes relative to atmospheric pressure.
5. The instrument of claim 4, wherein the instrument includes an outer end and the portion of the second conduit in which the transducer is located is formed in the outer end of the instrument and the chamber extends along the instrument parallel to the first conduit means.
6. The device of claim 3, wherein the instrument further includes a second conduit communicating with the interior of the ocular globe and adapted for connection to a suction means, cutting means associated with the second conduit for performing surgical operations within the ocular globe, and a chamber having at least a portion located between the intraocular fluid and second conduit and being separated from the fluid and second conduit by first and second diaphragms respectively, the pressure transducer contacting both diaphragms for generating a signal in response to relative pressure changes between fluid in the ocular globe and the second conduit.
7. The device of claim 6, wherein the first and second diaphragms are parallel and the first diaphragm is located on the outer end of the instrument.
8. The device of claim 6, wherein the first and second conduits are concentric, the first conduit term-inating short of the portion of the second conduit that communicates with the intraocular fluid.
9. The instrument of claim 1, wherein the transducer means includes a cantilevered piezo-resistive element mounted on the instrument in physical contact with the pressure sensitive means.
10. A system for measuring fluid pressure inside an ocular globe and maintaining a predetermined fluid pressure therein, comprising:
(a) an elongated surgical instrument adapted to penetrate the ocular globe;
(b) fluid pressure transducer means mounted on the instrument on a position to communicate with fluid inside the ocular globe and generate signals in response to pressure changes in said fluid;
(c) means for transmitting the signals external of the instrument (d) fluid transfer means operatively connected to the transducer means for receiving said signals and supplying or removing fluid from the ocular globe in response to predetermined signals; and (e) a conduit operatively connected to the fluid transfer means and adapted to communicate with the interior of the ocular globe through which fluid can flow between the fluid transfer means and the ocular globe.
11. The system of claim 10, wherein the fluid pressure transducer means includes a flexible diaphragm, and a pres-sure transducer in physical contact with the diaphragm for generating an electrical signal oE pressure information in response to movement of the diaphragm caused by pressure changes in the intraocular fluid.
12. The system of claim 10, wherein the fluid pressure transducer means is mounted on the portion of the instru-ment adapted to penetrate the ocular globe.
13. The system of claim 10, wherein the c,onduit is formed within a second elongated surgical instrument adapted to penetrate the ocular globe.
14. The system of claim 10, wherein the conduit is formed within said elongated surgical instrument.
15. The system of claim 10, wherein the pressure sensitive means includes a flexible diaphragm in a position to contact intraocular fluid when the instrument has penetrated the ocular globe, and the means for trans-mitting signals includes a pressure transducer in physical contact with the diaphragm for generating an electrical signal in response to movement of the diaphragm caused by pressure differences in the intraocular fluid.
16. The system of claim 15, wherein the diaphragm is located on the outer surface of the instrument and the instrument includes a second conduit in which the trans-ducer is mounted, the second conduit communicating with the atmosphere so that the transducer can determine intraocular pressure changes relative to atmospheric pressure.
17. The system of claim 16, wherein the portion of the second conduit in which the transducer is located is formed in the end of the instrument and the second conduit extends along the instrument parallel to the first conduit.
18. The system of claim 10, wherein the transducer means includes a cantilevered piezo-resistive element mounted in the chamber in physical contact with the pressure sensitive means.
CA000439890A 1982-10-27 1983-10-27 Ophthalmic instrument for measuring intraocular fluid pressure Expired CA1222653A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US436,953 1982-10-27
US06/436,953 US4548205A (en) 1982-10-27 1982-10-27 Ophthalmic instrument for measuring intraocular fluid pressure

Publications (1)

Publication Number Publication Date
CA1222653A true CA1222653A (en) 1987-06-09

Family

ID=23734471

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000439890A Expired CA1222653A (en) 1982-10-27 1983-10-27 Ophthalmic instrument for measuring intraocular fluid pressure

Country Status (6)

Country Link
US (1) US4548205A (en)
EP (1) EP0110560B1 (en)
JP (1) JPS59125543A (en)
AT (1) ATE53484T1 (en)
CA (1) CA1222653A (en)
DE (1) DE3381634D1 (en)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4678459A (en) * 1984-07-23 1987-07-07 E-Z-Em, Inc. Irrigating, cutting and aspirating system for percutaneous surgery
US4722350A (en) * 1984-09-21 1988-02-02 Armeniades C D Ophthalmic instrument for measuring intraocular fluid pressure
US4722730A (en) * 1986-02-27 1988-02-02 Michael Reese Hospital And Med. Center Apparatus for relief of fetal distress during labor
SE462631B (en) * 1989-01-13 1990-07-30 Radisensor Ab MINIATURIZED PRESSURE SENSOR FOR PHYSIOLOGICAL SEATS IN SITU
US5285795A (en) * 1991-09-12 1994-02-15 Surgical Dynamics, Inc. Percutaneous discectomy system having a bendable discectomy probe and a steerable cannula
US5830176A (en) * 1995-12-26 1998-11-03 Mackool; Richard J. Maintenance of pressure within a surgical site during a surgical procedure
US5865764A (en) * 1996-12-30 1999-02-02 Armoor Opthalmics, Inc. Device and method for noninvasive measurement of internal pressure within body cavities
US5916179A (en) * 1997-04-18 1999-06-29 Sharrock; Nigel System and method for reducing iatrogenic damage to nerves
US6162182A (en) * 1998-08-26 2000-12-19 Becton, Dickinson And Company Pressure tip cannula
US6546787B1 (en) 1999-03-25 2003-04-15 Regents Of The University Of Minnesota Means and method for modeling and treating specific tissue structures
US6331161B1 (en) * 1999-09-10 2001-12-18 Hypertension Diagnostics, Inc Method and apparatus for fabricating a pressure-wave sensor with a leveling support element
US9603741B2 (en) 2000-05-19 2017-03-28 Michael S. Berlin Delivery system and method of use for the eye
US6579255B2 (en) * 2001-07-31 2003-06-17 Advanced Medical Optics, Inc. Pressurized flow of fluid into the eye using pump and pressure measurement system
US7131945B2 (en) 2002-10-16 2006-11-07 California Institute Of Technology Optically powered and optically data-transmitting wireless intraocular pressure sensor device
US7137608B2 (en) * 2002-10-18 2006-11-21 Willey Kevin E Multi-purpose upright support stand with leg assemblies having hinge-fitting
AU2003289047A1 (en) * 2002-12-13 2004-07-09 Arkray, Inc. Needle-insertion device
US7314454B2 (en) * 2005-06-07 2008-01-01 Mallinger Joseph C Method of preventing eye-related positional injuries during spinal surgery
US7604615B2 (en) * 2006-03-20 2009-10-20 Alcon, Inc. Surgical cassette with bubble separating structure
US7524299B2 (en) * 2005-06-21 2009-04-28 Alcon, Inc. Aspiration control
US7644603B2 (en) * 2005-06-27 2010-01-12 Alcon, Inc. Method of testing a surgical system
US7648465B2 (en) * 2005-06-28 2010-01-19 Alcon, Inc. Method of testing a surgical system
US8465467B2 (en) 2006-09-14 2013-06-18 Novartis Ag Method of controlling an irrigation/aspiration system
US20090018488A1 (en) * 2007-07-09 2009-01-15 Davis Sherman G Method of Priming a Surgical System
US20170360609A9 (en) 2007-09-24 2017-12-21 Ivantis, Inc. Methods and devices for increasing aqueous humor outflow
EP2259833A1 (en) 2008-03-05 2010-12-15 Ivantis, INC. Methods and apparatus for treating glaucoma
US20100324476A1 (en) * 2009-06-17 2010-12-23 Mikhail Boukhny Fluidics control via wireless telemetry
CA2766192C (en) 2009-07-09 2017-10-24 Ivantis, Inc. Ocular implants for residing partially in schlemm's canal
WO2011006078A1 (en) 2009-07-09 2011-01-13 Ivantis, Inc. Single operator device for delivering an ocular implant
US9101441B2 (en) 2010-12-21 2015-08-11 Alcon Research, Ltd. Vitrectomy probe with adjustable cutter port size
US8888802B2 (en) 2010-12-21 2014-11-18 Alcon Research, Ltd. Vitrectomy probe with adjustable cutter port size
RU2731477C2 (en) 2011-12-08 2020-09-03 Алькон Инк. Selectively movable valves for aspiration and irrigation circuits
US9095409B2 (en) 2011-12-20 2015-08-04 Alcon Research, Ltd. Vitrectomy probe with adjustable cutter port size
US10213533B2 (en) * 2012-03-05 2019-02-26 Keith A. Walter Medical tools with aspiration tips suitable for cataract surgeries and related methods
US20130289469A1 (en) * 2012-04-26 2013-10-31 Karen T. Hong Infusion Sleeve With Motion Reduction Profile
US10220186B2 (en) * 2012-05-23 2019-03-05 Becton, Dickinson And Company Collapse-resistant swellable catheter
US9132229B2 (en) 2012-09-13 2015-09-15 Alcon Research, Ltd. System and method of priming a surgical cassette
WO2014085450A1 (en) 2012-11-28 2014-06-05 Ivantis, Inc. Apparatus for delivering ocular implants into an anterior chamber of the eye
US9205186B2 (en) 2013-03-14 2015-12-08 Abbott Medical Optics Inc. System and method for providing pressurized infusion
US9549850B2 (en) 2013-04-26 2017-01-24 Novartis Ag Partial venting system for occlusion surge mitigation
US10137034B2 (en) 2013-11-26 2018-11-27 Novartis Ag Pressure-sensing vitrectomy surgical systems and methods
US9757273B2 (en) * 2013-12-20 2017-09-12 Novartis Ag Tissue-sensing vitrectomy surgical systems and methods
US10709547B2 (en) 2014-07-14 2020-07-14 Ivantis, Inc. Ocular implant delivery system and method
AU2016307951B2 (en) 2015-08-14 2021-04-01 Alcon Inc. Ocular implant with pressure sensor and delivery system
WO2017106517A1 (en) 2015-12-15 2017-06-22 Ivantis, Inc. Ocular implant and delivery system
US9839749B2 (en) * 2016-04-27 2017-12-12 Novartis Ag Intraocular pressure sensing systems, devices, and methods
US11357907B2 (en) 2017-02-10 2022-06-14 Johnson & Johnson Surgical Vision, Inc. Apparatus, system, and method of gas infusion to allow for pressure control of irrigation in a surgical system
US11419971B2 (en) * 2017-08-28 2022-08-23 Surgical Design Corporation Ocular surgical work tip adapter
US11116890B2 (en) * 2017-08-28 2021-09-14 Surgical Design Corporation Ocular work tip sleeve adapter
US11154421B2 (en) 2018-04-20 2021-10-26 Johnson & Johnson Surgical Vision, Inc. System and method for providing pressurized infusion transfer reservoirs
GB201905518D0 (en) * 2019-04-18 2019-06-05 Univ Dublin A surgical delivery device
AU2022205382A1 (en) 2021-01-11 2023-06-22 Alcon Inc. Systems and methods for viscoelastic delivery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3088323A (en) * 1960-02-10 1963-05-07 Gulton Ind Inc Piezoresistive transducer
JPS4833118B1 (en) * 1967-05-13 1973-10-11
US3553625A (en) * 1967-12-29 1971-01-05 Statham Instrument Inc Side sensitive miniaturized pressure transducer
US3710781A (en) * 1970-10-12 1973-01-16 T Huthcins Catheter tip pressure transducer
FR2224752B1 (en) * 1973-04-09 1977-09-02 Thomson Medical Telco
US3941122A (en) * 1974-04-08 1976-03-02 Bolt Beranek And Newman, Inc. High frequency ultrasonic process and apparatus for selectively dissolving and removing unwanted solid and semi-solid materials and the like
US3939823A (en) * 1975-01-28 1976-02-24 The United States Of America As Represented By The Department Of Health, Education And Welfare Esophageal transducer
US4091682A (en) * 1977-04-04 1978-05-30 Sensor-Matic, Inc. Digital differential pressure measurement apparatus
US4168707A (en) * 1977-06-13 1979-09-25 Douvas Nicholas G Control apparatus for microsurgical instruments
JPS5921495B2 (en) * 1977-12-15 1984-05-21 株式会社豊田中央研究所 Capillary pressure gauge

Also Published As

Publication number Publication date
EP0110560A2 (en) 1984-06-13
ATE53484T1 (en) 1990-06-15
DE3381634D1 (en) 1990-07-19
EP0110560B1 (en) 1990-06-13
JPS59125543A (en) 1984-07-19
EP0110560A3 (en) 1985-12-18
US4548205A (en) 1985-10-22

Similar Documents

Publication Publication Date Title
CA1222653A (en) Ophthalmic instrument for measuring intraocular fluid pressure
US4722350A (en) Ophthalmic instrument for measuring intraocular fluid pressure
US4841984A (en) Fluid-carrying components of apparatus for automatic control of intraocular pressure
EP3048951B1 (en) Pressure-sensing vitrectomy surgical systems
US5865764A (en) Device and method for noninvasive measurement of internal pressure within body cavities
ES2329175T3 (en) TEST PROCEDURE OF A SURGICAL SYSTEM.
US5830176A (en) Maintenance of pressure within a surgical site during a surgical procedure
CA2967979C (en) Surgical hand piece with integrated pressure sensor
US10842672B2 (en) Surgical assemblies for ocular surgery, systems and methods of compensation of intraocular pressure
JPS6266834A (en) Ophthalmic instrument for measuring intraocular liquid pressure
EP4205634A1 (en) Device for the direct detection of pressure variations of a fluid in a body cavity
EP4039184A1 (en) Device for the direct detection of pressure variations of a fluid in a body cavity
RU2170563C2 (en) Device for performing ophthalmologic surgical operations
WO2022168126A1 (en) Device for the direct detection of pressure variations of a fluid in a body cavity

Legal Events

Date Code Title Description
MKEX Expiry