CA2001460A1 - Amide dispersant additives derived from amido-amines - Google Patents

Amide dispersant additives derived from amido-amines

Info

Publication number
CA2001460A1
CA2001460A1 CA002001460A CA2001460A CA2001460A1 CA 2001460 A1 CA2001460 A1 CA 2001460A1 CA 002001460 A CA002001460 A CA 002001460A CA 2001460 A CA2001460 A CA 2001460A CA 2001460 A1 CA2001460 A1 CA 2001460A1
Authority
CA
Canada
Prior art keywords
acid
amine
amido
dispersant mixture
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002001460A
Other languages
French (fr)
Inventor
Antonio Gutierrez
Robert D. Lundberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Chemical Patents Inc
Original Assignee
Exxon Chemical Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Chemical Patents Inc filed Critical Exxon Chemical Patents Inc
Publication of CA2001460A1 publication Critical patent/CA2001460A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/221Organic compounds containing nitrogen compounds of uncertain formula; reaction products where mixtures of compounds are obtained
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/24Organic compounds containing sulfur, selenium and/or tellurium
    • C10L1/2493Organic compounds containing sulfur, selenium and/or tellurium compounds of uncertain formula; reactions of organic compounds (hydrocarbons, acids, esters) with sulfur or sulfur containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/52Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of 30 or more atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M149/00Lubricating compositions characterised by the additive being a macromolecular compound containing nitrogen
    • C10M149/12Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M149/14Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds a condensation reaction being involved
    • C10M149/18Polyamides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M149/00Lubricating compositions characterised by the additive being a macromolecular compound containing nitrogen
    • C10M149/12Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M149/14Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds a condensation reaction being involved
    • C10M149/22Polyamines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M151/00Lubricating compositions characterised by the additive being a macromolecular compound containing sulfur, selenium or tellurium
    • C10M151/04Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/129Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • C10M2215/082Amides containing hydroxyl groups; Alkoxylated derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/086Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/12Partial amides of polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/12Partial amides of polycarboxylic acids
    • C10M2215/122Phtalamic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/042Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds between the nitrogen-containing monomer and an aldehyde or ketone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/043Mannich bases
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2221/00Organic macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2070/00Specific manufacturing methods for lubricant compositions
    • C10N2070/02Concentrating of additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder

Abstract

ABSTRACT OF THE DISCLOSURE

present invention is directed to a dispersant additive comprising at least one adduct of (A) a polyolefin of 300 to 10, 000 number averages molecular weight substituted with at least 0.5 (e.g., from about 1 to 4) monocarboxylic acid producing moieties (preferably acid or ester moieties) per polyolefin molecule, (B) an amido-amine or thioamido-amine characterized by being a reaction product of at least a polyamine and an alpha, beta-unsaturated compound of the formula:

Description

FIEI,D_OF THE INVENTION
This invention relates to improved oil soluble dispersant additives useful oleaginous compositions, including fuel and lubricating oil compositions, and to concentrates containing said additives.

RELATED IJ. S . APPLICATIONS

This application is a continuation-in-part of our co-pending application Serial No. 126,405, filed on November 30, 1987. This application is also related to our co-pending application Serial No. 178,099, filed on April 6, 1988. All of the above applications are expressly incorporated herein by referenca in their entirety.

BACKGROUND OF THE INVENTION
U.S. Patent 2,921,085 relates to the preparation of beta-aminopropionamides by reaction of an alkyl amine with an acrylate to form an alkyl aminopropionate and reaction of the latter compound with an amine. The resulting compounds are disclosed to have utility as surface active agents, specifically as emulsifying, wetting, foaming and detergent agents.
U.S. Patent 3,337,609 relates to adducts of hydroxyalkyl alkylene polyamines and acrylates. The resulting adducts are added to polyepoxides to provide compositions which are suitable for use as a barrier coating for polyethylene surfaces, and for additional end uses, such as in molding. In addition, the adducts are disclosed to be useful as catalysts in resin preparation ~ [)0:1460 and as corrosion inhibitors in water systems for ~errous metals.
U.S. Patent 3,417,140 relates to the preparation of amido-amine compositions, which are useful as epoxy resin curing agents, by reactiny a polyalkylene polyamine and a fatty amine (comprising a mono- or diamine having as one of the substituents on a nitrogen atom a hydrocarbyl radical having 8 to 24 carbon atoms) with an alpha-beta unsaturated carbonylic compound. It is disclosed that this reaction occurs through the Michael addition of an amine group across the unsaturated group of the carbonylic compound and through the condensation o~ an amine group with the carbonylic group.
U.S. Patent 3,247,163 also relates to curing agents ~or polyepoxide compositions, which curing agents are prepared by reacting an organic amine and an acrylate.
U.S. Patent 3,445,441 relates to amino~amido polymers characterized by being a reaction product of at least a polyamine and an acrylate type compound, such as methyl or ethyl acrylate, and methyl or ethyl methacrylate. The patent states that the polymers are useful in a wide variety of applications, such as floculating agents, water clarifying additives, corrosion inhlbitors in oil and gas wells, and as lube oil additives. The patent further discloses that the polymers may be derivitized, including acylation with monocarboxylic acids and polycarboxylic acids, aliphatic dicarboxylic acids, aromatic dicarboxylic acids, for example, diglycolic, phthalic, succinic, etc., acids.
U.S. Patent 3,903,003 relates to lubricating compositions containing an amido~amine reaction product of a terminally carboxylated isoprene polymer which is formed by reacting a terminally carboxylated substantially completely hydrogenated polyisoprene having an average molecular weight between about 20,000 and 250,000 and a 2~ 6~

nitrogen compound of the group consisting of polyalkylene amines and hydroxyl polyalkylene amines.
U.S. Patent 4,493,771 relates to scale inhibiting with compounds containing quaternary ammonium and methylene phosphonic acid ~roups~ These compounds are derivatives of polyamines in which the amine hydrogens have been substituted with both methylene phosphonic acid groups or their salts and hydroxypropyl quaternary ammonium halide groups. The patent discloses that any amine that contains reactive amino hydrogens can be utilized, for example, polyglycol amines, amido-amines, oxyacylated amines, and others.
U.S. Patent 4,459,241 contains a similar disclosure to U.S. Patent 4,493,771.
SUMMARY_OF ~HE INVENTION
The present invention is directed to a dispersant additi~e comprising at least one adduct of (A) a polyolefin of 300 to 10,000 number average molecular weight substituted with at least 0.3 (e.g., from about 1 to 4) monocarboxylic acid producing moieties (pre~erably acid or ester Imoieties) per polyolefin molecule, and (B) an amido-amine characterized by being a reaction product of at least a polyamine and an alpha, beta unsaturated compound of the formula:

R1 _ C = C - C ~ Y (I) wherein X is sulfur or oxygen, Y is -oR4~ -SR4, or NR4 (~5) and Rl R2 R3, R4 and R5 are the same or different and are hydrogen or substituted or unsub~tituted hydrocarbyl.
The materials of the invention are different from the prior art because of their e~fectiveness and their ability to provide enhanced lubricating oil dispersancy, and in particular for their ability to provide surprising enhanced performance as judged by the commercial 5E
gasoline engine performance test.

)1460 Therefore, the present invention is also dixecked to novel processes for preparing the dispersant adducts of this invention.

DETAILED DESCRIPTION OF THE INVENTION

PREPARATION OF CAR~OXYLIC-PRODUCING REACTANT A
The long chain hydrocarbyl subskituted mono or monocarboxylic acid material, i.e., acid or ester, used in this invention includes the reaction product of a long chain hydrocarbon polymer, gensrally a polyolefin, with a monounsaturated carboxylic reactant comprising at lea.st one member selected from the group consisting of (i) monounsaturated C3 to C10 monocarboxylic acid wherein the carbon-carbon double bond is conjugated to the carboxy group, i.e, of the structure --C=C--C-- ;
and (ii) derivatives of (i) such as C1 to C5 alcohol derived monoesters of ~i). Upon reaction with the polymer, the monounsaturation of the monounsaturated carboxylic reactant becomes saturated. Thus, for example, acrylic acid becomes a polymer substituted propionic acid, and methacrylic acid becomes a polymer substituted isobutyric acid.
Typically, from about 0.7 to about 4.0 (e.g., 0.8 to 2.6), pref~rably from about 0.8 to about 2.0, and most preferably from about 0.8 to about 1.7 moles of said monounsaturated carboxylic reactant are charged to the reactox per mole of polymer charged.
Normally, not all of the polymer reacts with the monounsaturated carboxylic reactant and the reaction mixture will contain unfunctionalized polymer. The unfunctionalized polymer is typically not removed from the reaction mixture ~because such removal is difficult and .

~10~L~60 would be commercially infeasible~ and the product mixture, stripped of any monounsaturated carboxylic reactant i5 employed for further reaction with the amine or alcohol as described hereinafter to make the dispersant.
Characterization of the average number of moles of monounsaturated carboxylic reactant which have reacted per mole of polymer charged to the reaction (whether it has undergone reaction or not) i5 defined herein as functionality. Said functionality is bassd upon ~i) determination of the saponification number of the resulting product mixture using potassium hydroxide; and (ii) the number average molecular weight of the polymer charged, using techni~ues well Xnown in the art. Functionality is~
defined solely with reference to the resulting product mixture. Although the amount of said unfunctionalized polymer contained in the resulting product mixture can be subsequently modified, i.e. increased or decreased by techniques known in the art, such modifications do not alter functionality as defined above. The term "polymer substituted monocarboxylic acid material" as used herein is intended to refer to the product mixture whether it has undergone such modification or not.
Accordingly, the functionality of the polymer substituted monocarboxylic acid material will be typically at least about 0.5, preferably at least about 0.7, and most preferably at least about 0.8 and will vary typically from about 0.8 to about 4, preferably from about 0.7 to about 1.8, and most preferably from about 1.1 to about 1.6.
Exemplary of such monounsaturated carboxylic reactants are acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, and lower alkyl (e.g., Cl to C4 alkyl) acid esters of the foregoing, e.g., methyl acrylate, ethyl acrylate, methyl methacrylate, etc.

21~0~

Preferred olefin polymers for reackion with the monounsaturated carboxylic reactants to form reactant A are polymers comprising a major molar amount o~ C2 to C10, e.g. C2 to C5 monoolefin. Such olefins include ethylene, propylene, butylene, isobutylene, pentene, octene-l, styrene, etc. The pol~mers can be homopolymers such as polyisobutylene, as well as copolymers of two or more of such olefins such as copolymers of. ethylene and propylena; butylene and isobutylene; propylene and isobutylene: etc. Mixtures o~ polymers prepared by polymerization of mixtures of isobutylene, butene 1 and butene-2, e.g., polyisobutylene wherein up to about 40% of the monomer units are derived from butene-1 and butene-2, is an exemplary, and pre~erred, olefin polymer. Other copolymers include those in which a minor molar amount oE
the copolymer monomers, e.g., 1 to 10 mole %, is a C4 to Cl~ non-conjugated diolefin, e.g., a copolymer of isobutylene and butadiene; or a copolymer of ethylene, propylene and 1,4 hexadiene; etc.
In some cases, the olefin polymer may be com-pletely saturated, for example an ethylene-propylene copolymer made by a Ziegler-Natta synthesis using hydrogen as a moderator to control molecular weight.
The olefin polymers used in the formation of reactant A will generally have number average molecular weights within the range of about 300 and about 10,000, preferably from about 900 to 5,000, more preferably between about 1,300 and about 4,000. Particularly useful olefin polymers have number average molecular weights within the range of about 1500 and about 3000 with approximately one terminal double bond per polymer chain. An especially useful starting material for highly potent dispersant additives useful in accordance with this invention is polyisobutylene, wherein up to about 40% of the monomer units are derived from butene-l and/or butene-2. The number average molecular weight for such polymers can be d~termined by several known techniques. A convenient method for such determination is by gel permeation chromatography (GPC) which additionally provides molecular weight distribution information, see W. W. Yau, J.J.
Kirkland and D.D. Bly, "Modern Size Exclusion Liquid Chromatography", John Wiley and Sons, New York, 1979.
The olefin polymers will generally have a m o l e c ~ l a r w e i g h t d i s t r i b u t i o n ~ ~ w / P~ n ~
that is the ratio of the weight average molecular weight to number average molecular weight~ o~ from about 1.0 to 4.5, and more typically from about 1.5 to 4Ø
The polymer can be reacted with the monounsaturated carboxylic reactant by a variety of methods. For example, the polymer can be eirSt halogenated, chlorinated or brominated to about l to 8 wt.
%, preferably 3 to 7 wt. % chlorine, or bromine, based on the weight oî polymer, by passing the chlorine or bromine through the polymer at a temperature of 60 to ~50C, preferably 110 to 160C, e.g. 120 to 140C, for about 0.5 to 10, preferably 1 to 7 hours. The halogenated polymer may then }:e reacted with sufficient monounsaturated carboxylic reactant at 100 to 250C, usually about 180 to 235 C, f or about 0.5 to 10, e . g . 3 to 8 hours, so the product obtained will contain the desired number o~ moles o~ the monounsaturated carboxylic reactant per mole of the haloyenated polymer. Proc~sse~ of this general type are taught in U.S. Patents 3,087,436; 3,172,392; 3,272,746 and others. Alternatively, the polymer and the monounsaturated carboxylic reactant are mixed and heated while adding chlorine to the hot material. Processes of this type are disclosed in IJ.S. Patents 3,215,707; 3,231,587; 3,912,764;
4,110,349; 4,234,435; and in U.K. 1,440,219.
Alternately, the polymer and the monounsaturated carboxyl ic reactant can be contacted at elevated temperature to cause a thermal "ene" reaction to take L46~

place. Thermal "en~" reactions have been heretofore described in U.S. Patents 3,361,673 and 3,401,118, the disclosures of which are hereby incorporated by reference in their entirety.
Preferably, the polymers used in this invention contain less than 5 wt%, more preferably less than 2 wt%, and most preferably less than 1 wt% of a polymer fraction comprising polymer molecules having a molecular weight of less than about 300, as determined by high temperature gel permeation chromatography employing the corresponding polymer calibration curve. Such preferred polymers have been found to permit the preparation of reaction products, particularly when employing acrylic acid as the unsaturated acid reactant, with decreased sediment. In the event the polymer produced as described above contains greater than about S wt~ of such a low molecular weight polymer fraction, the polymer can be first treated by conventional means to remove the low molecular weight fraction to the desired level prior to initiating the ena reaction, and preferably prior to contacing the polymer with the selected unsaturated carboxylic reactant(s). For example, the polymer can be heated, preferably with inert gas (e.g., nitrogen) stripping, at elevated temperature under a reduced pressure to volatilize the low molecular weight polymer components which can then be removed from the heat treatment vessel. The precise temperature, pressure and time for such heat treatment can vary wide~y depending on such factors as as the polymer number average molecular weight, the amount of the low molecular weight fraction to be removed, the particular monomers employed and other factors. Generally, a temperature of from about ~0 to 100C and a pressure of from about 0.1 to 0.9 atmospheres and a time of from about 0.5 to 20 hours (e.g., 2 to 8 hours) will be sufficient.

2~

In this process, the selected polymer and monounsaturated carboxylic reactant and halogen (e.g., chlorine gas), where employed, are contacted for a time and under conditions effsctive to form the desired polymer substituted monocarboxylic acid materia:L. Generally, the polymer and monounsaturated carboxylic reactant will be contacted in a polymer to unsaturated carboxylic reactant mole ratio usually from about lo1 to 1.10, and preferably from about 1:1 to 1:5, at an elevated temperature, generally from about 120 to 260C, preferably from about 160 to 240C. The mole ratio of halogen to monounsaturated carboxylic reactant charged will also vary and will generally range from about 0.5:1 to 4:1, and more typically`
from about 0.7:1 to 2:1 (e.g., from about 0.9 to 1.4:1).
The reaction will be generally carried out, wi~h stirriny for a time of from about 1 to 20 hours, preferably from about 2 to 6 hours.
By the use of halogen, about 65 to 95 wt. % of thP
polyolefin, e.g. polyisobutylene will normally react with the monounsaturated carboxylic acid reactant. Upon carrying out a thermal reaction without the use of halogen or a catalyst, then usually only about 50 to 75 wt. % of the polyisobutylene will react. Chlorination helps increase the reactivity. For convenience, the aforesaid functionality ratios of monocarboxylic acid producing units to polyolefin, e.g., 0.8 to 1.8, etc. are based upon the total amount of polyolefin, that is, the total of both the reacted and unreacted polyolefin, used to make the product.
If desired, a catalyst or promoter for reaction of the olefin polymer and monounsaturated carboxylic reactant (whether the olefin polymer and monounsaturated carboxylic reactant are contacted in the presence or absence of halogen (e.g., chlorine)~ can be employed in the reaction zone. Such catalyst of promoters include alkoxides of Ti, Zr, V and Al, and nickel salts (e.g., Ni acetoacetonate and 2~0~L46~D

Ni iodide) which catalysts or promoters will be generally employed in an amount of from about 1 to 5,000 ppm by weight, based on the mass of the reaction medium.
The reaction is preferably conducted in the substantial absence of 0~ and water (to avoid competing side reactions), and to this end can be conducted in an atmosphere of dry N2 gas or other gas inert under the reaction conditions. The reactants can be charged separately or togethsr as a mixture to the reaction zone, and the reaction can be carried out continuously, semi-continuously or batchwise. Although not generally necessary, the reaction can be carried out in the presence of a liquid diluent or solvent, e.g., a hydrocarbon diluent such as mineral lubricating oil, toluene, xylene, dichlorobenzene and the like. The polymer substitutecl monocarboxylic acid material thus formed can be reovered from the liquid reaction mixture, e.g., after stripping the reaction mixture, if desired, with an inert gas such as N~ to remove unreacted unsaturated carboxylic reactant.
The reactant A material will be contacted with the selected reactant B amido-amine material for formation of the novel dispersants of this invention, as will be more fully explained below.
Preparation of Amido-Amine Reactant B
As described above, the amido-amine comprises a reaction product of at least a polyamine and an alpha, beta ethylenically unsaturated compound of formula (I) above.
The polyamines useful in this invention comprise polyamines, most preferably polyalkylene polyamines, of about 2 to 60, preferably 2 to 40 (e.g. 3 to 20~, total carbon atoms and about 1 to 12, preferably 3 to 12, and most preferably at least 5 te.g., 5 to 9) nitrogen atoms in the molecule. These amines may be hydrocarbyl amines or may be hydrocarbyl amines including other groups, e.g, hydroxy groups, alkoxy groups, amide groups, nitriles, 20~ 0 imidazolin6~ group~, and th~ like. Hydroxy amine~ with 1 to 6 hydroxy group~3, pre ~erably 1 to 3 hydroxy grsup~ are particularly u~ful. Pref~rred aDIiine~ are aliphatic saturated amine~, including tho~Q of ths gen~ral formulas:

R-N-R ', and R-N- ( C~2 S s~N ( CH2 ) 8~ N R
R" R' R'' ' R' t (II) (III~
wh~rein ~, R, R' ' and R' ' ' axe independ~n~ly sel~ct~d from th~ group consistin~ of hydrogen; Cl to C25 traight or branch~d chain alkyl radioal~; Cl to C~ 2 alkoxy C2 to CS alXYlerlQ radicals; C;! to Cl;2 hyslroXY amino alkyl~ne radicalS, and Cl to C12 alkylam 2 ..
C6 alkylene radis:al~; and wher~in R~ an atl~itionally comprise a molety o~ the for~ula:
~CH2) g'--N, H ~IV) I~t~
~ ' wherein R' i~ a~ defined above, and wherein s and s' can be the same or a diff~rent number of fro~ 2 to 6, preferably 2 to 4: and t and t' can be the ~;ame or different and are number~ of fro~ O to 10, preferably 2 to 7, and most preferably abc:)u~ 3 ~o 7, with the proviso that the ~um of t and t' is not greater than lS. To assure a facile r~action, i~ 1~ preferred ~ha~ ~, R', R'', R''', s, s', t and t' be ~elected in a manner sufficient to provide the compound~ o~ Formulas II and III wi~h typically a~ least one pri~ary or secondary a~ine group, preferably at least two primary or secondary amine group~. Thi can be achieved by selecting at least one o~ ~aid R, R', ~" or R'~' groups to b~ hydrogen or by letting t in Formula III be at least one when R"' is H or when the IY ~oiety possesses a secondary amino group. The ~o~t preferred amin~ of ths above formulas ar2 represent~d by ~ormula III and contain ~3L46~

at lea~t tw~ pri~ary ~in~ group~ and at least one, and praferably a~ lea~t thre*, ~0condary amin2 group~.
Non-li~iting example~ o~ ~uitable amine compounds includ~: 1,2-diamino~thane; 1,3-diaminopropane;
1,4-dia~inobutan~; 1,6-dia~inohaxane: ,polyethylen2 amines such a~ di~thylene tria~in~; triethylene tetramine;
tetra~thyl~ne penta~ins: polypropylene amine~ such a~
1,2-propylene dia~in~, di-(1,2-propyl~n~triamine;
di-~1,3-propyl~ne) tri~ine; N,N--dimethyl-1,3-di-aminopropanQ; N,N-di-(2-aninoethyl) ethylene diamine;
N,N-di~2-hydroxyethyl)-1,3-propyl~n~ diamine;
3-dsdecyloxypropylamlne; N-dodecyl-~,3-propane diamine;
tri~ hydroxyme~hylamino~e~hane (T~M); ~iisopropanol amin~;
di~thanol amin~; triethanol amin~; mono-, di-, and tri~tallow amlne~: amino morpholine~ such a3 N-(3-amino-propyl)~o~pholin~; and mixture~ thereo~.
O~her useful amina aompoun~s include: alicyclic dia~ine~ ~uch aa 1,4-di(aminomethyl~ cyclohexane, and heterocyclic nitrogen compounds such a~ imidazoline~, and N-a~inoalkyl piperazine~ o~ the general for~ula (V):

N ~ -(C~2)p1 ~ \ H CH / ~ J
nl ~2 n3 wherein P1 and P2 ar~ the same or different and are each int gers Or from 1 to 4, and n1l n2 and n3 are the sa~ or ~if~erent and are each integers of fro~ 1 to 3. Non-li~iting examples of such amines include 2-pentadecyl i~idazoline: N (2-aminoethyl) piperazine,o etc.
Commercial mixtures of amine compounds may advantageously be use~. For example, one process for preparing alkylene a~ine~ involves the reaction of an involves the reaction o~ an alkylene dihalide (~uch 2S
ethylene ~ichïori~e or propylene dichloride) with ammonia, which re~ult~ in a complsx mixture of al~ylen~ amine~
wher~in pair~ of ni~rogGns ar~ ~oin~d by alkyl~n~ groups, for~$s~g ~uch coD~pounds as diethylen~ triamine, triethylenetetraDIine, tetra~thylene pentamine and isomeric piperazine~. Low co~t poly(ethyl~nea~in~as~ co~pounds avexaging a~ou~ 5 to 7 n$trogen atoms per molecule are availa~ls co~rcially under trade na~e~ such ag "Polyamine H", nPoly~mine 400", "Dow Polyamine E-100~, etc.
U~ul a~ine~ also include polyoxyalkylenQ
polyaDIines ~uch as tho~a oP the formulae:

NH2 -- alkylene ~0-alkylene~NH;2 (VI) where m has ~ value of about 3 to 70 and pr~f~rably 10 to 3 5; and alkylena ~ O-alkyl~ne3~NH2 ) n a (VII) where "n" ha~ a value of about 1 ~o 40 with the provision that the sum o~ all the n's is fro~ about 3 to about 70 and preferably from about 6 ~o about 35, and R i9 a polyvalen~
saturated hydrocarbon radical of up to ten carbon atom~;
wherein the number of sub~tituent~ on the R group is represen~ed by th~ value of "a", which is a number of from 3 to 6. The alkylene groups in either formula (VI) or (VII) may be s~traight or branched chain~ containing about 2 to 7, and pre~erably about 2 to ~ carbon atoms.
The polyoxyalkylene polyaD~ines of formulas (VI) or (VII ) above ~ preferably polyoxyalkylene diamines and polyoxyal3cylene triamines, Jnay have average molecular weights ranging from a~out 2ao to about 4000 and preferably fro311 about 400 to about 2000. The preferred polyoxyal-kylene polyoxyalkylene polyamine~ include the polyoxyet~ylene and polyoxypropylene diamines and the polyoxypropylene triamines having average molecular weights 46~ .

ranging from about 200 to 2000. The polyoxyalkylene polyamines are commercially available and may be obtained, for example, from the Jefferson Chemical Company, Inc.
under the trade name "Jeffamines D-230, D-400, D-1000, D 2000, T-403", etc.
AdditiQnal amines useful in the present invention are described in U.S. Patent 3,445,441, the disclosure of which is hereby incorporated by reference in its entirety.
Thus, any polyamine, whether aliphatic, cycloaliphatic, aromatic, heterocyclic, etc., can be employed provided it is capable of adding across the acrylic double bond and amidifying with for example the carbonyl group (-C(0~-) of the acrylate-type compound of formula I, or with the thiocarbonyl group (~C~S)-) of the thioacrylate-type compound of formula I.
The alpha, beta ethylenically unsaturated compounds employed in this invention comprise at least one member selected from the group consisting of alpha, beta ethylenically unsaturated compounds of the formula:

Rl _ C = C - C ~ Y (I) wherein X is sulfur or oxygen, Y is -oR4~ -SR4, or NR4 (R5) and R1 R2 R3, R4 and R5 are the same or different and are hydrogen or substituted or unsubstituted hydrocarbyl.
W h e n R 1 R2 R 3 , R4 o r R 5 a r e hydrocarbyl, these groups can comprise alkyl, cycloalkyl, aryl, alkaryl, aralkyl or heterocyclic, which can be substituted with groups which are substantially inert to any component of the reaction mixture under conditions selected for preparation of the amido-amine. Such substituent groups include hydroxy, halide ~e.g., Cl, Fl, I, Br), -SH and alkylthio. When one or more of Rl through R5 are alkyl, such alkyl groups can be straight or branched chain, and will generally contain from 1 to 20, 2~ 6~

more usually from 1 to 10, and preferably from 1 to 4, carbon atoms. Illustrative of such alkyl groups are methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl, tridecyl, hexadecyl, octadecyl and the like. When one or more of Rl through R5 are aryl, the aryl group will generally contain from 6 ta lO carbon atoms (e.g., phenyl, naphthyl).
When one or more of Rl through R5 are alkaryl, the alkaryl group will generally contain from about 7 to 20 carbon atoms, and preferably from 7 to 12 carbon atoms.
Illustrative of such alkaryl groups are tolyl, m-ethyl-phenyl, o-ethyltolyl, and m-hexyltolyl. When one or more of Rl through R5 are aralkyl, the aryl component generally consists of phenyl or (C1 to C6) alkyl-sub-stituted phenol and the alkyl component generally contains from 1 to 12 carbon atoms, and preferably from 1 to 6 carbon atoms. Examples o~ such aralkyl groups are benzyl, o-ethylbenzyl, and 4-isobutylbenzyl. When one or more of Rl and R5 are cycloalkyl, the cycloalkyl group will generally contain from 3 to 12 carbon atoms, and preferably from 3 to 6 carbon atoms. Illustrative of such cycloalkyl groups are cyclopropyl, cyclobutyl, cyclohexyl, cyclooctyl, and cyclododecyl. When one or more of R1 through R5 are heterocyclic, the heterocyclic group generally consists of a compound having at least one ring of 6 to 12 members in which on or more ring carbon atoms is replaced by oxygen or nitrogen. Examples of such heterocyclic groups are furyl, pyranyl, pyridyl, piperidyl, dioxanyl, tetra-hydro~uryl, pyrazinyl and 1,4-oxazinyl.
The alpha, beta ethylenically unsaturated carboxylate compounds employed herein have the following formula:

Rl- C = t _ ll _ o~4 ~VIII) 2~ 6~

w h erein Rl, R2, R3, and R4 are th e same or different and are hydrogen or substituted or unsubstituted hydrocarbyl as de~ined above. Examples of such alpha, beta-ethylenically unsaturated carboxylate compounds of formula VIII are acrylic acid, methacrylic acid, the methyl, ethyl, isopropyl, n-butyl, and isobutyl esters of acrylic and methacrylic acids, 2-butenoic acid, 2-hexenoic arid, 2-decenoic acid, 3 mathyl-2-heptenoic acid, 3-methyl-2-butenoic acid, 3-phenyl-2-propenoic acid, 3-cyclohexyl-2-butenoic acid, 2-methyl-2-butenoic acid, 2-propyl-2-propenoic acid, 2-isopropyl-2-hexenoic acid, 2,3-dimethyl-2-butenoic acid, 3-cyclohexyl-2-methyl--2-pen-tenoic acid, 2--propenoic acid, methyl 2-propenoate, methyl 2-methyl 2-propenoate, methyl 2-butenoate, ethyl 2-hex-enoate, isopropyl 2-decenoate, phenyl 2-pentenoate, tertiary butyl 2-propenoate, octadecyl 2-propenoate, dodecyl 2-decenoate, cyclopropyl 2,3-dimethyl-2-butenoate, methyl 3-phenyl-2-propenoate, and the like.
The alpha, beta ethylenically unsaturated carboxylate thioester compounds employed herein have the following formula:

Rl- C = C - C - SR4 (IX) w h erein R1, R2, R3, and R4 a re the same or different and are hydrogen or substituted or unsubstituted hydrocarbyl as defined above. Examples of such alpha, beta-ethylenically unsaturated carboxylate thioester~ of formula IX are methylmercapto 2-butenoate, ekhylmercapto 2-hexenoate, isopropylmercapto 2-decenoate, phenylmercapto 2-pentenoate, tertiary butylmercapto 2-propenoate, octa-decylmercapto 2-propenoate, dodecylmercapto 2-decenoate, cyclopropylmercapto 2,3-dimethyl-2~butenoate, methyl-mercapto 3-phenyl-2-propenoate, methylmercapto 2-pro-penoate, methylmercapto 2-methyl-2-propenoate, and the like.

Z~0~4~

The alpha~ beta ethylenically unsaturated carboxyamide compounds employed herein have the following formula:

R1- C = C - C - NR4(R5) (X~
wherein R1, R2, R3, R4 and R5 are the same or different and are hydrogen or substituted or unsubstituted hydrocarbyl as defined above. Examples of alpha, beta-ethylenically unsaturated carboxyamides of formula X
axe 2-butenamide, 2-hexenamide, 2-decenamide, 3-methyl-2-heptenamide, 3-methyl-2-butenamide, 3-phenyl-2-propenamide, 3-cyclohexyl-2-butenal.mide, 2-methyl-2 butenamide, 2-propyl-2-propenamide, 2-isopropyl-2-hexenamide, 2,3-dimethyl-2-butenamide, 3-cyclohexyl-2-methyl-2-pentenamide, N-methyl 2 butenamide, N,N-diethyl 2-hexenamide, N-isopropyl 2-decenamide, N-phenyl 2-pentenamide, N-tertiary butyl 2-propenamide, N-octadecyl 2-propenamide, N-N~didodecyl 2-decenamlde, N-cyclopropyl 2,3-dimethyl-2-butenamide, N-methyl 3-phenyl-2-propenamide, 2~propenamide, 2-methyl-2-pro-penamide, 2-ethyl-2-propenamide and the ].ike.
The alpha, beta ethylsnically unsaturated thiocarboxylate compounds employed herein have the following formula.

Rl- C = 1 - C - oR4 (~I) w h er ain R1, R2~ R3, and R4 are the sam e or different and are hydrogen or substituted or unsubstituted hydrocarbyl as defined above. Examples of alpha, beta-ethylenically unsaturated thiocarboxylate compounds of formula XI are ~-butenthioic acid, 2-hexenthioic acid, 2-decenthioic acid, 3-methyl-2-heptenthioic acid, 3-methyl-2-butenthioic acid, 3-phenyl-2-propenthioic acid, 3-cyclohexyl-2-butenthioic acid, 2-methyl-2-butenthioic acid, 2-propyl-2-propenthioic acid, 2-isopropyl-2-hex-enthioic acid, 2,3-dimethyl 2-butenthioic acid, 3-cyclo-hexyl-2-methyl-2-pententhioic acid, 2-propenthioic acid, methyl 2-propenthioate, methyl 2-methyl 2-propenthioate, methyl 2-butenthioate, ethyl 2-hexenthioate, isopropyl 2-decenthioate, phenyl 2-pententhioate, tertiary butyl 2-propenthioate, octadecyl 2-propenthioate, dodecyl 2-decenthioate, cyclopropyl 2,3-dimethyl-2-butenthioate, methyl 3-phenyl-2-propenthioate, and the like.
The alpha, beta ethylenically unsaturated dithioic acid and acid ester compounds employed herein have the following formula:

R~ - C - SR4 (XII) w h erein R1, R2, R3, and R4 are the same or different and are hydrogen or substituted or unsubstituted hydrocarbyl as defined above. Examples o~ alpha, beta-ethylenically unsaturated dithioic acids and acid e~ters of formula XII are 2-butendithioic acid, 2-hexendithioic acid, 2-decendithioic acid, 3-methyl-2-hep-tendithioic acid, 3-methyl-2-butendithioic acid, 3-phenyl-2~propendithioic acid, 3-cyclohexyl-2-buten-dithioic acid, 2-methyl-2-butendithioic acid, 2-propyl-2-propendithioic acid, 2-isopropyl-2-hexendithioic acid, 2,3-dimethyl-2-butendithioic acid, 3-cyclo-hexyl-2-methyl-2-pentendithioic acid, 2-propendithioic acid, methyl 2-propendithioate, methyl 2-methyl 2-pro-endithioate, methyl 2-butendithioate, ethyl 2-hexendithioate, isopropyl 2-decendithioate, phenyl 2-pentendithioate, tertiary butyl 2-propendithioate, octadecyl 2-propendithioate, dodecyl 2-decendithioate, cyclopropyl 2,3-dimethyl-2-butendithioate, methyl 3-phenyl-2-propendithioate, and the like.
The alpha, beta ethylenically unsaturated thiocarboxyamide compounds employed herein have the following formula:

R1- C = C - C - NR4(R5) (XIII) wherein Rl, R2, R3, R4 and R5 are the sam~ or different and are hydrogen or substituted or unsubstituted hydrocarbyl as defined above. Examples of alpha, beta~ethylenically unsaturated thiocarboxyamides of formula XIII are 2-butenthioamide, 2-hexenthioamide, 2-clecen-thioamide, 3-methyl-2-heptenthioamide, 3 methyl-2-buten-thioamide, 3-phenyl-2-propenthioamide, 3-cyclohexyl-2-buten-thioamidel 2-methyl-2-butenthioamide, 2~propyl-2-propen-thioamide, 2-isopropyl-2-hexenthioamide, 2,3-di-methyl-2-butenthioamide, 3-cyclohexyl-2-methyl-2-penten-thioamide, N-methyl 2-butenthioamide, N,N-diethyl 2-hexenthioamide, N-isopropyl 2-decenthioamide, N-phenyl 2-pententhioamide, N-tertiary butyl 2-propenthioamide, N-octadecyl 2-propenthioamide, N~N-didodecyl 2-decen-thioamide, N-cyclopropyl 2,3-dimethyl-2-butenthioamide, N-methyl 3-phenyl 2-propenthioamide, 2-propenthioamide, 2-methyl-2-propenthioamide, 2-ethyl-2-propenthioamide and the like.
Preferred compounds for reaction with the polyamines in accordance with this in~ention are lower alkyl esters of acrylic and (lower alkyl) substituted acrylic acid. Illustrative of such preferred compounds are compounds of the formula:
l R 4 C~2 = C - COR (XIV) where R3 is hydrogen or a C1 to C4 alkyl group, such as methyl, and R4 is hydrogen or a C1 to C4 alkyl group, capable of being removed so as to form an amido group, for example, methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tert-butyl, aryl, hexyl, etc. In the preferred embodiments these compounds are acrylic and methacrylic esters such as methyl, ethyl or propyl acrylate, methyl, ethyl or propyl methacrylate. When the 4L6 [) selected alpha, beta-unsaturated compound comprises a compound of formula I wherein X is oxygen, the resulting reaction product with the polyamine contains at least one amido linkage (-C~O)N<3 and such materials are herein termed "amido-amines." Similarly, when the selected alpha, beta unsaturated compound of fo~mula I comprises a compound wherein X is sulfur, the resulting reaction product with the polyamine contains thioamide linkage (-C(S)N~) and these materials are herein termed "thioamido-amines." For convenience, the following discussion is directed to the preparation and use of amido-amines, although it will be understood that such discussion is also applicable to the thioamido-amines.
The type of amido-amine formed varies with reaction conditions. For example, a more linear amido-amine is formed where substantially equimolar amounts of the unsaturatPd carboxylate and polyamine are raacted.
The presence of excesses of the ethylenically unsaturated reactant of formula I tends to yield an amido-amine which is more cross-linked than that obtained where substantially e~uimolar amounts of reactants are employed. Where for economic or other reasons a cross-linked amido-amine using exc~ss amine is desired, generally a molar excess of the ethylenically unsaturated reactant of about at least 10%, such as 10-300%, or gxaater, for example, 25-200%, is employed. For more efficient cross-linking an excess of carboxylated material should preferably be used since a cleaner reaction ensues. For example, a molar excess o about 10-100% or greater such as 10-50%, but preferably an excess of 30-50%, of the carboxylated material. Larger excess can be employed if desired.
In summary, without considering other factors, equimolar amounts of reactants tend to produce a more linear amido-amine whereas excess of the formula I reactant tends to yield a more cross-linked amido-amine. It should ~)0~L~60 ot~d ~h~t th~ high~r ths polyamin~ ., in greater th~ nu~ar of a~ino group~ on the molecule) the gr~3al:ar the ~tati~t~cal pro~ability o~ cross-:L ~ nlcing s;inc~, for exa~pl~, a t~tr~alkyl~nep~ntailine, ~uch ;~ tetraethylene pentamin~

CH2CH~N) 4H
has more labil~ hydrog~n~ ~han athylene diaD~ine.
Th~ a~ido-a~ine adduct~ so form6~d are charactsrized by both ~DIido an~ amino group~. In ~heir ~ ple~l: e!nbodim~nt~ they ~ay ba r~pr~ nt~d by wlits of th~ ~oll~wing idealized ~or~ula:

R R R O
N ~ A - N ~ CE~2 - C~
wherein the R~s, which may be th~3 sam~3 or di~erent, are hydrog~n or a ~ub~titu~d group, such a~ a hydrocarbon group, ror exa~ple, alkyl, alkenyl, alkynyl, aryl, atc., and A i~ a ~oiety o~ the polya~ine which, ~or exampl~, may be aryl, cycloalkyl, alkyl, etc., and n i~ an integer such as 1-10 or grea~er. The amido-amine adducts preferably contain an average of form 1 to 3 amido groups per molecule of the amido-a~ine adduct.
Tha abov~ simpli~ied for~ula represen s a linear amido-a~ne pQlymer. ~owever, cross-linked polymers may al~o ~e ~ormed ~y employing certain condition~ since the pol~r has labil~ hydrogens which can further react with either th~ unsaturated moiety by a.dinq across the double bond or by a~idi~yinq with a carboxylate group.
Pr~ferably, however, the amido-amine~ of this invention are no~ cros~-linked to any substan~ial degree, and ~ore preferably are sub~tantially linear.

Preferably, the polyamine reactant contains at least one primary amine (and more preferably from 2 to 4 primary amines) group per molecule, and the polyamine and the unsaturated reactant of formula I are contacted in an amount of from about l to lO, more preferably from about 2 to 6, and most prefarably from about 3 to 5, equivalents of primary amine in the polyamine reactant per mole of the unsaturated reactant of formula I.
The reaction between the selected polyamine and acrylate-type compound is carried out at any suitable temperature. Temperatures up to the decomposition points of reactants and products can be employed. In practice, one generally carries out the reaction by heating the reactants below 100C, such as 80-90C, for a suitable period of time, such as a few hours. Where an acrylic-type ester is employed, the progre~s of the reaction can be judged by the removal of the alcohol in forming the amide.
During the early part of the reaction alcohol is xemoved quite raadily below 100C in the case of low boiling alcohols such as methanol or ethanol. As the reaction slows, the temperature is raised to push the polymerization to completion and the temperature may be raised to 150C
toward the end of the reaction. Removal of alcohol is a convenient method of judging the progress and completion of the reaction which is generally continued until no more alcohol is evolved. Based on removal of alcohol, the yields are generally stoichiometric. In more difficult reactions, yield of at least 95% are generally obtained.
Similarly, it will be understood that the reaction of an ethylenically unsaturated carboxylate thioester of formula IX liberates the corresponding HSR4 compound (e.g., H2S when R4 is hydrogen) as a by-product, and the reaction of an ethylenically unsaturated carboxyamide of formula X liberates the corresponding HNR4(R5) compound (e.g., ammonia when R4 and R5 are each hydrogen) as by-product.

Th~ re~ction ti~ involved can vary widely dep~ndlng on a wide vari~ty o~ Pactor~. For example, there i~ a relat~on hip bet~reeJI time and t6a~p~ratur~. In general, low~r temp~ratur~ demands longer time~. Usually, reac~ion tlDleæ of fro~a about 2 to 30 hour~, sucb as 5 to 25 hour~, and pr~erably 3 to 10 hours will b~ employed.
Alt~ough one can ~loy a olvent, th~ reaction can b~ rurl wlthout tha u~a of any solvent. In fzlc~, where a high degr~s o~ c:ro~s-linking is deYirlsd, it ig pre~arably to avoid the u~e o~ a ~olvent and mo3t par~icularly to avoid a pol~r s~olv~n~ ~uch as~ wa~er. However, taki:ng into conE~id~ration th~ ect o~ solven~ on the reaction, wher~
de3ired, any :3uitablQ ~olvent can b~ e~ployed, whethe~r organic or inorgani¢, polar or non-polar.
A~ an exampl2 of ~he amido-a~ina a~duct:~; tha reaction of t~tra~thylenQ pQntaa~ine (TE:PA~ with methyl.
methacrylate can be illu~trated a~ :Eollow~:
o - (CH30H) H2N~C}~2~2NH]3C~2C~2N}~2 + CH2=C}I-C-OCH3 O 1~
~2N ~ ~H2 CH 2NH ] 3 C~2 CiH2N~CR2 CH2 CN~CH2 CH2 ~ NHCH2 2 ~ 3 Th~ amido-a~ine is readily reacted with the ~alected poly~sr- ubsti~uted monoc~rboxylic acid material, e~g. poly~r-~ubstituted propionic acid, by heating an oil ~ o l u t i o n c o n t a in in g 5 t o 9 5 w t . % o f t h e poly~er-sub~tituted ~onocarboxylic acid material to about loO to 250-C., preferably 125 to 175-C., generaIly for 1 to 10, e.g. 2 to 6 hour3 until th~ desired amount of water i5 r2mov~d. The hea~ing i3 prefarably carried out to favor foræation o~ a~ide~. Gen~rally fro~ 1 to 5, preferably from about 1.~ to 3 ~olQs of polymer-substituted monocarboxylic acid moiety content (e.g., grafted acrylic L46(~

- 2~ -acid content) is used per eguivalent of amido-amine reactant, e.g., amine.
An example of the r~action of an amido-amine reactant with a polymer-substituted monocarboxylic acid producing reactant i5 the reaction of polyisobutylene propio~ic acid (PIBA) with a poly amido-amine having two terminal -MH2 groups, which can be illustrated as follows:

O O
PIB- CH2C-O~ +H2N(CH2~2NH _ zl x - z2 y_ C(~H2)2NH(CH2~
1~ .
0 H o H 0 Il 1 1/ 1 11 PIB_cH2c_O__N(cH2)2NH _ Zl X - z2 y_ C(cH~)2NEl(cH2)2N-o-c CH2~PIB
wherein x and y are each integers of from o to 10, with the proviso that tha sum of x + y is at least 1, e.g., 1 to 20 and wherein ~1 and z2 are the same or different and are each moieties of the formula~

- C(c~2)~NH~cH2)2NH2 It will be understood that the amido-amine reactant B can be employed alone or in admixture with any of the above described amines, such as tha polyalkylene polyamines, useful in preparing the amido-aminP reactant.
. Preferably, the polymer-substituted monocarboxylic acid producing material and amido-amine will be contacted for a time and under conditions sufficient to react substantially all of the primary nitrogens in the amido-amine reactant. The progress of this reaction can be followed by infra red analysis.

2~0~L~160 The nitrogen-containlng dispersant materials of the instant invention as described above can be post-treated by contacting said nitrogen-containing dispersant materials with one or more post treating reagsnts selected from the group consisting of carbon disulfide, sulfur, sulfur chlorides, alkenyl cyanides, aldehydes, ketones, urea, thio-urea, guanidine, dicyanodiamide, hydrocarbyl phosphates, hydrocarbyl phosphites, hydrocarbyl thiophosphates, hydrocarbyl thiophosphites, phosphorus sulfides, phosphorus oxides, pho~phoric acid, hydrocarbyl thiocyanates, hydrocarbyl isocyanates, hydrocarbyl isothiocyantes, epoxides, episulfides, formaldehyde or formaldehyde-proclucing compounds plus phenols, and sulfur plus phenols, and Cl to C30 hydrocarbyl substituted succinic acids and anhydrides (e.g., succinic anhydride, dodecyl succinic anhydride and the like), fumaric acid, itaconic acid, maleic acid, maleic anhydride, chloromaleic acid, chloromaleic anhydride, acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, and lower alkyl (e.g., C
to C4 alkyl) acid esters of the foregoingl e.y., methyl maleate, ethyl fumarate, methyl fumarate, and the like.
Since post-treating processes involving the use of these post-treating reagents i5 known insofar as application to high molecular weight nitrogen containing diseprsants of-the prior art, further descriptions of these processes herein is unnecessary. In order to apply the prior art processes to the compositions of this invention, all that is necessary is that reaction conditions, ratio of reactants, and the like as described in the prior art, be applied to the novel compositions of this invention. The following U.S. patents are expressly incorporated herein by reference for their disclosure of post-treating processes and post-treating reagents applicable to the compositions of this invention: U.S. Pat. NQS. 3,087,936; 3,200,107;

46~ `

3,254,Q25: 3,256,1~5; 3,278,550; 3,2~1,428; 3,282,955;
3,284,410; 3,33~,832, 3,344,069; 3,3~,569; 3,373,111;
3,367,943; 3,403,102; 3,428,~61; 3,502,677; 3,513,093;
3,~33,945; 3,5~1,012; 3,639,242; 3,708,52~; 3,859,318;
3~865,813; 3,470,098; 3,36g,021; 3,1~4,~11; 3,185,645;
3,245,908; 3,245,909; 3,245,910; 3,573,205; 3,692,681;
3,749,695; 3,855,740; 3,954,639; 3,~58,530; 3,390,086;
3,367,g43; 3,185,70~, 3,551,~66; 3,4~5,750; 3,312,619;
3,280,034; 3,718,663; 3,Ç52,616; UK Pat. No. 1,085,903; UK
Pat. ~o. 1,162,436; U.S. Pat. No. 3,558,743.
The nitrogen containing dispersant materials of this invention can also be treated with polymerizable lactones ~such as epsilon~caprolactone) to form dispersant adducts having the moiety -tC~O)(CH2)zO]mH~ wherein z is a number of ~rom 4 to 8 (e.g., 5 to 7) and m has an average value of from about O to 100 (e.g., 0.~ to 20).
The dispersants o~ this invention can be post-treated with a C~ to Cg lactone, e.g., epsilon-caprolactone, by heating a mixture of the dispersant material and lactone in a reaction vessel in the absence of a solvent at a temperature of about 500C to about 200C, more preferably from about 75C to about 180C, and most preferably from about 90C to about 160C, ~or a sufficient period of tima to effect reaction. Optionally, a solvent for the lactone, dispersant material and/or the resulting adduct may be employed to ~ontrol viscosity andjor the reaction rates.
In one preferred embodiment, the C5 to Cg lactone, e.g., epsilon-caprolactone, is reacted with a dispersant material in a 1:1 mole ratio of lactone to dispersant material. In practice, the ration of lactone to dispersant material may vary considerahly as a means of controlling the length of the se~uence of the lactone units in the adduct. For example, the mole ratio of the lactone to the dispersant material may vary from about 10:1 to about 0.1:1, more preferably from about 5:1 to about 0.2:1, 2~46~ `

and most preferably from about 2:1 to about 0.4:1. It is preferable to maintain the average degree of polymerization of th~ lactone monomer below about 100, with a degree of polymerization on the order of from about 0.2 to about 50 being preferred, and from about 0.2 to about ~0 being more preferred. For optimum dispersant performance, sequences of from about 1 to about 5 lactone units in a row are preferred.
(:atalysts useful in the promotion of the lactone-dispersant material reactions are selected from the group consisting of stannous octanoate, stannous hexanoate, tetrabutyl titanate, a variety of organic basedl acid catalysts and amine catalysts, as described on page ~66, and forward, in a book chapter authored by R.D. Lundberg and E. F. Cox, ~.ntitled "Kinetics and Mechanisms of Polymerization: Ring Opening Polymerization", edited by Frisch and Reegen, published by Marcel Dekker in 1969, wherein stannous octanoate is an especially preferred catalyst. The catalyst is added to the reaction mixture at a concentration level of about 50 to about 10,000 parts per weight of catalyst per ona million parts of the total reaction mixture.
The reactions of such lactones with dispersant materials containing nitrogen or ester groups is more completely described in copending applications Serial Numbers 916,108; 916,217; 916,218; 916,287; 916,303;
916,113; and 916,114, all filed on October 7, 1986; and co-pending Serial Number 178,099 filed on April 6, 1988:
the disclosure of each of which is hereby incorporated by reference in its entirety.
The nitrogen-containing dispersant materials of this invention can also be post-treated by reaction with an alkyl acetoacetate or alkyl thioacetate of the formula:

ZO~ 4~

R~ - C CH;~ xa _ Rb o O

~h~3rein Xa is 0 or S, ~b i~ H or Ra, and Ra i~ in ~ach ln~tanc~ in which it app~ar~ indep~ndently sel~cted ~roD~ th~ group con3~ ~ting of ~ub~tituted and un~ubstitNted alkyl or aryl (pref~rably alkyl o~ 1 to ~ carbon atoms, . g ., m~thyl , athyl , ~tc. ) to forDI an amino compound ~-sub~titut~d by at 12a~3t ona tau~omeric sub~titusnt o~ the Xor~ula:

--e CH2--C Ra ~ --C CH--~ Ra _ Il 11 11 1 O o o o~

wh~arein ~9 is a~ d~fin~d above.
The r6~ac~ion i~ pre~era~ly e~ect~d at a ~emp~ralturQ ~u~ici~n~ly high ~o as to ~ubstantially ~ninimiz~a the production o~ th~ enaminon~ and produce, in~tead, the k~to-enol tau~o~er. TeDIperatures of at least about 150 ~ C ars pr~ferr~d to m~et thi3 goal although proper choice o~ t6!DIpera~ure depends on many factor~, including re~ctants, conc~ntration, reaction solvent choice, etc.
Temperatures o~ ~roDI about 120-C to 220 C, preferably fro~
about 150~C to l~QO-C ~ill gQnerally b~ used. The react~ on o~ th~ nitrogen-containing di~pQrsant material and the alkyl acetonate and th~ alkyl thioacetate will liberate the corr~ponding HO~ and HS~b by-products, r~spectively.
Prer~erabl~,r, such by-products are substantially removed~ as by distilltion or ~tripping w~th an inert ga~ (sllch a~
N2 ), prior to u~se o~ ths thu3 prepared disper!:ant adduct. Such distillation and ~trippin~ ~taps ar~
conveniQntly perfonned ~t elevated temperaturQ, e.g., at th~a ~elected reaction te~pera~ure (for examplQ, at 150-C or z~ o - 29 ~

higher). A neutral diluent such as mineral oil may be used for the reaction.
The amount of alkyl aceto-acetate and/or alkyl thioacetate reactants used can vary widely, and is preferably selected 50 a to avoid substantial excesses of these reactants. Generally, these reactants are used in a reactant:amine nitrogen-equivalent molar ratio of from about 0.1 to 1:1, and preferably from about 0.5 to 1:1, wherein the moles of amine nitrogen-equivalent is the moles of secondary nitrogens plus twice the moles of primary nitrogens in the nitrogen-containing dispersant material (e.g., polyisobutenyl succinimide) which is thus contacted with the alkylacetonate or alkyl thioacetate. The reaction should also be conducted in the substantial absence of strong a~ids (e.g., mineral acids, suah as HCl, HB2, H2S04, H3P03 and the like, and sulfonic acids, such as para-toluene sul~onic acids) to avoid the undesired side-reactions and decrease in yield to the adducts of this invention.
The reactions of such alkyl acetoacetates and thioacetoacetates with nitrogen-containing dispersant materials is more completely described in cop~ending application Serial No. 51,276, filed May 18, 1987, the disclosure of which is hereby incorporated by reference in its entirety.
Further aspects of the present invention reside in the formation of metal complexes of the novel dispersant additives prepared in accordance with this invention.
Suitable metal complexes may be formed in accordance with known techniques of employing a reactive metal ion species during or after the formation of the present dispersant materials. Complex forming metal reactants include the metal nitrates, thiocyanates, halides, carboxylates, phosphates, thio-phosphates, sulfates, and borates of transition metals such as iron, cobalt, nickel, copper, ~O~

chromium, manganese, molybdenum, tungsten, ruthenium, palladium, platinum, cadmium, lead, silver, mercury, antimony and the like. Prior art disclosures of these complexing reactions may be also found in U.S. Patents 3,306,908 and Re. 26,433, the disclosures of which are hereby incorporated by reference in their entirety.
The processes of the~e incorporated patents, as applied to the compositions of this invention, and the post-treated compositions thus produced constitute a further aspect of this invention.
The dispersant-fo~ming reaction can be conducted in a polar or non-polar solvent (e~g., xylene, to:Luene, benzene and the like), and is preferably conducted in the presence of a mineral or synthetic lubricating oil.
The nitrogen containing dispersants can be further treated by boration as generally taught in U.S. Patent Nos. 3,0B7,936 and 3,254,025 (incorporated herein by reference thereto). This is readily accomplished by treatiny the selected acyl nitrogen dispersant with a boron compound selected from the class consisting of boron oxide, boron halides, boron acids and esters of boron acids in an amount to pro~ide from about 0.1 atomic proportion of boron for each mole o~ said acylated nitrogen composition to abou 20 atomic proportions of boron for each atomic proportion of nitrogen of said acylated nitrogen composition. Use~ully the dispersants of the inventive combination contain from about 0.05 to 2.0 wt. %, e.g. 0.05 to 0.7 wt. % boron based on the total weight of said borated acyl nitrogen compoundu ~he boron, which appears to be in the product as dehydrated boric acid polymers (primarily (HB02)3), is believed to attach to the dispersant imides and diimides as amine salts, e.g., the metaborate salt of said diimide.

~0~ 6al ~

Treating is readily carried out by adding from about 0.05 to 4, e.g. 1 to 3 wt. % (based on the weight of said acyl nitrogen compound) of said boron compound, preferably boric acid which is most usually added as a slurry to said acyl nitrogen compound and heating with stirring at from about 135C. to 190, e.g. 140-170C~, for from 1 to 5 hours followed by nitrogen strippiny at said temperature ranges. Or, the boron treatment can be carried out by adding boric acid to the hot reaction mixture of the monocarboxylic acid material and amine while removing water.
The ashless dispersants of this invention can be used alone or in admixture with other dispersants such as esters derived from the aforesaid polymer-substituted monocarboxylic acid material and from hydroxy compounds such as monohydric and polyhydric alaohols or aromatic compounds such as phenols and naphthols, etc. and/or esters derived from the aforesaid polymers substituted with dicarboxylic acid materials (e.g., succinic acid or succinic anhydride groups) and from hydroxy compounds such as monohydric and polyhydric alcohols or aromatic compounds such as phenols and naphthols, etc. The polyhydric alcohols are the most preferred hydroxy compound and preferably contain from 2 to about 10 hydroxy radicalsl for example, ethylene glycol, diethylene glycol, triethylene gly~ol, tetraethylene glycol, dipropylene glycol, and other alkylene glycols in which the alkylene radical contains from 2 to about 8 carbon atoms. Other useful polyhydric alcohols include glycerol, mono-oleate o~ glycerol, monostearate of glycerol, monomethyl ether of glycerol, pentaerythritol, dipentaerythritol, and mixtures thereof.
The ester dispersant may also be derived from unsaturated alcohols such as allyl alcohol, cinnamyl alcohol, propargyl alcohol, l-cyclohexane-3-ol, and oleyl 2~0~L61~) alcohol. Still other classes of the alcohols capable of yielding the esters of this invention comprise the ether-alcohols and amino-alcohols including, for example, the oxy-alkylene, oxy-arylene-, amino-alkylene-, and amino-arylene-substituted alcohols having one or more oxy-alkylene, amino alkylene or amino-arylene oxy-arylene radicals. They are exemplified by Cellosolve, Carbitol, N,N,N',N'-tetrahydroxy-trimethylene di-amine, and ether-alcohols having up to about 150 oxy alkylene radicals in which the alkylene radical contains from l to about 3 car~on atoms.
The ester dispersant may be di-esters of dicarboxylic acids (e.g., succinic acid or anhydrid ~ or aci~ic esters, i.e., partially esterified succinic acids;
as well as partially esterified polyhydric alcohols or phenols, i.e~, esters having Pree alcohols or phenolic hydroxyl radicals. Mixtures of the above illustrated esters likewise are contemplated within the scope of this invention.
The ester dispersant may be prepared by one of several known methods as illustrated for example in U.S.
Patent 3,381,022. The ester dispersants may also be borated, similar to the nitrogen containing dispersants, as described above.
Hydroxyamines which can be reacted with the aforesaid polymer~substituted monocarboxylic acid materials to form dispersants include 2-amino-1-butanol, 2-amino-2-methyl-1-propanol, p-(beta-hydroxyethyl)-aniline, 2-amino-1-propanol, 3-amino-1-propanol, 2-amino-2-methyl-1, 3-propane-diol, 2-amino-2-ethyl-1, 3-propanediol, N-(beta hydroxy-propyl)-N'-~beta-aminoethyl)-piperazine, tris(hydroxymethyl) amino-methane (also known as trismethylolaminQmethane), 2-amino-1-butanol, ethanolamine, beta-(beta-hydroxyethoxy)ethylamine, and the like.
Mixtures of these or similar amines can also be employed.

;~0(~61[) The abova description of nucleophilic reactants suitable for reaction with the polymer-substituted monocarboxylic acid materials includes amines, alcohols, and compounds o~
mixed amine and hydroxy containing reactive functional groups, i.e., amino-alcohols.
The tris(hydroxymethyl) amino methane (TEIAM) can ba reacted with the aforesaid acid materials to form amides, imides or ester type additives as taught by U.K.
984,409, or to form oxazoline compounds and borated oxazoline compounds as described, for example, in U.S.
4,102,798, 4,116,876 and 4,113,639.
Other dispersants which can be employed in admixture with the novel amido-amine dispersants of this invention are those derived from the aforesaid polymer-substituted monocarboxylic acid material and the aforesaid amines, such as polyalkylene polyamines, e.g., long chain hydrocarbyl substituted succinimides. Exemplary of such other dispersants are those descri~ed in co-pending Serial No. 126,405, filed November 30, 1987.
A preferred group of ashless dispersants are those derived from polyisobutylene substituted with propionic acid groups and reacted with amido-amine adducts formed by reacting polyethylene amines, e.g., tetraethylene pentamine, pentaethylene hexamine, polyoxyethylene and polyoxypropylene amines, e.g., polyoxypropylene diamine, trismethylolaminomethane and pentaerythritol, and combinations thereof, with an acrylate-type compound of formula ~XIV) above. One particularly preferred dispersant combination involves a polyisobutene substituted with propionic acid groups and reacted with an amido-amine adduct which has been formed by the reaction of (1) a polyalkylene polyamine and (2) an acrylate-type reactant selected from the group consisting of lower alkyl alky-acrylates (e.g., methyl, ethyl, iso-propyl, propyl, iso-butyl, n-butyl, tert-butyl, etc., esters of methacrylic acid, acrylic acid, and the like).

g~

The dispersants o~ the present invention can be incorporated into a lubricating oil in any convenient way.
Thus, these mixtures can be added directly to the oil by dispersing or dissolving the same in the oil at the desired level o concentration of the dispersant. Such blending into the additional lube oil can occur at room temparature or elevated temperaturas. Alternatively, the dispersants can be blended with a suitable oil-soluble solvent and base oil to form a concentrat2, and then blending the concentratP with a lubricating oil basestock to obtain the final formulation. Such dispersant concentrates will typically contain (on an active ingredient (A.I.) basis) from about 3 to about 45 wt.%, and preferably from about 10 to about 35 wt.%, dispersant additive, and typically from about 30 to 90 wt.%, preferably from about 40 to 60 wt.%, base oil, based on the concentrate weight.
The lubricating oil basestock for the dispersant typically is adapted to perform a selected function by the incorporation of additional additives therein to -form lubricating oil compositions (i.e., formulations).
LyBRI CATING COMPOS ITIONS
Lubricating oil compositions, e~g. automatic transmission fluids, heavy duty oils suitable for gasoline and diesel engines, etc., can be prepared with the additives of the invention. Universal type crankcase oils wherein the same lubricating oil compositions can be used for both gasoline and diesel engine can also be prepared.
These lubricating oil formulations conventionally contain several different types of additives that will supply the characteristics that are required in the formulations.
Among these types of additives are included viscosity ind~x improvers, antioxidants, corrosion inhibitors, detergents, dispersants, pour point depressants, antiwear agents, etc.
In the preparation of lubricating oil ~ormulations it is common practice to introduce the additives in the 2001~6~

~orm of lo to 80 wt. ~, e.g. 20 to 80 wt. % active ingredient concentrates in hydrocarbon oil, e.g. mineral lubricating oil, or other sui~able solvent. Usually these concentrates may be diluted with 3 to 100, e.g. 5 to 40 parts by weight of lubricating oil, per part by weight of the additive package, in forming finished lubricants, e.g.
crankcase motor oils. The purpose of concentrates, of course, is to make the handling of the various materials less di~ficult and awkward as well as to facilitate solution or dispersion in the final blend. Thus, a dispersant would be usually employed in the form of a 40 to 50 wt. % concentrate, for example, in a lubricating oil fraction.
The ashless dispersant~ of the present invention will be generally used in admixture with a lube oil basestock, comprising an oil of lubricating viscosity, including natural and synthetic lubricating oils and mixtures thereof.
Natural oils includ~ animal oils and vegetable oils (e.g., castor, lard oil) liquid petroleum oils and hydrorefined, solvent-treated or acid-treated mineral lubricating oils o~ the paraffinic, naphthenic and mixed paraffinic-naphthenic types. Oils of lubricating viscosity derived fro~ coal or shale are also useful base oils.
Alkylene oxide polymers and interpolymers and derivatives thereo~ where the terminal hydroxyl groups have been modified by esterification, etherification, etc., constitute another class of known synthetic lubricating oils. These are exempli~ied by polyoxyalkylene polymers prepared by polymerization of ethylene oxide or propylene oxide, the alkyl and aryl ethers of these polyoxyalkylene polymers (e.g., methyl-poly isopropylene glycol ether having an average molecular weight of 1000, diphenyl ether of poly-ethylene glycol having a molecular weight of 2~

500-1000, diethyl ether of polypropylene glycol having a molecular weight of 1000 lsno); and mono- and polycarboxylic ester~ thereof, for example, the acetic acid esters, mixed C3 -C8 fatty acid esters and C13 Oxo acid diester of tetraethylene glycol.
Another suitable class of synthetic lubricating oils comprises the esters o~ dicarboxylic acids (e.g., phthalic acid, succinic acid, alkyl succinic acids and alk~nyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkylmalonic acids, alkenyl malonic acids) with a variety o~ alcohols (e.g., butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoether, propylene glycol). Speolfic examplas o these esters include dibutyl adipate, di(2-ethylhexyl)sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, the 2-ethylhexyl diester o~ linoleic acid dimer, and the complax ester formed by reacting one mole of seb~cic acid with two moles o tetraethylene glycol and two moles of 2-ethylhexanoic acid.
Esters useful as synthetic oils also include those made from C5 to C12 monocarboxylic acids and polyols an d p olyol eth ers such as neopentyl glycol, trimethylolpropane, pentaerythritol, dipentaerythritol and tripentaerythritol.
Silicon-based oils such as the polyalkyl-, polyaryl-, polyalkoxy-, or polyaryloxysiloxane oils and silicate oils comprise another useful class o~ synthetic lubricants; they include tetraethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl)silicate, tetra-(4-methyl-2-ethylhexyl)silicate, tetra-(p-tert-butylphenyl)silicate, hexa-(4-methyl-2-pentoxy)disiloxane, pol~(methyl)siloxanes and poly(methylphenyl)siloxanes.

~:~0~4~

Other synthetic lubricating oils include liquid esters of phosphorus containing acids (e.g., tricresyl phosphate, trioctyl phosphate, diethyl ester of decylphosphonic acid) and polymeric tetrahydrofurans.
Unrefined, refined and rerefined oils can be used in the lubricants of the present invention. Unrefined oils are thosa obtained directly from a natural or synthetiG
source without further purification treatment. For example, a shale oil obtained directly from retorting operations, a petroleum oil obtained directly from distillation or ester oil obtained directly from an esterification process and used without further treatment would be an unrefined oil. Refined oils are similar to the unrefined oils except they havs been further treated in one or more purification steps to improve one or more properties. Many such purification techniques, such as distillation, solvent extraction, acid or base extraction, filtxation and percolation are known to those skilled in the art. Rerefined oils are obtained by processes similar to those used to obtain refined oils applied to refined oils which have been already used in service. Such rerefined oils are also known as reclaimed or reprocessed oils and often are additionally processed by techniques for removal of spent additives and oil breakdown products.
Metal containing rust inhibitors and/or detergents are frequently used with ashless dispersants. Such detergents and rust inhibitors include the metal salts of sulphonic acids, alkyl phenols, sulphurized alkyl phenols, alkyl salicylates, naphthenates, and other oil soluble mono- and di-carboxylic acids. Highly basic, that is overbased metal salts which are frequently used as detergents appear particularly prone to interaction with the ashless dispersant. Usually these metal containing rust inhibitors and detergents are used in lubricating oil in amounts of about O.O1 to 10, e.g. O.l to 5 wt.%, based 2C~0~46~) on the weight of the total lubricating composition. Marine diesel lubricating oils typically employ such metal-containing rust inhibitors and dstergents in amounts of up to about 20 wt.%.
Highly basic alkaline earth metal sulfonates are frequently used as detergents. They are usually produced by heating a mixture comprising an oil-soluble sulfonate or alkaryl sulfonic acid, with an excess of alkaline earth metal compound above that required for complete neutralization of any sulfonic acid present and thereafter forming a dispersed carbonate complex by reacting the excess metal with carbon dioxide to provide the desired o~erbasing. The sulfonic acids are typically obtained by the sulfonation of alkyl substituted aromatic hydrocarbons such as those obtained from the fractionation of petroleum by distillation and/or extraction or by the alkylation of aromatic hydrocarbons as for example those obtained by alkylating benzene, toluene, xylene, naphthalene, diphenyl and the halogen derivatives such as chlorobenzene, chlorotoluene and cnloronaphthalene. The alkylation may be carried out in the presence of a catalyst with alkylating agents having from about 3 to more than 30 carbon atoms.
For example haloparaffins, olefins obtained by dehydrogenation of paraffins, polyolefins produced from ethylene, propylene, etc. are all suitable. The alkaryl sulfonates usually contain from about 9 to about 70 or more carbon atoms, preferably from about 16 to about 50 carbon atoms per alkyl substituted aromatic moiety.
The alkaline earth metal compounds which may be used in neutralizing these alkaryl sulfonic acids to provide the sulfonates includes the oxides and hydroxides, alkoxides, carbonates, carboxylate, sulfide, hydrosulfide, nitrate, borates and ethers of magnesium, calcium, and barium. Examples are calcium oxide, calcium hydroxide, magnesium acetate and magnesium borate. As noted, the ~0014G0 - 3g -alkaline earth metal compound is used in excess of that required to complete neutralization of the alkaryl sulfonic acids. Generally, the amount ranges from about loO to 220%, although it is preferred to use at least 125%, of the stoichiometric amount of metal reguired for c~mplete neutralization.
Various other preparations of basic alkaline earth metal alkaryl sulonates are known, such as U.S. Patents 3,150,088 and 3,150,089 wherein overbasing is accomplished by hydrolysis of an alkoxide-carbonate complex with the alkaryl sulfonate in a hydrocarbon solvent-diluent oil.
A preferred alkaline earth sulfonate additive is magnesium alkyl aromatic sulfonate having a total base~
number ranging from about 300 to about 400 with the mag-nesium sulfonate content ranging from about 25 to about 32 wt. ~, based upon the total weight of the additive system dispersed in mineral lubricating oil.
Neutral metal sulfonates are frequently used as rust in~ihitors. Polyvalent metal alkyl salicylate and naphthenate materials are known additives for lubricating oil compositions to improve their high temperature performance and to counteract deposition of carbonaceous matter on pistons (U.S. Patent 2,744,069). An increase in reserve basicity of the polyvalent metal alkyl salicylates and naphthenates can be realized by utilizing alkaline earth metal, e.g. calcium, salts of mixtures of C8-C26 alkyl salicylates and phenates (see U.S. Patent 2,744,069) or polyvalent metal salts of alkyl salicyclic acids, said acids obtained from the alkylation of phenols followed by phenation, carboxylation and hydrolysis (U.S. Patent 3,704,315) which could then be converted into highly basic salts by techniques generally known and used for such conversion. The reserve basicity of these metal-containing rust inhibitors is usefully at TBN levels of between about 60 and 150. Included with the useful polyvalent metal Z00~60 ~alicyl~t~ and nap}lth~3n~t~ ~att~rial~ are the m2thylsne and ~ulfur bridg~d mat~rial~ which ar~ readily derived from alkyl sub~titut~d ~alicyli~ cr naphth2nic acid~ or IDixture~
of ~ither or both w~tll alkyl ~ ituted phenol~. ~asic ~ulfuriz~d ~alicylate~ and a m~thod for their preparation i~ shown in U. S . Pzltent 3, 595, 791. S~ich matarials includa alkzllin~ ~arth Dl~æt~l, part:lcularly magn~iun~, calciu~, ~tront ~ u~ and bariu~a ~alt~ o~ aro~atic ac$ds having tha gen~ral ~or~ula:
HOOC -ArR5-Xy ~Ar~1OH) n (XV) wherQ ~r i~ an aryl radical o~ 1 to S ring~, R6 i~ an alkyl group havin51 froD~ abc~ut 8 to 50 carbon ato~s, pr~f~rably 12 to 30 carbon a~o~s (optimally about 1~ X i~
a ~ulfur (-S-) or methyl~n~ (-CH2-~ bridg~, y i a n~b~r fro~ o to 4 and n i8 a nu~b~r from o to 4.
Pr~paration Or th~3 overba~3d ~ethylene~ bridged ~alicylate-phenate sal~ ia r~adlly c:arried out by aon-ventional technigue~ ~uch as by alkylation o~ a phenol followed by phena~ion, car~oxylation, hydroly~i~, methylen~
bridging a coupl~r:g agen1: such a an alkylene dih~lide followed by salt ~or~tion c:oncurrent with carbonation. An ovQrbased calcium ~alt of a me~hylene bridged phenol-~alicylic acid o~ ~he general ~onnula (XVI):
OH ~ OH l HOOC~ C~2 ~) 1-4 C12H25 C12~I25 with a T~N of 60 to 150 i~ highly useful in thi~ invention.
The sul~urized metal phenates can be considered th~ "me~al salt of a phenol sulfidel' which thus refers to a metal s~lt whether neutral or basic, of a compound typified by tho general for~ula (XVII):

~:0~)~4~) R ~ R R
~S
O~i OH J n 0 wher~ x ~ 1 or 2, n - O, 1 or 2; or a polymeric for~ of such a compound, wh~r2 ~ i~ an all~l r,adical, n and x are eacA int~ger~ ~rom ~ to 4, and th~ av~ragls number of carbon atoms in all o~ th~ R group~ ~ at lea~t abou~ 9 in order to Qn~ure adeg[uat~ 801ubilil:y in oil. The in~ivi~ual R
groups may each contain fro~ 5 to 4 O, preferably 8 to 2 0, carbon al:o~. Th~ loetal ~;alt i9 prepared by reacting an alkyl phenol sulfid~ with a sufficien~ quantity o~ mztal colltaining mat~rial to i~part tha de3~red alkalinity to th~
sul~urized metal phenate.
R~g3.rdls~ o~ th~ manner in which thlsy are prepar~d, th~ ~ul~urized alkyl phenols which ~re u~eful g~nerally ;:ontain from about 2 to about 14~ by weigllt, pr~ferably about 4 ~o abou~ 12 wt. % ~ul~ur ~ased on the weight of ~ul~urized alkyl phenol.
The ~ul furized alkyl phenol may be converted by reac:tion with a ~etal containing material including oxides, hydroxides and complexe in an amount sufficient to neutralizQ ~aid phenol and, if desired, to overbase the product to a desired alkalinity by procedures well knOWII in the art. Preferred i~ a process o f neutralization utilizing a solution of metal in a glycol ether, T h e n~utral or nor~al sulfurized metal phenates are those in which the ratio o~ metal to phenol nucleu~ is about 1:2.
The "overba~ed~ or "basic" sulfurized metal phenates are sul~urized me~al phenate~ wherein the ratio of metal to phenol i~ yreater than that of stoichiometric, e.g. basic sul~uriæed metal dodecyl phenate has a metal content up to and greater ~han 100% in exce~ of the metal present in the corresponding ~ormal sulfurized metal phenates wherein the ~0~L46~

excess metal is produced în oil-soluble or dispersible form (as by reaction with C02).
Magnesium and calcium containing additives although beneficial in other respects can increase the tendency of the lubricating oil to oxidize~ This is especially tru~ of the highly basic sulphonates.
According to a preferred embodiment the invention therefore provides a crankcase lubricating composition also containing rom 2 to 8000 parts per million o~ calcium or magnesium.
The magnesium and~or calcium is generally present as basic or neutral detergents such as the sulphonates and phenates, our preferred additives are the neutral or basic magnesium or calcium sulphonates~ Preerably the oils contain from 500 to 5000 parts per million of calcium or magnesium. Basic magnesium and calcium sulphonates are preferred.
As indicated earlier, a particular advantage of the novel dispersants of the present invention is use with V.I improvers to form multi-grade automobile engine lubricating oils. Viscosity modifiers impart high and low temperature operability to the lubricating oil and permit it to remain relatively visc~us at elevated temperatures and also exhibit acceptable viscosity or fluidity at low temperatures. Viscosity modifiers are generally high molecular weight hydrocarbon polymers including polyesters. The viscosity modifiers may also be derivatized to include other properties or functions, such as the addition of dispersancy properties. These oil soluble viscosity modifying polymers will generally have number average molecular weights of from 103 to 106, preferably 104 to 106, e.g., 20,000 to 250,000, as det~rmined by gel permPation chromatography or osmometry.

~0~)~46~

Examples o suitable hydrocarbon polymers include homopolymers and copolymers of two or more monomers of C2 to C30, e.g. C2 to C8 olefins, including both alpha olefins and internal olefins, which may be straight or branched, aliphatic, aromatic, alkyl-aromatic, cycloaliphatic, etc. Frequently they will be of ethylene with C3 to C30 olefins, particularly preferred being the copolymers of ethylene and propylene. Other polymers can be used such as polyisobutylenes, homopolymers and copolymers o~ C6 and higher alpha olefins, atactic polypropylene, hydrogenated polymers and copolymers and terpolymers of styrene, e.g. with isoprene and/or butadiene and hydrogenated derivatives thereof. The polymer may be degraded in molecular weight, for example by mastication, extrusion, oxidation or thermal degradation, and it may be oxidized and contain oxygen. Also included are derivatized polymers such as post-grafted interpolymers of ethylene-propylene with an active monomer such as maleic anhydride which may be further reacted with an alcohol, or amine, e.g. an alkylene polyamine or hydroxy amine, e.g.
see U.S. Patent Nos. 4,089,794: 4,160,739; 4,137,185; or copolymers of ethylene and propylene reacted or graftad with nitrogen compounds such as shown in U.S. Patent Nos.
4,06~,056; 4,068,058; 4,146,489 and 4,149,984.
The preferred hydrocarbon polymers are ethylene copolymers containing from 15 to 90 wt. % ~thylene, preferably 30 to 80 wt. % of ethylene and 10 to 85 wt. ~, preferably 20 to 70 wt. % of one or more C3 to C28, preferably C3 to C18, more preferably C3 to C8, alpha-olefins. While not essential, such copolymers preferably have a degree of crystallinity of less than 25 wt. %, as determined by X-ray and differential scanning calorimetry. Copol~mers of ethylene and propylene are most preferred. Other alpha-olefins suitable in place of propylene to form the copolymer, or to be used in combin-2~

ation with ethylene and propylene, to form a terpolymer, tetrapolymer, etc. , include l-butene, 1-pentene, 1-haxene, l-heptene, l-octene, l-nonene, l-decene, etc.; also branched chain alpha-olefins, such as 4-methyl l-pentene, 4 - m e t hy l - 1 - h e x en e, 5 -m e t h y l p e n t e ne - 1, 4,4-dimethyl-1-pentene, and 6-methylheptene 1, etc., and mixtures thereof.
Terpolymers, tetrapolymers, etc., of ethylene, said C3_28 alpha-olefin, and a non-conjugated diolefin or mixtures of such diolefins may also be used. The amount of the non-conjugated diole~in generally ranges from about 0.5 to 20 mole percent, preferably from about 1 to about 7 mole percent, based on the total amount of ethylerle and alpha-olefin present.
The polyester V.I. improvers are generally polymers of esters o~ ethylenically unsaturated C3 to C8 mono- and dicarboxylic aids such as methacrylic and acrylic acids, maleic acid, maleic anhydride, fumaric acid, etc.
Examples of unsaturated esters that may be used include those of aliphatic saturated mono alcohols of at least 1 carbon atom and preferably of from 12 to 20 carbon atoms, such as decyl acrylate, lauryl acrylate, stearyl acrylate, eicosanyl acrylate, docosanyl acrylate, decyl methacrylate, diamyl fumarate, lauryl methacrylate, cetyl methacrylate, stearyl methacrylate, and the like and mixtures thereof.
Other esters include the vinyl alcohol esters of C2 to C22 fatty or mono carboxylic acids, preferably saturated such as vinyl acetate, vinyl laurate, vinyl palmitate, vinyl stearate, vinyl oleate, and the like and mixtures thereofO Copolymers of vinyl alcohol esters with unsaturated acid esters such as the copolymer of vinyl acetate with dialkyl fumarates, can also be used.

;~0~46~1 The esters may be copolymerized with still other unsaturated monomers such as olefins, e.g. 0.2 to 5 moles of C2 ~ C20 aliphatic or aromatic ole~in per mole of unsaturated ester, or per mole of unsaturated acid or anhydride followed by esterification. For example, copolymers of styrene with maleic anhydride esterified with alcohols and amines are known, e.g., see U.S. ~atent 3,702,300.
Such ester polymers may be grafted with, or the ester copolymerized with, polymerizable unsaturated nitrogen-containing monomers to impart dispersancy to th~
V.I. improvars. Example of suitable unsaturated nitrogen-containing monomers include those con~aining 4 to 20 carbon atoms such as amino substituted olefins as p-(beta-diethylaminoethyl)styrene; basic nitrogen-con-taining heterocycles carrying a polymerizable ethylenically unsaturated substituent, e.g. the vinyl pyridines and the vinyl alXyl pyridines such as 2-vinyl-5-ethyl pyridine, 2-methyl-5-vinyl pyridine, 2-vinyl-pyridinel 4-vinyl-pyridine, 3-vinyl-pyridinP, 3-methyl-5-vinyl-pyridine, 4-methyl-2 vinyl-pyridine, 4-ethyl-2-vinyl-pyridine and 2-butyl-1-5-vinyl-pyridine and the like.
N-vinyl lactams are also suitable, e.g. N-vinyl pyrrolidones or N-vinyl piperidones.
The vinyl pyrrolidones are preferred and are exemplified by N-vinyl pyrrolidone, ~-(1-methylvinyl) pyrrolidone, N-vinyl-5-methyl pyrrolidone, N-vinyl-3, 3-dimethylpyrrolidone, N-vinyl-5-ethyl pyrrolidone, etc.
Dihydrocarbyl dithiophosphate metal salts are frequently used as anti-wear agents and also provide antioxidant activity. The zinc salts are most commonly used in lubricating oil in amounts of 0.1 to 10, preferably 0.2 to 2 wt. %, based upon the total weight of the lubricating oil composition. They may be prepared in accordance with known techniques by first forming a Z~ 6~
-- ~6 --ditlliopho~phoric acid, uqually by raaction o~ an alcohol or ~ phenol ~ith P;!~5 and then neutralizing the dithiophosph~ric a~:id with a 8uit~ zinc co~pound.
~ ixturs~ o~ ~lcohol~ D~ay be used including ~ixture~ pri~ary an~ 3~condary alcohols, 3econdary g~neral~y for iD~parting l~prov~d anti-wear properti0s, with primary giving i~prov~sd th~r~l ~ta}Dility propertie~.
Nixtures o~ th~ two ~r~ particularly las~3ful. In g~neral, any ba~ic or n~utral zinc compound could be ~ d but the s:~xide~, hydroxid~a and carl: onat:es ar~ mo~t gen~rally ~mploy~d. Co~n~rcial additiv~ frecfu6~ntly con~ain an ~xc:ess o~ zim: du~ to u~e of an ~XceR~ o~ the b ~ zinc compound in tha ll~utraliza~ion re~ction.
Th~ nc d~hydrocarbyl dithiopho~phate3 us~ul in the present inven~ion are oil soluble salts o~ dihy~
drocarbyl e~t~r~ oP di~hiophosphoric acids and may b~
repre~ented by th~ ~ollowing for~ula:
_ S
RO ~ P -S t - zn (XVIII) ~ 2 wherein R and R' ~ay b~ th~ same or different hydrocarbyl radical~ containing ro~ 1 to 18, prefarably ~ to 12 carbon ato~ and including radical~ such a~ alkyl, alkenyl, aryl, aralk~l, alka~yl and cycloaliphatic radicals. Particularly preferred a~ ~ and R~ groups are alkyl groups of 2 to 8 carbon atom~. Thus, th~ radicals may, for example, be ~thylO n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, a~yl, n-h~xyl, i-hexyl, n-octyl, decyl, dodecyl, octadecyl, 2-~thylh~xyl, phenyl, butylphenyl, cyclohexyl, methylcyclopentyl, propenyl, butenyl etc. In order to obtain oil solub~lity, the total number o~ carbon atoms ~i.e. R and R~ in for~ula XVI~I) in th~ dithiophosphoric acid will generally be about 5 or greater.

~o~ o The antioxidants useful in this invention includ~
oil soluble copper compounds. The copper may be blended into the oil as any suitable oil soluble copper compound.
By oil soluble we mean the compound is oil soluble under normal blending conditions in the oil or additive package.
The copper compound may be in the cuprous or cupric form.
The copper may be in the form of the copper dihydrocarbyl thio- or dithio-phosphates where:in copper may be substituted for zinc in the compounds and reactions described above although one mole of cuprous or cupric oxide may be reacted with one or two moles of the dithiophosphoric acid, respectively. Alternatively the copper may be added as the copper salt of a synthetic or-natural carboxylic acid. Examples include C10 to C18 fatty acids such as stearic or palmitic, but unsaturated acids such as oleic or branched carboxylic acids such as napthenic acids of molecular weight from 200 to 500 or synthetic carboxylic acids are preferred because of the improved handling and solubility properties of the resulting copper carboxylates. Also useful are oil soluble copper dithiocarbamates o~ the general formula (RR'NCSS)nCu, where n is 1 or 2 and R and R' are the same or different hydrocarbyl radicals containing from 1 to 18 and preferably 2 to 12 carbon atoms and including radicals such as alkyl, alkenyl, aryl, aralkyl, alkaryl and cycloaliphatic radicals. Particularly preferred as R and R' groups are alkyl groups of 2 to 8 carbon atoms. Thus, the radicals may, for example, be ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, amyl, n-hexyl, i-hexyl, n-heptyl, n-octyl, decyl, dodecyl, octadecyl, 2-ethylhexyl, phenyl, butylphenyl, cyclohexyl, methylcyclopentyl, propenyl, butenyl, etc. In order to obtain oil solubility, the total number of carbon atoms (i.e, R and R') will generally be about 5 or greater. Copper sulphonates, phenates, and acetylacetonates may also be used.

z~

- ~8 -Exemplary of useful copper cQmpounds are copper (CuI and/or CuII) salts of alkenyl succinic acids or anhydrides. The salts themselves may be basic, neutral or acidic. They may be formed by reacting (a~ any of the materials discussed above in the Ashless Dispersant section, which have at least one ~re~ carboxylic acid (or anhydride) group with (b) a reactive metal compound.
Suitable acid (or anhydride) reactive metal compounds include those such as cupric or cuprous hydroxides, oxides, acetates, borates, and carbonates or basic copper carbonate.
Examples of the metal salts of this invention are Cu salts of polyisobutenyl succinic anhydride (hereinafter referre~ to as Cu-PIBSA), and Cu salts o~ polyisobutanyl succinic acid. Preferably, the selected metal employed is its divalent form, e.g., Cu+2. The preferred substrates are polyalkenyl succinic acids in which the alkenyl group has a molecular weight greater than about 700. The alkenyl group desirably has a Mn from about 900 to 1400, and up to 2500, with a Mn of about 950 being most preferred.
Especially preferred, of those listed above in the section on Dispersants, is polyisobutylene succinic acid ~PIBSA).
These materials may desirably be dissolved in a solvent, such as a mineral oil, and heated in the presence of a water solution (or slurry) of the metal bearing material.
Heating may take place between 700 and about 200~C.
Temperatures of 110 to 140C are entirely adequate. It may be necessary, depending upon the salt produced, not to allow the reaction to remain at a temperature above about 140C for an extended period of time, e.g., longer than 5 hours, or decomposition of the salt may occur.
The copper antioxidants ~e.g., Cu-PIBSA, Cu-oleate, or mixtures thereof) will be generally employed in an amount of from about 50-500 ppm by weight of the metal, in the final lubricating or fuel composition.

; :00~4~

The copper antioxidants used in this invention are inexpensive and are effective at low concentrations and therefore do not add substantially to the cost of the product. The results obtained are frec~ently better than those obtained with previously used antioxidants, which are expensive and used in higher concent:rations. In the amounts employed, the copper compounds do not interfere with the performance of other components of the lubricating composition, in many instances, completely satisfactory results are obtained when the copper compound is the sole antioxidant in addition to the ZDDP. The copper compounds can be utilized to replace part or all of the need for supplementary antioxidants. Thus, for particularly severe conditions it may be desirable to include a supplementary, conventional antioxidant. However, the amounts of supplementary antioxidant required are small, far less than the amount required in the absence of the copper compound.
While any effective amount of the copper antioxidant can be incorporated into the lubricating oil composition, it is contemplated that such effective amounts be sufficient to provide said lube oil composition with an amount of the copper antioxidant of from about 5 to 500 (more preferably 10 to 200, still more preferably 10 to 180, and most preferably 20 to 130 (e.g., 90 to 120)) part per million of added copper based on the weight of the lubricating oil composition. Of course, the preferred amount may depend amongst other factors on the quality of the basestock lubricating oil.
Corrosion inhibitors, also known as anti-corrosive agents, reduce the degradation of the metallic parts contacted by the lubricating oil compositionO Illustrative of corrosion inhibitors are phosphosulfurized hydrocarbons and the products obtained by reaction of a phosphosul-furized hydrocarbon with an alkaline earth metal oxide or hydroxide, preferably in the presence of an alkylated phenol or of an alkylphenol thioester, and also preferably in the presenre of carbon dioxide. Phosphosulfurized hydrocarbons are prepared by reacting a suitable hydrocarbon such as a terpene, a heavy petroleum fraction of a C2 to C6 olefin polymer such as polyisobutylene, with from 5 to 30 weight percent of a sulfide of phosphorus for 1/2 to 15 hours, at a temperature in the range of 150 to 600Fo Neutralization of the phosphosulfurized hydrocarbon may be effected in the manner taught in U.S.
Patent No. 1,969,324~
Oxidation inhibitors reduce the tendency of mineral oils to deteriorate in sexvice which deterioration can be evidenced by the products of oxidation such as sludge and varnish like deposits on the metal surfaces and by viscosity growth. Such oxidation inhibitors include alkaline earth metal salts of alkylphenolthioesters having preferably C5 to Cl2 alkyl side chain~, calcium nonylphenol sulIide, barium t-octylphenyl sulfide, dioctylphenylamine, phenylalphanaphthylamine, phosphosulfuriæed or sulfurized hydrocarbons, etc.
Friction modifiers serve to impart: the proper friction characteristics to lubricating oil compositions suc:h as automatic transmission fluids.
Representative examples of suitable friction modifiers are found in U.S. Patent No. 3,933,659 which discloses fatty acid esters and amides; U.S. Patent No.
4,176,074 which describes molybdenum complexes of polyiso-butenyl succinic anhydride-amino alkanols; U.S. Patent No.
4,105,571 which discloses glycerol esters of dimerized fatty acids; U.S. Patent No. 3,779,928 which discloses alkane phosphonic acid salts; U.S. Patent No. 3,778,375 which discloses reaction products of a phosphonate with an oleamide; U.S. Patent No. 3,852,205 which discloses S-carboxy-alkylene hydrocarbyl succinimide, S-carboxy-alkylene hydrocarbyl succinamic acid and mixtures thereof;

20~):1461) U.S. Patent No. 3,879,306 which discloses N-(hydroxy-alkyl) alkenyl-succinamic acids or succinimides; U.S.
Patent No. 3,932,290 which discloses reaction products o~
di-(lower alkyl~ phosphites and epoxides; and U.S. Patent No. 4,028,258 which discloses the alkylene oxide adduct of phosphosulfurized N-(hydroxyalkyl) alkenyl succinimides.
The disclosures o~ the above references are herein incorporated by reference. The most pre~erred friction modi~iers are glycerol mono and dioleates, and succinate esters, or metal salts thereo~, of hydrocarbyl substituted succinic acids or anhydrides and thiobis alkanols such as described in U.S. Patent No. 4,344,853.
Pour point depressants lower the temperature at which the fluid will flow or can be poured. Such depres-sants are well known. Typical o~ those additLves which usefully optimize the low temperature fluidity of the ~luid are C8-C18 dialkylfumarate vinyl acetate copolymers, polymethacrylates, and wax naphthalene.
Foam control can be provided by an antifoamant of the polysiloxane type, e.g. silicone oil and polydimethyl siloxane.
Organic, oil-soluble compounds useful as rust inhibitors in this invention comprise nonionic surfactants such as polyoxyalkylene polyols and esters thereof, and anionic surfactants such as salts of alkyl sulfonic acids.
Such anti-rust compounds are known and can be made by conventional means. Nonionic surfactants, useful as anti-rust additives in the oleaginous compositions of this invention, usually owe their surfactant properties to a number of weak stabilizing groups such as ether linkages.
Nonlonic anti-rust agents containing ether linkages can be made by alkoxylating organic substrates containing active hydrogens with an excess of the lower alkylene oxides (such as ethylene and propylene oxides) until the desired number of alkoxy groups have been placed in the molecule.

~0~ 6~ ~

The preferred rust inhibitors are polyoxyalkylene polyols and derivatives thereof. This class of materials are commercially available from various sources: Pluronic Polyols from Wyandotte Chemicals Corporation; Polyglycol 112-2~ a liquid triol derived from ethylene oxide and propylene oxide available from Dow Chemical Co.; and Tergitol, dodecylphenyl or monophenyl polyethylene glycol athers, and Ucon, polyalkylene glycols and derivatives, both available from Union Carbide Corp. These are but a few of the commercial products suitable as rust inhibitors in the improvsd composition of the present invention.
In addition to the polyols per se, the esters thereof obtained by reacting the polyols with various-carboylic acids are also suitable~ Acids useful in preparing these esters are lauric acid, stearic acid, succinic acid, and alkyl- or alkenyl-substituted succinic acids wherein the alkyl-or alkenyl group contains up to about twenty carbon atoms.
The pre~erred polyols are prepared as block polymers. Thus, a hydroxy-substituted compound, R-(OH)n (wherein n is 1 to 6, and R is the residue of a mono- or polyhydric alcohol, phenol, naphthol, etc~) is reacted with propylene oxide to form a hydrophobic base. This base is then reacted with ethylene oxide to provide a hydrophylic portion resulting in a molecule having both hydrophobic and hydrophylic portions. The relative sizes of these portions can be adjusted by regulating the ratio of reactants, time of reaction, etc., as is obvious to those skilled in the art. Thus it is within the skill of the art to prepare polyols whose molecules are characterized by hydrophobic and hydrophylic moieties which are present in a ratio rendering rust inhibitors suitable for use in any lubricant composition regardless of differences in the base oils and the presence of other additives.

If more oil-solubility is needed in a given lubricating composition, the hydrophobic portion can be increased and/or the hydrophylic portion decreased. If greater oil-in-water emulsion breaking ability i5 required, the hydrophylic and/or hydrophobic portions can be ad~ustedto accomplish this.
Compounds illustrative of R-(OE~)n include alkylene polyols such as the alkylene glycols, alkylene triols, alXylene tetrols, etc., such as ethylene glycol, propylene glycol, glyceroll pentaerythritol~ sorbitol, mannitol, and the like. Aromatic hydroxy compounds such as alkylated mono- and polyhydric phenols and naphthols can also be used, e.g., heptylphenol, dodecylphenol, etc.
Other suitable demulsifiers include the esters disclosed in U.S. Patents 3,098,827 and 2,674,619.
The liquid polyols available from Wyandotte Chemical Co. under the name Pluronic Polyols and other similar polyols are particularly well suited as rust inhibitors. These Pluronic Polyols correspond to the formula:
(CH2CH2O)x(~CHCH2O)y(CH2CH2O)~H (XIX) wherein x,y, and z are integers greater than 1 such that the -CH2CH2O - groups comprise from about 10% to about 40% by weight of the total molecular weight of the glycol, the average molecule weight of said glycol being from about 1000 to about 5000. These products are prepared by first condensing propylene oxide with propylene glycol to produce the hydrophobic base Ho(-lH-cH2-o3y-H (XX) This condensation product is then treated with ethylene oxide to add hydrophylic portions to both ends of the molecule. For best results, the ethylene oxide units should comprise from about 10 to about 40% by weight of the molecule. Those products wherein the molecular weight of the polyol is from about 2500 to 4500 and the ethylene oxid~ units comprise from about 10% to about 15% by weight of the molecule are particularly suitable. The polyols having a molecular weight of about 4000 with about 10%
attributable to (CH2CH2O) units are particularly good.
Also useful are alkoxylated fatty amine~;, amid~, alcohols and the like, including such alkoxylated ~atty acid derivatives treated with ~9 to C16 alkyl~substituted phenol 5 ~ such as the mono- and di-heptyl, octyl, nonyl, decyl , undecyl, dodecyl and tridecyl phenols~, as described in U.S. Patent 3,849,501, which is also hereby incorporated by reference in its entirety~
These compositions of our invention may also contain other additives such as those previously described, and other metal containing additives, for example, those containing barium and sodium.
The lubricating composition of the present invention may also include copper lead bearing corrosion inhibitors. Typically such compounds are the thiadiazole polysulphides containing from 5 to 50 carbon atoms, their d2rivatives and polymers thereof. Preferred materials are the derivatives of 1,3,4 thiadiazoles such as those described in U.S. Patents 2,719,125; 2,719,126; and 3,087,932; especially preferred is the compound 2,5 bis ~t-octadithio)-1,3,4 thiadiazole commercially availabla as Amoco 150. Other similar materials also suitable are described in U.S. Patents 3,821,23~; 3,904,537; 4,097,387;
4,107,059; 4,136,043; 4,188,299; and 4,193,882.
Other suitable additives are the thio and polythio sulphenamides of thiadiazoles such as those described in U.R. Patent 5pecification 1,560,830. When these compounds are included in the lubricating composition, we prefer that they be present in an amount from 0.01 to 10, preferably 0.1 to 5.0 weight percent based on the weight of the composition.

2~ 61~

Some of these numerous additives can provide a multiplicity of effects, e.g. a dispersant-oxidation inhibitor. This approach is well known and need not be further elaborated herein.
Compositions when containing these conventional additives are typically blended into the base oil in amounts effective to provide their normal attendant function. Representative ef~ective amounts of such additives (as the respective active ingredients) in the fully formulated oil are illustrated as follows:
Wt.% A.I. Wt.% A.I.
Com~ositions (Preferred) (Broadl Viscosity Modifier .01-4 0.01-12 Detergents 0.01-3 0.01-20 Corrosion Inhibitor 0.01-1.5 .01-5 Oxidation Inhibitor 0.01-1.5 .01-5 Dispersant 0.1-8 .1-20 Pour Point Depressant 0.01-1.5 .01-5 Anti Foaming Agents 0.001-0.15 .001-3 Anti-Wear Agents 0.001-1.5 .001-5 Friction Modifiers 0.01-1.5 .01-~
Mineral Oil Base Balance Balance When other additives are employed, it may bs desirable, although not necessary, to prepare additiv~
concentrates comprising concentrated solutions or disper-sions of the novel dispersants of this invention (in concentrate amounts hereinabove de~cribed), together with one or more of said other additives (said concentrate when constituting an additive mixture bPing referred to herein as an additive-package) whereby several additives can be added simultaneously to the base oil to form the lubricating oil composition. Dissolution of the additive concentrate into the lubricating oil may be facilitated by solvents and by mixing accompanied with mild heating, but this is not essential. The conc~ntrate or additive package %~ o will typically be formulated to contain the additives in proper amounts to provide the desired concentration in the final formulation when the additive-package is combined with a predetermined amount of base lubricant. Thus, the dispersants of the present invention can be added to small amounts of base oil or other compatible solvents along w.ith other desirable additives to form additive-packages containing active ingredients in collective amounts of typically from about 2.5 to about 90%, and preferably from about 15 to about 75%, and most preferably from about 25 to about 60% by weight additives in the appropriate proportions with the remainder being base oil.
The final formulations may employ typically about 10 wt. % of the additive-package with the remainder being base oil.
All of said weight percents expressed herein ~unless otherwise indicated) are based on active ingredient (A.I.) content of the additive, and/or upon the total weight of any additive-package, or formulation which will be the sum of the A.I. weight of each additi~e plus the weight of total oil or diluent.
This invention will be further understood by reference to the following examples, wherein all parts are parts by weight, unless otherwise noted and which include preferred embodiments of the invention.

6fD

EXAMPLE 1 - Pre~aration of Pol~isobutylene Propionic Acid ~PIBA) A polyisobutenyl propionic acid having a functionality of 1.09 is prepared by heating a mixture of 2, oon parts of polyisobutylane (2225 ~n; ~/~n 2.5) while bubbling 120 g of chlorine gas for a period of 10 hours at 130-140C. The chlorinated PIB analyzed for 2.8 wt.% chlorine. To the chlorinated PIB at 120~C, 149.6 g of acrylic acid are added and the reaction mixture is slowly heated to 230C at a rate o~ 15-20C/hour while under nitrogen blanket. Thereafter the reaction product is soaked at 230C for two hours and nitrogen stripped at.
230C for one hour. The filtered product analyzed for a total acid number (ASTM D-94) of 26.2 and 70.3 % active ingredient; the remaining being primarily unfunctionalized PIB.

Preparation of DisPersants A series of dispersants are prepared by reacting PIBA, prepared as in Example 1 above, with one of two amido-amines or with a polyalkylene polyamine, tetraethylene pentamine (TEPA). Amido-amine I is prepared by reacting TEPA with methyl acrylate at a 1.5:1 TEPA:methacrylate molar ratio, to form a product mixture having 30.1 wt.% total N and 8.2 wt.% primary N.
Amido-amine II is prepared similarly, except that amine comprises a commercial polyethylenepolyamine (PAM) containing an average of 12 carbon atoms and 6 nitrogen atoms per molecule, and except a 1.5:1 PAM:methyl acrylate molar ratio is employed, to form a product mixture containing 28.3 wt.~ total N and 6.1 wt.% primary N.

2~ 61~

The amination reactions are carried out as follows:

A mixture of 107 parts by weight of the PIB~
product formed in Example 1 and 54 parts of S150 mineral oil is heated to 150C. under N2. rrhen 11.4 parts of amido-amine I are added dropwise while stirring and light nitrogen sparging. The mixture is nitrogen stripped at 160C for 3 hours and then filtered. The oil solution is found to have the nitrogen content of 1~85 ~t%.

A mixture of 107 parts by weight of th~e PIBA
product formed in Example 1 and 53 parts of S150 mineral oil is heated to 150C. under N2. Then 9.5 parts of amido-amlne I are added dropwise while stirrlng and light nitrogen sparging. The mixture is nitrogen stripped at 160C for 3 hour~ and then filtered. The oil solution is found to have the nitrogen content of 1.61 wt%.

A mixture of 107 parts by weight of the PIBA
product formed in Example 1 and 47.3 parts of S150 mineral oil is heated to 150C. under N2. Then 15.1 parts of amido-amine II are added dropwise while stirring and light nitrogen sparging~ The mixture i~ nitrogen stripped at 160C for 3 hours and then filtered. The oil solution is found to have the nitrogen content of 2.01 wt%.

o A mixture of 107 parts by weight of the PIBA
product formed in Example 1 and 55 parts of S150 mineral oil is heated to 150C. under N2~ Then 12.5 parts of amido-amine II are added dropwise while stirring and light nitrogen sparging. The mixtura i5 nitrogen stripped at 160C for 3 hours and then ~iltered. The oil solution is found to ha~e the nitrogen content of 1.91 wt%.

COMPAR~TIVE EXAMPLE A
A mixture of 107 parts by weight of the PIBA
product formed in Example 1 and 47 parts of S150 mineral oil is haated to 160C. under N2. Then 4.73 parts of tetraethylenepentaamine are ad~ed dropwisP whil~ stirring and light nitrogen sparging. The mixture is nitrogen stripped at 150C for 3 hours and then filtered. The oil solution is found to have the nitrogen content of 1.03 wt~.

COMPARATIVE EXAMPLE B
A mixture of 107 parts by weight of th~ PI~A
product formed in Example 1 and 46 parts of S150 mineral oil is heated to 160C. under N2. Then 3.9 parts of tetrae~hylenepentaamine are added dropwise while stirring and light nitrogen sparging. The mixture is nitrogen stripped at 150C for 3 hours and then filtered. The oil solution is found to have the nitrogen content of 0.81 wt%.

COMPARATIVE EXAMPLE C
A mixture of 107 parts by weight of the PIBA
product formed in Example 1 and 47.3 parts of S150 mineral oil is heated to 160C. under N2. Then 4.8 parts of LA~

-- ~o --PAM ara added dr~pwise while stirring and light nitrogen sparging. The mixture is nitrogen stripped at 160~C for 3 hours and then filtered. Tha oil solution is found to have ~he nitrogen ontent of 0.98 wt%.

COMPARATIVE EXAMPLE D
A mixture of 107 part~ by weight of the PIBA
product formed in Example 1 and 46.5 parts of S150 mineral oil is heated to 160C. under N2. Then 4.0 parts of PAM
are added dropwise while stirring and light nitrogen sparging. The mixture is nitrogen stripped at 150C for 3 hours and then filtered. The oil solution is found to have the nitrogen content of 0.81 wt~.

The product dispersants thereby obtained are summarized as set forth in Table I below.
The following lubricating oil compositions are prepared using the dispersants o~ Examples 2-5, and Comparative Examples A, B, C and D. The resulting compositions are then tested for sludge inhibition (via the SIB test) and varnish inhibition (via the VIB test), as described below.
The SIB test has been found, after a large number of evaluations, to be an excellent test for assessing the dispersing power of lubricating oil dispersant additives.
The medium chosen fox the SIB test is a used crankcase mineral lubricating oil composition having an original viscosity of about 325 SUS at 38C that had been used in a taxicab that is driven generally for short trips only, thereby causing a buildup of a high concentration of sludge precursors. The oil that is used contained only a refined base mineral lubricating oil, a viscosity index improver, a pour point depressant and zinc dialkyl-dithiophosphate anti-wear additive. The oil contained no ~00~46~ ~

sludge dispersant. A quantity of such used oil is acquired by draining and refilling the taxicab crankcase at 1000 2000 mile intervals.
The SIB test is conducted in the following mannar the aforesaid used crankcase oil, which is milky brown in color, is freed of sludge by cenkrifuging for one hour at about 39,00~ gravities (ys.). The resulting clear bright red supernatant oil is then decanted from the insoluble sludge particles thereby separated out. Hvwever, the supernatant oil still contains oil-soluble sludge precursors which on heating under the conditions employed by this test will tend to fo~m additional oil-insoluble deposit~ of sludge. The sludge inhibiting properties of the additives being tested are determined by adding to portions of the supernatant used oil, a small amount, such as 0.5, 1 or 2 weight percent, of the particular additive being tested. Ten grams of each blend being tested are placed in a stainless steel centriuge tube and are heated at 135C for 16 hours in the presence of air. Following the heating, the tube containing the oil being tested is cooled and then centrifuged for about 30 minutes at room temperature at about 39,000 gs. Any deposits of new sludge tat form in this step are separated from the oil by decanting the supernatant oil and then carefully washing the sludge deposits with 25 ml o~ heptane to remove all remaining oil from the sludge and further centrifuging.
The weight of the new solid sludge that has been formed in the test, in milligrams, is determined by drying the residue and weighing it. The results are reported as amount of precipitated sludge in comparison with the precipitated sludge of a blank not containing any additional additive, which blank is normalized to a rating of 10. The less new sludge precipitated in the presence of the additive, the lower the SIB value and the more 2~ 46~

effective is the additive as a sludge dispersant. In other words, if the additive gives half as much precipitated sludge as the blank, then it would be ratecl 5.0 since the blank will be normalized to 10.
The VIB test is used to determine varnish inhibition. Here, each test sample consisted of 10 grams of lubricating oil containing a small amount of the additive being tested. The test oil to which the additive is admixed is of the same type as used in the above-describad SIB test. Each ten gram sample is heat soaked overnight at about 140C and thereafter centrifuged to remove the sludge. The supernatant fluid of each sample is subjected to heat cycling from about 150C to room temperature over a period o~ 3.5 hours at a frequency of about 2 cycles per minute. During t~e heating phas~, gas which is a mixture of about 0.7 volume percent S02, 1.4 volume percent N0 and balance air is bubbled through the test samples. During the cooling phase, water vapor is bubbled through the test samples. At the end of the test period, which testing cycle can be repeated as necessary to determine the inhibiting effect of any additive, the wall surfaces of the test flasks in which the samples are contained are visually evaluated as to the varnish inhibition. The amount of varnish imposed on the walls is rated to values of ~rom 1 to 11 with the higher number being the greater amount of varnish, in comparison with a blank with no additive that is rated 11.
10.00 grams of SIB test oil are mixed with 0.05 grams of the products of the Examples as described in Table II and tested in the a~oredescri~ed SIB and VIB tests.
The test results are summarized below in Table II.

~:00~461~ `

TABLE II
ExamPle No. Amine $IR VIB
2 Amido-amine I 0.75 5 Compar.A TEPA 2.94 5 3 Amido~amine I 2.50 5 Compar.B TEPA 8.69 7 4 Amido-amine II 1.44 4 Compar.C PAM 6.00 7 Amido-amine II 2~19 5 Compar.D PAM 8.31 8 The above data show that the dispersants oE this invention, prepared from amido-amines, have excellent SIB/VIB performance and provide superior sludge and varnish inhibiting properties.

EXAMPLE 6. Preparation of Amido Amine.
To a stirred reaction vessel is added 1.5 moles of tetraethylenepentamine (TEPA) at room temperature, followed by 1 mole of ethyl acrylate, under a N2 blanket. The resulting exothermic reaction raised the reaction mass' temperature to about 50C. Then an infra-red analysis ~IR) is made of the reaction mass,which showed the disappearance of the double bond of the methyl acrylate, but revealed ester groups to be still present. A gas chromatographic analysis of the reaction mass is also then taken, which showed unreacted TEPA still present.
An esterification catalyst, s~annous octanoate, is then added (1 drop) to the reaction mass, and the temperature of the reaction vessel is increased to 130 to 135C with mild N2 sweeping. The by-product alcohol (methanol) is removed as a vapor from the reaction vessel 6~

with the sweep N2, and the prograss of the reaction is followed by IR until the ester ab~orption band disappeared.
~he reaction mass is stirred for additional 1 hour at 120 to 125C to ensure completion of the reaction. A total reaction time of 6 hours is used. The resulting product mixture containing the amido-amine is analyzed and i~ found to contain 4.8 milliequivalents of primary amine per gram of amido-amine and a nitrogen content of 30.1 wt%.

EXAMPLE 7.
The procedure of Example 6 is repeated except that the esterification catalyst comprised titanium tetrabutoxide, and similar results are obtained.
The principles, preferred embodiments, ancl modes of operation of the present invention have been described in the foregoing specification. The invention w~lich is intended to be protected herein, however, is not to be construed as limited to the particular orms disclosed, since these ~re to be regarded as illustrative rather than restrictive. Variations and changes may be made by those skilled in the art without departing from the spirit of the invention.

Claims (14)

1. An oil soluble dispersant mixture useful as an oil additive comprising an adduct of:
(A) a polymer-substituted C3 to C10 monounsaturated monocarboxylic acid producing material formed by reacting an olefin polymer of C2 to C10 monoolefin having a number average molecular weight of about 300 to 10,000 and a C3 to C10 monounsaturated acid material, said acid producing material having an average of at least about 0.5 monocarboxylic acid producing moieties, per molecule of said olefin polymer present in the reaction mixture used to form said acid producing material; and (B) an amido-amine or a thioamido-amine characterized by being a reaction product of at least a polyamine and an alpha, beta unsaturated compound of the formula:

wherein X is sulfur or oxygen, Y is -OR4, -SR4, or -NR4(R5) and R1, R2, R3, R4 and R5 are the same or different and are hydrogen or substituted or unsubstituted hydrocarbyl.
2. The dispersant mixture according to claim 1, wherein said polyamine comprises amines containing from 2 to 60 carbon atoms and from 1 to 12 nitrogen atoms per molecule.
3. The dispersant mixture according to claim 2, wherein said polyamine comprises a polyalkylenepolyamine wherein said alkylene groups each contain 2 to 6 carbons and said polyalkylenepolyamine contains from 5 to about 9 nitrogen atoms per molecule.
4. The dispersant mixture according to claim 1, wherein said hydrocarbyl substituted C3 to C10 monounsaturated monocarboxylic acid producing material comprises polyisobutylene of about 900 to 5000 number average molecular weight substituted with propionic acid moieties, said polyamine comprises polyalkylenepolyamine wherein said alkylene groups contain 2 to 6 carbons and said polyalkylenepolyamine contains 5 to 9 nitrogen atoms per molecule, and said alpha, beta-unsaturated compound comprises at least one member selected from the group consisting of methyl acrylate, ethyl acrylate) propyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, and butyl methacrylate.
5. The dispersant mixture of claim 4, wherein the ratio of acid producing moieties per molecule of olefin polymer in said dispersant mixture is from about 0.7 to 1.8.
6. The dispersant mixture of claim 5, wherein said number average molecular weight of said olefin polymer is from about 1300 to 4,000.
7. The dispersant mixture of claim 6, wherein said monounsaturated acid material comprises acrylic acid.
8. The dispersant mixture according to claims 1 or 4 wherein said polyamine contains an average of at least 2 primary nitrogen atoms per molecule, said X group is oxygen and said polyamine and said amido-amine are contacted in an amount of from about 3 to 5 equivalents of said polyamine (based on said primary amine content) per mole of said alpha, beta unsaturated compound.
9. The dispersant mixture according to claim 8 wherein said amido-amine contains an average of from 1 to 3 amido groups per molecule of said amido-amine.
10. The dispersant mixture according to claims 1 or 4, wherein said dispersant mixture is borated, and contains about 0,05 to 2.0 weight percent boron.
11. A process for producing a dispersant mixture useful as an oil additive which comprises:

(a) providing a hydrocarbyl substituted C3 to C10 monoolefin having a number average molecular weight of about 700 to 10,000 and a C3 to C10 monounsaturated acid material, said acid producing material having an average of at least about 0.5 monocarboxylic acid producing moieties, per molecule of said olefin polymer present in the reaction mixture used to form said acid producing material;
(b) providing an amido-amine compound having at least one primary amino group prepared by reacting at least one polyamine with at least one alpha, beta-unsaturated compound of the formula:

wherein X is sulfur or oxygen, Y is -OR4, -SR4, or -NR4(R5), and R1, R2, R3, R4 and R5 are the same or different and are hydrogen or substituted or unsubstituted hydrocarbyl: and (c) contacting the said acid producing material with said amido-amine compound under conditions sufficient to effect reaction of at least a portion of the primary amino groups on said amido-amine compound with at least a portion of the acid producing groups in said acid producing material, to form said dispersant mixture.
12. A concentrate containing from about 3 to 45 wt. % of the dispersant mixture of claim 1.
13. A concentrate containing from about 10 to 35 wt. % of the dispersant mixture of claim 4.
14. A lubricating oil composition containing from about 0.1 to 20 wt. % of the dispersant mixture prepared according to claim 11.
CA002001460A 1988-11-10 1989-10-25 Amide dispersant additives derived from amido-amines Abandoned CA2001460A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US269,461 1988-11-10
US07/269,461 US4956107A (en) 1987-11-30 1988-11-10 Amide dispersant additives derived from amino-amines

Publications (1)

Publication Number Publication Date
CA2001460A1 true CA2001460A1 (en) 1990-05-10

Family

ID=23027352

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002001460A Abandoned CA2001460A1 (en) 1988-11-10 1989-10-25 Amide dispersant additives derived from amido-amines

Country Status (5)

Country Link
US (1) US4956107A (en)
EP (1) EP0368548B1 (en)
JP (1) JPH02191537A (en)
CA (1) CA2001460A1 (en)
DE (1) DE68903742T2 (en)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5238466A (en) * 1986-10-07 1993-08-24 Exxon Chemical Patents Inc. Fuel additives derived from amido-amines
US5759967A (en) * 1988-08-01 1998-06-02 Exxon Chemical Patents Inc Ethylene α-olefin/diene interpolymer-substituted carboxylic acid dispersant additives
US5350532A (en) * 1988-08-01 1994-09-27 Exxon Chemical Patents Inc. Borated ethylene alpha-olefin polymer substituted mono- and dicarboxylic acid dispersant additives
US5266223A (en) * 1988-08-01 1993-11-30 Exxon Chemical Patents Inc. Ethylene alpha-olefin polymer substituted mono-and dicarboxylic acid dispersant additives
CA2034759C (en) * 1988-08-01 2003-06-03 Won R. Song Novel ethylene alpha-olefin polymer substituted mono- and dicarboxylic acid dispersant additives
EP0394422B1 (en) * 1988-10-24 1994-01-12 Exxon Chemical Patents Inc. Amide containing friction modifier for use in power transmission fluids
CA2015550A1 (en) * 1989-05-30 1990-11-30 Exxon Chemical Patents Inc. High molecular weight dispersant additives
US5229020A (en) * 1989-05-30 1993-07-20 Exxon Chemical Patents Inc. Branched amido-amine dispersant additives
US5230834A (en) * 1989-05-30 1993-07-27 Exxon Chemical Patents Inc. Viscosity stable multifunctional viscosity index modifier additives derived from amido amines
US5118433A (en) * 1989-10-12 1992-06-02 Exxon Chemical Patents Inc. Multifunctional viscosity index improver derived from amido-amine and degraded ethylene copolymer exhibiting improved low temperature viscometric properties
US5385695A (en) * 1990-05-15 1995-01-31 Cohen; Elliot Demulsifier methods employing b-iminodipropionate
US5110503A (en) * 1990-05-15 1992-05-05 Elliot Cohen Demulsifying
US5213698A (en) * 1990-07-03 1993-05-25 Exxon Chemical Patents Inc. Amido-amine ashless dispersants
US5197997A (en) * 1990-11-29 1993-03-30 The Lubrizol Corporation Composition for use in diesel powered vehicles
US5646332A (en) 1992-12-17 1997-07-08 Exxon Chemical Patents Inc. Batch Koch carbonylation process
US5444135A (en) * 1992-12-17 1995-08-22 Exxon Chemical Patents Inc. Direct synthesis by living cationic polymerization of nitrogen-containing polymers
IL107810A0 (en) 1992-12-17 1994-02-27 Exxon Chemical Patents Inc Functionalized polymers and processes for the preparation thereof
US5650536A (en) 1992-12-17 1997-07-22 Exxon Chemical Patents Inc. Continuous process for production of functionalized olefins
IL107927A0 (en) 1992-12-17 1994-04-12 Exxon Chemical Patents Inc Oil soluble ethylene/1-butene copolymers and lubricating oils containing the same
US5643859A (en) 1992-12-17 1997-07-01 Exxon Chemical Patents Inc. Derivatives of polyamines with one primary amine and secondary of tertiary amines
US5554310A (en) 1992-12-17 1996-09-10 Exxon Chemical Patents Inc. Trisubstituted unsaturated polymers
US5393441A (en) * 1993-11-23 1995-02-28 Exxon Research And Engineering Company Two-cycle oil additive
US5767046A (en) 1994-06-17 1998-06-16 Exxon Chemical Company Functionalized additives useful in two-cycle engines
US5639718A (en) * 1994-11-23 1997-06-17 Exxon Chemical Patents Inc. Multifunctional viscosity modifiers for lubricating oil compositions with improved dispersancy and antioxidancy derived from adducts of quinone
US5588972A (en) * 1994-11-23 1996-12-31 Exxon Chemical Patents Inc. Adducts of quinone compounds and amine-containing polymers for use in lubricating oils and in fuels
US5652202A (en) * 1995-08-15 1997-07-29 Exxon Chemical Patents Inc. Lubricating oil compositions
US5558802A (en) * 1995-09-14 1996-09-24 Exxon Chemical Patents Inc Multigrade crankcase lubricants with low temperature pumpability and low volatility
US5672573A (en) * 1996-04-10 1997-09-30 Exxon Chemical Patents Inc. Amicloamine derivatives of carboxylic and thiocarboxylic-functionalized hydrocarbon polymers
US6855674B2 (en) * 2000-12-22 2005-02-15 Infineum International Ltd. Hydroxy aromatic Mannich base condensation products and the use thereof as soot dispersants in lubricating oil compositions
JP4683928B2 (en) * 2002-12-18 2011-05-18 株式会社ブリヂストン Clay exfoliation method, composition obtained from the method, and modified rubber containing the composition
US6933351B2 (en) * 2003-06-20 2005-08-23 Infineum International Limited Process for forming polyalkenyl acylating agents
US7339007B2 (en) * 2003-06-20 2008-03-04 Infineum International Limited Low sediment process for thermally reacting highly reactive polymers and enophiles
US7485603B2 (en) 2005-02-18 2009-02-03 Infineum International Limited Soot dispersants and lubricating oil compositions containing same
US7601772B2 (en) 2005-12-20 2009-10-13 Bridgestone Corporation Nano-composite and method thereof
US20070299775A1 (en) * 2006-06-02 2007-12-27 Kenneth Algiene Systems and methods for associating a second source of funds with an electronic check transaction
US7935184B2 (en) 2006-06-19 2011-05-03 Bridgestone Corporation Method of preparing imidazolium surfactants
US8513169B2 (en) 2006-07-18 2013-08-20 Infineum International Limited Lubricating oil compositions
US20080182768A1 (en) * 2007-01-31 2008-07-31 Devlin Cathy C Lubricant composition for bio-diesel fuel engine applications
US7786057B2 (en) 2007-02-08 2010-08-31 Infineum International Limited Soot dispersants and lubricating oil compositions containing same
EP2155657B1 (en) 2007-06-08 2017-05-03 Infineum International Limited Additives and lubricating oil compositions containing same
EP2075264B1 (en) 2007-12-26 2016-09-28 Infineum International Limited Method of forming polyalkene substituted carboxylic acid compositions
US20090186784A1 (en) 2008-01-22 2009-07-23 Diggs Nancy Z Lubricating Oil Composition
US20090203559A1 (en) 2008-02-08 2009-08-13 Bera Tushar Kanti Engine Lubrication
US9181511B2 (en) 2009-04-01 2015-11-10 Infineum International Limited Lubricating oil composition
EP2290041B1 (en) 2009-08-24 2012-08-29 Infineum International Limited Use of an ashless borated dispersant
AU2011323840B2 (en) * 2010-10-25 2015-09-24 Stepan Company Fatty amides and derivatives from natural oil metathesis
US11034912B2 (en) 2014-04-29 2021-06-15 Infineum International Limited Lubricating oil compositions
EP3369802B1 (en) 2017-03-01 2019-07-10 Infineum International Limited Improvements in and relating to lubricating compositions
BR112019022507B1 (en) 2017-04-27 2022-12-13 Shell Internationale Research Maatschappij B.V. USE OF AN ASHLESS DISPERSANT CONTAINING NITROGEN IN A LUBRICANT COMPOSITION
US20190024007A1 (en) 2017-07-24 2019-01-24 Infineum International Limited Motorcycle Lubricant
EP3461877B1 (en) 2017-09-27 2019-09-11 Infineum International Limited Improvements in and relating to lubricating compositions08877119.1
US10731103B2 (en) 2017-12-11 2020-08-04 Infineum International Limited Low ash and ash-free acid neutralizing compositions and lubricating oil compositions containing same
EP3546549B1 (en) 2018-03-27 2022-11-09 Infineum International Limited Lubricating oil composition
EP4101874A1 (en) * 2021-06-08 2022-12-14 Evonik Operations GmbH Polyamidoamine dispersants
EP3943526B1 (en) * 2020-07-23 2024-01-10 Evonik Operations GmbH Polyamidoamine dispersants

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2921085A (en) * 1952-11-01 1960-01-12 Lever Brothers Ltd Preparation of beta-aminopropionamides
US3337609A (en) * 1960-10-14 1967-08-22 Union Carbide Corp Adducts of hydroxyalkyl alkylene polyamines and acrylates
US3247163A (en) * 1960-10-14 1966-04-19 Union Carbide Corp Curable compositions of a polyepoxide and a reaction product of an amine and an acrylate
GB1075121A (en) * 1964-01-13 1967-07-12 Exxon Research Engineering Co Carboxylie acids and dispersants derived therefrom
US3449362A (en) * 1965-03-08 1969-06-10 Standard Oil Co Alkenyl hydrocarbon substituted succinimides of polyamino ureas and their boron-containing derivatives
US3385791A (en) * 1965-03-22 1968-05-28 Standard Oil Co Lubricant oil composition
US3514250A (en) * 1965-03-25 1970-05-26 Petrolite Corp Process of inhibiting corrosion
US3445441A (en) * 1965-03-25 1969-05-20 Petrolite Corp Amino-amido polymers
US3509047A (en) * 1965-03-25 1970-04-28 Petrolite Corp Process of water clarification
US3340190A (en) * 1965-06-01 1967-09-05 Standard Oil Co Railway diesel oil
US3417140A (en) * 1965-10-20 1968-12-17 Celanese Coating Company Amido-amine compositions
US3528928A (en) * 1969-01-13 1970-09-15 Petrolite Corp Process of breaking oil-in-water emulsions
US3630902A (en) * 1969-07-23 1971-12-28 Chevron Res Lubricant additives derived from catalytically polymerized reaction products of succinimides and unsaturated monocarboxylic acids or anhydrides
US3873460A (en) * 1972-05-24 1975-03-25 Chevron Res Lubricating oil composition containing polyamine dispersants
US3897456A (en) * 1973-02-16 1975-07-29 Exxon Research Engineering Co Sludge inhibitor for hydrocarbon oils
US3903003A (en) * 1974-03-06 1975-09-02 Shell Oil Co Lubricating compositions containing an amido-amine reaction product of a terminally carboxylated isoprene polymer
US4159957A (en) * 1978-06-30 1979-07-03 Chevron Research Company Mannich base dispersant combination
US4493771A (en) * 1983-04-28 1985-01-15 The Dow Chemical Company Scale inhibiting with compounds containing quaternary ammonium and methylenephosphonic acid groups
US4459241A (en) * 1983-04-28 1984-07-10 The Dow Chemical Company Compounds containing quaternary ammonium and methylenephosphonic acid groups
US4547562A (en) * 1984-03-26 1985-10-15 Gus Nichols Solventless polymeric composition comprising non arylamine, polyacrylate and epoxide
US4675374A (en) * 1984-03-26 1987-06-23 Gus Nichols Solventless polymeric composition reaction product of (1) adduct of amine and acrylate with (2) polyacrylate
CA1262721A (en) * 1985-07-11 1989-11-07 Jacob Emert Oil soluble dispersant additives useful in oleaginous compositions
US4906392A (en) * 1986-04-18 1990-03-06 The Lubrizol Corporation Coupled polyamine lubricant additives derived from hydrocarbyl polynitriles and polyamines
US4713189A (en) * 1986-08-20 1987-12-15 Texaco, Inc. Precoupled mono-succinimide lubricating oil dispersants and viton seal additives
US4963275A (en) * 1986-10-07 1990-10-16 Exxon Chemical Patents Inc. Dispersant additives derived from lactone modified amido-amine adducts
US4857217A (en) * 1987-11-30 1989-08-15 Exxon Chemical Patents Inc. Dispersant additives derived from amido-amines

Also Published As

Publication number Publication date
DE68903742T2 (en) 1993-04-22
US4956107A (en) 1990-09-11
EP0368548A1 (en) 1990-05-16
JPH02191537A (en) 1990-07-27
EP0368548B1 (en) 1992-12-02
DE68903742D1 (en) 1993-01-14

Similar Documents

Publication Publication Date Title
CA2001460A1 (en) Amide dispersant additives derived from amido-amines
EP0336664B1 (en) Improved dispersant additives derived from amido-amine adducts
CA1329218C (en) Ethylene alpha-olefin copolymer substituted mannich base lubricant dispersant additives
EP0319229B1 (en) Improved dispersant additives derived from amido-amines
CA1337867C (en) Ethylene alpha-olefin polymer substituted mono- and dicarboxylic acid lubricant dispersant additives
CA2034717C (en) Derivatized ethylene alpha-olefin polymer useful as multifunctional viscosity index improver additive for oleaginous composition
US4938880A (en) Process for preparing stable oleaginous compositions
US5186851A (en) Ethylene alpha-olefin copolymer substituted mannich base lubricant dispersant additives
CA1337293C (en) Lubricant compositions for low-temperature internal combustion engines
EP0440507B1 (en) Ethylene alpha-olefin copolymer substituted Mannich base lubricant dispersant additives
US5277833A (en) Ethylene alpha-olefin polymer substituted mono-and dicarboxylic acid lubricant dispersant additives
US5128056A (en) Ethylene alpha-olefin copolymer substituted amino phenol mannich base lubricant dispersant additives
US5268115A (en) Alkyl-substituted hydroxyaromatic compounds useful as a multifunctional viscosity index improver
AU616684B2 (en) Improved lubricant compositions for internal combustion engines
US4954572A (en) Dispersant additives prepared from monoepoxy alcohols
US5057617A (en) Dispersant additives prepared from monoepoxy thiols
CA2034694C (en) Ethylene alpha-olefin polymer substituted mannich base useful as multifunctional viscosity index improver for oleaginous composition
EP0357217B1 (en) Ethylene alpha-olefin copolymer substituted amino phenol mannich base lubricant dispersant additives
US5205947A (en) Dispersant additives comprising amine adducts of dicarboxylic acid monoepoxy thiol reaction products

Legal Events

Date Code Title Description
FZDE Discontinued