CA1282771C - CATALYST COMPOSITION FOR POLYMERIZING .alpha.-OLEFIN POLYMERS OF RELATIVELY NARROW MOLECULAR WEIGHT DISTRIBUTION - Google Patents

CATALYST COMPOSITION FOR POLYMERIZING .alpha.-OLEFIN POLYMERS OF RELATIVELY NARROW MOLECULAR WEIGHT DISTRIBUTION

Info

Publication number
CA1282771C
CA1282771C CA000526480A CA526480A CA1282771C CA 1282771 C CA1282771 C CA 1282771C CA 000526480 A CA000526480 A CA 000526480A CA 526480 A CA526480 A CA 526480A CA 1282771 C CA1282771 C CA 1282771C
Authority
CA
Canada
Prior art keywords
transition metal
composition
polar solvent
carrier
catalyst composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA000526480A
Other languages
French (fr)
Inventor
Margaret M. Wu
Frederick Y. Lo
Thomas E. Nowlin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Oil Corp
Original Assignee
Mobil Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mobil Oil Corp filed Critical Mobil Oil Corp
Application granted granted Critical
Publication of CA1282771C publication Critical patent/CA1282771C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond

Abstract

CATALYST COMPOSITION
FOR POLYMERIZING ALPHA-OLEFIN POLYMERS
OF RELATIVELY NARROW MOLECULAR
WEIGHT DISTRIBUTION

Abstract of the Disclosure A catalyst composition for polymerizing alpha-olefins is prepared by treating a carrier containing OH groups with a liquid solution containing an excess of an organomagnesium composition with respect to the OH groups and contacting the thus-formed magnesium-containing carrier with a solution of at least one transition metal compound. Prior to contacting the magnesium-containing carrier with the transition metal compound, most of the liquid must be removed therefrom, so that it comprises not more than about 6% of the liquid. The amount of the transition metal compound is such that the molar ratio of the transition metal to magnesium in the reaction mixture is about 0.3 to about 0.9.
Also disclosed is a process for polymerizing alpha-olefins in the presence of the catalyst of the invention.

Description

CATALYST COMPOSITION
F~R POLYMERIZING ALPHA-OLEFIN POLYMERS
OF RELATIVELY NARROW MOLECULAR
WEIGHT DISTRIBUTION

BACKGROUND OF THE INVENTION

1. Field of the Invention The present invention relates to a method for polymerizing alpha-olefins, a catalyst for such a polymerization method and a method for producing such a catalyst. A particular aspect of the present invention relates to a method for preparing a catalyst which produces linear low density polyethylene (LLDPE) having a relatively narrow molecular weight distribution, as evidenced by relatively low values of melt flow ratios (MFR), suitable for film and injection molding applications.
2. escription of the Prior Art Linear low density polyethylene polymers possess properties which distinguish them from other polyethylene polymers, such as homopolymers of polyethylene. Certain of these properties are described in Anderson et al, U.S. Patent 4,076,698.
Karol et al, U.S. Patent 4,302,566, descrlbe a process for producing certain linear low density polyethylene p~lymers in a gas phase, fluid bed reactor.
Graff, U.S. Patent 4,173,547, Stevens et al, U.S. Patent 3,787,384, Strobel et al, U.S. Patent 4,148,754, and Ziegler, deceased, et al, U.S. Patent 4,063,009, each describe various polymerization processes suitable for producing forms o~
polyethylene other than linear low density polyethylene, per se.
Graff, U.S. Patent 4,173,547, describes a supported catalyst obtained by treating a support with both an organoaluminum compound .. ~

and an organomagnesium compound followed by contacting this treated support with a tetravalent titanium compound.
Stevens et al, U.S. Patent 3,787,384, and Strobel et al, U.S.
Patent 4,148,754, describe a catalyst prepared by first reacting a support (e.g., silica containing reactive hydroxyl groups) with an organomagnesium compound (e.g., a Grignard reagent) and then combining this reacted support with a tetravalent titanium compound. According to the teachings of both of these patents, no unreacted organomagnesium compound is present when the reacted support is contacted with the tetravalent titanium compound.
Ziegler, deceased, et al, U.S. Patent 4,063,009, describe a catalyst which is the reaction product of an organomagnesium compound (e.g., an alkylmagnesium halide) with a tetravalent titanium compound. The reaction of the organomagnesium compound with the tetravalent titanium compound takes place in the absence of a support material.
A vanadium-containing catalyst, used in conjunction with triisobutylaluminum as a co-catalyst, is disclosed by W.L. Carrick et al in Journal of American ~hemical Society, Volume 82, page 1502 (1960) and Volume 83, page 2654 (1961).
Nowlin et al, ~r~ U.S. Patent 4,481,301, iss~
November 6, 1984, disclose a supported alpha-olefin polymerizatlon catalyst composition prepared by reacting a support contalning OH groups with a stoichiometric excess of an organomagnesium composition, with respect to the OH groups content, and then reacting the product with a tetravalent titanium compound.
It is a primary ob~ect of the present invention to prepare a high activity catalyst for the polymerization of alpha-olefins which yields products of a relatlvely narrow molecular weight distribution suitable for films and in~ection molding applications.
It is an additional object of the present invention to provide a catalytic process for polymerizing alpha-olefins which yields linear low density polyethylene of a relatively narrow molecular weight distribution.

~771 ` ' SUMMARY OF THE INVENTION
A supported alpha-olefin polymerization catalyst composition of this invention is prepared in a multi-step process. In the first step, a solid, porous carrier having reactive OH groups is contacted with a liquid containing at least one organomagnesium composition of the empirical formula RnMgR (2-n) where R and R' are the same or different and they are Cl-C12 hydrocarbyl groups provided that R' may also be a halogen and n is O, 1 or 2. The number of moles of the organomagnesium composition is in excess of the number of moles of the reactive OH groups on the carrier In the second step, the liquid is carefully evaporated to assure that none or very little of magnesium-containing compound(s) is removed from the reaction rnixture and that most, if not all, of the magnesium-containing compound(s) are retained on the carrier.
The product of this step is a solid supported magnesium (Mg) composition.
Subsequently, the product is dried, in the third step until it comprises not more than about 6% by weight of the liquid. The product of this step is a dry, free-flowing powder.
In the fourth synthesis step, the powder is reacted with a solution of at least one transition metal compound, soluble in non-polar solvents, in a non-polar solvent. The amount of the transition metal compound used ln this step is such that the molar ratio of the transition metal to magnesium (Mg) in the reaction mixture of this step is about 0.3 to about O.9, both the transition metal and Mg being calculated as elemental metals. The supported magnesium composition is substantially insoluble in the non-polar solvent. Accordingly, a reacted form of transition metal insoluble in the non-polar solvent becomes supported on the carrier.
The invention is also directed to an alpha-olefin polymerization process conducted in the presence of the catalyst of this invention.

F-~771 -4-~RIEF DESCRIPTION OF THE FIGURES
Figure 1 is a graphical representation oF the effect of tetrahydrofuran (THF) content on the density of polymers produced wih the catalysts of Examples C-l through C-8.
Figure 2 is a graphical representation of the effect o~ THF
content on the productivity of catalysts of Examples C-l through C-8.

DETAILED DESCRIPTION OF THE INVENTION
The polymers prepared in the presence of the catalyst compositions of this invention are linear polyethylenes which are homopolymers of ethylene or copolymers of ethylene and higher alpha-olefins. The polymers exhibit relatively high values of melt index ~I2) and relatively low values of melt flow ratio (MFR)? as compared to similar polymers prepared in tlle presence of similar, previously-known catalyst cornpositions, e.g., those disclosed by Nowlin et al, U.S. Patent 4,481,301. Thus, the polyMers prepared with the catalyst compositions of this invention are especially suitable for the production of films and injection molding applications.
Catalysts produced according to the present invention are described below in terms of the manner in which they are made.
Suitable carrier materials, organomagnesium compositions, liquids, and the manner of using thereof in the first step of the catalyst synthesis process are those dlsclosed by Nowlln et al, U.S.
Patent 4,4~1,301. Accordingly, only the most important Features of such materials and of the manner of conducting the first catalyst synthesis step will be discussed herein.
The carrier materials have the form of particles having a particle size of from about 0.1 micron to about 200 microns, more preferably from about 10 to about 150 microns. Preferably, the carrier is in the forrn of spherical particles, e.g., spray dried silica. The internal porosity of the carriers is larger than 0.2 cm3/gm, preferably larger than about 0.6 cm3/gm. The specific surface area of the carriers is larger than about 50 m2/gm, preferably from about 150 to about 1~00 m2/gm. In the most preferred embcdiment, the carrier is silica which has been dehydrated by fluidizing with nitrogen and heating at about 800C
for about 16 hours to achieve a surface hydroxyl concentration of about 0.4 mmols/gm. The silica of the most preferred embodiment is a high surface area, amorphous silica (surface area = 300 m2~gm;
pore volume of 1.65 cm3 per gram), and it is a material marketed under the tradekmarkof"Davison 952"or"Davison 955~by the Davison Chemical Division of W.R. Grace and Company. The silica is in the form of spherical particles, e.g., as obtained by a spray-drying process.
Chemically bound water, e.g., as represented by the plesence of the OH groups in the carrier, may be present when the carrier is contacted with water-reactive organomagnesium compounds in accordance with the present invention. Excess OH groups present in the carrier may be removed by heatin~ the carrier, prior to the contacting step, for a sufficient time at a sufficient temperature to accomplish the desired degree o~ the OH groups removal. A
relatively small number of OH groups is removed by sufficient heating at from about 150C to about 250C, whereas a relatively large number of OH groups may be removed by sufficient heating at at least 500 or 600C, preferably from about 750C to about 850C. The heating is continued for about 4 to about 1~ hours. The amount of the hydroxyl groups in silica may be determined according to the method disclosed by J.B. Peri and A.L. Hensley, Jr., in J. Phys.
Chem., 72 (8), 2926 (1968), While heating is the most preferred means of removing OH groups inherently present in many carriers, such as silica, the OH groups may also be removed by other removal means, such as chemical means.
For example, a desired proportion of OH groups may be reacted with a suitable chemical agent, such as a hydroxyl reactive aluminum compound, e~g., triethylaluminum.

A dehydrated carrier material is treated with a solution of a solid or~anoma~nesium composition in a liquid, the organomagnesium composition being capable of reacting with a transition metal compound soluble in non~polar solvents. In a preferred embodiment, the carrier material is admixed with a hydrocarbon, preferably a saturated hydrocarbon, such as hexane or isopentane, and the resulting suspension of the carrier is vigorously stirred before it is contacted wlth the solution of the organomagnesium composition in the liquid. In this preferred embodim~nt, the carrier suspension is continuously stirred while the solution of the organomagnesium composition is added thereto. After the addition is completed, the solution is refluxed for about 0.1 to about 10, preferably about 0.5 to about 5, and most preferably about 1.0 to about 2.0 hours at a temperature of about 25 to about 200, preferably about 50 to about lûO, and most preferably about 60 to about 80C. The organomagnesium composition has the empirical formula RnMgR'(2 n)~ where R and R' are the same or different and they are C1-C12 hydrocarbyl groups, preferably Cl-C12 alkyl groups, more preferably Cl-C12 unsubstituted alkyl groups, yet more preferably Cl-C4 alkane groups and most preferably C2-C4 alkane groups, provided that R' may also be a halogen, and n is 0, 1 or 2. If R' is a halogen, it is preferably chlorine, bromine or iodine, and most preferably chlorine. In the preferred embodiment, a solut~on of such an organomagnesium composition is a Grignard reagent and the carrier material is contacted with the solution thereof in the absence of ball milling.
Preferably, the carrier is treated with the aforementioned solution in such a manner that, after the treatment is completed, the carrier has magnesium incorporated into the pores thereof. As used herein, the concept of incorporating a material onto a carrier is intended to encompass the incorporation of the material (e.g.7 magnesium or titanium compositions) onto the carrier by physical or chemical means. Accordingly, the incorporated material need not ~?

necessarily be chemically bound to the carrier. As a result of this treatment, magnesium becomes incorporated into the pores of the carrier by chemical or physical means. More particularly, the magnesium is incorporated into the pores of the carrier by: (1) a chemical reaction of the organomagnesium composition with the carrier, by (2) a precipitation of magnesium from the organomagnesium composition onto the carrier or (3) a combination of such a reaction and precipitation.
Suitable liquids which are solvents for Grignard reagents are ethers, such as aliphatic ethers, e.g., diethyl ether, diisopropyl ether, dibutyl ether, dipentyl ether, and ethyl-n-butyl ether and cyclic ethers, such as tetrahydrofuran and dioxane. Thus, the liquid medium containing the organomagnesium composition is usually an ether, preferably tetrahydrofuran.
It is important for the purposes of the present invention that the number of moles of the organomagnesium composition in the solution used to contact the carrier be in excess of the number of moles of the OH groups on the carrier, so that the molar ratio of the organomagnesium composition in the solution to the hydroxyl groups is greater than 1.0, preferably it is from about 1.1 to about 3.5, more preferably from about 1.5 to about 3.5, and most preferably from about 2.0 to about 3.5.
It is also important for the purposes of the present invention, that the number of moles of the sum of all magnesium-containing compounds on the carrier, in the product of the second and third steps of the catalyst synthesis of this invention, be in excess of the number of moles of the OH groups originally present on the carrier, prior to the contact of the carrier with the liquid containing the organomagnesium composition. The molar ratio of the sum of all magnesium-containing compounds in the product of the second and third steps to the aforementioned OH groups is greater than 1, preferably it is from about 1.1 to about 3.5, more preferably about 1.5 to about 3.5, and most preferably from about 2.0 to about 3.5.

F-3771 -8~

To assure that most, if not all, of the magnesium-containing compound(s~ are retained on the carrier, the liquid is removed from the reaction vessel with care to assure that none or very little magnesium-containing compound(s) aré removed with it. The liquid may be removed by any means assuring that substantially all of the magnesium-containing compound(s) remain on the carrier, e.g., by distillation of the mixture of the impregnated carrier and the solvents, evaporation, decantation or centrifugation. Evaporation at about the boiling point of the liquid is the most preferred method of liquid removal. It is also important that the product of the second and third reaction steps is not subjected to washing or rinsing, so that the excess of the magnesium-containing compound or compounds which did not react with the hydroxyl (OH) groups of the carrier is retained on the carrier.
After the liquid is removed, the resulting product is dried, in the third synthesis step, by any conventional means, e.g., drying at ambient temperature or at 50-80C for about 12-16 hours with a stream of dry nitrogen to produce a dry, free-flowing powder. The drying step is conducted until the resulting dry, free-flowing powder comprises not more than about 6% by weight, preferably not more than about 5%, and most preferably about 2% to about 5% by weight of the liquid used to dissolve the organoma~nesium composition prior to the addition thereof to the s:llica ln step (i) of the synthesis. Without wishiny to be bound by any theory of operability, it is believed that the presence of higher amounts of the liquid or solvent in the dry, free-flowing powder causes the resulting catalyst composition to produce polymers having undesirahly high densities.
The amount of magnesium-containing compound(s) which is incorporated onto the carrier should be sufficient to react with the transition metal, in order to incorporate a catalytically effective amount of transition metal on the carrier in the manner set forth hereinbelow. Thus, the carrier should comprise from about 0.1 to àbout 50, preferably about 0.1 to about 5 millimoles (mmoles) of magnesium per gram of carrier (after the treatment of the carrier with the organcmagnesium composition is completed). When the liquid containing the organomagnesium composition is contacted with the carrier, the amount of magnesium in this liquid is substantially the same as that stated above which is incorporated onto the carrier.
The free-flowing po~der obtained in the third step is reac~ed with at least one transition metal compound dissolved in a non-polar solvent (also referred to herein as a liquid medium diluent). The transition metal compound is soluble in this solvent, while the treated carrier (i.e., the free-flowing powder), including the magnesium-containing compound(s), is insoluble therein. Thus, the reaction which takes place between the transition metal and the reactive magnesium-containing compound(s) is a reaction of a solid with a liquid. It is further noted that the reacted transition metal is insoluble in the solvent.
Without wishing to be bound by any theory of operability, it is thought that the reaction which takes place between the magnesium compound which is not a reaction product of an organomagnesium composition with the carrier and the transition metal in the liquid reaction medium is substanially an oxidation/reduction reaction, wherein the magnesium compound acts as a reducing agent for the transition metal. On the other hand, while not wishing to be bound by any particular theory or chemical mechanism, the reaction which takes place between (1) the transition metal and (2) the reaction product of an organomagnesium composition and carrier containing reactive 0~l groups is not an oxidation/reduction reaction. However, it is noted that both of the above-mentioned reactions lead to the incorporation of transition metal onto the carrier.
Suitable transition metal compounds used herein are compounds of metals of Groups IVA, VA, VIA or VIII of the Periodic Chart of the Elements, as published by the Fisher Scientific Company, Catalog No.
5-702-10, 1978, providing that such compounds are soluble in non-polar solvents. Non-limiting examples of such compounds are titanium and vanadium halides, e.g., titanium tetrachloride, TiC14, vanadiu~ tetrachloride, VC14, vanadium oxytrichloride, VOC13, titanium tetrabromide, TiBr4, titanium and vanadium alkoxides, wherein the alkoxide moiety has a branched or unbranched alkyl radical of 1 to about 2û carbon atoms, preferably 1 to about 6 carbon atoms. The preferred transition metal compounds are titanium compounds, preferably tetravalent titanium compounds. The most preferred titanium compound is titanium tetrachloride.
Mixtures of such transition metal compounds may also be used and generally no restrictions are imposed on the transition metal compounds which may be included. Any transition metal compound that may be used alone oay also be used in conjunction with other transition metal compounds.
Suitable liquid medium diluents are materials in which the transition metal compounds are at least partially soluble and which are liquid at reaction temperatures. Preferred diluents are alkanes, such as hexane, n-heptane, octane, nonane, and decane, although a variety of other materials including cycloalkanes, suct-as cyclGhexane, aromatics, such as benzene and ethylbenzene, and halogenated aromatics, such as chlorobenzene or ortho-dichlorobenzene, can be employed. The most preferred diluent is n-hexane. Prior to use, the diluent should be purified, such as by percolation through silica gel and/or molecular sieves, to remove traces of water, oxygen, polar compounds, and other materLals capable of adversely affecting catalyst activity. The magnesium-containing dry, free-flowing powder is reacted with one or more transition metal compound(s) at a temperature and for a time sufficient to yield a solid catalyst component. Temperatures at which this reaction is conducted range from about -40 to about 250C, preferably, from about 0 to about 170C, and most preferably, the reaction is conducted at a temperature of ~5-100C.
Suitable reaction times range from about 1/2 to about 25 hours, with about 1/2 to about 6 hours being preferred.

~7~

The reaction of the transition metal in the liquid medium diluent with the magnesium-containing carrier material conveniently takes place by slurrying the solid carrier in a solution of the transition metal compound in the diluent and heating the liquid reaction medium to a suitable reaction temperature, e.g., to the reflux temperature of the diluent at standard atmospheric pressure.
Thus, the reaction usually takes place under reflux conditions.
The various reaction parameters can be widely varied, suitable selection of such parameters being well within the skill of those having ordinary skill in the art. The volume of the transition metal compound solution added to the magnesium-containing powder initially slurried in the solution is from about 0.1 to about 10 milimiters (mls) per gram of such carrier. The concentration of the transition metal compound solution is, for example, from about 0.1 to ahout 5 Molar. It is important, however, that the molar amount of the transition metal compound in the solution is such that the molar ratio of the transition metal to magnesium (Mg) is about 0.3 to about 0.9, preferably about 0.4 to about 0.8, and most preferably about 0.5 to about 0.8. It is also believed, without wishing to be bound by any theory of operability, that the transition metal:Mg molar ratios outside of this range would produce a catalyst composition which, when used to polymerize alpha-oleflns, would yield polymers having lower than desired values of I2 and higher than desired values o~ MFR.
To assure that most, if not all, of the transition-metal-containing compound(s) are retained in the product of the last catalyst synthesis step, the liquid medium diluent is removed from the reaction vessel with care to assure that none or very little of the transition-metal containing compounds(s) are removed with it.
The liquid medium diluent may be removed by any means assuring that substantially all of the transition-metal-containing compound(s) remain on the carrier, e.g., by distillation o~ the mixture of the liquid medium diluent and the solid reaction product, evaporation, . - . ~
.~ ' .

~,2m decantation or centrifugation. Evaporation at about the boiling point of the liquid medium diluent is the most preferred method of the liquid medium diluent removal. It is also important that the product of the fourth synthesis step is not subjected to washing or rinsing to avoid inadvertent removal of any transition-metal-containing compound(s) therefrom.
The lack of the washing or decantation steps, usually present in prior art (e.g., see Nowlin et al, U.S. Patent 4,481,3ûl), assures that substantially all of the transition metal compound(s) present in the liquid medium diluent in step (iv) are retained on the final catalyst composition. The resulting catalyst composition produces polymers having relatively high melt index values and relatively low MFR values, as compared to the aforementioned catalyst compositions of Nowlin et al. The lack of the washing or decantation steps also eliminates the potentially dangerous transition-metal-containing waste products.
As indicated above, the catalysts of the present invention are prepared in the substantial absence of water, oxygen, and other catalyst poisons. Such catalyst poisons can be excluded during the catalyst preparation steps by any well known methods, e.g., by carrying out the preparation under an atmosphere of nitrogen, argon or other inert gas. An inert gas purge can serve the dual purpose of excluding external contaminants during the preparation and removing undesirable reaction by-products resulting from the preparation of the neat, liquid reaction product. Purification of any diluent employed in the second and fourth preparative steps in the manner described above also is helpful in this regard.
The thus-formed supported catalyst may be activated with suitable activators also known as co-c~talyst5 or catalyst promoters. The activators are known in the art and they include any of the materials commonly employed as promoters for olefin polymerization catalyst components containing compounds of the Group IB, IIA, IIB, IIIB and IVB of the Periodic Chart of the Elements, ~5 published by Fisher Scientific Company, Catalog Number 5-702-10, 1978. E~amples of such promoters are metal alkyls, hydrides, alkylhydrides~ and alkylhalides, such as alkyllithium compounds, dialkylzinc compounds, trialkylboron compounds, trialkylaluminum compounds, alkylaluminum halides and hydrides, and tetraalkylgermanium compounds. Mixtures also can be employed.
Specific examples of useful promoters include n-butyllithium, diethylzinc, di-n-propylzinc, triethylboron, triethylaluminum, triisobutylaluminum, tri-n-hexylaluminum, ethylaluminum dichloride, dibromide, and dihydride, isobutyl aluminum dichloride, dibromide, and dihydride, diethylaluminum chloride, bromide, and hydride, di-n-propylaluminum chloride, bromide, and hydride, diisobutylaluminum chloride, bromide, and hydride, tetramethylgermanium, and tetraethylgermanium. Organometallic promoters which are preferred for use according to this invention are Group IIIB metal alkyls and dialkylhalides having 1 to about 20 carbon atoms per alkyl radical. More preferably, the promoter is a trialkylaluminum compound having 1 to about 6 carbon atoms per alkyl radical.
The organometallic promoter is employed in an amount which is at least effective to promote the polymerization activity of the solid component of the catalyst of this invention. Preferably, at least about three parts by weight of promoter are employed per part, by weight, of solid catalyst component, although higher ratios, such as 10:1, 25:1, 100:1 or higher are also suitable and often give highly beneficial results. In slurry polymerization processes, a portion of the promoter can be employed to pretreat the polymerization medium if desired. Other promoters which can be used herein are disclosed in Stevens et al, U.S. Patent No. 3,787,384, column 4, llne 45 to column 5, line 12, and in Strobel et al, U.S. Patent No.
4,148,754, column 4, line 56 to column 5, line 59, The mDst preferred activator is triethylaluminum.

' ~ ' ' ~ , ." ,"' .

~L

The catalyst may be activated in situ by adding the activator and catalyst separately to the polymerization medium. It is also possible to combine the catalyst and activator before the introduction thereof into the polymerization medium, e.g., for up to about 2 hours prior to the introduction thereof into the polymerization medium at a temperature of from about -40 to about 100C.
A suitable activating amount of the activator may be used to promote the polymerization activity of the catalyst. The aforementioned proportions of the activator can also be expressed in terms of the number of moles of activator per gram atom of transition metal in the catalyst of, e.g., from about 1 to about lûO
and preferably greater than about ~.
Alpha-olefins may be polymerized with the catalysts prepared according to the present invention by any suitable process. Such processes include polymerizations carried out in suspension, in solution or in the gas phase. Gas phase polymerization reactions are preferred, e.g., those taking place in stirred bed reactors and, especially, fluidized bed reactors.
The molecular weight of the polymer may be controlled in a known manner, e.g., by using hydrogen. With the catalysts produced according to the present invention, molecular weight may be suitably controlled with hydrogen when the polymerization is carried out at relatively low temperatures, e.g., from about ~0 to about lOS~C.
This control of molecular weight may be evidenced by a measurable positive change in melt index (I2) oF the polymer produced.
The molecular weight distribution of the polymers prepared in the presence of the catalysts of the present invention, as expressed by the melt flow ratio (MFR) values, varies from about 20 to about 32 for LLDPE products having a density of about O.9ûO to about 0.940, and an I2 melt index of about 4 to about 100. As is known to those skilled in the art, such MFR values are indicative of a relatively narrow molecular weight distribution of the polymer. As m is also known to those skilled in the art, such MFR values are indicative of the polymers especially suitable for injection molding applications since the polymers having such MFR values exhibit relatively low amounts of warpage and shrinkage on cooling of the injection molded products. The relatively low MFR values of the polymers prepared with the catalysts of this invention also indicate that they are suitable for the preparation of various film products since such films are likely to have excellent strength properties.
MFR is defined herein as the ratio of the high load melt index (HLMI
or Izl) divided by the melt index (I2), i.e., MFR = I21 Smaller MFR values indicate relatively narrower molecular-weight distribution polymers.
The catalysts prepared according to the present invention are highly active and may have an activity of at least about 500-10,000 grams of polymer per gram of catalyst per 100 psi of ethylene in about 3 hours.
The linear polyethylene polymers prepared in accordance with the present invention may be homopolymers of ethylene or copolymers of ethylene with one or more C3-C10 alpha-olefins. Thus, copolymers having two monomeric units are posslble as well as terpolymers having three monomeric units. Particular examples of such polymers include ethylene/l-butene copolymers, ethylene/l-hexene copolymers, ethylene/l-octene copolymers, ethylene/4-methyl-1-pentene copolymers, ethylene/
l-butene/l-hexene terpolymers, ethylene/propylene/l-hexene terpolymers and ethylene/propylene/l-butene terpolymers. When propylene is employed as a comonomer, the resulting linear low density polyethylene polymer preferably has at least one other alpha-olefin comonomer having at least four carbon atoms in an amount of at least 1 percent by weight of the polymer. Accordingly, ethylene/propylene copolymers are possible, but not preferred. The most preferred comonomer is l-hexene.

~2m The linear low density polyethylene polymers produced in accordance with the present invention preferably contain at least about 80 percent by welght of ethylene units.
A particularly desirable method for producing linear low density polyethylene polymers according to the present invention is in a fluid bed reactor. Such a reactor and means for operating it are described by Levine et al, U.S. Patent No. 4,011,382, and Karol et al, U.S. Patent No. 4,302,566, and by Nowl~n et al, U.S. Patent No. 4,481,301.
I' i~ The following Examples further illustrate the essential features of the invention. However, it will be apparent to those skilled in the art that the specific reactants and reaction conditions used in the Examples do not limit the scope of the invention.

(Synthesis of Inventive Catalyst Composition) I All procedures were carried out in glass or quartz equipment ¦ under purified nitrogen using predried nitrogen-purged solvents.
Catalyst Preparation First Step:
30.36 grams of Davison silica gel Grade 955 (a trademark of and available from the Gavison Chemical Division of W. R. Grace and Company, Baltimore, Md.) heated at 800C in the atmosphere of dry nitrogen for twelve hours, was placed into 50û ml flask under a slow nitrogen purge. Approximaely 275 ml of hexane was added while stirring and the contents were heated to reflux. 18.2 ml of a 2.1 molar solution of ethylmagnesium chloride in tetrahydrofuran (THF) was added dropwise to the refluxing solution, while the solution was stirred. The reflux was continued for one hour.
Second Step The solvents were removed by distillation at 65C for 60 minutes.
Third Ste~
The product was dried at 80C for about 18 hours in nitrogen atmosphere. Yield: 36.41 grams; Mg = 1.06 mmols/gram; THF = 0.694 mmols/gram (5% by weight); Cl = 1.08 mmols/gram.

, ~
.i?
.~ ~, ., ~1;28277~

Fourth Step 10.07 grams of the product from the first step (10.67 mmols Mg~
was placed into a 500 ml flask under a slow nitrDgen purge. 100 ml of hexane containing 0.6 ml of TiC14 (5.46 mmols Ti) was added to the flask and the slurry was heated to reflux for about 2 hours.
The solvent was removed by distillation and the product was dried overnight at 6ûC in nitrogen atmosphere~ Yield: 8.89 grams of product which analyzed as follows: Mg - 0.86 mmols/gram; Ti = 0.48 mmols/gram; Cl = 2.57 mmols/gram; THF = 0.49 mmols/gram.

. .
(Synthesis of Inventive Catalyst Compositions) Additlonal catalysts were prepared in accordance with the procedure of Example 1, except that the TiC14/Mg mole ratio was varied in the fourth step. The TiC14/Mg mole ratio and the calculated amount of Mg in the final catalyst product (expressed in terms of milimoles per gram of product) for respective examples are summarized in Table I, below.
TABLE I

Calculated Amount of Catalyst Fourth Magnesium THF in of Step Content Product of Step Example ~ (mmols/~Lm) (iii) (% wt.) 1 0~7 O.g 4.5 2 0.3 O.g 4.5 3 û.5 0.86 5.0 COMPARATIVE EXAMPLES A AND B
Two more catalyst samples, prepared substantially in accordance with the teachings of Nowlin et al, U.S. Patent 4,481,301, were used in comparative testing as discussed in Examples summarized below.
These catalysts are referred to herein as "Comparative A or B"
catalysts or simply as "A or B" catalysts, respectively.

7LZ~

First Step:
30.36 grams of Davison silica gel, Grade 955 (dried at 800C
for 16_hours) was placed into a 500 ml four-neck reaction flask fitted with a dropping funnel, water condenser~ dry nitrogen line, and overhead stirrer. Under a slow nitrogen purge, 275 ml of dry hexane was added to the silica while stirring. The silica/hexane slurry was brought to the reflux temperature and 18.2_ml o~ 2.1 molar ethylmagnesium chloride in THF (EtMgCL/THF) solution was added dropwise (about 8 minutes) and the reflux was continued for an additional 60 minutes. After this time, the solvents were removed by distillation and the sillca dried at 80C under a nitrogen purye. Product yield: 36.41 yrams; Mg content: 1.06 mmols~gm; THF:
0.69 mmols/gram (S~ by weight); Cl: 1.08 mmols/gram.
Second Step-.

10.02 grams of the product from the first step (10.62 mmols Mg)was placed into a 500 ml flask under a slow nitrogen purge. 100 ml of hexane containing 4.4 ml of TiC14 (40.û6 mmols Ti) was added to the ~lask and the slurry was heated to reflux for about 2 hours.
The slurry was transferred to a filter apparatus, filtered while at 60 C, and washed with 500 ml of dry hexane to remove excess TiC14. Yield: 9.96 grams of product which analyzed as follows:
Mg: 0.97 mmols/gram; Ti: 0.60 mmols/gram; Cl: 3.~5 mmols/yram; THF:
0.43 mmols/yram.
The catalyst of comparative Example B was prepared ln substantially the same manner as the comparative A catalyst, except that the molar Ti:Mg ratio in the second step was 4Ø

COMPARATIVE EXAMPLES C-l THROUGH C-8 Eight more catalyst samples, prepared substantially in accordance with the teachings of ~owlin et al, U.S. Patent 4,481,301, were used in comparative testing as discussed in Examples summarized below. In the synthesis of these catalysts, a greater m amount of THF was left in the product of the first synthesis step of catalysts C-l and C-2 than in comparative A and C catalysts or in the Examples 1-3 catalysts. The THF content was progressively reduced in the product of the first synthesis step to prepare catalysts C-3 through C-8. These catalysts are referred to herein as "Comparative C-l through C-8" catalysts or simply as "C-l through C-8" catalysts.
First Step:
94.5 grams of Davison silica gel, Grade 952 (dried at 800C
for 16 hours) was placed into a 2 liter four-neck reaction flask ~itted with a dropping funnel, water condenser, dry nitrogen line, and overhead stirrer. Under a slow nitrogen purge, 950 ml of dry hexane was added to the silica while stirring. The silica/hexane slurry was brought to the reflux temperature, 60 ml of 1.85 molar ethylmagnesium chloride in THF (EtMgCl/THF) solution was added dropwise (about 8 minutes) and the reflux was continued for an additional 60 minutes. After this time, the solvents were removed by distillation and the silica dried for 1.5 hours at 80C under a nitrogen purge. Product yield: 108 grams; Mg content (Theory): 1.03 mmols/gm.
Eight separate samples of this product were dried under increasingly more severe conditions to remove various amounts of THF, as summarized in Table A, below.
TA~LE A

SampleDryin~ C_nditions THF Content (wt%) A001 1.5 Hrs. at 80C 6.1 A002 3.0 Hrs. at 80C 5.2 A003 7.5 Hrs. at 80C 4.6 A004 18.5 Hrs. at 80C 4.2 A005 18.5 Hrs. at 80C and 4 Hrs. at 80C under vacuum 4.2 A006 18.5 Hrs. at 80C and 30 Hrs. at lOO~C 3~7 A007 18.5 Hrs. at 80C and 30 Hrs. at 120C 3.4 A008 18.5 Hrs. at 80C and 30 Hrs. at 140C 2.8 Second Step:
The products of the first step were then reacted wth TiC14 in the second step, exemplified here for the first step product of sample A001, to prepare eight catalyst samples C-l through C-8.
6.48 grams of sample A001 from the first step (6.67 mmols Mg) was placed into a 300 ml flask under a slow nitrogen purge. 6} mls of heptane containing 3.15 ml of TiC14 (28.7 mmols Ti) was added to the flask and the slurry was heated to reflux for about one hour. The slurry was transferred to a filter apparatus, filtered at about 70C, and washed with 500 ml of dry hexane to remove excess TiC14 and produce the C-l catalyst. Yield: 6.69 grams of product which analyzed as follows: Mg (Theory): 0.99 mmols/gram; THF: 0.85 mmols~gram (6.1 wt. %). Seven additional catalysts, C-2 through C-8, were prepared from the products of the first step, designated A002 through A008, respectively, in substantially the same manner as the C-l catalyst.

(Preparation of LLDPE Products) Linear low density polyethylene products were prepared in a 1.6 liter autoclave. In a typical experiment (Example 8), the autoclave was heated under a nitrogen purge to about 90C for one-half hour and then cooled to ambient temperature. About 1,000 mls of hexane, and 135 grams of l-hexene and 2.0 ml of trle-thylaluminurn (25% weight solution in hexane) were aclded while stirrlncJ at about 500 rpm.
(The total volume of hexane and hexene was about 1.2 liter in each experiment.) The catalyst was prepared by adding about 0.060 grams of the catalyst of Example 3 to a dry, nitrogen blanketed stainless steel catalyst addition flask containing about 50 ml of dry hexane.
The reactor was closed, heated to 50C and the internal pressure was increased to 31 psi with hydrogen. The reactor temperature was increased to about 66~C and ethylene was introduced at 120 psi total pressure. A~ter the ~tD~lave wa~ filled with ethylene, the contents of the catalyst addition ~lask were added with a slight ethylene pressure to t~e autoclave.
The ethylene flow was monit~red through a Hastings Mass Flowmeter NALL-50KG/CC-420 interfaced with a strip chart recorder to record ethylene flow (gms/minute) as a function of time (minutes).
At the end of the polymeriza~i~n time, about 30 minutes, the autoclave was cooled to room temperature, opened and the cont*ents placed in a large container. About 300 ppm of"Irganox 1076"was l added as a hexane solution and volatiles allowed to evaporate under i a hood. Polymer yiel~ was ~bDut 163 grams.
Tables II and IIC summarize the polymerization conditions and propèrties of the products. Additionally, the data of Table IIC is presented graphically in Figures 1 and 2.

* Trademark !

N -~
~ U~

.~ ~
r~ ~ r~ r~ ri r~ r; r; r;
b 9~

- o o' o~ o ~ ~ ~

,~

c,' C~ O C~ O ~r~

a o a) ~ Il~ W t" C~ O~ rl ~I r~

,~

~7~

'~ d' O ~ ~
~ ~ ln ~ O ~ ~ a~
- ~ * ~- o o o o o o o o o ~

_ ~ Hl ,~
_ ~ ~; ~J O CO r~
H t~ ~ 0 a~ O
H ~) ~ j~
O ~a C ,~ O O O O
Hl ~ ~ 'r ,~ ~ ,1 1~ U~ ~O ~y !~
o ~o 0~

~ 3 O r~ ~D O ~ t~l 0 ~D ~ n ~a I~ D i ~ '~
14 ~ t~ r~ N ~' ~ ~
1~ ~ t ~ _ O
(JJ ~ 1~ ~ D ~
~1 ~1 Ir~ ~D H H H ~1 -1 ~ ~Uo .

.

~771 ~ -N J~ O O

pO

C~
C~i,i,~,i,i,~

~ ~.~
ul¦ ~ co~ cc3 r~ r-~

~ 3 ~ ~o o .~ ~.~

~ ~ ~ r~) ~ ) r~ ~ t ~ ~

~ o~
q ~ ~ ~ r~
L ~;~ ~ ~n o u~ n ~ I r~ ca~ C C ~
C~OOOOOOO

al ~C ~ ~'~ 3 ~Z
~S r7 ~r In ~D 1` ~ a~ o ,, ,, ,, ,, ,, ~ ,, ~

:

lZ8Z:77~, oo ~ co o ~
ù c~ n a~
~ ~ -K C ) -- O O O O O O O O ~1~
1~ ~
_ *~1 a~ DO
O 1~ K ~ ~1 ~ ~ ~ ~ ~ ~i ~ ~r O
H ~ ~ ~ ~ ~ ~ Oa~ _ ~1 ~o3 1~ ~ O ~ N
E~ O ~ o ~ co n c~ ~r r~ Q) c3 n n o ~ ~ a~ ,~ o~ ~;
g ~ ~ ~ ' r~ ~ o ,1 ~ ~ ~1 oc~ -~ m co n o o ~ a~ o Hl r ~ N ~
.~ ~ CO
~ ~ ~ .~ o o ~ o ~ ~ 3 ~ ~ ~ ~ ~ ~ ~ o ~
~ ~ ~ I r~
a~
~ n O

P-~ ~ o U~ o O ~ ~ ~n ~ r co ~ o Z ~ ~ ~ ~ ~ ~ ~ ~ ~

~7~

The data of Table II illustrates that the use of such amounts of a tetravalent titanium compound that the molar ratio of Ti:Mg in the fourth synthesis step is about 0.3 to about 0.9 produces catalyst compositions which polymerize polymers having melt flow ratio values of about 30.5 + 1.5. In contrast, comparative catalyst compositions A and B, prepared with a molar excess of titanium with respect to magnesium, produce polymers having higher melt flow ratios of about 34.8 + 0.4, suggesting a broader molecular weight distribution.
The polymerization data of Comparative Example C-l through C-8 (Examples 13-20) illustrates that the removal of substantially all of the liquid solvent used in the first synthesis step is crucial to the preparation of polymers having relatively low densities and better productivity.
As is known to those skilled in the art, polymers having lower MFR values usually exhibit better mechanical properties and lower hexane extractables which renders them more suitable for applications requiring FDA (Food and Drug Adrninistration) approval.
The term ~'hexane extractables" is used herein to define the amount of a polymer sample extracted by refluxing the sample in hexane in accordance with the FDA-approved procedure. As is known to those skilled in the art, the FDA requires that all polymer products having food contact contain less than 5.5% by weight of such hexane extractables.
The data also illustrates that the substantially complete removal of the liquid solvent of the first synthesis step and subsequent use of stoichiometric or smaller amounts of titanium (i.e., Ti:Mg molar ratio of about û.3 to about û.9) produces catalysts having comparative activity and higher alpha-olefin incorporation properties (as evidenced by the low density of copolymers - Examples 4-9 and 13-20) than similar catalysts prepared with a stoichiometric excess of titanium (Ti:Mg molar ratios of greater than one - Examples 10-12). The use of smaller amounts of Ti simplifies the catalyst synthesis procedure, insofar as the ~Z77~

necessity of washing excess titanium is eliminated and no potentially toxic titanium-containing waste is generated.
It will be apparent to those skilled in the art that the specific embodiments discussed above can be successfully repeated with ingredients equivalent to those generically or specifically set forth above and under variable process conditions.
From the foregoing specification, one skilled in the art can readily ascertain the essential features of this invention and without departing from the spirit and scope thereof can adapt it to various diverse applications.

Claims (41)

1. A process for preparing a supported catalyst composition for use in alpha-olefin polymerization reactions comprising the steps of:
(i) contacting a solid, porous carrier having reactive OH
groups with a liquid containing at least one organomagnesium composition having the empirical formula:
RnMgR'(2-n) where R and R' are the same or different and they are C1-C12 hydrocarbyl groups, provided that R' may also be a halogen and n is 0, 1, or 2, the number of moles of said organomagnesium composition being in excess of the number of moles of said OH groups on said carrier, whereby said organomagnesium composition is reacted with said OH groups on said carrier;
(ii) removing said liquid from step (i), whereby a supported magnesium (Mg) composition in the form of a solid powder is formed;
(iii) drying said solid powder, without washing, rinsing or decantation of the product of step (ii), until it comprises not more than about 6% by weight of the liquid;
(iv) reacting the product of step (iii) with a solution of a non-polar solvent containing at least one transition metal compound soluble in the non-polar solvent, the number of moles of said transition metal compound being such that the molar ratio of the transition metal to magnesium (Mg) is about 0.3 to about 0.9, both the transition metal and Mg being calculated as elemental metals, said supported magnesium composition being substantially insoluble in said non-polar solvent, whereby a reacted form of transition metal which is insoluble in said non-polar solvent becomes supported on said carrier; and (v) removing the non-polar solvent without washing, rinsing or decantation of the product of step (iv).
2. A process of claim 1 wherein said drying is conducted until the solid powder comprises less than about 5% by weight of the liquid.
3. A process of claim 2 wherein the molar ratio of the transition metal to Mg in step (iv) is about 0.4 to about 0.8.
4. A process of claim 3 wherein n is 1.
5. A process of claim 4 wherein step (i) comprises:
(a) slurrying the carrier in a non-Lewis base liquid; and (b) adding to the slurry resulting from step (a) the organomagnesium composition in the form of an ether solution thereof.
6. A process of claim 5 wherein the ether is tetrahydrofuran.
7. A process of claim 6 wherein the porous, solid carrier is silica, alumina or combinations thereof.
8. A process of claim 7 wherein the transition metal compound is a tetravalent titanium compound.
9. A process of claim 8 wherein the tetravalent titanium compound is TiCl4.
10. A process of claim 9 wherein, in step (i), the ratio of the number of moles of said organomagnesium composition to the number of moles of the OH groups on said silica is from about 1.1 to about 3.5.
11. A process of claim 10 wherein the tetrahydrofuran is evaporated in step (ii) at about 75 to about 90°C for about 12 to about 20 hours.
12. A process of claim 11 wherein, subsequently to step (iv), said non-polar solvent is evaporated at about 75 to about 90°C for about 12 to about 20 hours.
13. A process of claim 12 wherein said non-polar solvent is evaporated at about 80 to about 85°C for about 16 hours in a dry nitrogen atmosphere.
14. A process of claim 13 wherein said non-polar solvent is an alkane, cycloalkane, aromatics, halogenated aromatics or hydrogenated aromatics.
15. A process of claim 14 wherein said non-polar solvent is hexane.
16. A process of claim 15 wherein, prior to contacting the silica in step (i), it is heated at a temperature of about 750°C to about 850°C for at least four hours.
17. A process of claim 16 wherein the organomagnesium composition is ethylmagnesium chloride.
18. A supported catalyst composition for use in alpha-olefin polymerization reactions, prepared by a process comprising the steps of:
(i) contacting a solid, porous carrier having reactive OH groups with a liquid containing at least one organomagnesium composition having the empirical formula:
RnMgR'(2-n) where R and R' are the same or different and they are C1-C12 hydrocarbyl groups, provided that R' may also be a halogen, and n is 0, 1, or 2, the number of moles of said organomagnesium composition being in excess of the number of moles of said OH
groups on said carrier, whereby said organomagnesium composition is reacted with said OH groups on said carrier;
(ii) removing said liquid from step (i), whereby a supported magnesium (Mg) composition in the form of a solid powder is formed;
(iii) drying said solid powder without washing, rinsing or decantation of the product of step (ii) until it comprises not more than about 6% by weight of the liquid;

(iv) reacting the product of step (iii) with at least one transition metal compound in a non-polar solvent, the number of moles of said transition metal compound being such that the molar ratio of the transition metal to magnesium (Mg) is about 0.3 to about 0.9, both the transition metal and Mg being calculated as elemental metals, said transition metal compound being soluble in said non-polar solvent, and said supported magnesium composition being substantially insoluble in said non-polar solvent, whereby a reacted form of transition metal which is insoluble in said non-polar solvent becomes supported on said carrier; and (v) removing the non-polar solvent without washing, rinsing or decantation of the product of step (iv).
19. A catalyst composition of claim 18 wherein said drying is conducted until the powder comprises less than about 5% by weight of the liquid.
20. A catalyst composition of claim 19 wherein the molar ratio of the transition metal to Mg in step (iv) is about 0.4 to about 0.8.
21. A catalyst composition of claim 20 wherein n is 1.
22. A catalyst composition of claim 21 wherein step (i) comprises:
(a) slurrying the carrier in a non-Lewis base liquid;
and (b) adding to the slurry resulting from step (a) the organomagnesium composition in the form of an ether solution thereof.
23. A catalyst composition of claim 22 wherein the ether is tetrahydrofuran.
24. A catalyst composition of claim 23 wherein the porous, solid carrier is silica, alumina or combinations thereof.
25. A catalyst composition of claim 24 wherein the transition metal compound is a tetravalent titanium compound.
26. A catalyst composition of claim 25 wherein the tetravalent titanium compound is TiC14.
27. A catalyst composition of claim 26 wherein, in step (i), the ratio of the number of moles of said organomagnesium composition to the number of moles of the OH groups on said silica is from about 1.1 to about 3.5.
28. A catalyst composition of claim 27 wherein the tetrahydrofuran is evaporated in step (ii) at about 75 to about 90 C for about 12 to about 20 hours.
29. A catalyst composition of claim 28 wherein the tetrahydrofuran is evaporated at about 80 to about 85°C for about 16 hours in a dry nitrogen atmosphere.
30. A catalyst composition of claim 29 wherein, subsequently to step (iv), said non-polar solvent is evaporated at about 75 to about 90°C for about 12 to about 20 hours.
31. A catalyst composition of claim 30 wherein said non-polar solvent is evaporated at about 80 to about 85°C for about 16 hours in a dry nitrogen atmosphere.
32. A catalyst composition of claim 31 wherein said non-polar solvent is an alkane, cycloalkane, aromatics, halogenated aromatics or hydrogenated aromatics.
33. A catalyst composition of claim 32 wherein said non-polar solvent is hexane.
34. A catalyst composition of claim 33 wherein, prior to contacting the silica in step (i), it is heated at a temperature of about 750°C to about 850°C for at least four hours.
35. A process for preparing a polymer of at least one C2-C10 alpha-olefin, the polymer having a density of about 0.940 gm/cc or less, comprising conducting the polymerization in the presence of a catalyst composition prepared by a process comprising the steps of:
(i) contacting a solid, porous carrier having reactive OH groups with a liquid containing at least one organomagnesium composition having the empirical formula:
RnMgR'(2-n) where R and R' are the same or different and they are C1-C12 hydrocarbyl groups, provided that R' may also be a halogen and n is 0, 1, or 2, the number of moles of said organomagnesium composition being in excess of the number of moles of said OH groups on said carrier, whereby said organomagnesium composition is reacted with said OH groups on said carrier;
(ii) removing said liquid from step (i), whereby a supported magnesium (Mg) composition in the form of a solid powder is formed;
(iii) drying said solid powder, without washing, rinsing or decantation of the product of step (ii), until it comprises not more than about 6% by weight of the liquid;
(iv) reacting the product of step (iii) with a solution of a non-polar solvent containing at least one transition metal compound soluble in the non-polar solvent, the number of moles of said transition metal compound being such that the molar ratio of the transition metal to magnesium (Mg) is about 0.3 to about 0.9, both the transition metal and Mg being calculated as elemental metals, said supported magnesium composition being substantially insoluble in said non-polar solvent, whereby a reacted form of transition metal which is insoluble in said non-polar solvent becomes supported on said carrier; and (v) removing the non-polar solvent without washing, rinsing or decantation of the product of step (iv).
36. A process of claim 17 wherein in step (ii) said liquid is removed by evaporation at about the boiling point of the liquid.
37. A process of claim 36 wherein in step (iv) the molar ratio is the transition metal to magnesium is about 0.5 to about 0.7.
38. A process of claim 37 wherein in step (v) the non-polar solvent is removed by evaporation at about the boiling point thereof.
39. A catalyst composition of claim 34 wherein in step (ii) said liquid is removed by evaporation at about the boiling point of the liquid.
40. A catalyst composition of claim 39 wherein in step (iv) the molar ratio of the transition metal to magnesium is about 0.5 to about 0.7.
41. A catalyst composition of claim 40 wherein in step (v) the non-polar solvent is removed by evaporation at about the boiling point thereof.
CA000526480A 1986-01-03 1986-12-30 CATALYST COMPOSITION FOR POLYMERIZING .alpha.-OLEFIN POLYMERS OF RELATIVELY NARROW MOLECULAR WEIGHT DISTRIBUTION Expired - Lifetime CA1282771C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US816,091 1977-07-15
US06/816,091 US4677087A (en) 1986-01-03 1986-01-03 Catalyst composition for polymerizing alpha-olefin polymers of relatively narrow molecular weight distribution

Publications (1)

Publication Number Publication Date
CA1282771C true CA1282771C (en) 1991-04-09

Family

ID=25219658

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000526480A Expired - Lifetime CA1282771C (en) 1986-01-03 1986-12-30 CATALYST COMPOSITION FOR POLYMERIZING .alpha.-OLEFIN POLYMERS OF RELATIVELY NARROW MOLECULAR WEIGHT DISTRIBUTION

Country Status (7)

Country Link
US (1) US4677087A (en)
EP (1) EP0229024B1 (en)
JP (1) JPS62190205A (en)
AT (1) ATE73465T1 (en)
AU (1) AU593312B2 (en)
CA (1) CA1282771C (en)
ZA (1) ZA8715B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4876321A (en) * 1986-01-03 1989-10-24 Mobil Oil Corporation Preparation of alpha-olefin polymers of relatively narrow molecular weight distribution
US4668650A (en) * 1986-01-03 1987-05-26 Mobil Oil Corporation Catalyst composition for polymerizing alpha-olefin polymers of relatively narrow molecular weight distribution
US4820557A (en) * 1987-09-17 1989-04-11 W. R. Grace & Co.-Conn. Thermoplastic packaging film of low I10 /I2
US5221650A (en) * 1987-09-21 1993-06-22 Quantum Chemical Corporation Supported high activity polypropylene catalyst component with regular distribution of magnesium values provided utilizing a controlled drying protocol
US5275991A (en) * 1987-09-21 1994-01-04 Quantum Chemical Corporation Supported high activity polyolefin catalyst component with regular distribution of magnesium values provided utilizing a controlled drying protocol
US6025448A (en) * 1989-08-31 2000-02-15 The Dow Chemical Company Gas phase polymerization of olefins
US6538080B1 (en) 1990-07-03 2003-03-25 Bp Chemicals Limited Gas phase polymerization of olefins
US6172173B1 (en) 1991-01-18 2001-01-09 The Dow Chemical Company Silica supported transition metal catalyst
US5231151A (en) * 1991-01-18 1993-07-27 The Dow Chemical Company Silica supported transition metal catalyst
US6747113B1 (en) 1991-01-18 2004-06-08 The Dow Chemical Company Silica supported transition metal catalyst
US5674342A (en) 1991-10-15 1997-10-07 The Dow Chemical Company High drawdown extrusion composition and process
US5525695A (en) 1991-10-15 1996-06-11 The Dow Chemical Company Elastic linear interpolymers
US5395471A (en) 1991-10-15 1995-03-07 The Dow Chemical Company High drawdown extrusion process with greater resistance to draw resonance
US5783638A (en) * 1991-10-15 1998-07-21 The Dow Chemical Company Elastic substantially linear ethylene polymers
US5582923A (en) 1991-10-15 1996-12-10 The Dow Chemical Company Extrusion compositions having high drawdown and substantially reduced neck-in
US5278272A (en) 1991-10-15 1994-01-11 The Dow Chemical Company Elastic substantialy linear olefin polymers
US5773106A (en) 1994-10-21 1998-06-30 The Dow Chemical Company Polyolefin compositions exhibiting heat resistivity, low hexane-extractives and controlled modulus
US7543156B2 (en) * 2002-06-25 2009-06-02 Resilent, Llc Transaction authentication card
US6677266B1 (en) 2002-07-09 2004-01-13 Eastman Chemical Company Process for preparing a vanadium/titanium catalyst and use in olefin polymerization

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4063009A (en) * 1954-01-19 1977-12-13 Studiengesellschaft Kohle M.B.H. Polymerization of ethylenically unsaturated hydrocarbons
US4076698A (en) * 1956-03-01 1978-02-28 E. I. Du Pont De Nemours And Company Hydrocarbon interpolymer compositions
US3135809A (en) * 1960-07-21 1964-06-02 Southern Res Inst Isomerization process
FR2082153A5 (en) * 1970-03-05 1971-12-10 Solvay ADVANCED CATALYSTS AND PROCESS FOR THE POLYMERIZATION AND COPOLYMERIZATION OF OLEFINS
DE2553179A1 (en) * 1975-11-27 1977-06-08 Hoechst Ag METHOD OF MANUFACTURING A CATALYST
NL7702323A (en) * 1977-03-04 1978-09-06 Stamicarbon CATALYST FOR THE PREPARATION OF POLYALKENES.
US4302566A (en) * 1978-03-31 1981-11-24 Union Carbide Corporation Preparation of ethylene copolymers in fluid bed reactor
US4378304A (en) * 1981-06-03 1983-03-29 Chemplex Company Catalyst and methods
AU564992B2 (en) * 1981-12-04 1987-09-03 Mobil Oil Corp. Olefin polymerisation catalyst
US4481301A (en) * 1981-12-04 1984-11-06 Mobil Oil Corporation Highly active catalyst composition for polymerizing alpha-olefins
EP0085208A3 (en) * 1982-01-29 1983-09-21 BP Chemicals Limited Polymerisation catalyst
AU9097282A (en) * 1982-11-29 1984-06-07 Eric John Andrew Dispensing material from roll
US4593009A (en) * 1984-04-04 1986-06-03 Mobil Oil Corporation Catalyst composition for polymerizing alpha-olefins
US4558025A (en) * 1984-08-06 1985-12-10 Exxon Research & Engineering Co. Polymerization catalyst, production and use
US4558024A (en) * 1984-08-06 1985-12-10 Exxon Research & Engineering Co. Polymerization catalyst, production and use
US4568658A (en) * 1984-09-05 1986-02-04 Mobil Oil Corporation Catalyst composition for polymerizing alpha-olefins at low reactants partial pressures
US4579834A (en) * 1984-12-12 1986-04-01 Exxon Research & Engineering Co. Polymerization catalyst, production and use
US4668650A (en) * 1986-01-03 1987-05-26 Mobil Oil Corporation Catalyst composition for polymerizing alpha-olefin polymers of relatively narrow molecular weight distribution

Also Published As

Publication number Publication date
JPS62190205A (en) 1987-08-20
EP0229024A3 (en) 1989-07-26
US4677087A (en) 1987-06-30
AU593312B2 (en) 1990-02-08
EP0229024B1 (en) 1992-03-11
ZA8715B (en) 1988-08-31
AU6704286A (en) 1987-07-09
EP0229024A2 (en) 1987-07-15
ATE73465T1 (en) 1992-03-15

Similar Documents

Publication Publication Date Title
CA1282771C (en) CATALYST COMPOSITION FOR POLYMERIZING .alpha.-OLEFIN POLYMERS OF RELATIVELY NARROW MOLECULAR WEIGHT DISTRIBUTION
US4668650A (en) Catalyst composition for polymerizing alpha-olefin polymers of relatively narrow molecular weight distribution
US4912074A (en) Catalyst composition for preparing high density or medium density olefin polymers
AU622636B2 (en) Catalyst composition for preparing high density or linear low density olefin polymers of controlled molecular weight distribution
EP0231102A2 (en) Catalyst composition for polymerizing alpha-olefins
JP2774807B2 (en) Catalyst composition for polymerization of alpha-olefin polymer with narrow molecular weight distribution
US4833111A (en) Catalyst composition for polymerizing alpha-olefin polymers of narrow molecular weight distribution
US4876229A (en) Catalyst composition for polymerizing olefins of narrow molecular weight distribution and polymerization therewith
US4618662A (en) Catalyst composition for polymerizing alpha-olefins
AU723865B2 (en) Ziegler-natta catalyst for ethylene polymerization or copolymerization
US4738942A (en) Catalyst composition for polymerizing alpha-olefin polymers of relatively narrow molecular weight distribution and high melt index
US4876321A (en) Preparation of alpha-olefin polymers of relatively narrow molecular weight distribution
US4670413A (en) Catalyst composition for polymerizing alpha-olefins
US4983694A (en) Process for polymerizing olefins to form polymers of narrow molecular weight distribution
AU617407B2 (en) Catalyst composition for preparing high density, broad molecular weight distribution alpha-olefin polymers
US4769429A (en) Process for polymerizing alpha-olefins
EP0137097B1 (en) Method of polymerizing ethylene
AU645531B2 (en) Catalyst composition for polymerizing olefins to polymers having good compositional homogeneity
GB2184448A (en) Catalyst composition for preparing alpha-olefin polymers of relatively narrow molecular weight distribution and high melt index
US5034483A (en) Process for preparing high density, broad molecular weight distribution alpha-olefin polymers
US4972033A (en) Olefin polymerization process for preparing high density or linear low density polymers of controlled molecular weight distribution
US5006618A (en) Process for preparing high density or medium density polymers
US4760121A (en) Preparation of alpha-olefin polymers of relatively narrow molecular weight distrbution
US5093443A (en) Alpha-olefins polymerization with chlorinated alcohol-containing catalyst composition
US4954470A (en) Chlorinated alcohol-containing catalyst composition for polymerizing alpha-olefins

Legal Events

Date Code Title Description
MKLA Lapsed