CA2003538C - Collagen-polymer conjugates - Google Patents

Collagen-polymer conjugates

Info

Publication number
CA2003538C
CA2003538C CA002003538A CA2003538A CA2003538C CA 2003538 C CA2003538 C CA 2003538C CA 002003538 A CA002003538 A CA 002003538A CA 2003538 A CA2003538 A CA 2003538A CA 2003538 C CA2003538 C CA 2003538C
Authority
CA
Canada
Prior art keywords
collagen
composition
growth factor
polymer
hydrophilic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002003538A
Other languages
French (fr)
Other versions
CA2003538A1 (en
Inventor
Woonza Rhee
Donald G. Wallace
Alan S. Michaels
Ramon A. Burns, Jr.
Louis Fries
Frank Delustro
Hanne Bentz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Angiodevice International GmbH
Original Assignee
Cohesion Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cohesion Technologies Inc filed Critical Cohesion Technologies Inc
Publication of CA2003538A1 publication Critical patent/CA2003538A1/en
Application granted granted Critical
Publication of CA2003538C publication Critical patent/CA2003538C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof
    • C08L89/04Products derived from waste materials, e.g. horn, hoof or hair
    • C08L89/06Products derived from waste materials, e.g. horn, hoof or hair derived from leather or skin, e.g. gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/61Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule the organic macromolecular compound being a polysaccharide or a derivative thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/6435Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent the peptide or protein in the drug conjugate being a connective tissue peptide, e.g. collagen, fibronectin or gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/225Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L24/00Surgical adhesives or cements; Adhesives for colostomy devices
    • A61L24/04Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
    • A61L24/10Polypeptides; Proteins
    • A61L24/102Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0009Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials
    • A61L26/0028Polypeptides; Proteins; Degradation products thereof
    • A61L26/0033Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/24Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/26Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/04Macromolecular materials
    • A61L29/043Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/04Macromolecular materials
    • A61L29/044Proteins; Polypeptides; Degradation products thereof
    • A61L29/045Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/04Macromolecular materials
    • A61L29/06Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • A61L29/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/041Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/042Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/043Proteins; Polypeptides; Degradation products thereof
    • A61L31/044Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/12Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L31/125Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/495Transforming growth factor [TGF]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin, cold insoluble globulin [CIG]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0069Chondroitin-4-sulfate, i.e. chondroitin sulfate A; Dermatan sulfate, i.e. chondroitin sulfate B or beta-heparin; Chondroitin-6-sulfate, i.e. chondroitin sulfate C; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H1/00Macromolecular products derived from proteins
    • C08H1/06Macromolecular products derived from proteins derived from horn, hoofs, hair, skin or leather
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J189/00Adhesives based on proteins; Adhesives based on derivatives thereof
    • C09J189/04Products derived from waste materials, e.g. horn, hoof or hair
    • C09J189/06Products derived from waste materials, e.g. horn, hoof or hair derived from leather or skin
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • G02B1/043Contact lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00365Proteins; Polypeptides; Degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/252Polypeptides, proteins, e.g. glycoproteins, lipoproteins, cytokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/412Tissue-regenerating or healing or proliferative agents
    • A61L2300/414Growth factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/426Immunomodulating agents, i.e. cytokines, interleukins, interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/62Encapsulated active agents, e.g. emulsified droplets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/80Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special chemical form
    • A61L2300/802Additives, excipients, e.g. cyclodextrins, fatty acids, surfactants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/16Materials or treatment for tissue regeneration for reconstruction of eye parts, e.g. intraocular lens, cornea
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S525/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S525/937Utility as body contact e.g. implant, contact lens or I.U.D.

Abstract

Collagen, particularly atelopeptide collagen, exhibits improved handling characteristics when chemically conjugated and/or crosslinked with a synthetic hydrophilic polymer.

Description

~

~ 2003538 COLLAGEN-POLYMER CONJUGATES
Description Technical Field This invention relates to proteins and chemically-modified proteins. More specifically, this invention relates to collagen modified by conjugation with syn-thetic hydrophilic polymers.
Background of the Invention Collagen is the major protein component of bone, cartilage, skin, and connective tissue in animals.
Collagen in its native form is typically a rigid, rod-shaped molecule approximately 300 nm long and 1.5 nm in diameter. It is composed of three collagen polypeptides which form a tight triple helix. The collagen polypep-tides are characterized by a long midsection having the repeating sequence -Gly-X-Y-, where X and Y are often proline or hydroxyproline, bounded at each end by the "telopeptide" regions, which constitute less than about 5~ of the molecule. The telopeptide regions of the collagen chains are typically responsible for the cross-linking between chains, and for the immunogenicity of the protein. Collagen occurs in several "types", having dif-fering physical properties. The most abundant types are Types I-III.
Collagen is typically isolated from natural sources, such as bovine hide, cartilage, or bones. Bones are usually dried, defatted, crushed, and demineralized to extract collagen, while hide and cartilage are usually minced and digested with proteolytic enzymes (other than collagenase). As collagen is resistant to most proteo-lytic enzymes, this procedure conveniently serves to remove most of the contaminating protein found with collagen.
Collagen may be denatured by boiling, which pro-duces the familiar product gelatin.
Daniels et al, U.S. Pat. No. 3,949,073, disclosed the preparation of soluble collagen by dissolving tissue in aqueous acid, followed by enzymatic digestion. The resulting atelopeptide collagen is soluble, and substan-tially less immunogenic than unmodified collagen. It may be injected into suitable locations of a subject with a fibril-formation promoter (described as a polymerization promoter in the patent) to form fibrous collagen implants in situ, for augmenting hard or soft tissue. This material is now commercially available from Collagen Corporation (Palo Alto, CA) under the trademark Zyderm~
collagen implant.
Luck et al, U.S. Pat. No. 4,488,911, disclosed a method for preparing collagen in solution (CIS), wherein native collagen is extracted from animal tissue in dilute aqueous acid, followed by digestion with an enzyme such as pepsin, trypsin, or Pronase~. The enzyme digestion removes the telopeptide portions of the collagen mol-ecules, providing "atelopeptide" collagen in solution.
The atelopeptide CIS so produced is substantially non-immunogenic, and is also substantially non-cross-linked due to loss of the primary crosslinking regions. The CIS
may then be precipitated by dialysis in a moderate shear environment to produce collagen fibers which resemble native collagen fibers. The precipitated, reconstituted fibers may additionally be crosslinked using a chemical agent (for example aldehydes such as formaldehyde and glutaraldehyde), or using heat or radiation. The result-ing products are suitable for use in medical implants due to their biocompatability and reduced immunogenicity.
Wallace et al, U.S. Pat. No. 4,424,208, disclosed an improved collagen formulation suitable for use in soft tissue augmentation. Wallace's formulation comprises reconstituted fibrillar atelopeptide collagen (for example, Zyderm~ collagen) in combination with particu-late, crosslinked atelopeptide collagen dispersed in an aqueous medium. The addition of particulate crosslinked collagen improves the implant's persistence, or ability to resist shrinkage following implantation.
Smestad et al, U.S. Pat. No. 4,582,640, disclosed a glutaraldehyde crosslinked atelopeptide CIS preparation (GAX) suitable for use in medical implants. The collagen is crosslinked under conditions favoring intrafiber bond-ing rather than interfiber bonding, and provides a prod-uct with higher persistence than non-cross-linked atelo-peptide collagen, and is commercially available from Collagen Corporation under the trademark Zyplast~
Implant.
Nguyen et al, U.S. Pat. No. 4,642,117, disclosed a method for reducing the viscosity of atelopeptide CIS by mechanical shearing. Reconstituted collagen fibers are passed through a fine-mesh screen until viscosity is reduced to a practical level for injection.
Nathan et al, U.S. Pat. No. 4,563,350, disclosed osteoinductive bone repair compositions comprising an osteoinductive factor, at least 5~ nonreconstituted (afibrillar) collagen, and the remainder reconstituted collagen and/or mineral powder (e. g., hydroxyapatite).
CIS may be used for the nonreconstituted collagen, and Zyderm~ collagen implant (ZCI) is preferred for the reconstituted collagen component. The material is implanted in bone defects or fractures to speed ingrowth of osteoclasts and promote new bone growth.
Chu, U.S. Pat. No. 4,557,764, disclosed a "second nucleation" collagen precipitate which exhibits a desir-able malleability and putty-like consistency. Collagen is provided in solution (e.g., at 2-4 mg/mL), and a "first nucleation product" is precipitated by rapid titration and centrifugation. The remaining supernatant (containing the bulk of the original collagen) is then decanted and allowed to stand overnight. The precip-itated second nucleation product is collected by centri-fugation.
Chu, U.S. Pat. No. 4,689,399, disclosed a collagen membrane preparation, which is prepared by compressing and drying a collagen gel. The resulting product has high tensile strength.
J.A.M. Ramshaw et al, Anal Biochem (1984) 141:361 65, and PCT application W087/04078 disclosed the precip itation of bovine collagen (types I, II, and III) from aqueous PEG solutions, where there is no binding between collagen and PEG.
Werner, U.S. Pat. No. 4,357,274, disclosed a method for improving the durability of sclero protein (e. g., brain meninges) by soaking the degreased tissue in H202 or PEG for several hours prior to lyophilizing. The resulting modified whole tissue exhibits increased per-sistence.
Hiroyoshi, U.S. Pat. No. 4,678.468, disclosed the preparation of polysiloxane polymers having an inter-penetrating network of water-soluble polymer dispersed within. The water-soluble polymer may be a collagen derivative, and the polymer may additionally include heparin. The polymers are shaped into artificial blood vessel grafts, and are designed to prevent clotting.
Other patents disclose the use of collagen prepar-ations with bone fragments or minerals. For example, Miyata et al, U.S. Pat. No. 4,314,380 disclosed a bone implant prepared by baking animal bone segments, and soaking the baked segments in a solution of atelopeptide collagen. Deibig et al, U.S. Pat. No. 4,192,021 dis-closed an implant material which comprises powdered calcium phosphate in a pasty formulation with a bio-degradable polymer (which may be collagen). There are several references in the art to proteins modified by covalent conjugation to polymers, to alter the solubil-5 ity, antigenicity and biological clearance of the pro-tein. For example, U.S. Pat. No. 4,261,973 disclosed the conjugation of several allergans to PEG or PPG (poly-propylene glycol) to reduce the proteins' immunogenicity.
U.S. Pat. No. 4,301,144 disclosed the conjugation of hemoglobin with PEG and other polymers to increase the protein's oxygen carrying capability. EPO 98,110 dis-closed coupling an enzyme or interferon to a polyoxy-ethylene-polyoxypropylene (POE-POP) block polymer increases the protein's halflife in serum. U.S. Pat. No.
4,179,337 disclosed conjugating hydrophilic enzymes and insulin to PEG or PPG to reduce immunogenicity. Davis et al, Lancet (1981) x:281-83 disclosed the enzyme uricase modified by conjugation with PEG to provide uric acid metabolism in serum having a long halflife and low immunogenicity. Nishida et al, J Pharm Pharmacol (1984) 36:354-55 disclosed PEG-uricase conjugates administered orally to chickens, demonstrating decreased serum levels of uric acid. Inada et al, Biochem & Bio,~ys Res Comm (1984) 1:845-50 disclosed lipoprotein lipase conjuga-tion with PEG to render it soluble in organic solvents.
Takahashi et al, ~iochem & Bio.~hys Res Comm (1984) 1?~:261-65 disclosed HRP conjugated with PEG to render the enzyme soluble in benzene. Abuchowski et al, Cancer $iochem Biophys (1984) 7:175-86 disclosed that enzymes such as asparaginase, catalase, uricase, arginase, tryp-sin, superoxide dismutase, adenosine deaminase, phenyl-alanine ammonia-lyase, and the like, conjugated with PEG
exhibit longer half-lives in serum and decreased immuno-genicity. However, these references are essentially con-cerned with modifying the solubility and biological char-acteristics of proteins administered in low concentra-tions in aqueous solution.

6 r 2 ~0 353 M. Chvapil et al, J Biomed Mater Res (1969) 3_:315-32 disclosed a composition prepared from collagen sponge and a crosslinked ethylene glycol monomethacrylate-ethylene glycol dimethacrylate hydrogel. The collagen sponge was prepared by lyophilizing an aqueous mixture of bovine hide collagen and methylglyoxal (a tanning agent). The sponge-hydrogel composition was prepared by polymerizing ethylene glycol monomethacrylate and ethylene glycol dimethacrylate in the sponge.
Disclosure of the Invention We have discovered that formulations containing reconstituted fibrillar atelopeptide collagen in combination with particulate mineral components (useful, e.g., for treating bone defects and fractures) exhibit physical instability with time, and tend to separate into several phases or layers. Further, the handling characteristics of such compositions are not ideal, and the malleability and elasticity of such formulations could be improved.
We have now invented a new collagen-polymer conjugate which exhibits superior handling and chemical stability characteristics. According to one aspect of the invention, there is provided a pharmaceutically acceptable, non-immunogenic composition comprising atelopeptide collagen chemically conjugated to a synthetic hydrophilic polymer. The atelopeptide collagen, preferably reconstituted atelopeptide collagen, is chemically conjugated to a synthetic hydrophilic polymer, preferably polyethylene glycol, to form a new collagen-polymer conjugate.
The polymer may be monofunctional or polyfunctional, having one end capable of attachment, or two or more ends capable of attachment. When the polymer is polyfunctional, it may be joined to collagen by one or more ends, i.e., the polymer may crosslink collagen molecules. The collagen-polymer conjugates may be used to replace or reinforce soft tissue, and may be used in combination with a suitable particulate material to treat bone defects. These materials are also useful for coating implants (such as catheters and bone implants) to B

-'- ~.200~53~
reduce immunogenicity and foreign body reactions. Dried collagen-polymer conjugates, cast into a membranous form, may be used to replace or repair damaged skin (e.g., burned skin), nerve sheaths, blood vessels, heart valves, ophthalmic shields and corneal lenticules. These forms may also be used in dental applications (e.g. for guided tissue regeneration).
The crosslinking reaction between the collagen and polymer may be performed in vitro, or a reaction mixture may be injected for crosslinking in situ. At sufficient density, crosslinked collagen-polymer conjugates resemble cartilage, and are useful as substitutes therefor, (e.g. cranial onlay, ear and nose reconstruction, and the like). Polyfunctional polymers may also be used to crosslink collagen molecules to other proteins (e.g., glycoaminoglycans, chondroitin sulfates, fibronectin, and the like), particularly growth factors, for compositions particularly suited for wound healing, osteogenesis, and immune modulation. Such tethering of growth factors to collagen molecules provides an effective slow-release drug delivery system.
According to a first aspect of the invention, there is provided a pharmaceutically acceptable, non-immunogenic composition comprising atelopeptide collagen chemically conjugated to a synthetic hydrophilic polymer.
The collagen may be type I, type II or type III.
The synthetic hydrophilic polymer may be polyethylene glycol having an average molecular weight of about 400 to about 20,000. The synthetic hydrophilic polymer may be bound to an available lysine residue on said collagen.
The synthetic hydrophilic polymer may have a first end and a second end, said first end being bound to said available lysine residue, and said second end being c -7a-200~~~~~
nonbound.
The synthetic hydrophilic polymer molecules may be bound to 20-30% of said available lysine residues.
The ratio of collagen molecules to synthetic hydrophilic polymer molecules may be about 1:1 to about 1:20.
The synthetic hydrophilic polymer may have a first end and a second end, said first end being bound to a collagen molecule, and said second end being bound to a growth factor. The growth factor may be selected from the group consisting of epidermal growth factor, transforming growth factor-a, transforming growth factor-Vii, transforming growth factor-a1, transforming growth factor-a2, platelet-derived growth factor-AA, platelet-derived growth factor-AB, platelet-derived growth factor-BB, acidic fibroblast growth factor, basic fibroblast growth factor, insulin-like growth factors, interleukins, colony stimulating factors, erythropoietin, nerve growth factor, interferons, and osteogenic factors.
According to a second aspect of the invention, the above-described composition may be combined with a sufficient amount of a fluid pharmaceutically acceptable carrier such that the composition is injectable. for augmentation of soft tissue.
The collagen may be atelopeptide fibrillar collagen.
The synthetic hydrophilic polymer may be monomethyl-polyethylene glycol having a molecular weight of about 1,900 to about 8,000.
The synthetic hydrophilic polymer may have a first end and a second end, wherein said first and second ends are bound to collagen to form a c -'b . 2 0 0 3 5 3 8 crosslinked collagen-polymer conjugate, said composition having the form of a suspension of collagen-polymer conjugate particles in said pharmaceutically acceptable carrier.
The composition may further comprise a tissue growth-promoting amount of a growth factor selected from the group consisting of epidermal growth factor, transforming growth factor-a, or a hematopoietic factor. The growth factor may be chemically bound to said collagen by a covalent bond between said growth factor and the first end of said polymer, and a covalent bond between the second end of said polymer and said collagen.
According to a third aspect of the invention, there is provided a pharmaceutically acceptable, non-immunogenic, injectable composition suitable for augmentation of soft tissue, which comprises: atelopeptide collagen; a synthetic hydrophilic polymer having a first and a second end, wherein said first and second ends comprise reactive groups capable of forming a covalent bond in situ with an available lysine side chain present in said atelopeptide collagen; and a fluid pharmaceutically acceptable carrier in an amount sufficient to form an injectable composition.
The synthetic hydrophilic polymer may comprise polyethylene glycol having an average molecular weight of about 400 to about 20,000.
The reactive groups may comprise N-hydroxysuccinimide esters.
The composition may comprise about 10 to about 100 mg/ml collagen and about 0.1 to about 30% synthetic hydrophilic polymer having reactive groups.
The composition may comprises about 30 to about 80 mg/ml c .2003538 collagen and about 0.3 to about 10% synthetic hydrophilic polymer having reactive groups.
The collagen may comprise fibrillar collagen or nonfibrillar collagen.
According to a fourth aspect of the invention, there is provided a composition suitable for repair of bone defects, which comprises any of the above-described compositions in combination with a suitable particulate material;
and a sufficient amount of a fluid pharmaceutically acceptable carrier such that the composition is malleable or rigid.
The particulate material may be provided in sufficient amount to l0 provide a rigid composition.
The collagen may be reconstituted atelopeptide fibrillar collagen.
The polymer may be monomethyl-polyethylene glycol having a molecular weight of about 5,000.
The polymer may be chemically conjugated to 10-50% of said available lysine residues on said collagen.
The suitable particulate material may comprise fibrillar crosslinked collagen, gelatin beads, polytetrafluoro-ethylene beads, silicone rubber beads, hydrogel beads, silicon carbide beads, glass beads, hydroxyapatite particles, tricalcium phosphate particles, or mixtures of hydroxyapatite and tricalcium phosphate particles.
The particulate material may comprise hydroxyapatite particles, tricalcium phosphate particles, or mixtures of hydroxyapatite and tricalcium phosphate particles having an average diameter of about 1 to 20 microns in diameter.
c -7d-:2003538 The composition may further comprise an effective amount of a growth factor selected from the group consisting of epidermal growth factor, transforming growth factor-a, transforming growth factor-a, transforming growth factor-~i1, transforming growth factor-~i2, platelet-derived growth factor-AA, platelet-derived growth factor-AB, platelet-derived growth factor-BB, acidic fibroblast growth factor, basic fibroblast growth factor, insulin-like growth factors, interleukins, colony stimulating factors, erythropoietin, nerve growth factor, interferons, and osteogenic factors.
The growth factor may be chemically bound to said collagen by a l0 covalent bond between said growth factor and the first end of said polymer, and a covalent bond between the second end of said polymer and said collagen.
According to a fifth aspect of the invention, there is provided a pharmaceutically acceptable, non-immunogenic composition for replacing or augmenting cartilage, which composition comprises: atelopeptide collagen cross-linked with a hydrophilic synthetic polymer, the composition having a density of about 0.5 to about 1.5 g/cm3.
According to a sixth aspect of the invention, there is provided an implant exhibiting reduced immunogenicity and tissue irritation, comprising a solid implant, coated with a composition comprising collagen crosslinked with a synthetic hydrophilic polymer.
According to a seventh aspect of the invention, there is provided a method for preparing a collagen-polymer conjugate suitable for administering to mammals, which method comprises: providing an aqueous mixture of collagen c.

-7e-molecules, said mixture having a concentration of about 3 to about 100 mg/ml collagen; providing a solution of activated synthetic hydrophilic polymer molecules, wherein each activated synthetic polymer molecule comprises a synthetic polymer molecule and at least two reactive groups capable of forming a covalent bond with an available lysine side chain present in said collagen molecules; and mixing said aqueous mixture of collagen molecules with said solution of activated synthetic hydrophilic polymer molecules to yield a reaction mixture having a synthetic hydrophilic polymer concentration of about 0.1 % to about 50% by weight, thereby forming covalent bonds between said collagen molecules and said synthetic hydrophilic polymer molecules, said covalent bonds effecting crosslinking of said collagen molecules.
The synthetic hydrophilic polymer may comprise polyethylene glycol having an average molecular weight of about 400 to about 20,000.
The reaction mixture may contain activated synthetic hydrophilic polymer in an amount of about 0.1 to about 30% by weight.
The above-described method may further comprise the step of casting said reaction mixture into a predetermined shape during said crosslinking.
The shape may be a membrane or a tube.
The above-described method may further comprise the step of applying said reaction mixture to a solid support during said crosslinking.
The support may comprise a catheter.
The solid support may comprise a stress-bearing bone implant.
The reaction mixture may be vigorously agitated during said crosslinking, providing said collagen-polymer conjugate in the form of a C

- 7f -articulate.
p The activated synthetic hydrophilic polymer solution may further comprise an effective amount of a growth factor, and wherein said solution is prepared by: providing a solution of activated synthetic hydrophilic polymer molecules, wherein each activated synthetic polymer molecule comprises a synthetic polymer molecule and at least two reactive groups capable of forming a covalent bond with an available lysine side chain present in said collagen molecules; adding said activated synthetic hydrophilic polymer solution to a growth factor solution containing an effective amount of a growth factor; and l0 causing said synthetic hydrophilic polymer to form covalent bonds to said growth factor, forming an activated polymer/growth factor conjugate solution.
Brief Description of the Drawings Figure 1 depicts the force necessary to extrude three compositions:
Zyderm~ collagen implant (ZCI), a glutaraldehyde-crosslinked collagen (GAX), and a collagen-PEG conjugate of the invention.
Figure 2 illustrates the results of the experiment conducted in Example 6E, demonstrating the retention of biologically active TGF-(i1 in a crosslinked collagen-dPEG composition.
Modes of Carrvin4 Out the Invention A. Definitions The term "collagen" as used herein refers to all forms of collagen, including those which have been processed or otherwise modified. Preferred collagens are ' c s treated to remove the immunogenic telopeptide regions ("atelopeptide collagen"), are soluble, and will have been reconstituted into fibrillar form. Type I collagen is best suited to most applications involving bone or cartilage repair. However, other forms of collagen are also useful in the practice of the invention, and are not excluded from consideration here. Collagen crosslinked using heat, radiation, or chemical agents such as glutar-aldehyde may be conjugated with polymers as described herein to form particularly rigid compositions. Collagen crosslinked using glutaraldehyde or other (nonpolymer) linking agents is referred to herein as "GAX", while collagen crosslinked using heat and/or radiation is termed "HRX."
The term "synthetic hydrophilic polymer" as used herein refers to a synthetic polymer having an average molecular weight and composition which renders the poly-mer essentially water-soluble. Most hydrophilic polymers achieve this property by incorporating a sufficient num-ber of oxygen (or less frequently nitrogen) atoms avail-able for forming hydrogen bonds in aqueous solution.
Hydrophilic polymers used herein will generally be poly-oxyethylene, polyethylene glycol, polymethylene glycol, polytrimethylene glycols, polyvinylpyrrolidones, or derivatives thereof. The polymers are preferably linear or only slightly branched (i.e., having only about 2-10 significant free ends), and will not be substantially crosslinked. Other suitable polymers include polyoxy-ethylene-polyoxypropylene block polymers and copolymers.
Polyoxyethylene-polyoxypropylene block polymers having an ethylene diamine nucleus (and thus having four ends) are also available and may be used in the practice of the invention. Naturally occurring polymers such as pro-teins, starch, cellulose, heparin and the like are expressly excluded from the scope of this definition.
All suitable polymers will be non-toxic and non-inflam-matory when administered subcutaneously, and will pref-erably be essentially nondegradable in vivo over a period of at least several months. The hydrophilic polymer may increase the hydrophilicity of the collagen, but does not render it water soluble. Presently preferred hydro-philic polymers are mono- and difunctional polyethylene glycols (PEG). Monofunctional PEG has only one reactive hydroxy group, while difunctional PEG preferably has reactive groups at each end. Monofunctional PEG prefer-ably has an average molecular weight between about 300 and about 15,000, more preferably between about 1,900 and about 8,000, and most preferably about 5,000. Difunc-tional PEG preferably has a molecular weight of about 400 to about 20,000, more preferably about 3,000 to about 10,000. PEG can be rendered monofunctional by forming an alkylene ether at one end. The alkylene ether may be any suitable alkoxy radical having 1-6 carbon atoms, for example, methoxy, ethoxy, propoxy, 2-propoxy, butoxy, hexyloxy, and the like. Methoxy is presently preferred.
Difunctional PEG is provided by allowing a reactive hydroxy group at each end of the linear molecule. The reactive groups are preferably at the ends of the poly-mer, but may be provided along the length thereof. Poly-functional molecules are capable of crosslinking the com-positions of the invention, and may be used to attach biological growth factors to collagen.
The term "chemically conjugated" as used herein means attached through a covalent chemical bond. In the practice of the invention, a synthetic hydrophilic poly-mer and collagen may be chemically conjugated by using a linking radical, so that the polymer and collagen are each bound to the radical, but not directly to each other. The term "collagen-polymer" refers to collagen chemically conjugated to a synthetic hydrophilic poly-mer, within the meaning of this invention. Thus, "collagen-PEG" (or "PEG-collagen) denotes a composition of the invention wherein collagen is chemically con-jugated to PEG. "Collagen-dPEG" refers to collagen to chemically conjugated to difunctional PEG, wherein the collagen molecules are typically crosslinked. "Cross-linked collagen" refers to collagen in which collagen molecules are linked by covalent bonds with polyfunc-tional (including difunctional) polymers. Terms such as "GAX-dPEG" and "HRX-dPEG" indicate collagen crosslinked by both a difunctional hydrophilic polymer and a cross-linking agent such as glutaraldehyde or heat.
Those of ordinary skill in the art will appreciate that synthetic polymers such as polyethyleneglycol cannot practically be prepared having exact molecular weights, and that the term "molecular weight" as used herein refers to the average molecular weight of a number of molecules in any given sample, as commonly used in the art. Thus, a sample of PEG 2,000 might contain polymer molecules ranging in weight from, for example, 1,200 to 2,500 daltons. Specification of a range of molecular weight indicates that the average molecular weight may be any value between the limits specified, and may include molecules outside those limits. Thus, a molecular weight range of about 800 to about 20,000 indicates an average molecular weight of at least about 800, ranging up to about 20 kDa.
The term "available lysine residue" as used herein refers to lysine side chains exposed on the outer surface of collagen molecules, which are positioned in a manner allowing reaction with activated PEG. The number of available lysine residues may be determined by reaction with sodium 2,4,6-trinitrobenzenesulfonate (TNBS).
The terms "treat" and "treatment" as used herein refer to augmentation, repair, prevention, or alleviation of defects, particularly defects due to loss or absence of soft tissue or soft tissue support, or to loss or absence of bone. Additionally, "treat" and "treatment"
also refer to the prevention, maintenance, or allevia-tion of disorders or disease using a biologically active protein coupled to the collagen-polymer composition of the invention. Accordingly, treatment of soft tissue includes augmentation of soft tissue, for example implan-tation of collagen-polymer conjugates of the invention to restore normal or desirable dermal contours, as in the removal of dermal creases or furrows, or as in the replacement of subcutaneous fat in maxillary areas where the fat is lost due to aging. Treatment of bone and cartilage includes the use of collagen-polymer con-jugates, and particularly collagen-PEG in combination with suitable particulate materials, to replace or repair bone tissue, for example in the treatment of bone non-unions or fractures. Treatment of bone also includes use of cartilaginoid collagen-dPEG compositions, with or without additional bone growth factors. Compositions comprising collagen-polymer with ceramic particles, pref-erably hydroxyapatite and/or tricalcium phosphate, are particularly useful for the repair of stress-bearing bone due to its high tensile strength. Compositions of the invention may additionally include biologically active factors to aid in healing or regrowth of normal tissue.
For example, one may incorporate factors such as epi-dermal growth factor (EGF), transforming growth factor (TGF) alpha, TGF-B (including any combination of TGF-Bs), TGF-B1, TGF-B2, platelet derived growth factor (PDGF-AA, PDGF-AB, PDGF-BB), acidic fibroblast growth factor (FGF), basic FGF, connective tissue activating peptides (CTAP), 8-thromboglobulin, insulin-like growth factors, tumor necrosis factors (TNF), interleukins, colony stimulating factors (CSFs), erythropoietin (EPO), nerve growth factor (NGF), interferons (IFN), osteogenic factors, and the like. Incorporation of such factors, and appropriate combinations of factors, can facilitate the regrowth and remodeling of the implant into normal bone tissue, or may be used in the treatment of wounds.
Further, one may chemically link the factors to the collagen-polymer composition by employing a suitable amount of polyfunctional polymer molecules during syn-.~_ 200~i38 thesis. The factors may then be attached to the free polymer ends by the same method used to attach PEG to collagen, or by any other suitable method. By tethering factor molecules to the implant, the effective amount of factor is substantially reduced. Dried collagen-PEG
compositions having sponge-like characteristics may be prepared as wound dressings, or when incorporated with growth factors or the like, they serve as effective con-trolled-release drug delivery matrices.
The term "effective amount" refers to the amount of composition required in order to obtain the effect desired. Thus, a "tissue growth promoting amount" of a composition containing a growth factor refers to the amount of factor needed in order to stimulate tissue growth to a detectable degree. Tissue, in this context, includes connective tissue, bone, cartilage, epidermis and dermis, blood, and other tissues.
The term "sufficient amount" as used herein is applied to the amount of carrier used in combination with the collagen-polymer conjugates of the invention. A suf-ficient amount is that amount which when mixed with the conjugate renders it in the physical form desired, for example, injectable solution, injectable suspension, plastic or malleable implant, rigid stress-bearing implant, and so forth.
The term "suitable particulate material" as used herein refers to a particulate material which is sub-stantially insoluble in water, which is biocompatible, and which is immiscible with collagen-polymer. The particles of material may be fibrillar, or may range in size from about 1 to 20 ~,m in diameter and be bead-like or irregular in shape. Exemplary particulate materials include without limitation fibrillar crosslinked collagen, gelatin beads, crosslinked collagen-dPEG par-ticles, polytetrafluoroethylene beads, silicone rubber beads, hydrogel beads, silicon carbide beads, and glass beads. Presently-preferred particulate materials are hydroxyapatite and tricalcium phosphate.
The term "solid implant" refers to any solid object which is designed for insertion and use within the body, and includes bone and cartilage implants (e. g., arti-ficial joints, retaining pins, cranial plates, and the like, of metal, plastic and/or other materials), breast implants (e.g., silicone gel envelopes, foam forms, and the like), catheters and cannulas intended for long term (beyond about three days) use in place, artificial organs and vessels (e. g., artificial hearts, pancreases, kid-neys, blood vessels, and the like), drug delivery devices (including monolithic implants, pumps and controlled release devices such as Alzet~ minipumps, steroid pellets for anabolic growth or contraception, and the like), sut-ures for dermal or internal use, periodontal membranes, ophthalmic shields, corneal lenticules, and the like.
The term "j~ situ" as used herein means at the place of administration. Thus, the injectable reaction mixture compositions are injected or otherwise applied to a site in need of augmentation, and allowed to crosslink at the site of injection. Suitable sites will generally be intradermal or subcutaneous regions for augmenting dermal support, at the site of bone fractures for wound healing and bone repair, and within sphincter tissue for sphincter augmentation (e. g., for restoration of con-tinence).
The term "aqueous mixture" of collagen includes liquid solutions, suspension, dispersions, colloids, and the like containing collagen and water.
The term "NFC cartilage" as used herein refers to a composition of the invention which resembles cartilage in physical consistency. NFC cartilage is prepared from nonfibrillar collagen (e.g., collagen in solution) and is crosslinked with a hydrophillic polymer, especially using dPEG. As an artifact of the production process or by design, NFC cartilage may contain about 0-20~ fibrillar 14 g0 0 3538 :.
collagen. NFC cartilage is generally prepared by adding dPEG in acidic solution to an acidic solution of collagen, and allowing conjugation to occur prior to neutralization. The term "NFC-FC cartilage" refers to a composition similar to NFC cartilage,~wherein the per ' centage of fibrillar collagen is about 20-80%. NFC-FC
' cartilage is generally prepared by adding dPEG in a neutralizing buffer to an acidic solution of collagen.
The neutralizing buffer causes collagen fibril formation during the conjugation process. Similarly, "FC carti-lage" refers to a composition of the invention which is prepared from fibrillar collagen and a difunctional hydrophillic polymer. FC cartilage may generally be pre-pared using dPEG and fibrillar collagen in neutral solu-tions/suspensions.
B. ~~nera~ Method B .1 gre_paration In most general terms, a suitable collagen is chem-ically bonded to a selected synthetic hydrophilic poly-mer. Suitable collagens include all types, preferably types I, II and III. Collagens may be soluble (for example, commercially available Vitrogen~ 100 collagen-in-solution), and may have or omit the telopeptide regions. Preferably, the collagen will be reconstituted fibrillar atelopeptide collagen, for example Zyderm~
collagen implant (ZCI) or atelopeptide collagen in solu-tion (CIS). Various forms of collagen are available com-mercially, or may be prepared by the processes described in, for example, U.S. Pat. Nos. 3,949,073: 4,488,911:
4,424,208: 4,582,640; 4,642,117; 4,557,764; and 4,689,399.
The compositions of the invention comprise collagen chemically conjugated to a selected synthetic hydrophilic polymer or polymers. Collagen contains_a number of available amino and hydroxy groups which may be used to bind the synthetic hydrophilic polymer. The polymer may .

,_. 15 2003538 be bound using a "linking group", as the native hydroxy or amino groups in collagen and in the polymer frequently require activation before they can be linked. For example, one may employ compounds such as dicarboxylic anhydrides (e. g., glutaric or succinic anhydride) to form a polymer derivative (e.g., succinate), which may then be activated by esterification with a convenient leaving group, for example, N-hydroxysuccinimide, N,N'-disuccin-imidyl oxalate, N,N'-disuccinimidyl carbonate, and the like. See also Davis, U.S. Pat. No. 4,179,337 for addi-tional linking groups. Presently preferred dicarboxylic anhydrides that are used to form polymer-glutarate com-positions include glutaric anhydride, adipic anhydride, 1,8-naphthalene dicarboxylic anhydride, and 1,4,5,8-naphthalenetetracarboxylic dianhydride. The polymer thus activated is then allowed to react with the collagen, forming a collagen-polymer composition of the invention.
In a preferred embodiment, monomethylpolyethylene glycol (mPEG) (mw 5,000) is reacted with glutaric anhydride to form mPEG glutarate. The glutarate deriva-tive is then reacted with N-hydroxysuccinimide to form a succinimidyl monomethylpolyethylene glycol glutarate.
The succinimidyl ester (mPEG*, denoting the activated PEG
intermediate) is then capable of reacting with free amino groups present on collagen-(lysine residues) to form a collagen-PEG conjugate of the invention wherein one end of the PEG molecule is free or nonbound. Other polymers may be substituted for the monomethyl PEG, as described above. Similarly, the coupling reaction may be carried out using any known method for derivatizing proteins and synthetic polymers. The number of available lysines con-jugated may vary from a single residue to 100% of the lysines, preferably 10%-50%, and more preferably 20-30%.
The number of reactive lysine residues may be determined by standard methods, for example by reaction with TNBS.
The resulting product is a smooth, pliable, rubbery mass having a shiny appearance. It may be wetted, but is 2oo3~3s not water-soluble. It may be formulated as a suspension at any convenient concentration, preferably about 30-65 mg/mL, and may be implanted by injection through a suit-able syringe. The consistency of the formulation may be adjusted by varying the amount of liquid used.
Formulations suitable for repair of bone defects or nonunions may be prepared by providing high concentration compositions of collagen-polymer, or by admixture with suitable particulate materials. Such collagen-polymer particulate compositions may be malleable or rigid, depending on the amount of liquid incorporated. For-mulations for treatment of stress-bearing bone is pref-erably dried and rigid, and will generally comprise between about 45% and 85% particulate mineral, for example hydroxyapatite or tricalcium phosphate. The tensile strength and rigidity may be further increased by heating the composition under vacuum at about 60-90°C, preferably about 75°C, for about 5 to 15 hours, pref-erably about 10 hours. Malleable compositions may be used for repair of non-stressed bone.
The activated mPEG* may be replaced, in whole or in part, by difunctional activated PEG (dPEG*, e.g., non-methylated PEG which is then activated at each end), thus providing a crosslinked or partially crosslinked collagen composition. Such compositions are, however, quite dis-tinct from conventionally-crosslinked collagen composi-tions (e. g., using heat, radiation, glutaraldehyde, glycosaminoglycans and the like), as the long-chain synthetic hydrophilic polymer imparts a substantial hydrophilic character to the composition. In a presently preferred embodiment, approximately 1-20% of the mPEG is difunctional PEG. The character of the composition may be adjusted as desired, by varying the amount of difunc-tional PEG included during the process.
In another presently preferred embodiment, difunc-tional PEG* (substantially 100% at pH 7) is used to crosslink collagen. In one version, CIS (about 3-100 1 ~ 2oo3s38 mg/mL, preferably about 10-40 mg/mL) is allowed to react with dPEG* (difunctional PEG activated at each end by addition of an acid anhydride having a leaving group such as succinimide) having a molecular weight of about 2,000 to about 20,000 (preferably about 3,400-10,000) which is added as a concentrated solution to a final reaction mix-ture concentration of about 5-40~, preferably about 10-20%. This represents a 5- to 10-fold excess of dPEG* to collagen on a molar basis. The collagen molecules bind to dPEG*, without mechanical mixing or agitation, and settle out of solution to produce a cartilaginoid collagen-polymer conjugate containing approximately 20-800 fibrillar collagen. The conjugate is then washed with PBS to remove any remaining unreacted dPEG*, pro-viding the material of the invention. A cartilaginoid collagen-polymer conjugate may also be prepared by mixing dPEG* solution (pH 3) with collagen-in-solution between two syringes to homogeneity, and then casting into a suitable container (e. g., a Petri dish). A 20~ w/v dPEG*
solution (pH 7) is then added to the non-fibrillar collagen-PEG solution to result in a lightly cartilagi-noid fibrillar collagen-polymer conjugate. The resulting NFC-FC conjugate cartilage contains approximately 1-40~
fibrillar collagen. The characteristics of the final product may be adjusted by varying the initial reaction conditions. In general, increased collagen and/or poly-mer concentrations provide a denser, less porous product.
By varying the pH of the collagen solution and the dPEG*
solution, compositions may be producting over a wide range of fibrillar content. If desired, the denser formulations may be cast or molded into any shape desired, for example into sheets or membranes, into tubes or cylinders, into cords or ropes, and the like.
A particulate microgel material may be achieved by agitating a reaction mixture of collagen and dPEG* during crosslinking (e. g., by stirring or passing between syringes). Such materials are smooth, pliable, rubbery ;~oo3s38 masses, with a shiny appearance, however, they have higher tensile strength than collagen-mPEG conjugates or glutaraldehyde chemically crosslinked collagen that is not conjugated to a polymer. The injectable formulations (gels or solutions) may be used to dip coat implants, catheters, tubes (e. g., for vein replacement), meshes (e.g., for tissue reinforcement) and the like. Gels may be prepared by reducing the polymer concentration or reducing the reaction time. CIS is the preferred starting material where the desired properties are high density, rigidity, viscosity, and translucence. However, one may substitute fibrillar collagen (preferably atelo-peptide fibrillar collagen such as ZCI) and obtain prod-ucts which are more opaque, more flexible, and more susceptible to colonization by cells after implantation.
CIS-based materials are presently preferred for coating articles to be implanted, such as catheters and stress-bearing bone implants. Fibrillar collagen-based materi-als are preferred for applications such as dermal aug-mentation, sphincter augmentation, resurfacing of eroded joint surfaces (as in rheumatoid arthritis), replacement of tendons and ligaments, and preparation of artificial vessels (e. g., veins).
Compositions of the invention containing biological growth factors such as EGF and TGF-8 are prepared by mixing an appropriate amount of the factor into the composition, or by incorporating the factor into the collagen prior to treatment with activated PEG. By employing an appropriate amount of difunctional PEG, a degree of crosslinking may be established, along with molecules consisting of collagen linked to a factor by a synthetic hydrophilic polymer. Preferably, the factor is first reacted with a molar excess of dPEG* in a dilute solution over a 3 to 4 hour period. The factor is preferably provided at a concentration of about 1 ~cg/mL
to about 5 mg/mL, while the dPEG* is preferably added to a final concentration providing a 30 to 50-fold molar excess. The resulting conjugated factor is then added to an aqueous collagen mixture (about 1 to about 60 mg/mL) at pH 7-8 and allowed to react further. The resulting composition is allowed to stand overnight at ambient tem-perature. The pellet is collected by centrifugation, and is washed with PBS by vigorous vortexing in order to remove non-bound factor.
Flexible sheets or membranous forms of the collagen-polymer conjugate may be prepared by methods known in the art, for example, U.S. Patent Nos.
4,600,533; 4,412,947; and 4,242,291. Briefly, high concentration (10-100 mg/mL) CIS or fibrillar collagen (preferably atelopeptide fibrillar collagen, such as ZCI) is cast into a flat sheet container. A solution of mPEG*
(having a molecular weight of approximately 5,000) is added to the cast collagen solution, and allowed to react overnight at room temperature. The resulting collagen-polymer conjugate is removed from the reaction solution using a sterile spatula or the like, and washed with PBS
to remove excess unreacted mPEG*.
The resulting conjugate may then be compressed under constant pressure to form a uniform, flat sheet or mat, which is then dried to form a membranous implant of the invention. More flexible membranous forms are achieved by using lower collagen concentrations and high polymer concentrations as starting materials.
Less flexible membranous forms are prepared by using a dPEG* solution rather than mPEG*. CIS, at room temperature, is mixed with a buffer solution and incubated at 37°C overnight. The resulting gel is com-pressed under constant pressure, dried, and desalted by washing. The resultant membrane is then crosslinked by treating with dPEG*, washed, and then dried at low tem-perature.
Collagen-polymer conjugates may also be prepared in the form of sponges, by lyophilizing an aqueous slurry of the composition after conjugation.

Alternatively, CIS or fibrillar collagen (10-100 mg/mL) is cast into a flat sheet container. A solution of dPEG* (22-50% w/v) is added to the cast collagen. The mixture is allowed to react over several hours at room temperature. Shorter reaction times result in more flexible membranes. The resulting collagen-polymer membrane may be optionally dehydrated under a vacuum oven, lyophilization, or air-drying.
B.2 Use and Administration:
Compositions of the invention have a variety of uses. Malleable, plastic compositions may be prepared as injectable formulations, and are suitable for dermal augmentation, for example for filling in dermal creases, and providing support for skin surfaces. Such compositions are also useful for augmenting sphincter tissue, (e. g., for restoration of continence). In such cases, the formulation may be injected directly into the sphincter tissue to increase bulk and permit the occlud-ing tissues to meet more easily and efficiently. These compositions may be homogeneous, or may be prepared as suspensions of small microgel collagen-polymer conjugate particles or beads.
Surprisingly, one may administer the reaction mixture by injection before crosslinking has completed.
In this embodiment, an aqueous collagen mixture is com-bined with a low-concentration dPEG* solution, mixed, and the combination injected or applied before the viscosity increases sufficiently to render injection difficult (usually about 20 minutes). Mixing may be accomplished by passing the mixture between two syringes equipped with Luer lock hubs, or through a single syringe having dual compartments (e. g., double barrel). The composition crosslinks 'fin situ, and may additionally crosslink to the endogenous tissue, anchoring the implant in place. In this method, one can use collagen (preferably fibrillar collagen) at a concentration of about 10-100 mg/mL, although abut 30-80 mg/mL is preferred, most preferably about 33 mg/mL. The dPEG* concentration is preferably set at about 0.1 to about 3~, although concentrations as high as 30~ may be used if desired. The mixture is injected directly into the site in need of augmentation, and causes essentially no detectable inflammation or foreign body reaction. One may additionally include par-ticulate materials in the collagen reaction mixture, for example hydrogel or collagen-dPEG beads, or hydroxyapatite/tricalcium phosphate particles, to provide a bulkier or more rigid implant after crosslinking.
Compositions of the invention (particularly cross-linked collagen compositions) are also useful for coating articles for implantation or relatively long term residence within the body. Such surface treatment renders the object nonimmunogenic, and reduces the incidence of foreign body reactions. Accordingly, one can apply compositions of the invention to catheters, cannulas, bone prostheses, cartilage replacement, breast implants, minipumps and other drug delivery devices, artificial organs, and the like. Application may be accomplished by dipping the object into the reaction mix-ture while crosslinking is occurring, and allowing the adherent viscous coating to dry. One may pour or other-wise apply the reaction mixture if dipping is not con-venient. Alternatively, one may use flexible sheets or membranous forms of collagen-polymer conjugate to wrap the object with, sealing corners and edges with reaction mixture.
In another embodiment, the object may be dipped in a viscous collagen-in-solution bath, or in a fibrillar collagen solution until the object is completely coatzd.
The collagen solution is fixed to the object by dipping the collagen-coated object into a dPEG* (pH 7) solution bath, and then allowing the collagen-polymer coated object to dry. Alternatively, viscous collagen-in-solution is mixed with a dPEG* (pH 3) solution and polymerized rapidly, as described above. The object is dipped in the acidic collagen-polymer solution, and cured by dipping the coated object into a neutralizing buffer containing about 20~ by weight dPEG* (pH 7), to result in a collagen-polymer coated object.
Compositions of the invention may be prepared in a form that is dense and rigid enough to substitute for cartilage. These compositions are useful for repairing and supporting tissue which require some degree of struc-ture, for example in reconstruction of the nose, ear, knee, larynx, tracheal rings, and joint surfaces. One can also replace tendon, ligament and blood vessel tissue using appropriately formed cartilaginoid material. In these applications, the material is generally cast or molded into shape: in the case of tendons and liga-ments, it may be preferable to form filaments for weaving into cords or ropes. In the case of artificial blood vessels it may be advantageous to incorporate a reinforc-ing mesh (e. g., nylon or the like).
Compositions of the invention which contain growth factors are particularly suited for sustained adminis-tration of factors, as in the case of wound healing pro-motion. Osteoinductive factors and cofactors (including TGF-!3) may advantageously be incorporated into compo-sitions destined for bone replacement, augmentation, and/or defect repair. Compositions provided in the form of a membrane may be used to wrap or coat transplanted organs, to suppress rejection and induce improved tissue growth. Similarly, one may dip coat organs for trans-plantation using a crosslinking reaction mixture of factor-polymer conjugates and collagen. Alternatively, one may administer antiviral and antitumor factors such as TNF, interferons, CSFs, TGF-!3, and the like for their pharmaceutical activities. The amount of composition used will depend upon the severity of the condition being treated, the amount of factor incorporated in the composition, the rate of delivery desired, and the like.
However, these parameters may easily be determined by 23 2 ~ ~ ~ 5 ~ 8 routine experimentation, for example by preparing a model composition following the examples below, and assaying the release rate in a suitable animal model.
C. ~,xamgles The examples presented below are provided as a fur-ther guide to the practitioner of ordinary skill in the art, and are not to be construed as limiting the inven-tion in any way.
Exam 1R a 1 (Preparation of Collagen-PEG) (A) Monomethyl-PEG 5000 (50 g, 10 mmol, Aldrich Chemical Co.) is dissolved in 1,2-dichoroethane (250 mL) and heated at reflux with glutaric anhydride (5 g) and pyridine (4 mL) under nitrogen for 3 days. The solution is then filtered and the solvent evaporated, and the residue dissolved in water (100 mL) and washed with diethyl ether (2X 50 mL). The resulting PEG-glutarate is extracted from the water with chloroform (2X 50 mL), and the chloroform evaporated to yield about 43 g of PEG-glutarate. The PEG-glutarate is then dissolved in di-methylformamide (DMF, 200 mL) at 37°C, and N-hydroxysuc-c i n i m i de ( 10 % mo 1 a r excess ) added. The solution is cooled to 0°C, and an equivalent amount of dicyclohexylcarbodi-imide added in DMF solution (10 mL). The mixture is left at room temperature for 24 hours, and then filtered.
Cold benzene (100 mL) is then added, and the PEG-succin-imidyl glutarate (PEG-SG) precipitated by adding petroleum ether (200 mL) at 0°C. The precipitate is collected on a sintered glass filter. Dissolution in benzene, followed by precipitation with petroleum ether is repeated three times to provide "activated" PEG (PEG-SG).
Vitrogen 100~ collagen in solution (400 mL, 1.2 g collagen, 0.004 mmol) was mixed with 0.2 M phosphate buffer (44 mL) to elevate the pH to 7.4. Next, a three-..,.,_...~...

fold molar excess of PEG-SG (6.00 g, 1.2 mmol) was dissolved in water for injection (40 mL) and sterile-filtered. The PEG-SG solution was then added to the collagen solution, and the mixture allowed to stand at ,5-. 1-7-22 ° C for about 15 hours . The solution was then _~cen-trifuged, and the resulting pellet (25 g) of reconsti-tuted fibrils collected and washed with phosphate-buffered saline (PBS, 3X 400 mL) to remove residual PEG.
The resulting material has a solid, coherent elasticity, and may be picked up on a spatula (the equivalent non-conjugated collagen, Zyderm~ collagen implant is more fluid). The resulting material may be diluted with PBS
to provide a dispersion having 20.5 mg/mL collagen-PEG.
(B) Similarly, proceeding as in part (A) above but substituting polypropylene glycol and POE-POP block polymers for polyethylene glycol, the corresponding collagen-PPG and collagen-POE-POP compositions are prepared.
(C) Difunctional PEG 3400 (34 g, 10 mmol, Aldrich Chemical Co.) is dissolved in 1,2-dichoroethane (250 mL) and heated at reflux with glutaric anhydride (10 g) and pyridine (4 mL) under nitrogen for 3 days. The solution is then filtered and the solvent evaporated, and the residue dissolved in water (100 mL) and washed with diethyl ether (2X 50 mL). The resulting PEG-diglutarate is extracted from the water with chloroform (2X 50 mL), and the chloroform evaporated to yield PEG-diglutarate.
The PEG-diglutarate is then dissolved in DMF (200 mL) at 37°C, and N-hydroxysuccinimide (10% molar ~~) °
solution is cooled to 0°C, and an equivalent amount of dicyclohexylcarbodiimide added in DMF solution (10 mL).
The mixture is left at room temperature for 24 hours, and then filtered. Cold benzene (100 mL) is then added, and the PEG-di(succinimidyl glutarate) (dPEG-SG) precipitated by adding petroleum ether (200 mL) at 0°C. The precipi-tate is collected on a sintered glass filter. Dissolu-tion in benzene, followed by precipitation with petroleum ether is repeated three times to provide "activated" dPEG
(dPEG*).
Vitrogen 100~ collagen in solution (400 mL, 1.2 g collagen, 0.004 mmol) was mixed with 0.2 M phosphate 5 buffer (44 mL) to elevate the pH to 7.4. Next, a three-fold molar excess of dPEG* (6.00 g, 1.2 mmol) was dis-solved in water for injection (40 mL) and sterile-filtered. The dPEG* solution was then added to the collagen solution, agitated, and the mixture allowed to 10 stand at 17-22°C for about 15 hours. The solution was then centrifuged, and the resulting pellet of reconsti-tuted fibrils collected and washed with PBS (3X 400 mL) to remove residual dPEG*. The pellet was then placed in a syringe fitted with a Luer lock hub connected to a 15 second syringe, and was passed between the syringes until homogeneous. The resulting material is a microgel or a particulate suspension of random size fibrils in solution (microgel conjugate). The material is a smooth, pliable, rubbery mass, with a shiny appearance.
20 (D) Preparation of Cartilaginoid Conjugates:
Approximately 20~ by weight of dPEG* (pH 7) was added to collagen in solution (33.8 mg/mL), and incubated at 21°C for about 16 hours. The resulting conjugate was washed with 100 mL PBS 3-5 times over 12 hours. The 25 resulting cartilaginoid non-fibrillar collagen-polymer conjugate (NFC-FC cartilage) was a translucent solid with coherent elasticity. The product contained approximately 20-80~ fibrillar collagen.
Another NFC cartilage composition was prepared by mixing dPEG* solution (0.6 g, pH 3) with collagen in solution (33.8 mg/mL, pH 2). The mixture was passed between two syringes joined by a Luer lock connector to form a homogenous solution. A solution of dPEG* (20~
w/v) in a neutralizing buffer was then added to result in a substantially non-fibrillar collagen (NFC) cartilage material. The resulting product contained approximately 1-40~ fibrillar collagen.

' 2003538 Alternatively, fibrillar collagen may be used instead of CIS to produce a cartilaginoid fibrillar collagen-polymer conjugate (FC cartilage) having an opaque appearance and high fibrillar content. Such FC
cartilage is more porous and permeable than non-fibrillar collagen-polymer conjugates.
xamgle 2 (Characterization) (A) Collagen-mPEG prepared in Example lA was characterized and compared with Zyderm~ collagen implant (ZCI), and glutaraldehyde-crosslinked fibrillar collagen (GAX).
Extrusion:
This assay measured the force required to extrude the test composition through a 30 gauge needle. The results are shown in Figure 1. As can be seen from the graph of force required (in Newtons) versus plunger travel, ZCI was extruded smoothly, requiring a force of about 20-30 Newtons. GAX was not extruded smoothly, as shown by the "spiking" exhibited in the force trace. At the plateau, GAX required about 10-15 N for extrusion.
In contrast, collagen-mPEG demonstrated a very low extru-sion force (8-10 N), with little or no spiking.
Intrusion:
Intrusion is a measure of the tendency of a com-position to "finger" or channel into a porous bed, rather than remaining in a compact mass. Low intrusion is pre-ferred in augmentation of soft tissue, so that the injected implant does not diffuse through the dermis and remains in place.
A 1 mL syringe fitted with a 30 gauge needle was half-filled with silicon carbide particles (60 mesh), simulating human dermis. The upper half of the syringe was filled with 0.5 mL test composition (GAX, ZCI, or collagen-mPEG) at 35 mg/mL. The plunger was then fitted, and depressed. On depression, ZCI appeared at the needle, demonstrating intrusion through the silicon carbide bed. Syringes filled with GAX or collagen-mPEG
of the invention did not pass collagen, instead releas-ing only buffer, demonstrating no intrudability.
Helicity:
The portion of each composition exhibiting non-helical character was measured using sensitivity to digestion with trypsin. Samples were treated with the protease trypsin, which is capable of attacking only fragmented portions of the collagen protein. The extent of hydrolysis is measured by fluorescamine assay for solubilized peptides, and the results are expressed as percentage non-helical collagen. The percentage of non-helical collagen was measured 30 minutes after the begin-ning of the digestion period. The results indicated that ZCI was 3-10% sensitive, GAX was 1-2% sensitive, and collagen-mPEG was about 1% sensitive. Sensitivity to trypsin may also correlate to sensitivity to endogenous proteases following implantation.
Collagenase Sensitivity:
The sensitivity of each composition to collagenase was also measured. ZCI was 65.2% digested, compared to 2.2% for GAX, and 45.8% for collagen-mPEG.
Phase Transition:
The behavior of each composition vs. temperature was examined using a differential scanning calorimeter.
On heating, ZCI exhibited multiple peaks at about 45 and 53°C. GAX exhibited a peak at 67-70°C. Collagen-mPEG
exhibited a peak at 56-61°C.
Lysine Content:
The number of free lysines per mole was determined for each composition using T1~BS to quantify reactive epsilon amino groups. ZCI exhibited about 30 lysines per (single helix) molecule (K/m), whereas GAX exhibited 26-27 K/m, and collagen-mPEG 21-26 K/m.

(B) Characterization of Crosslinked Collagen-Polymer Conjugates:
A collagen-dPEG conjugate prepared as described in Example 1C was characterized using differential scanning calorimetry (DSC). This test is a measure of the transi tion temperature during fragmentation of the collagen molecule at a microscopic level. A lowering of the transition temperature indicates an increase in fragmen-tation in a manner similar to that measured by trypsin sensitivity.
The collagen-dPEG conjugate showed a single denaturational transition at 56°C by DSC, which is sim-ilar to the typical melting point of the Collagen-PEG
conjugate prepared in Example lA. In comparison, ZCI has a melting temperature of 45-53°C with multiple denatur-ational transitions, and GAX has a melting temperature of 67-70°C with a single denaturational transition.
The extrusion test described in Example 2A could not be used to characterize the collagen-dPEG conjugate because the material was not extrudable through a 30 gauge needle.
Using the intrusion test described in Example 2A, the passage of collagen-dPEG was completely blocked at the silicon carbide bed, which indicates high crosslink-ing between the collagen molecules and little or no intrudability.
xa gle 3 (Immunogenicity) (A) Non-crosslinked PEG-Collaqen:
This experiment was conducted to demonstrate the relative immunogenicity of a collagen-mPEG preparation of the invention versus a commercially-available bovine collagen formulation prepared from essentially the same source material, and having a similar consistency. As both collagen preparations were prepared using atelo-peptide collagen (which is only weakly immunogenic), the preparations were formulated with either complete Freund's adjuvant (CFA) or incomplete Freund's adjuvant (IFA), to enhance the immune response. This is a severe test, designed to magnify any possible immune reaction.
Collagen-mPEG was prepared as in Example 1A above.
Male Hartley guinea pigs (11) were anesthetized and bled by heart puncture for pre-immunization serologic evalu-ation. Five animals were treated with two 0.1 mL intra-muscular injections of Zyderm~ collagen implant (ZCI) emulsified in CFA (1:9) in the left and right thighs.
Another five animals were treated in the same fashion, using collagen-PEG (35 mg/mL) emulsified in CFA. One animal was treated with collagen-PEG in IFA. At day 14 following immunization, all animals were again bled by heart puncture, and serum obtained for antibody titer determination (using ELISA). Serology was again per-formed at day 30.
On day 30, following collection of serum samples, each animal was challenged intradermally with both ZCI
and collagen-PEG (0.1 mL of each, one on each flank).
Delayed-type hypersensitivity (DTH) was quantified as a measure of cell-mediated immunity. DTH was evaluated at 24, 48, and 72 hours post-challenge by measuring the diameter of any wheal using micrometer calipers, and noting the extent of erythema and induration. Animals were then euthanized with C02, and the injection sites excised and fixed in neutral, buffered formalin for histological study.
Serological results indicated reduced immuno-genicity of collagen-PEG vs. ZCI. At day 14, 80~ of ZCI
immunized animals exhibited "positive" antibody responses (titer >_ 160 at day 14), whereas 0~ of the collagen-PEG
immunized animals exhibited positive responses. At day 30, all ZCI-immunized animals exhibited high antibody titers, whereas none of the collagen-PEG-immunized animals (C-PEG) exhibited high titers. The data are shown in Table 1.

Table 1: ~ unogenicity Antibody Titer 5 (Animal Treatment day 14 day 30 1 ZCI 320 >2560 3 ZCI 2560 >2560 10 4 ZCI 320 >2560 11 C-PEG (IFA) 0 160 Responses to the DTH challenge also demonstrated 20 that the collagen-mPEG of the invention is less immuno-genic. Guinea pigs immunized with ZCI and challenged with ZCI exhibited a wheal measuring 1.128 ~ 0.058 cm in diameter. Animals immunized with collagen-mPEG and chal-lenged with collagen-mPEG exhibited wheals measuring 25 0.768 + 0.036 cm. Animals immunized with ZCI and chal-lenged with collagen-mPEG, or immunized with collagen-mPEG and challenged with ZCI, developed wheals smaller than the ZCI-immunized ZCI-challenged wheals. Responses measured at 48 and 72 hours were essentially the same or 30 lower than the 24 hour response for each site. Erythema was essentially the same for all animals.
Histological studies showed that both materials exhibited comparable intrusion, fingering into the dermis and subcutaneous space. Sites of intradermal challenge with ZCI in ZCI-immunized animals exhibited the most extensive inflammatory response, including a cellular infiltrate of lymphohistiocytic elements with eosinophils and occasional giant cells. Two of the implant sites demonstrated an erosive inflammation of the overlying epidermis and eschar formation. Sites of intradermal challenge with collagen-mPEG in ZCI-immunized animals exhibited only a moderate associated inflammatory infil-trate, with a marked reduction in acute cells and lymphoid elements. Histiocytes and giant cells were more prevalent, and in some samples lined and colonized the implants heavily. Animals immunized with collagen-mPEG
exhibited only slight to moderate reaction, with ZCI
challenge sites accompanied by a modest lymphohistio-cytic perivascular infiltrate with a few eosinophils and giant cells. Collagen-mPEG challenge sites were typic-ally accompanied by a minimal scattering of lymphoid cells near the associated vasculature.
(B) Crosslinked dPEG-Collagen Conjugates:
Collagen-dPEG conjugates were prepared as in Example 1D. The samples were implanted in the dorsal subcutis and as cranial onlays in rats. After implanta-tion for 30 days in the subcutis, NFC cartilage and NFC-FC cartilage materials had a homogeneous microfibrillar structure. Mild colonization by connective tissue cells occurred at the periphery of the NFC-FC cartilage sam-ples, and mild capsule formation was present. No colon-ization had occurred with the NFC cartilage material and mild capsule formation was present. FC cartilage had a very fibrous structure with mild but frequently deep colonization by connective tissue cells and sparse num-bers of adipocytes. Trace amounts of capsule were present in limited areas of the FC cartilage samples.
NFC cartilage materials tended to retain their pre-implantation shape, with sharply defined edges, while the NFC-FC cartilage samples tended to flatten over time and develop rounded profiles.
3o When implanted as cranial onlays, the appearance of each of the materials was similar to that in the subcutis except that the samples tended to become anchored to the skull via integration of the capsule or surrounding loose connective tissue with the periosteum.
All of the samples appeared to be biocompatible, have differing degrees of colonization by host tissues, and varying mechanical characteristics.

3 2 i~,,'~~a3Ja3$
Example 4 (7~'1 situ Crosslinking) A d PEG solution was prepared as described in Example C above. The following samples were then prepared:

(1) 5 mg dPEG in 80 ~,L water, mixed with 0.5 mL

fibrillar collagen (35 mg/mL), to a final dPEG concentration of 1% by volume:

(2) 15 mg dPEG in 80 uL water, mixed with 0.5 mL fibrillar collagen (35 mg/mL), to a final dPEG concentration of 3% by volume;

(3) Vitrogen~ 100 collagen in solution;
(4) 5 mg dPEG in 80 ~L water, mixed with 0.5 mL

non-fibrillar collagen (35 mg/mL), to a final dPEG concentration of 1% by volume;
(5) 15 mg dPEG in 80 ~L water, mixed with 0.5 mL non-fibrillar collagen (35 mg/mL), to a final dPEG concentration of 3% by volume;
(6) 5 mg dPEG in 0.5 ml PBS, to a final dPEG

concentration of 1% by volume; and (7) GAX.

The dPEG solutions of Samples 1, 2, 4, and 5 were placed in a 1 mL syringe equipped with a Luer lock fit-ting and connector, and joined to another syringe con-taining t he collagen material. The solutions were mixed by passin g the liquids back and forth between the syringes several times to form the homogeneous reaction mixture.

The syringe connector was then removed and replaced with a 27 gauge needle, and approximately 50 ~L of the reaction mixture was injected intradermally into each of 20 guinea pigs. Samples 3, 6, and 7 were similarly administe red through a 27 gauge needle. At intervals up to 30 day s following injection, the treatment sites were harvested and studied histologically.

.~.., By 30 days, all of the materials appeared to be biocompatible. Samples 1 and 2 displayed wide dispersion with an intermediate degree of interdigitation with dermal collagen fibers. Colonization by connective tissue cells was moderate, and a trace of round cell infiltrate with eosinophils was seen.
Samples 3, 4 and 5 were highly dispersed and finely interdigitated with dermal collagen fibers. Coloniza-tion was mild to moderate, and trace levels of round cell infiltration were seen.
Sample 6 had no detectable effects. Sample 7 occurred as large islands with moderate colonization and trace to mild levels of inflammation.
xample 5 (Coating of Implants) A collagen-dPEG reaction mixture was prepared as described in Example 1C above. A titanium implant was dipped into the reaction mixture approximately 20 min-utes after crosslinking was initiated. The implant was then allowed to finish crosslinking, and dry overnight.
Example 6 (Collagen-Polymer-Growth Factor Conjugates) (A) A conjugate containing crosslinked collagen-dPEG-TGF-fit was prepared as follows:
A solution of TGF-B1 and 1251-TGF-B1 (105 cpm; 25 uL of 1 mg/mL) was added to a solution of dPEG* (4 mg) in CH2C12 (100 ~L), and the mixture allowed to react for 12 (sample #3) or 35 (sample #5) minutes at 17°C. To this was added 2.5 mL of collagen solution (3 mg/mL atelo-peptide nonfibrillar collagen), and the resulting mixture allowed to incubate overnight at ambient temperature.
The pellet which formed was collected by centrifugation to provide collagen-dPEG-TGF-fil.
(B) A composition based on fibrillar atelopep-tide collagen was prepared as in part A above, but limit-ing TGF-B1/dPEG* reaction time to 2 minutes, and substi-tuting 7 mg of fibrillar collagen (precipitated from collagen in solution within 2 minutes prior to use) for collagen in solution.
(C) A composition containing dPEG-crosslinked collagen and free TGF-B1 was prepared as follows:
A solution of dPEG* (4 mg) in CH2C12 (100 ~L), was added to 2.5 mL of CIS (3 mg/mL atelopeptide nonfib-rillar collagen), and the resulting mixture allowed to incubate overnight at ambient temperature. The pellet which formed was washed to remove unreacted dPEG*, and 25 ug of TGF-B1 mixed in to provide collagen-dPEG + TGF-l31.
(D) The degree of TGF-B1 binding was deter-mined as follows:
Each composition prepared in parts A-C above was washed six times with 0.5 mL of buffer (0.02 M phosphate buffer, 0.1% BSA) by vigorous vortexing followed by cen-trifugation in order to remove non-bound TGF-81. The pellet and supernatants were collected at each time of washing, and were counted. Figure 2 demonstrates the release rate of the compositions of part A (open cir-cles) and part B (filled circles) versus the simple mix-ture prepared in part C (x's), showing the number of counts released as a function wash cycle. As shown in the figure, the TGF-B1 in the simple mixture is quanti-tatively released within about 6 washings, while approx-imately 40% of the TGF-Bl is retained in the composi-tions of part B and 50% is retained in the compositions of part A.
(E) The biological activity of the materials prepared above was assayed as follows:
Compositions prepared according to part A (CIS-dPEG-TGF-f31) (TGF-B1/dPEG* reaction time of 12 minutes) and part C (CIS-dPEG + TGF-f31) were prepared, as well as a control prepared according to part C without TGF-B1 (CIS-dPEG). The samples were washed in PBS/BSA eight times as described in part D, then washed an additional three times in fetal bovine serum (Gibco) at 37°C. This washing protocol resulted in visually detectable material loss, so remaining TGF-f31 content was determined by counting the remaining 1251. TGF-131 activity was then 5 assayed by ELISA. The results are shown in Table 2 below.
Table 2: Retention of Biological Activity 10 ~ 125I remaining O.D.
Sample Counts TGF-131(ug) (414 nm) CIS-dPEG 0 0 0. 015 15 0.015 CIS-dPEG + TGF-B1 2775 0.5-1.0 0.029 0.035 20 ICIS-dPEG-TGF-f31 42604 7.4 0.102 0.082 The data demonstrates that the TGF-B1 retained in 25 the compositions of the invention remains in a substan tially active form.
Exam lb a 7 (Formulations) 30 (A) A formulation suitable for implantation by injection was prepared by suspending collagen-PEG in sterile water for injection, at 35 mg/mL. The charac-teristics of the resulting formulation are described in Example 2 above.
35 (B) A formulation useful for repair of stress-bearing bone defects (e.g., fractures, nonunions, and the like) may be prepared by mixing collagen-PEG of the invention with a suitable particulate, insoluble com-ponent. The insoluble component may be fibrillar cross-linked collagen, gelatin beads, polytetrafluoroethylene beads, silicone rubber beads, hydrogel beads, silicon carbide beads, mineral beads, or glass beads, and is preferably a calcium mineral, for example hydroxyapatite and/or tricalcium phosphate.
Solid formulations were prepared by mixing Zyderm~
II (65 mg/mL collagen) or collagen-mPEG (63 mg/mL) with particulate hydroxyapatite and tricalcium phosphate (HA+TCP) and air drying to form a solid block containing 65% HA by weight. Optionally, blocks were heat-treated by heating at 75°C for 10 hours. The resulting blocks were hydrated in 0.13 M saline for 12 hours prior to testing.
On standing, it was observed that Zyderm~-HA+TCP
(Z-HA) compositions separated into three phases, whereas PEG-collagen-HA+TCP (PC-HA) compositions remained single phase.
Each block was elongated by 5%, and its stress relaxation monitored for 1 minute after release. After this test, each block was subjected to constant elonga-tion at a constant 1 cm/min until failure. The results are shown in Table 3:
Table 3: Mechanical Strength Stress Relaxation Constant Extension Sample Peak Constant t Rupture Extension Force Force (mi~) Force at Rupture Z-HA 1.5 1.1 0.04 2.6 11.0%
(air) - - - 2.6 15.3%
Z-HA 1.5 1.1 0.06 - -(heat) 1.4 1.0 0.07 3.4 14.0%
PC-HA 2 . 6 1 . 8 0. 06 5. 5 12 . 3%
(air) 2.8 2.1 0.08 5.4 11.7%
PC-HA 3.3 2.6 0.04 5.4 12.0%
(heat) 3.6 2.7 0.06 5.4 20.3%
All forces reported in newtons. Extension at rupture (strain) reported in percent extension.

The data demonstrate that collagen-polymer forms HA+TCP compositions exhibiting substantially greater tensile strength. Thus, one can prepare implant com-positions with collagen-polymer which are substantially stronger than compositions employing the same amount of non-conjugated collagen, or may reduce the amount of collagen-polymer employed to form a composition of equal strength.

Claims (50)

1. A pharmaceutically acceptable, non-immunogenic composition comprising atelopeptide collagen chemically conjugated to a synthetic hydrophilic polymer.
2. The composition of Claim 1, wherein said collagen is type I, type II or type III.
3. The composition of Claim 1, wherein said synthetic hydrophilic polymer is polyethylene glycol having an average molecular weight of about 400 to about 20,000.
4. The composition of Claim 1, wherein said synthetic hydrophilic polymer is bound to an available lysine residue on said collagen.
5. The composition of Claim 4, wherein said synthetic hydrophilic polymer has a first end and a second end, said first end being bound to said available lysine residue, and said second end being nonbound.
6. The composition of Claim 5, wherein said synthetic hydrophilic polymer molecules are bound to 20-30% of said available lysine residues.
7. The composition of Claim 1, wherein the ratio of collagen molecules to synthetic hydrophilic polymer molecules is about 1:1 to about 1:20.
8. The composition of Claim 1, wherein said synthetic hydrophilic polymer has a first end and a second end, said first end being bound to a collagen molecule, and said second end being bound to a growth factor.
9. The composition of Claim 8, wherein said growth factor is selected from the group consisting of epidermal growth factor, transforming growth factor-.alpha., transforming growth factor-.beta., transforming growth factor-.beta.1, transforming growth factor-.beta.2, platelet-derived growth factor-AA, platelet-derived growth factor-AB, platelet-derived growth factor-BB, acidic fibroblast growth factor, basic fibroblast growth factor, insulin-like growth factors, interleukins, colony stimulating factors, erythropoietin, nerve growth factor, interferons, and osteogenic factors.
10. A composition suitable for augmentation of soft tissue, which comprises the composition of Claim 1, in combination with a sufficient amount of a fluid pharmaceutically acceptable carrier such that the composition is injectable.
11. The composition of Claim 10, wherein said collagen is atelopeptide fibrillar collagen.
12. The composition of Claim 10, wherein said synthetic hydrophilic polymer is monomethyl-polyethylene glycol having a molecular weight of about 1,900 to about 8,000.
13. The composition of Claim 10, wherein said synthetic hydrophilic polymer has a first end and a second end, wherein said first and second ends are bound to collagen to form a crosslinked collagen-polymer conjugate, said composition having the form of a suspension of collagen-polymer conjugate particles in said pharmaceutically acceptable carrier.
14. The composition of Claim 10, which further comprises a tissue growth-promoting amount of a growth factor selected from the group consisting of epidermal growth factor, transforming growth factor-.beta., or a hematopoietic factor.
15. The composition of Claim 14, wherein said growth factor is chemically bound to said collagen by a covalent bond between said growth factor and the first end of said polymer, and a covalent bond between the second end of said polymer and said collagen.
16. A pharmaceutically acceptable, non-immunogenic, injectable composition suitable for augmentation of soft tissue, which comprises:
atelopeptide collagen;
a synthetic hydrophilic polymer having a first and a second end, wherein said first and second ends comprise reactive groups capable of forming a covalent bond in situ with an available lysine side chain present in said atelopeptide collagen; and a fluid pharmaceutically acceptable carrier in an amount sufficient to form an injectable composition.
17. The composition of Claim 16, wherein said synthetic hydrophilic polymer comprises polyethylene glycol having an average molecular weight of about 400 to about 20,000.
18. The composition of Claim 16, wherein said reactive groups comprise N-hydroxysuccinimide esters.
19. The composition of Claim 16, wherein said composition comprises about 10 to about 100 mg/ml collagen and about 0.1 to about 30%
synthetic hydrophilic polymer having reactive groups.
20. The composition of Claim 16, wherein said composition comprises about 30 to about 80 mg/ml collagen and about 0.3 to about 10%
synthetic hydrophilic polymer having reactive groups.
21. The composition of Claim 16, wherein said collagen comprises fibrillar collagen.
22. The composition of Claim 16, wherein said collagen comprises nonfibrillar collagen.
23. A composition suitable for repair of bone defects, which comprises a composition according to any one of Claims 1, 8, 13 and 16; in combination with a suitable particulate material; and a sufficient amount of a fluid pharmaceutically acceptable carrier such that the composition is malleable or rigid.
24. The composition of Claim 23, wherein said particulate material is provided in sufficient amount to provide a rigid composition.
25. The composition of Claim 23, wherein said collagen is reconstituted atelopeptide fibrillar collagen.
26. The composition of Claim 24, wherein said collagen is reconstituted atelopeptide fibrillar collagen.
27. The composition of Claim 23, wherein said polymer is monomethyl-polyethylene glycol having a molecular weight of about 5,000.
28. The composition of Claim 24, wherein said polymer is monomethyl-polyethylene glycol having a molecular weight of about 5,000.
29. The composition of Claim 23, wherein said polymer is chemically conjugated to 10-50% of said available lysine residues on said collagen.
30. The composition of Claim 24, wherein said polymer is chemically conjugated to 10-50% of said available lysine residues on said collagen.
31. The composition of Claim 23, wherein said suitable particulate material comprises fibrillar crosslinked collagen, gelatin beads, -4l-polytetrafluoro-ethylene beads, silicone rubber beads, hydrogel beads, silicon carbide beads, glass beads, hydroxyapatite particles, tricalcium phosphate particles, or mixtures of hydroxyapatite and tricalcium phosphate particles.
32. The composition of Claim 24, wherein said suitable particulate material comprises fibrillar crosslinked collagen, gelatin beads, polytetrafluoro-ethylene beads, silicone rubber beads, hydrogel beads, silicon carbide beads, glass beads, hydroxyapatite particles, tricalcium phosphate particles, or mixtures of hydroxyapatite and tricalcium phosphate particles.
33. The composition of Claim 23, wherein said particulate material comprises hydroxyapatite particles, tricalcium phosphate particles, or mixtures of hydroxyapatite and tricalcium phosphate particles having an average diameter of about 1 to 20 microns in diameter.
34. The composition of Claim 24, wherein said particulate material comprises hydroxyapatite particles, tricalcium phosphate particles, or mixtures of hydroxyapatite and tricalcium phosphate particles having an average diameter of about 1 to 20 microns in diameter.
35. The composition of Claim 23, which further comprises an effective amount of a growth factor selected from the group consisting of epidermal growth factor, transforming growth factor-.alpha., transforming growth factor-.beta.
transforming growth factor-.beta.1, transforming growth factor-.beta.2, platelet-derived growth factor-AA, platelet-derived growth factor-AB, platelet-derived growth factor-BB
acidic fibroblast growth factor, basic fibroblast growth factor, insulin-like growth factors, interleukins, colony stimulating factors, erythropoietin, nerve growth factor, interferons, and osteogenic factors.
36. The composition of Claim 24, which further comprises an effective amount of a growth factor selected from the group consisting of epidermal growth factor, transforming growth factor-.alpha., transforming growth factor-.beta.
transforming growth factor-.beta.1, transforming growth factor-.beta.2, platelet-derived growth factor-AA, platelet-derived growth factor-AB, platelet-derived growth factor-BB
acidic fibroblast growth factor, basic fibroblast growth factor, insulin-like growth factors, interleukins, colony stimulating factors, erythropoietin, nerve growth factor, interferons, and osteogenic factors.
37. The composition of Claim 35, wherein said growth factor is chemically bound to said collagen by a covalent bond between said growth factor and the first end of said polymer, and a covalent bond between the second end of said polymer and said collagen.
38. The composition of Claim 36, wherein said growth factor is chemically bound to said collagen by a covalent bond between said growth factor and the first end of said polymer, and a covalent bond between the second end of said polymer and said collagen.
39. A pharmaceutically acceptable, non-immunogenic composition for replacing or augmenting cartilage, which composition comprises:
atelopeptide collagen cross-linked with a hydrophilic synthetic polymer, the composition having a density of about 0.5 to about 1.5 g/cm3.
40. An implant exhibiting reduced immunogenicity and tissue irritation, comprising a solid implant, coated with a composition comprising collagen crosslinked with a synthetic hydrophilic polymer.
41. A method for preparing a collagen-polymer conjugate suitable for administering to mammals, which method comprises:
providing an aqueous mixture of collagen molecules, said mixture having a concentration of about 3 to about 100 mg/ml collagen;
providing a solution of activated synthetic hydrophilic polymer molecules, wherein each activated synthetic polymer molecule comprises a synthetic polymer molecule and at least two reactive groups capable of forming a covalent bond with an available lysine side chain present in said collagen molecules; and mixing said aqueous mixture of collagen molecules with said solution of activated synthetic hydrophilic polymer molecules to yield a reaction mixture having a synthetic hydrophilic polymer concentration of about 0.1 % to about 50%
by weight, thereby forming covalent bonds between said collagen molecules and said synthetic hydrophilic polymer molecules, said covalent bonds effecting crosslinking of said collagen molecules.
42. The method of Claim 41, wherein said synthetic hydrophilic polymer comprises polyethylene glycol having an average molecular weight of about 400 to about 20,000.
43. The method of Claim 41, wherein said reaction mixture contains activated synthetic hydrophilic polymer in an amount of about 0.1 to about 30% by weight.
44. The method of Claim 41, further comprising the step of casting said reaction mixture into a predetermined shape during said crosslinking.
45. The method of Claim 44, wherein said shape is a membrane or a tube.
46. The method of Claim 41, further comprising the step of applying said reaction mixture to a solid support during said crosslinking.
47. The method of Claim 46, wherein said support comprises a catheter.
48. The method of Claim 46, wherein said solid support comprises a stress-bearing bone implant.
49. The method of Claim 41, wherein said reaction mixture is vigorously agitated during said crosslinking, providing said collagen-polymer conjugate in the form of a particulate.
50. The method of Claim 41, wherein said activated synthetic hydrophilic polymer solution further comprises an effective amount of a growth factor, and wherein said solution is prepared by:
providing a solution of activated synthetic hydrophilic polymer molecules, wherein each activated synthetic polymer molecule comprises a synthetic polymer molecule and at least two reactive groups capable of forming a covalent bond with an available lysine side chain present in said collagen molecules;
adding said activated synthetic hydrophilic polymer solution to a growth factor solution containing an effective amount of a growth factor; and causing said synthetic hydrophilic polymer to form covalent bonds to said growth factor, forming an activated polymer/growth factor conjugate solution.
CA002003538A 1988-11-21 1989-11-21 Collagen-polymer conjugates Expired - Lifetime CA2003538C (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US27407188A 1988-11-21 1988-11-21
US274,071 1988-11-21
US433,441 1989-11-14
US07/433,441 US5162430A (en) 1988-11-21 1989-11-14 Collagen-polymer conjugates

Publications (2)

Publication Number Publication Date
CA2003538A1 CA2003538A1 (en) 1990-05-21
CA2003538C true CA2003538C (en) 2001-02-06

Family

ID=26956586

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002003538A Expired - Lifetime CA2003538C (en) 1988-11-21 1989-11-21 Collagen-polymer conjugates

Country Status (9)

Country Link
US (8) US5162430A (en)
EP (1) EP0444157B1 (en)
JP (1) JP2505312B2 (en)
AT (1) ATE168708T1 (en)
AU (1) AU638687B2 (en)
CA (1) CA2003538C (en)
DE (1) DE68928754T2 (en)
ES (1) ES2119743T3 (en)
WO (1) WO1990005755A1 (en)

Families Citing this family (786)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10237531A1 (en) * 2002-08-16 2004-02-26 Tutogen Medical Gmbh implant
US6150328A (en) * 1986-07-01 2000-11-21 Genetics Institute, Inc. BMP products
US5306500A (en) * 1988-11-21 1994-04-26 Collagen Corporation Method of augmenting tissue with collagen-polymer conjugates
US5162430A (en) * 1988-11-21 1992-11-10 Collagen Corporation Collagen-polymer conjugates
US5614587A (en) * 1988-11-21 1997-03-25 Collagen Corporation Collagen-based bioadhesive compositions
US5643464A (en) 1988-11-21 1997-07-01 Collagen Corporation Process for preparing a sterile, dry crosslinking agent
US5800541A (en) * 1988-11-21 1998-09-01 Collagen Corporation Collagen-synthetic polymer matrices prepared using a multiple step reaction
US5475052A (en) * 1988-11-21 1995-12-12 Collagen Corporation Collagen-synthetic polymer matrices prepared using a multiple step reaction
US5527856A (en) * 1988-11-21 1996-06-18 Collagen Corporation Method of preparing crosslinked biomaterial compositions for use in tissue augmentation
US5565519A (en) * 1988-11-21 1996-10-15 Collagen Corporation Clear, chemically modified collagen-synthetic polymer conjugates for ophthalmic applications
US5936035A (en) * 1988-11-21 1999-08-10 Cohesion Technologies, Inc. Biocompatible adhesive compositions
US5510418A (en) * 1988-11-21 1996-04-23 Collagen Corporation Glycosaminoglycan-synthetic polymer conjugates
US5550187A (en) * 1988-11-21 1996-08-27 Collagen Corporation Method of preparing crosslinked biomaterial compositions for use in tissue augmentation
US5006330A (en) * 1988-11-30 1991-04-09 The United States Of America As Represented By The Of The Department Of Health And Human Services Evaluative means for detecting inflammatory reactivity
EP0393438B1 (en) 1989-04-21 2005-02-16 Amgen Inc. TNF-receptor, TNF-binding protein and DNA coding therefor
US7264944B1 (en) 1989-04-21 2007-09-04 Amgen Inc. TNF receptors, TNF binding proteins and DNAs coding for them
IL95031A (en) 1989-07-18 2007-03-08 Amgen Inc Method for the production of a human recombinant tumor necrosis factor inhibitor
US6143866A (en) * 1989-07-18 2000-11-07 Amgen, Inc. Tumor necrosis factor (TNF) inhibitor and method for obtaining the same
US5817075A (en) * 1989-08-14 1998-10-06 Photogenesis, Inc. Method for preparation and transplantation of planar implants and surgical instrument therefor
US6514238B1 (en) * 1989-08-14 2003-02-04 Photogenesis, Inc. Method for preparation and transplantation of volute grafts and surgical instrument therefor
SG49267A1 (en) 1989-08-14 1998-05-18 Photogenesis Inc Surgical instrument and cell isolation and transplantation
US5422340A (en) * 1989-09-01 1995-06-06 Ammann; Arthur J. TGF-βformulation for inducing bone growth
US5125888A (en) * 1990-01-10 1992-06-30 University Of Virginia Alumni Patents Foundation Magnetic stereotactic system for treatment delivery
EP0443809A3 (en) * 1990-02-20 1992-04-15 Ioptex Research Inc. Coated intraocular lens and coatings therefor
US5201764A (en) * 1990-02-28 1993-04-13 Autogenesis Technologies, Inc. Biologically compatible collagenous reaction product and articles useful as medical implants produced therefrom
US6552170B1 (en) * 1990-04-06 2003-04-22 Amgen Inc. PEGylation reagents and compounds formed therewith
US5833665A (en) * 1990-06-14 1998-11-10 Integra Lifesciences I, Ltd. Polyurethane-biopolymer composite
DE69127081T2 (en) * 1990-06-14 1998-02-05 Vitaphore Corp POLYURETHANE BIOPOLYMER CONNECTION
US5269785A (en) 1990-06-28 1993-12-14 Bonutti Peter M Apparatus and method for tissue removal
US5626863A (en) * 1992-02-28 1997-05-06 Board Of Regents, The University Of Texas System Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers
US5206023A (en) * 1991-01-31 1993-04-27 Robert F. Shaw Method and compositions for the treatment and repair of defects or lesions in cartilage
AU652022B2 (en) * 1991-02-12 1994-08-11 C.R. Bard Inc. Injectable medical device
EP0526630A4 (en) * 1991-02-22 1993-08-11 Amgen Inc. Use of gm-csf and g-csf to promote accelerated wound healing
CA2084057C (en) * 1991-03-29 1999-12-07 Yasuhiro Okuda Composite artificial blood vessel
CA2102808A1 (en) 1991-05-10 1992-11-11 Hanne Bentz Targeted delivery of bone growth factors
CA2071137A1 (en) * 1991-07-10 1993-01-11 Clarence C. Lee Composition and method for revitalizing scar tissue
US6503277B2 (en) 1991-08-12 2003-01-07 Peter M. Bonutti Method of transplanting human body tissue
US5270300A (en) * 1991-09-06 1993-12-14 Robert Francis Shaw Methods and compositions for the treatment and repair of defects or lesions in cartilage or bone
US6515009B1 (en) 1991-09-27 2003-02-04 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US5811447A (en) 1993-01-28 1998-09-22 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
DE69233022T2 (en) 1991-11-04 2004-02-12 Genetics Institute, LLC, Cambridge RECOMBINANT BONE MORPHOGENETIC PROTEIN HETERODIMERS, COMPOSITIONS AND METHODS OF USE
US20080139474A1 (en) * 1991-11-04 2008-06-12 David Israel Recombinant bone morphogenetic protein heterodimers, compositions and methods of use
IT1260468B (en) * 1992-01-29 1996-04-09 METHOD FOR MAINTAINING THE ACTIVITY OF PROTEOLYTIC ENZYMES MODIFIED WITH POLYETHYLENGLYCOL
US7968110B2 (en) 1992-02-11 2011-06-28 Merz Aesthetics, Inc. Tissue augmentation material and method
US7060287B1 (en) * 1992-02-11 2006-06-13 Bioform Inc. Tissue augmentation material and method
US5480644A (en) * 1992-02-28 1996-01-02 Jsf Consultants Ltd. Use of injectable biomaterials for the repair and augmentation of the anal sphincters
WO1993016711A1 (en) * 1992-02-28 1993-09-02 Jsf Consultants Ltd. Use of injectable biomaterials in the treatment of hemorrhoids
DK0627911T3 (en) 1992-02-28 2000-11-20 Univ Texas Photopolymerizable biodegradable hydrogels as tissue contact materials and controlled release carriers
US6045791A (en) * 1992-03-06 2000-04-04 Photogenesis, Inc. Retinal pigment epithelium transplantation
US6350274B1 (en) 1992-05-11 2002-02-26 Regen Biologics, Inc. Soft tissue closure systems
US5326350A (en) * 1992-05-11 1994-07-05 Li Shu Tung Soft tissue closure systems
ES2254795T3 (en) * 1992-05-29 2006-06-16 The University Of North Carolina At Chapel Hill PHARMACEUTICALLY ACCEPTABLE HUMAN BLOOD SETS AND DRIED.
JPH08502082A (en) * 1992-07-02 1996-03-05 コラーゲン コーポレイション Biocompatible polymer conjugate
US6592859B1 (en) * 1992-08-20 2003-07-15 Ethicon, Inc. Controlled expansion sphincter augmentation media
US5836313A (en) * 1993-02-08 1998-11-17 Massachusetts Institute Of Technology Methods for making composite hydrogels for corneal prostheses
FR2701648B1 (en) * 1993-02-19 1995-03-31 Marian Devonec Prosthesis intended for the treatment of a light or natural way, in particular endo-urethral prosthesis.
US6576008B2 (en) * 1993-02-19 2003-06-10 Scimed Life Systems, Inc. Methods and device for inserting and withdrawing a two piece stent across a constricting anatomic structure
CA2121192A1 (en) * 1993-04-21 1994-10-22 Kiminori Atsumi Collagen membranes
WO1994023740A1 (en) * 1993-04-22 1994-10-27 Celtrix Pharmaceuticals, Inc. Conjugates of growth factor and bone resorption inhibitor
US5876454A (en) * 1993-05-10 1999-03-02 Universite De Montreal Modified implant with bioactive conjugates on its surface for improved integration
US5449720A (en) * 1993-05-24 1995-09-12 Biotech Australia Pty Limited Amplification of the VB12 uptake system using polymers
US5548064A (en) * 1993-05-24 1996-08-20 Biotech Australia Pty Limited Vitamin B12 conjugates with EPO, analogues thereof and pharmaceutical compositions
ATE203913T1 (en) * 1993-05-31 2001-08-15 Kaken Pharma Co Ltd A GEL PREPARATION OF CROSS-LINKED GELATIN CONTAINING A BASIC GROWTH FACTOR FOR FIBROBLASTS
US5531791A (en) * 1993-07-23 1996-07-02 Bioscience Consultants Composition for repair of defects in osseous tissues, method of making, and prosthesis
EP0637450A3 (en) * 1993-08-04 1995-04-05 Collagen Corp Composition for revitalizing scar tissue.
JPH09501932A (en) * 1993-08-26 1997-02-25 ジェネティックス・インスティテュート・インコーポレイテッド Nerve regeneration using human and bone morphogenetic proteins
US6291206B1 (en) * 1993-09-17 2001-09-18 Genetics Institute, Inc. BMP receptor proteins
US5446090A (en) * 1993-11-12 1995-08-29 Shearwater Polymers, Inc. Isolatable, water soluble, and hydrolytically stable active sulfones of poly(ethylene glycol) and related polymers for modification of surfaces and molecules
DK0733109T3 (en) 1993-12-07 2006-07-03 Genetics Inst Llc BMP-12, BMP-13 and late inducing preparations thereof
FR2715309B1 (en) * 1994-01-24 1996-08-02 Imedex Adhesive composition, for surgical use, based on collagen modified by oxidative cutting and not crosslinked.
US5656605A (en) * 1994-01-26 1997-08-12 Institute Of Molecular Biology, Inc. Device to promote drug-induced nerve regeneration
CA2140053C (en) * 1994-02-09 2000-04-04 Joel S. Rosenblatt Collagen-based injectable drug delivery system and its use
US6074840A (en) * 1994-02-18 2000-06-13 The Regents Of The University Of Michigan Recombinant production of latent TGF-beta binding protein-3 (LTBP-3)
US5962427A (en) * 1994-02-18 1999-10-05 The Regent Of The University Of Michigan In vivo gene transfer methods for wound healing
US5763416A (en) * 1994-02-18 1998-06-09 The Regent Of The University Of Michigan Gene transfer into bone cells and tissues
US5942496A (en) * 1994-02-18 1999-08-24 The Regent Of The University Of Michigan Methods and compositions for multiple gene transfer into bone cells
US20020193338A1 (en) * 1994-02-18 2002-12-19 Goldstein Steven A. In vivo gene transfer methods for wound healing
US6551618B2 (en) * 1994-03-15 2003-04-22 University Of Birmingham Compositions and methods for delivery of agents for neuronal regeneration and survival
EP0751751A4 (en) * 1994-03-22 1998-03-25 Organogenesis Inc Three-dimensional bioremodelable collagen fabrics
US20050245850A1 (en) * 1994-03-30 2005-11-03 Freyre Carlos V Method and apparatus for inhibiting the growth of and shrinking cancerous tumors
US6500112B1 (en) 1994-03-30 2002-12-31 Brava, Llc Vacuum dome with supporting rim and rim cushion
US6165210A (en) * 1994-04-01 2000-12-26 Gore Enterprise Holdings, Inc. Self-expandable helical intravascular stent and stent-graft
US6001123A (en) * 1994-04-01 1999-12-14 Gore Enterprise Holdings Inc. Folding self-expandable intravascular stent-graft
AU682266B2 (en) * 1994-04-04 1997-09-25 Collagen Corporation Cell-gels
EP0754017B1 (en) 1994-04-29 2002-06-19 SciMed Life Systems, Inc. Stent with collagen
US5629384A (en) * 1994-05-17 1997-05-13 Consiglio Nazionale Delle Ricerche Polymers of N-acryloylmorpholine activated at one end and conjugates with bioactive materials and surfaces
US5616689A (en) * 1994-07-13 1997-04-01 Collagen Corporation Method of controlling structure stability of collagen fibers produced form solutions or dispersions treated with sodium hydroxide for infectious agent deactivation
US5583114A (en) 1994-07-27 1996-12-10 Minnesota Mining And Manufacturing Company Adhesive sealant composition
USRE38827E1 (en) 1994-07-27 2005-10-11 3M Innovative Properties Company Adhesive sealant composition
US6713662B1 (en) * 1994-07-27 2004-03-30 Pharming Intellectual Property B.V. Production of collagen in the milk of transgenic mammals
US6331188B1 (en) 1994-08-31 2001-12-18 Gore Enterprise Holdings, Inc. Exterior supported self-expanding stent-graft
US6015429A (en) * 1994-09-08 2000-01-18 Gore Enterprise Holdings, Inc. Procedures for introducing stents and stent-grafts
JP3699141B2 (en) * 1994-09-24 2005-09-28 伸彦 由井 Biomolecular assembly of biodegradable pharmaceutical polymer having supramolecular structure and preparation method thereof
AU1287895A (en) * 1994-10-03 1996-04-26 Otogen Corporation Differentially biodegradable biomedical implants
US5738846A (en) * 1994-11-10 1998-04-14 Enzon, Inc. Interferon polymer conjugates and process for preparing the same
EP0713707A1 (en) * 1994-11-23 1996-05-29 Collagen Corporation In situ crosslinkable, injectable collagen composition for tissue augmention
US5588960A (en) * 1994-12-01 1996-12-31 Vidamed, Inc. Transurethral needle delivery device with cystoscope and method for treatment of urinary incontinence
US5518732A (en) * 1995-02-14 1996-05-21 Chiron Vision, Inc. Bio-erodible ophthalmic shield
GB9503492D0 (en) * 1995-02-22 1995-04-12 Ed Geistlich S Hne A G F R Che Chemical product
US20050186673A1 (en) * 1995-02-22 2005-08-25 Ed. Geistlich Soehne Ag Fuer Chemistrie Industrie Collagen carrier of therapeutic genetic material, and method
US5868728A (en) * 1995-02-28 1999-02-09 Photogenesis, Inc. Medical linear actuator for surgical delivery, manipulation, and extraction
CA2165728A1 (en) * 1995-03-14 1996-09-15 Woonza M. Rhee Use of hydrophobic crosslinking agents to prepare crosslinked biomaterial compositions
US6962979B1 (en) * 1995-03-14 2005-11-08 Cohesion Technologies, Inc. Crosslinkable biomaterial compositions containing hydrophobic and hydrophilic crosslinking agents
US5580923A (en) * 1995-03-14 1996-12-03 Collagen Corporation Anti-adhesion films and compositions for medical use
US5674290A (en) * 1995-04-05 1997-10-07 Li; Shu-Tung Water-stabilized biopolymeric implants
DE19514087A1 (en) * 1995-04-13 1996-10-17 Deutsches Krebsforsch Conjugate of an active ingredient, a polyether and possibly a native protein that is not considered foreign to the body
US5676967A (en) * 1995-04-18 1997-10-14 Brennen Medical, Inc. Mesh matrix wound dressing
US5837313A (en) * 1995-04-19 1998-11-17 Schneider (Usa) Inc Drug release stent coating process
US6120536A (en) * 1995-04-19 2000-09-19 Schneider (Usa) Inc. Medical devices with long term non-thrombogenic coatings
US6099562A (en) 1996-06-13 2000-08-08 Schneider (Usa) Inc. Drug coating with topcoat
US20020091433A1 (en) * 1995-04-19 2002-07-11 Ni Ding Drug release coated stent
US6083912A (en) * 1995-05-01 2000-07-04 Roger K. Khouri Method for soft tissue augmentation
AU6257796A (en) * 1995-06-06 1996-12-24 University Of Nebraska Board Of Regents Composition and method for administration of bio-affecting c atalysts
US6214331B1 (en) 1995-06-06 2001-04-10 C. R. Bard, Inc. Process for the preparation of aqueous dispersions of particles of water-soluble polymers and the particles obtained
US5672662A (en) * 1995-07-07 1997-09-30 Shearwater Polymers, Inc. Poly(ethylene glycol) and related polymers monosubstituted with propionic or butanoic acids and functional derivatives thereof for biotechnical applications
AU7398196A (en) * 1995-10-11 1997-04-30 Fusion Medical Technologies, Inc. Device and method for sealing tissue
US5776193A (en) * 1995-10-16 1998-07-07 Orquest, Inc. Bone grafting matrix
US6902584B2 (en) 1995-10-16 2005-06-07 Depuy Spine, Inc. Bone grafting matrix
JPH09143093A (en) * 1995-11-17 1997-06-03 Hoechst Japan Ltd Cartilage/bone-inductive restoring material
CN1052915C (en) * 1995-11-27 2000-05-31 中国医学科学院生物医学工程研究所 Medical carrier of protein coat for carrying gene and its prodn. method
CA2164262A1 (en) * 1995-12-01 1997-06-02 Charles J. Doillon Biostable porous material comprising composite biopolymers
AU1413797A (en) 1995-12-14 1997-07-03 Prograft Medical, Inc. Stent-graft deployment apparatus and method
US6042605A (en) 1995-12-14 2000-03-28 Gore Enterprose Holdings, Inc. Kink resistant stent-graft
PT2111876E (en) * 1995-12-18 2011-12-23 Angiodevice Internat Gmbh Crosslinked polymer compositions and methods for their use
US6833408B2 (en) 1995-12-18 2004-12-21 Cohesion Technologies, Inc. Methods for tissue repair using adhesive materials
US5752974A (en) * 1995-12-18 1998-05-19 Collagen Corporation Injectable or implantable biomaterials for filling or blocking lumens and voids of the body
US7883693B2 (en) 1995-12-18 2011-02-08 Angiodevice International Gmbh Compositions and systems for forming crosslinked biomaterials and methods of preparation of use
US6458889B1 (en) 1995-12-18 2002-10-01 Cohesion Technologies, Inc. Compositions and systems for forming crosslinked biomaterials and associated methods of preparation and use
CA2197375C (en) * 1996-02-15 2003-05-06 Yasuhiro Okuda Artificial blood vessel
SE9601243D0 (en) * 1996-03-29 1996-03-29 Hans Arne Hansson Promotion of regeneration of organized tissues
US6416774B1 (en) * 1996-05-09 2002-07-09 The Trustees Of The University Of Pennsyvania Hollow bone mineral-like calcium phosphate particles
US6224913B1 (en) 1996-05-09 2001-05-01 The Trustees Of The University Of Pennsylvania Conditioning of bioactive glass surfaces in protein containing solutions
US5940807A (en) * 1996-05-24 1999-08-17 Purcell; Daniel S. Automated and independently accessible inventory information exchange system
US5718012A (en) * 1996-05-28 1998-02-17 Organogenesis, Inc. Method of strength enhancement of collagen constructs
US5916585A (en) * 1996-06-03 1999-06-29 Gore Enterprise Holdings, Inc. Materials and method for the immobilization of bioactive species onto biodegradable polymers
US5855615A (en) * 1996-06-07 1999-01-05 Menlo Care, Inc. Controller expansion sphincter augmentation media
US6143037A (en) * 1996-06-12 2000-11-07 The Regents Of The University Of Michigan Compositions and methods for coating medical devices
US5792478A (en) * 1996-07-08 1998-08-11 Advanced Uro Science Tissue injectable composition and method of use
TW555765B (en) * 1996-07-09 2003-10-01 Amgen Inc Low molecular weight soluble tumor necrosis factor type-I and type-II proteins
US5852127A (en) * 1996-07-09 1998-12-22 Rensselner Polytechnic Institute Modification of porous and non-porous materials using self-assembled monolayers
EP0821878B1 (en) * 1996-07-29 2002-01-09 Loders Croklaan B.V. Collagen blend
DE69709501D1 (en) * 1996-07-29 2002-02-14 Loders Croklaan Bv collagen mixture
US5813411A (en) * 1996-08-20 1998-09-29 Menlo Care, Inc. Method of deforming tissue with a swollen hydrogel
US7049346B1 (en) 1996-08-20 2006-05-23 Menlo Care Div Of Ethicon, Inc. Swollen hydrogel for sphincter augmentation
US8716227B2 (en) 1996-08-23 2014-05-06 Cook Biotech Incorporated Graft prosthesis, materials and methods
US6666892B2 (en) * 1996-08-23 2003-12-23 Cook Biotech Incorporated Multi-formed collagenous biomaterial medical device
KR100650295B1 (en) * 1996-08-23 2006-11-28 쿠크 바이오텍, 인코포레이티드 Graft prosthesis, materials and methods
US8303981B2 (en) 1996-08-27 2012-11-06 Baxter International Inc. Fragmented polymeric compositions and methods for their use
US6066325A (en) * 1996-08-27 2000-05-23 Fusion Medical Technologies, Inc. Fragmented polymeric compositions and methods for their use
US7435425B2 (en) 2001-07-17 2008-10-14 Baxter International, Inc. Dry hemostatic compositions and methods for their preparation
US8603511B2 (en) 1996-08-27 2013-12-10 Baxter International, Inc. Fragmented polymeric compositions and methods for their use
US5989269A (en) 1996-08-30 1999-11-23 Vts Holdings L.L.C. Method, instruments and kit for autologous transplantation
US6569172B2 (en) 1996-08-30 2003-05-27 Verigen Transplantation Service International (Vtsi) Method, instruments, and kit for autologous transplantation
US7009034B2 (en) 1996-09-23 2006-03-07 Incept, Llc Biocompatible crosslinked polymers
US20090324721A1 (en) 1996-09-23 2009-12-31 Jack Kennedy Hydrogels Suitable For Use In Polyp Removal
US8003705B2 (en) 1996-09-23 2011-08-23 Incept Llc Biocompatible hydrogels made with small molecule precursors
WO1998012274A1 (en) * 1996-09-23 1998-03-26 Chandrashekar Pathak Methods and devices for preparing protein concentrates
US5856308A (en) * 1996-09-27 1999-01-05 Haemacure Corporation Artificial collagen
EP0946198B1 (en) 1996-10-15 2002-06-19 Medical Analysis Systems, Inc. Method of stabilizing troponin I (cTnI) via conjugation with an active polymer
US6387700B1 (en) * 1996-11-04 2002-05-14 The Reagents Of The University Of Michigan Cationic peptides, Cys-Trp-(LYS)n, for gene delivery
US5980972A (en) * 1996-12-20 1999-11-09 Schneider (Usa) Inc Method of applying drug-release coatings
US6352561B1 (en) 1996-12-23 2002-03-05 W. L. Gore & Associates Implant deployment apparatus
US6551350B1 (en) 1996-12-23 2003-04-22 Gore Enterprise Holdings, Inc. Kink resistant bifurcated prosthesis
US9603711B2 (en) 2001-05-25 2017-03-28 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
US8066708B2 (en) 2001-05-25 2011-11-29 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
US8735773B2 (en) 2007-02-14 2014-05-27 Conformis, Inc. Implant device and method for manufacture
US8480754B2 (en) 2001-05-25 2013-07-09 Conformis, Inc. Patient-adapted and improved articular implants, designs and related guide tools
US8556983B2 (en) 2001-05-25 2013-10-15 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs and related tools
US7799077B2 (en) 2002-10-07 2010-09-21 Conformis, Inc. Minimally invasive joint implant with 3-dimensional geometry matching the articular surfaces
US8083745B2 (en) 2001-05-25 2011-12-27 Conformis, Inc. Surgical tools for arthroplasty
US8545569B2 (en) 2001-05-25 2013-10-01 Conformis, Inc. Patient selectable knee arthroplasty devices
US7534263B2 (en) 2001-05-25 2009-05-19 Conformis, Inc. Surgical tools facilitating increased accuracy, speed and simplicity in performing joint arthroplasty
US8771365B2 (en) 2009-02-25 2014-07-08 Conformis, Inc. Patient-adapted and improved orthopedic implants, designs, and related tools
US7468075B2 (en) 2001-05-25 2008-12-23 Conformis, Inc. Methods and compositions for articular repair
US8882847B2 (en) 2001-05-25 2014-11-11 Conformis, Inc. Patient selectable knee joint arthroplasty devices
WO1998030252A1 (en) 1997-01-09 1998-07-16 Cohesion Technologies, Inc. Methods and apparatuses for making swellable uniformly shaped devices from polymeric materials
US5925061A (en) * 1997-01-13 1999-07-20 Gore Enterprise Holdings, Inc. Low profile vascular stent
DK1007082T3 (en) * 1997-01-15 2007-02-19 Phoenix Pharmacologics Inc Modified tumor necrosis factor
DK0984795T3 (en) * 1997-04-22 2004-02-02 Washington Res Found Bone grafts and dentures coated with tartrate-resistant acid phosphatase
US6149581A (en) * 1997-06-12 2000-11-21 Klingenstein; Ralph James Device and method for access to the colon and small bowel of a patient
US7192984B2 (en) * 1997-06-17 2007-03-20 Fziomed, Inc. Compositions of polyacids and polyethers and methods for their use as dermal fillers
US7923250B2 (en) 1997-07-30 2011-04-12 Warsaw Orthopedic, Inc. Methods of expressing LIM mineralization protein in non-osseous cells
AU745122B2 (en) 1997-07-30 2002-03-14 Emory University Novel bone mineralization proteins, DNA, vectors, expression systems
US6117979A (en) * 1997-08-18 2000-09-12 Medtronic, Inc. Process for making a bioprosthetic device and implants produced therefrom
US6166184A (en) * 1997-08-18 2000-12-26 Medtronic Inc. Process for making a bioprosthetic device
US6342250B1 (en) 1997-09-25 2002-01-29 Gel-Del Technologies, Inc. Drug delivery devices comprising biodegradable protein for the controlled release of pharmacologically active agents and method of making the drug delivery devices
GB2329840C (en) 1997-10-03 2007-10-05 Johnson & Johnson Medical Biopolymer sponge tubes
US8858981B2 (en) * 1997-10-10 2014-10-14 Ed. Geistlich Soehne Fuer Chemistrie Industrie Bone healing material comprising matrix carrying bone-forming cells
US20050186283A1 (en) * 1997-10-10 2005-08-25 Ed. Geistlich Soehne Ag Fuer Chemistrie Industrie Collagen carrier of therapeutic genetic material, and method
US8668737B2 (en) 1997-10-10 2014-03-11 Senorx, Inc. Tissue marking implant
US20030180263A1 (en) * 2002-02-21 2003-09-25 Peter Geistlich Resorbable extracellular matrix for reconstruction of bone
US9034315B2 (en) * 1997-10-10 2015-05-19 Ed. Geistlich Soehne Ag Fuer Chemische Industrie Cell-charged multi-layer collagen membrane
US7637948B2 (en) * 1997-10-10 2009-12-29 Senorx, Inc. Tissue marking implant
US6511468B1 (en) 1997-10-17 2003-01-28 Micro Therapeutics, Inc. Device and method for controlling injection of liquid embolic composition
US6458095B1 (en) 1997-10-22 2002-10-01 3M Innovative Properties Company Dispenser for an adhesive tissue sealant having a housing with multiple cavities
FI974321A0 (en) * 1997-11-25 1997-11-25 Jenny Ja Antti Wihurin Rahasto Multiple heparinglycosaminoglycans and proteoglycans are used
WO1999044643A1 (en) 1998-03-06 1999-09-10 Biosepra Medical Inc. Implantable particles for tissue bulking and the treatment of gastroesophageal reflux disease, urinary incontinence, and skin wrinkles
US6660301B1 (en) * 1998-03-06 2003-12-09 Biosphere Medical, Inc. Injectable microspheres for dermal augmentation and tissue bulking
CA2323048C (en) * 1998-03-12 2006-10-10 Shearwater Polymers, Inc. Poly(ethylene glycol) derivatives with proximal reactive groups
US6161034A (en) * 1999-02-02 2000-12-12 Senorx, Inc. Methods and chemical preparations for time-limited marking of biopsy sites
IL139030A0 (en) * 1998-04-17 2001-11-25 Angiogenix Inc Therapeutic angiogenic factors and methods for their use
US6395253B2 (en) 1998-04-23 2002-05-28 The Regents Of The University Of Michigan Microspheres containing condensed polyanionic bioactive agents and methods for their production
US6428978B1 (en) 1998-05-08 2002-08-06 Cohesion Technologies, Inc. Methods for the production of gelatin and full-length triple helical collagen in recombinant cells
US6197934B1 (en) 1998-05-22 2001-03-06 Collagenesis, Inc. Compound delivery using rapidly dissolving collagen film
US20020022588A1 (en) * 1998-06-23 2002-02-21 James Wilkie Methods and compositions for sealing tissue leaks
JP3686335B2 (en) 1998-07-13 2005-08-24 ユニヴァースティ オブ サザーン カリフォルニア Methods for promoting bone and cartilage growth and repair
US6916783B2 (en) * 1998-07-13 2005-07-12 University Of Southern California Methods for accelerating bone and cartilage growth and repair
US20020015724A1 (en) * 1998-08-10 2002-02-07 Chunlin Yang Collagen type i and type iii hemostatic compositions for use as a vascular sealant and wound dressing
AU5671899A (en) * 1998-08-10 2000-03-06 Fibrogen, Inc. Collagen type i and type iii hemostatic compositions for use as a vascular sealant and wound dressing
US6152943A (en) * 1998-08-14 2000-11-28 Incept Llc Methods and apparatus for intraluminal deposition of hydrogels
US6605294B2 (en) * 1998-08-14 2003-08-12 Incept Llc Methods of using in situ hydration of hydrogel articles for sealing or augmentation of tissue or vessels
US7347850B2 (en) * 1998-08-14 2008-03-25 Incept Llc Adhesion barriers applicable by minimally invasive surgery and methods of use thereof
US6514534B1 (en) * 1998-08-14 2003-02-04 Incept Llc Methods for forming regional tissue adherent barriers and drug delivery systems
PL346653A1 (en) 1998-08-14 2002-02-25 Verigen Transplantation Serv Methods, instruments and materials for chondrocyte cell transplantation
WO2000035346A2 (en) 1998-09-14 2000-06-22 Stanford University Assessing the condition of a joint and preventing damage
US7184814B2 (en) 1998-09-14 2007-02-27 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and assessing cartilage loss
US7239908B1 (en) 1998-09-14 2007-07-03 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and devising treatment
US6630457B1 (en) 1998-09-18 2003-10-07 Orthogene Llc Functionalized derivatives of hyaluronic acid, formation of hydrogels in situ using same, and methods for making and using same
US20030007991A1 (en) * 1998-09-25 2003-01-09 Masters David B. Devices including protein matrix materials and methods of making and using thereof
US7662409B2 (en) * 1998-09-25 2010-02-16 Gel-Del Technologies, Inc. Protein matrix materials, devices and methods of making and using thereof
US20050147690A1 (en) * 1998-09-25 2005-07-07 Masters David B. Biocompatible protein particles, particle devices and methods thereof
FR2784580B1 (en) 1998-10-16 2004-06-25 Biosepra Inc POLYVINYL-ALCOHOL MICROSPHERES AND METHODS OF MAKING THE SAME
US7067144B2 (en) * 1998-10-20 2006-06-27 Omeros Corporation Compositions and methods for systemic inhibition of cartilage degradation
US6660843B1 (en) * 1998-10-23 2003-12-09 Amgen Inc. Modified peptides as therapeutic agents
US6110484A (en) * 1998-11-24 2000-08-29 Cohesion Technologies, Inc. Collagen-polymer matrices with differential biodegradability
US8882850B2 (en) * 1998-12-01 2014-11-11 Cook Biotech Incorporated Multi-formed collagenous biomaterial medical device
US6478656B1 (en) 1998-12-01 2002-11-12 Brava, Llc Method and apparatus for expanding soft tissue with shape memory alloys
EP1051116B8 (en) 1998-12-01 2009-06-10 Washington University Embolization device
AU2707500A (en) * 1998-12-04 2000-06-26 Incept Llc Biocompatible crosslinked polymers
US20080114092A1 (en) * 1998-12-04 2008-05-15 Incept Llc Adhesion barriers applicable by minimally invasive surgery and methods of use thereof
US6454787B1 (en) 1998-12-11 2002-09-24 C. R. Bard, Inc. Collagen hemostatic foam
US6361551B1 (en) 1998-12-11 2002-03-26 C. R. Bard, Inc. Collagen hemostatic fibers
US6371904B1 (en) 1998-12-24 2002-04-16 Vivant Medical, Inc. Subcutaneous cavity marking device and method
US9669113B1 (en) 1998-12-24 2017-06-06 Devicor Medical Products, Inc. Device and method for safe location and marking of a biopsy cavity
US6356782B1 (en) * 1998-12-24 2002-03-12 Vivant Medical, Inc. Subcutaneous cavity marking device and method
US20020065546A1 (en) * 1998-12-31 2002-05-30 Machan Lindsay S. Stent grafts with bioactive coatings
US20050171594A1 (en) * 1998-12-31 2005-08-04 Angiotech International Ag Stent grafts with bioactive coatings
WO2000043050A1 (en) * 1999-01-22 2000-07-27 St. Jude Medical, Inc. Medical adhesives
US6727224B1 (en) * 1999-02-01 2004-04-27 Genetics Institute, Llc. Methods and compositions for healing and repair of articular cartilage
US9820824B2 (en) 1999-02-02 2017-11-21 Senorx, Inc. Deployment of polysaccharide markers for treating a site within a patent
US6725083B1 (en) 1999-02-02 2004-04-20 Senorx, Inc. Tissue site markers for in VIVO imaging
US8498693B2 (en) * 1999-02-02 2013-07-30 Senorx, Inc. Intracorporeal marker and marker delivery device
US20090216118A1 (en) 2007-07-26 2009-08-27 Senorx, Inc. Polysaccharide markers
US7651505B2 (en) 2002-06-17 2010-01-26 Senorx, Inc. Plugged tip delivery for marker placement
US8361082B2 (en) 1999-02-02 2013-01-29 Senorx, Inc. Marker delivery device with releasable plug
US7983734B2 (en) 2003-05-23 2011-07-19 Senorx, Inc. Fibrous marker and intracorporeal delivery thereof
US6862470B2 (en) 1999-02-02 2005-03-01 Senorx, Inc. Cavity-filling biopsy site markers
AU3856400A (en) * 1999-02-12 2000-08-29 Collagenesis, Inc. Injectable collagen-based system for delivery of cells or therapeutic agents
FR2790475B1 (en) 1999-03-02 2003-01-24 Flamel Tech Sa COLLAGENIC PEPTIDES MODIFIED BY GRAFTING OF MERCAPTO FUNCTIONS, ONE OF THEIR PROCESSES AND THEIR APPLICATIONS AS BIOMATERIALS
US6312725B1 (en) 1999-04-16 2001-11-06 Cohesion Technologies, Inc. Rapid gelling biocompatible polymer composition
US6423790B1 (en) 1999-04-16 2002-07-23 William Marsh Rice University Biodegradable poly(propylene fumarate) networks cross linked with poly(propylene fumarate)-diacrylate macromers
US6428576B1 (en) * 1999-04-16 2002-08-06 Endospine, Ltd. System for repairing inter-vertebral discs
US6858229B1 (en) * 1999-04-26 2005-02-22 California Institute Of Technology In situ forming hydrogels
US7015198B1 (en) 1999-05-11 2006-03-21 Orentreich Foundation For The Advancement Of Science, Inc. Materials for soft tissue augmentation and methods of making and using same
US6575991B1 (en) * 1999-06-17 2003-06-10 Inrad, Inc. Apparatus for the percutaneous marking of a lesion
US7169889B1 (en) 1999-06-19 2007-01-30 Biocon Limited Insulin prodrugs hydrolyzable in vivo to yield peglylated insulin
US6770740B1 (en) 1999-07-13 2004-08-03 The Regents Of The University Of Michigan Crosslinked DNA condensate compositions and gene delivery methods
US6312421B1 (en) 1999-07-23 2001-11-06 Neurovasx, Inc. Aneurysm embolization material and device
US6162258A (en) * 1999-08-25 2000-12-19 Osteotech, Inc. Lyophilized monolithic bone implant and method for treating bone
DE60042414D1 (en) 1999-08-27 2009-07-30 Angiodevice Internat Gmbh INTERPENETRATING POLYMER NETWORKS FOR USE
BR0013639A (en) * 1999-08-31 2004-06-15 Univ Virginia Commonwealth Extracellular Matrix, Process for Manufacturing an Extracellular Matrix, Process for Forming a Vascular Prosthesis, Muscle Implant, Extracellular Matrix for Muscle Support, Process for Forming a Muscular Facial Coating, and Process for Overlapping Muscle Cell Layers in a Matrix extracellular
US6371984B1 (en) * 1999-09-13 2002-04-16 Keraplast Technologies, Ltd. Implantable prosthetic or tissue expanding device
US6783546B2 (en) 1999-09-13 2004-08-31 Keraplast Technologies, Ltd. Implantable prosthetic or tissue expanding device
PT1223990E (en) * 1999-10-15 2004-12-31 Fidia Advanced Biopolymers Srl HYALURONIC ACID FORMULATIONS FOR ADMINISTRATION OF OSTEOGENIC PROTEINS
EE9900442A (en) * 1999-11-29 2001-08-15 Tartu Ülikool Biologically active material
US20030147944A1 (en) * 1999-12-10 2003-08-07 Mayer Lawrence D Lipid carrier compositions with protected surface reactive functions
US6623963B1 (en) 1999-12-20 2003-09-23 Verigen Ag Cellular matrix
US20030095993A1 (en) * 2000-01-28 2003-05-22 Hanne Bentz Gel-infused sponges for tissue repair and augmentation
EP1253857B1 (en) * 2000-02-03 2009-01-21 Tissuemed Limited Device for the closure of a surgical puncture
AU2001249221A1 (en) 2000-03-20 2001-10-03 Biosphere Medical, Inc. Injectable and swellable microspheres for tissue bulking
US6436424B1 (en) * 2000-03-20 2002-08-20 Biosphere Medical, Inc. Injectable and swellable microspheres for dermal augmentation
US7338657B2 (en) * 2001-03-15 2008-03-04 Biosphere Medical, Inc. Injectable microspheres for tissue construction
CN1430505A (en) 2000-03-24 2003-07-16 生物领域医疗公司 Microspheres for active embolization
JP4074043B2 (en) * 2000-03-27 2008-04-09 株式会社資生堂 Skin basement membrane formation promoter, artificial skin formation promoter, and method for producing artificial skin
US6884778B2 (en) * 2000-04-14 2005-04-26 William Marsh Rice University Biocompatible macromers
US20050002986A1 (en) * 2000-05-12 2005-01-06 Robert Falotico Drug/drug delivery systems for the prevention and treatment of vascular disease
US8236048B2 (en) * 2000-05-12 2012-08-07 Cordis Corporation Drug/drug delivery systems for the prevention and treatment of vascular disease
US6776796B2 (en) 2000-05-12 2004-08-17 Cordis Corportation Antiinflammatory drug and delivery device
US20040243097A1 (en) * 2000-05-12 2004-12-02 Robert Falotico Antiproliferative drug and delivery device
SG98393A1 (en) 2000-05-19 2003-09-19 Inst Materials Research & Eng Injectable drug delivery systems with cyclodextrin-polymer based hydrogels
US7083644B1 (en) * 2000-05-24 2006-08-01 Scimed Life Systems, Inc. Implantable prostheses with improved mechanical and chemical properties
US6423332B1 (en) 2000-05-26 2002-07-23 Ethicon, Inc. Method and composition for deforming soft tissues
US20030032143A1 (en) * 2000-07-24 2003-02-13 Neff Thomas B. Collagen type I and type III compositions for use as an adhesive and sealant
US7635592B2 (en) * 2000-08-21 2009-12-22 Rice University Tissue engineering scaffolds promoting matrix protein production
US7726319B1 (en) 2000-08-24 2010-06-01 Osteotech, Inc. Method for removal of water associated with bone while diminishing the dimensional changes associated with lyophilization
CA2425120A1 (en) 2000-09-14 2002-03-21 The Board Of Trustees Of The Leland Stanford Junior University Assessing the condition of a joint and devising treatment
US20050165428A1 (en) * 2000-09-25 2005-07-28 Franco Kenneth L. Absorable surgical structure
JP2004508884A (en) 2000-09-25 2004-03-25 コヒージョン テクノロジーズ, インコーポレイテッド Resorbable anastomotic stent and plug
US7029486B2 (en) * 2000-09-26 2006-04-18 Microvention, Inc. Microcoil vaso-occlusive device with multi-axis secondary configuration
US20020111590A1 (en) 2000-09-29 2002-08-15 Davila Luis A. Medical devices, drug coatings and methods for maintaining the drug coatings thereon
US20020051730A1 (en) * 2000-09-29 2002-05-02 Stanko Bodnar Coated medical devices and sterilization thereof
US6296607B1 (en) * 2000-10-20 2001-10-02 Praxis, Llc. In situ bulking device
US7261735B2 (en) * 2001-05-07 2007-08-28 Cordis Corporation Local drug delivery devices and methods for maintaining the drug coatings thereon
US8303609B2 (en) 2000-09-29 2012-11-06 Cordis Corporation Coated medical devices
AU9576501A (en) * 2000-10-23 2002-05-06 Tissuemed Ltd Self-adhesive hydratable matrix for topical therapeutic use
ES2409758T3 (en) * 2000-11-20 2013-06-27 Senorx, Inc. Tissue site markers for in vivo imaging
US20030082233A1 (en) * 2000-12-01 2003-05-01 Lyons Karen M. Method and composition for modulating bone growth
KR20030005204A (en) * 2000-12-25 2003-01-17 가부시키가이샤 시세이도 Sympathetic-activating perfume composition
US9080146B2 (en) 2001-01-11 2015-07-14 Celonova Biosciences, Inc. Substrates containing polyphosphazene as matrices and substrates containing polyphosphazene with a micro-structured surface
JP4025648B2 (en) * 2001-01-23 2007-12-26 アビームーア メディカル インコーポレイテッド Device used in the urethra
US7060675B2 (en) 2001-02-15 2006-06-13 Nobex Corporation Methods of treating diabetes mellitus
US6867183B2 (en) 2001-02-15 2005-03-15 Nobex Corporation Pharmaceutical compositions of insulin drug-oligomer conjugates and methods of treating diseases therewith
JP4340067B2 (en) 2001-04-23 2009-10-07 ウィスコンシン アルムニ リサーチ ファウンデイション Bifunctional modified hydrogel
AU784394B2 (en) 2001-04-27 2006-03-23 Geistlich Pharma Ag Method and membrane for mucosa regeneration
US8182527B2 (en) * 2001-05-07 2012-05-22 Cordis Corporation Heparin barrier coating for controlled drug release
US8951260B2 (en) 2001-05-25 2015-02-10 Conformis, Inc. Surgical cutting guide
US8439926B2 (en) 2001-05-25 2013-05-14 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools
JP2005504563A (en) 2001-05-25 2005-02-17 イメージング セラピューティクス,インコーポレーテッド Methods and compositions for resurfacing joints
DE60226321T2 (en) * 2001-06-01 2009-07-09 Wyeth COMPOSITIONS FOR THE SYSTEMIC ADMINISTRATION OF SEQUENCES THAT CODE FOR BONE MORPHOGENESIS PROTEINS
US6858580B2 (en) * 2001-06-04 2005-02-22 Nobex Corporation Mixtures of drug-oligomer conjugates comprising polyalkylene glycol, uses thereof, and methods of making same
US6828297B2 (en) 2001-06-04 2004-12-07 Nobex Corporation Mixtures of insulin drug-oligomer conjugates comprising polyalkylene glycol, uses thereof, and methods of making same
US6835802B2 (en) * 2001-06-04 2004-12-28 Nobex Corporation Methods of synthesizing substantially monodispersed mixtures of polymers having polyethylene glycol moieties
US7713932B2 (en) 2001-06-04 2010-05-11 Biocon Limited Calcitonin drug-oligomer conjugates, and uses thereof
US6828305B2 (en) 2001-06-04 2004-12-07 Nobex Corporation Mixtures of growth hormone drug-oligomer conjugates comprising polyalkylene glycol, uses thereof, and methods of making same
US6713452B2 (en) * 2001-06-04 2004-03-30 Nobex Corporation Mixtures of calcitonin drug-oligomer conjugates comprising polyalkylene glycol, uses thereof, and methods of making same
US20030003157A1 (en) * 2001-06-06 2003-01-02 University Of Medicine & Dentistry Of New Jersey Collagen compositions and methods for making and using the same
TWI267378B (en) * 2001-06-08 2006-12-01 Wyeth Corp Calcium phosphate delivery vehicles for osteoinductive proteins
WO2002100444A1 (en) * 2001-06-08 2002-12-19 Biosphere Medical Inc. Colloidal metal labelled microparticles, their production and use
US6702744B2 (en) 2001-06-20 2004-03-09 Advanced Cardiovascular Systems, Inc. Agents that stimulate therapeutic angiogenesis and techniques and devices that enable their delivery
US6994722B2 (en) 2001-07-03 2006-02-07 Scimed Life Systems, Inc. Implant having improved fixation to a body lumen and method for implanting the same
US20030014075A1 (en) * 2001-07-16 2003-01-16 Microvention, Inc. Methods, materials and apparatus for deterring or preventing endoleaks following endovascular graft implanation
US8252040B2 (en) 2001-07-20 2012-08-28 Microvention, Inc. Aneurysm treatment device and method of use
US7572288B2 (en) 2001-07-20 2009-08-11 Microvention, Inc. Aneurysm treatment device and method of use
US8715312B2 (en) * 2001-07-20 2014-05-06 Microvention, Inc. Aneurysm treatment device and method of use
US7105182B2 (en) 2001-07-25 2006-09-12 Szymaitis Dennis W Periodontal regeneration composition and method of using same
US7312192B2 (en) 2001-09-07 2007-12-25 Biocon Limited Insulin polypeptide-oligomer conjugates, proinsulin polypeptide-oligomer conjugates and methods of synthesizing same
US6913903B2 (en) 2001-09-07 2005-07-05 Nobex Corporation Methods of synthesizing insulin polypeptide-oligomer conjugates, and proinsulin polypeptide-oligomer conjugates and methods of synthesizing same
US7166571B2 (en) 2001-09-07 2007-01-23 Biocon Limited Insulin polypeptide-oligomer conjugates, proinsulin polypeptide-oligomer conjugates and methods of synthesizing same
US7030082B2 (en) * 2001-09-07 2006-04-18 Nobex Corporation Pharmaceutical compositions of drug-oligomer conjugates and methods of treating disease therewith
US6770625B2 (en) * 2001-09-07 2004-08-03 Nobex Corporation Pharmaceutical compositions of calcitonin drug-oligomer conjugates and methods of treating diseases therewith
US7196059B2 (en) 2001-09-07 2007-03-27 Biocon Limited Pharmaceutical compositions of insulin drug-oligomer conjugates and methods of treating diseases therewith
US7195640B2 (en) * 2001-09-25 2007-03-27 Cordis Corporation Coated medical devices for the treatment of vulnerable plaque
US20030065345A1 (en) * 2001-09-28 2003-04-03 Kevin Weadock Anastomosis devices and methods for treating anastomotic sites
US7108701B2 (en) * 2001-09-28 2006-09-19 Ethicon, Inc. Drug releasing anastomosis devices and methods for treating anastomotic sites
US7157096B2 (en) * 2001-10-12 2007-01-02 Inframat Corporation Coatings, coated articles and methods of manufacture thereof
AU2002348033B2 (en) 2001-10-23 2008-05-29 Covidien Lp Surgical fasteners
CA2412012C (en) * 2001-11-20 2011-08-02 Ed. Geistlich Soehne Ag Fuer Chemische Industrie Resorbable extracellular matrix containing collagen i and collagen ii for reconstruction of cartilage
US7629388B2 (en) * 2001-11-20 2009-12-08 William Marsh Rice University Synthesis and characterization of biodegradable cationic poly(propylene fumarate-co-ethylene glycol) copolymer hydrogels modified with agmatine for enhanced cell adhesion
US8608661B1 (en) 2001-11-30 2013-12-17 Advanced Cardiovascular Systems, Inc. Method for intravascular delivery of a treatment agent beyond a blood vessel wall
US20030181371A1 (en) * 2001-12-28 2003-09-25 Angiotech Pharmaceuticals, Inc. Compositions and methods of using collajolie
ATE371680T1 (en) 2002-01-16 2007-09-15 Biocompatibles Uk Ltd POLYMER CONJUGATES
JP5105697B2 (en) * 2002-01-18 2012-12-26 シヴィダ・インコーポレイテッド Co-drug polymer delivery system for controlled delivery
JP2005517468A (en) * 2002-02-14 2005-06-16 フォトジェネシス インコーポレイテッド Subretinal transplant device and cannula used with the same
WO2003071986A2 (en) * 2002-02-22 2003-09-04 Control Delivery Systems, Inc. Method for treating otic disorders
US20030171773A1 (en) 2002-03-06 2003-09-11 Carrison Harold F. Methods for aneurysm repair
US20030203032A1 (en) * 2002-04-25 2003-10-30 Schultz Clyde L. Growth factor delivery system for the healing of wounds and the prevention of inflammation and disease
IL164822A0 (en) * 2002-04-25 2005-12-18 Rapidheal Inc Growth factor delivery system for the healing of wounds and the prevention and disease
US8623393B2 (en) * 2002-04-29 2014-01-07 Gel-Del Technologies, Inc. Biomatrix structural containment and fixation systems and methods of use thereof
EA008354B1 (en) * 2002-05-17 2007-04-27 Уайз Injectable solid hyaluronic acid carriers for delivery of osteogenic proteins
EP1364663A1 (en) * 2002-05-21 2003-11-26 Commonwealth Scientific And Industrial Research Organisation Ocular devices with functionalized surface with adhesive properties
US7601688B2 (en) * 2002-06-13 2009-10-13 Biocon Limited Methods of reducing hypoglycemic episodes in the treatment of diabetes mellitus
US7361368B2 (en) 2002-06-28 2008-04-22 Advanced Cardiovascular Systems, Inc. Device and method for combining a treatment agent and a gel
US20080226723A1 (en) * 2002-07-05 2008-09-18 Celonova Biosciences, Inc. Loadable Polymeric Particles for Therapeutic Use in Erectile Dysfunction and Methods of Preparing and Using the Same
CA2490007C (en) * 2002-07-19 2011-05-24 Omeros Corporation Biodegradable triblock copolymers, synthesis methods therefor, and hydrogels and biomaterials made there from
KR100967334B1 (en) 2002-09-09 2010-07-05 넥타르 테라퓨틱스 Method for preparing water-soluble polymer derivatives bearing a terminal carboxylic acid
JP5156890B2 (en) * 2002-09-11 2013-03-06 独立行政法人物質・材料研究機構 Crosslinked polymer and method for producing the same
US7008763B2 (en) * 2002-09-23 2006-03-07 Cheung David T Method to treat collagenous connective tissue for implant remodeled by host cells into living tissue
US7407672B2 (en) * 2002-11-04 2008-08-05 National Heart Center Composition derived from biological materials and method of use and preparation
CN1780594A (en) 2002-11-07 2006-05-31 康复米斯公司 Methods for determining meniscal size and shape and for devising treatment
US20060036158A1 (en) 2003-11-17 2006-02-16 Inrad, Inc. Self-contained, self-piercing, side-expelling marking apparatus
ATE472556T1 (en) 2002-12-02 2010-07-15 Amgen Fremont Inc ANTIBODIES DIRECTED AGAINST THE TUMOR NECROSIS FACTOR AND THEIR USES
CN1732022A (en) * 2002-12-30 2006-02-08 血管技术国际股份公司 Silk stent grafts
EP1594459B1 (en) 2002-12-30 2010-02-17 Angiotech International Ag Drug delivery from rapid gelling polymer composition
WO2004060405A2 (en) * 2002-12-30 2004-07-22 Angiotech International Ag Tissue reactive compounds and compositions and uses thereof
US20080208160A9 (en) * 2003-01-10 2008-08-28 Mawad Michel E Microcatheter including swellable tip
US7079091B2 (en) * 2003-01-14 2006-07-18 Eastman Kodak Company Compensating for aging in OLED devices
GB0301014D0 (en) * 2003-01-16 2003-02-19 Biocompatibles Ltd Conjugation reactions
FR2850282B1 (en) * 2003-01-27 2007-04-06 Jerome Asius INJECTABLE IMPLANT BASED ON CERAMIC FOR THE FILLING OF WRINKLES, CUTANEOUS DEPRESSIONS AND SCARS, AND ITS PREPARATION
US20060076295A1 (en) 2004-03-15 2006-04-13 The Trustees Of Columbia University In The City Of New York Systems and methods of blood-based therapies having a microfluidic membraneless exchange device
JP4489761B2 (en) 2003-03-14 2010-06-23 ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク System and method for blood-based therapy with a microfluidic membraneless device
ATE453413T1 (en) * 2003-04-03 2010-01-15 Dennis W Szymaitis COMPOSITION FOR THE RESTORATION OF BONE AND SURROUNDING TISSUE
DE602004025217D1 (en) * 2003-04-04 2010-03-11 Tissuemed Ltd
US9216106B2 (en) 2003-04-09 2015-12-22 Directcontact Llc Device and method for the delivery of drugs for the treatment of posterior segment disease
US20050255144A1 (en) * 2003-04-09 2005-11-17 Directcontact Llc Methods and articles for the delivery of medicaments to the eye for the treatment of posterior segment diseases
US20050074497A1 (en) * 2003-04-09 2005-04-07 Schultz Clyde L. Hydrogels used to deliver medicaments to the eye for the treatment of posterior segment diseases
US7273896B2 (en) 2003-04-10 2007-09-25 Angiotech Pharmaceuticals (Us), Inc. Compositions and methods of using a transient colorant
FR2861734B1 (en) 2003-04-10 2006-04-14 Corneal Ind CROSSLINKING OF LOW AND HIGH MOLECULAR MASS POLYSACCHARIDES; PREPARATION OF INJECTABLE SINGLE PHASE HYDROGELS; POLYSACCHARIDES AND HYDROGELS OBTAINED
US8038991B1 (en) 2003-04-15 2011-10-18 Abbott Cardiovascular Systems Inc. High-viscosity hyaluronic acid compositions to treat myocardial conditions
US8821473B2 (en) 2003-04-15 2014-09-02 Abbott Cardiovascular Systems Inc. Methods and compositions to treat myocardial conditions
US7641643B2 (en) 2003-04-15 2010-01-05 Abbott Cardiovascular Systems Inc. Methods and compositions to treat myocardial conditions
US7877133B2 (en) 2003-05-23 2011-01-25 Senorx, Inc. Marker or filler forming fluid
US8834864B2 (en) 2003-06-05 2014-09-16 Baxter International Inc. Methods for repairing and regenerating human dura mater
US8465537B2 (en) * 2003-06-17 2013-06-18 Gel-Del Technologies, Inc. Encapsulated or coated stent systems
WO2005010080A1 (en) * 2003-07-28 2005-02-03 Teijin Limited Temperature-responsive hydrogel
US7927626B2 (en) * 2003-08-07 2011-04-19 Ethicon, Inc. Process of making flowable hemostatic compositions and devices containing such compositions
EP1660013A4 (en) 2003-08-26 2011-07-20 Gel Del Technologies Inc Protein biomaterials and biocoacervates and methods of making and using thereof
WO2005025595A2 (en) * 2003-09-12 2005-03-24 Wyeth Injectable calcium phosphate solid rods and pastes for delivery of osteogenic proteins
US7309232B2 (en) * 2003-10-10 2007-12-18 Dentigenix Inc. Methods for treating dental conditions using tissue scaffolds
EP1684816B1 (en) * 2003-10-28 2009-05-06 Medtronic, Inc. Methods of preparing crosslinked materials and bioprosthetic devices
US20050148512A1 (en) * 2003-11-10 2005-07-07 Angiotech International Ag Medical implants and fibrosis-inducing agents
US20050149173A1 (en) * 2003-11-10 2005-07-07 Angiotech International Ag Intravascular devices and fibrosis-inducing agents
US20050273002A1 (en) * 2004-06-04 2005-12-08 Goosen Ryan L Multi-mode imaging marker
US20050208095A1 (en) * 2003-11-20 2005-09-22 Angiotech International Ag Polymer compositions and methods for their use
AU2004296851A1 (en) * 2003-12-08 2005-06-23 Gel-Del Technologies, Inc. Mucoadhesive drug delivery devices and methods of making and using thereof
US20070104752A1 (en) * 2003-12-10 2007-05-10 Lee Jeffrey A Aneurysm embolization material and device
US20080109057A1 (en) * 2003-12-10 2008-05-08 Calabria Marie F Multiple point detacher system
US20050142161A1 (en) * 2003-12-30 2005-06-30 Freeman Lynetta J. Collagen matrix for soft tissue augmentation
ES2720078T3 (en) * 2004-01-21 2019-07-17 Nektar Therapeutics Method for preparing polymers terminated in propionic acid
JP2007528918A (en) * 2004-03-02 2007-10-18 エグゾテック バイオ ソルーションズ リミテッド Biocompatible biodegradable water-absorbing hybrid material
JP2007532211A (en) * 2004-04-15 2007-11-15 ニクリス アーゲー Bone morphogenetic matrix composite, process for its production and tissue engineering implant and skeleton with coating of bone morphogenetic composite matrix
KR100974733B1 (en) 2004-04-28 2010-08-06 안지오디바이스 인터내셔널 게엠베하 Compositions and systems for forming crosslinked biomaterials and associated methods of preparation and use
US8293890B2 (en) * 2004-04-30 2012-10-23 Advanced Cardiovascular Systems, Inc. Hyaluronic acid based copolymers
US7651702B2 (en) * 2004-05-20 2010-01-26 Mentor Corporation Crosslinking hyaluronan and chitosanic polymers
US20050281880A1 (en) * 2004-05-20 2005-12-22 Wei Wang Methods for making injectable polymer hydrogels
MXPA04005080A (en) * 2004-05-27 2005-11-30 Aspid S A De C V Chronic articular inflammation-modulating composition based on collagen-polyvinylpyrrolidone.
EP1773417A1 (en) * 2004-06-23 2007-04-18 Angiotech Pharmaceuticals (US), Inc. Methods and crosslinked polymer compositions for cartilage repair
AU2005269753B2 (en) 2004-07-19 2011-08-18 Biocon Limited Insulin-oligomer conjugates, formulations and uses thereof
US20060025848A1 (en) * 2004-07-29 2006-02-02 Jan Weber Medical device having a coating layer with structural elements therein and method of making the same
US8357391B2 (en) 2004-07-30 2013-01-22 Advanced Cardiovascular Systems, Inc. Coatings for implantable devices comprising poly (hydroxy-alkanoates) and diacid linkages
RU2396985C2 (en) * 2004-08-03 2010-08-20 Тиссьюмед Лимитед Materials characterised by adhesion to textiles
CA2581093C (en) 2004-09-17 2014-11-18 Angiotech Biomaterials Corporation Multifunctional compounds for forming crosslinked biomaterials and methods of preparation and use
US8790632B2 (en) * 2004-10-07 2014-07-29 Actamax Surgical Materials, Llc Polymer-based tissue-adhesive form medical use
EP1796746B1 (en) 2004-10-07 2011-05-04 E.I. Du Pont De Nemours And Company Polysaccharide-based polymer tissue adhesive for medical use
US7938307B2 (en) 2004-10-18 2011-05-10 Tyco Healthcare Group Lp Support structures and methods of using the same
US7845536B2 (en) 2004-10-18 2010-12-07 Tyco Healthcare Group Lp Annular adhesive structure
BRPI0518383A2 (en) 2004-10-25 2008-11-18 Polyzenix Gmbh Chargeable polymeric particles for therapeutical and / or diagnostic applications and methods for preparing and using them
US20210299056A9 (en) 2004-10-25 2021-09-30 Varian Medical Systems, Inc. Color-Coded Polymeric Particles of Predetermined Size for Therapeutic and/or Diagnostic Applications and Related Methods
US9107850B2 (en) 2004-10-25 2015-08-18 Celonova Biosciences, Inc. Color-coded and sized loadable polymeric particles for therapeutic and/or diagnostic applications and methods of preparing and using the same
US9114162B2 (en) 2004-10-25 2015-08-25 Celonova Biosciences, Inc. Loadable polymeric particles for enhanced imaging in clinical applications and methods of preparing and using the same
CA2585215A1 (en) * 2004-10-28 2006-05-11 Surmodics, Inc. Pro-fibrotic coatings comprising collagen for medical implants
US20060095121A1 (en) * 2004-10-28 2006-05-04 Medtronic Vascular, Inc. Autologous platelet gel on a stent graft
US20060100138A1 (en) * 2004-11-10 2006-05-11 Olsen David R Implantable collagen compositions
FR2877846B1 (en) * 2004-11-15 2008-12-05 Univ Lille Sciences Tech BIOMATERIAL CARRIERS OF CYCLODEXTRINS WITH IMPROVED ABSORPTION PROPERTIES AND PROGRESSIVE AND DELAYED RELEASE OF THERAPEUTIC MOLECULES
US8419656B2 (en) * 2004-11-22 2013-04-16 Bard Peripheral Vascular, Inc. Post decompression marker introducer system
US8283414B2 (en) * 2004-11-23 2012-10-09 The Johns Hopkins University Compositions comprising modified collagen and uses therefor
US20060178696A1 (en) * 2005-02-04 2006-08-10 Porter Stephen C Macroporous materials for use in aneurysms
US9050393B2 (en) 2005-02-08 2015-06-09 Bruce N. Saffran Medical devices and methods for modulation of physiology using device-based surface chemistry
AU2006213822B2 (en) 2005-02-09 2011-05-26 Covidien Lp Synthetic sealants
US9364229B2 (en) 2005-03-15 2016-06-14 Covidien Lp Circular anastomosis structures
DE602006006663D1 (en) * 2005-03-24 2009-06-18 Medtronic Inc MODIFICATION OF THERMOPLASTIC POLYMERS
US20060239951A1 (en) * 2005-03-30 2006-10-26 Alexandre Valentin Methods for stimulating hair growth by administering BMPs
US8574604B2 (en) 2005-04-15 2013-11-05 Interface Biologics, Inc. Methods and compositions for the delivery of biologically active agents
US8303972B2 (en) 2005-04-19 2012-11-06 Advanced Cardiovascular Systems, Inc. Hydrogel bioscaffoldings and biomedical device coatings
US9539410B2 (en) 2005-04-19 2017-01-10 Abbott Cardiovascular Systems Inc. Methods and compositions for treating post-cardial infarction damage
US20080125745A1 (en) * 2005-04-19 2008-05-29 Shubhayu Basu Methods and compositions for treating post-cardial infarction damage
US8187621B2 (en) 2005-04-19 2012-05-29 Advanced Cardiovascular Systems, Inc. Methods and compositions for treating post-myocardial infarction damage
US8828433B2 (en) * 2005-04-19 2014-09-09 Advanced Cardiovascular Systems, Inc. Hydrogel bioscaffoldings and biomedical device coatings
US10357328B2 (en) 2005-04-20 2019-07-23 Bard Peripheral Vascular, Inc. and Bard Shannon Limited Marking device with retractable cannula
US20060247776A1 (en) * 2005-05-02 2006-11-02 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for augmenting intervertebral discs
KR20140090270A (en) 2005-05-09 2014-07-16 바이오스피어 메디칼 에스.에이. Compositions and methods using microspheres and non-ionic contrast agents
US20070005140A1 (en) * 2005-06-29 2007-01-04 Kim Daniel H Fabrication and use of biocompatible materials for treating and repairing herniated spinal discs
CN101252957A (en) * 2005-06-30 2008-08-27 人类起源公司 Repair of tympanic membrane using placenta derived collagen biofabric
US20070031498A1 (en) * 2005-08-02 2007-02-08 Wright Medical Technology, Inc. Gel composition for cellular adhesion inhibition
US8679536B2 (en) * 2005-08-24 2014-03-25 Actamax Surgical Materials, Llc Aldol-crosslinked polymeric hydrogel adhesives
US8679537B2 (en) * 2005-08-24 2014-03-25 Actamaz Surgical Materials, LLC Methods for sealing an orifice in tissue using an aldol-crosslinked polymeric hydrogel adhesive
US8052658B2 (en) 2005-10-07 2011-11-08 Bard Peripheral Vascular, Inc. Drug-eluting tissue marker
US9393344B2 (en) 2006-01-11 2016-07-19 Hyperbranch Medical Technology, Inc. Crosslinked gels comprising polyalkyleneimines, and their uses as medical devices
US20100227804A1 (en) * 2006-01-18 2010-09-09 The University Of Tokyo Gel-forming composition for medical use, administration device for the composition, and drug release controlling carrier
WO2007090130A2 (en) * 2006-01-30 2007-08-09 Surgica Corporation Porous intravascular embolization particles and related methods
WO2007090127A2 (en) 2006-01-30 2007-08-09 Surgica Corporation Compressible intravascular embolization particles and related methods and delivery systems
AU2007210879B2 (en) 2006-02-03 2013-01-10 Tissuemed Limited Tissue-adhesive materials
US20070184087A1 (en) 2006-02-06 2007-08-09 Bioform Medical, Inc. Polysaccharide compositions for use in tissue augmentation
US8623026B2 (en) 2006-02-06 2014-01-07 Conformis, Inc. Patient selectable joint arthroplasty devices and surgical tools incorporating anatomical relief
WO2007098066A2 (en) * 2006-02-16 2007-08-30 Stanford University Polymeric heart restraint
US20070233252A1 (en) * 2006-02-23 2007-10-04 Kim Daniel H Devices, systems and methods for treating intervertebral discs
US20090018575A1 (en) * 2006-03-01 2009-01-15 Tissuemed Limited Tissue-adhesive formulations
JP6075930B2 (en) * 2006-04-24 2017-02-08 インセプト エルエルシー Protein cross-linking agent, cross-linking method and use thereof
WO2007137245A2 (en) 2006-05-22 2007-11-29 Columbia University Systems and methods of microfluidic membraneless exchange using filtration of extraction fluid outlet streams
AU2007267338B2 (en) 2006-05-31 2013-04-04 Baxter Healthcare S.A. Method for directed cell in-growth and controlled tissue regeneration in spinal surgery
JP2009540936A (en) 2006-06-22 2009-11-26 ユニバーシティー オブ サウス フロリダ Collagen scaffold, medical implant plant with the same, and method of use thereof
US7732190B2 (en) 2006-07-31 2010-06-08 Advanced Cardiovascular Systems, Inc. Modified two-component gelation systems, methods of use and methods of manufacture
TWI436793B (en) 2006-08-02 2014-05-11 Baxter Int Rapidly acting dry sealant and methods for use and manufacture
US7945307B2 (en) * 2006-08-04 2011-05-17 Senorx, Inc. Marker delivery system with obturator
US20090171198A1 (en) * 2006-08-04 2009-07-02 Jones Michael L Powdered marker
WO2008021391A1 (en) * 2006-08-15 2008-02-21 Anthrogenesis Corporation Umbilical cord biomaterial for medical use
US9242005B1 (en) 2006-08-21 2016-01-26 Abbott Cardiovascular Systems Inc. Pro-healing agent formulation compositions, methods and treatments
WO2008033505A1 (en) * 2006-09-13 2008-03-20 University Of South Florida Biocomposite for artificial tissue design
US20080131522A1 (en) * 2006-10-03 2008-06-05 Qing Liu Use of placental biomaterial for ocular surgery
WO2008060377A2 (en) 2006-10-04 2008-05-22 Anthrogenesis Corporation Placental or umbilical cord tissue compositions
KR20190112868A (en) 2006-10-06 2019-10-07 안트로제네시스 코포레이션 Native(telopeptide) Placental Collagen Compositions
US8064987B2 (en) 2006-10-23 2011-11-22 C. R. Bard, Inc. Breast marker
US7845533B2 (en) 2007-06-22 2010-12-07 Tyco Healthcare Group Lp Detachable buttress material retention systems for use with a surgical stapling device
WO2008073582A2 (en) 2006-10-27 2008-06-19 Edwards Lifesciences Corporation Biological tissue for surgical implantation
US9005672B2 (en) 2006-11-17 2015-04-14 Abbott Cardiovascular Systems Inc. Methods of modifying myocardial infarction expansion
EP2099845B1 (en) * 2006-11-27 2020-12-23 Actamax Surgical Materials LLC Multi-functional polyalkylene oxides, hydrogels and tissue adhesives
US8192760B2 (en) 2006-12-04 2012-06-05 Abbott Cardiovascular Systems Inc. Methods and compositions for treating tissue using silk proteins
WO2008073965A2 (en) 2006-12-12 2008-06-19 C.R. Bard Inc. Multiple imaging mode tissue marker
ES2432572T3 (en) 2006-12-18 2013-12-04 C.R. Bard, Inc. Biopsy marker with imaging properties generated in situ
ITRM20060682A1 (en) * 2006-12-19 2008-06-20 Sicit Chemitech S P A NEW BIODEGRADABLE POLYMER DERIVATIVES
US9056151B2 (en) 2007-02-12 2015-06-16 Warsaw Orthopedic, Inc. Methods for collagen processing and products using processed collagen
EP2591756A1 (en) 2007-02-14 2013-05-15 Conformis, Inc. Implant device and method for manufacture
US20090227981A1 (en) * 2007-03-05 2009-09-10 Bennett Steven L Low-Swelling Biocompatible Hydrogels
US20090227689A1 (en) 2007-03-05 2009-09-10 Bennett Steven L Low-Swelling Biocompatible Hydrogels
US20080220047A1 (en) 2007-03-05 2008-09-11 Sawhney Amarpreet S Low-swelling biocompatible hydrogels
EP3155980B1 (en) 2007-03-06 2018-10-17 Covidien LP Surgical stapling apparatus
JP2010523243A (en) * 2007-04-13 2010-07-15 クロス・バイオサージェリー・アクチェンゲゼルシャフト Polymer tissue sealant
CA2687990A1 (en) * 2007-05-23 2008-12-04 Allergan, Inc. Cross-linked collagen and uses thereof
US7665646B2 (en) 2007-06-18 2010-02-23 Tyco Healthcare Group Lp Interlocking buttress material retention system
CN101842061A (en) 2007-06-25 2010-09-22 微排放器公司 Self-expanding prosthesis
US8932619B2 (en) * 2007-06-27 2015-01-13 Sofradim Production Dural repair material
US20090004455A1 (en) * 2007-06-27 2009-01-01 Philippe Gravagna Reinforced composite implant
US9125807B2 (en) * 2007-07-09 2015-09-08 Incept Llc Adhesive hydrogels for ophthalmic drug delivery
CN101952324B (en) * 2007-07-12 2014-08-13 巴斯夫欧洲公司 Nitrocellulose based dispersant
US20090018655A1 (en) * 2007-07-13 2009-01-15 John Brunelle Composite Implant for Surgical Repair
US20090035249A1 (en) * 2007-08-02 2009-02-05 Bhatia Sujata K Method of inhibiting proliferation of Escherichia coli
GB0715514D0 (en) * 2007-08-10 2007-09-19 Tissuemed Ltd Coated medical devices
US8067028B2 (en) * 2007-08-13 2011-11-29 Confluent Surgical Inc. Drug delivery device
US20090068250A1 (en) * 2007-09-07 2009-03-12 Philippe Gravagna Bioresorbable and biocompatible compounds for surgical use
US20090088723A1 (en) * 2007-09-28 2009-04-02 Accessclosure, Inc. Apparatus and methods for treating pseudoaneurysms
US8697044B2 (en) 2007-10-09 2014-04-15 Allergan, Inc. Crossed-linked hyaluronic acid and collagen and uses thereof
ES2664822T3 (en) 2007-10-16 2018-04-23 Biocon Limited A solid pharmaceutical composition orally administrable and a process thereof
US20090111763A1 (en) * 2007-10-26 2009-04-30 Celonova Biosciences, Inc. Loadable polymeric particles for bone augmentation and methods of preparing and using the same
US20090110738A1 (en) * 2007-10-26 2009-04-30 Celonova Biosciences, Inc. Loadable Polymeric Particles for Cosmetic and Reconstructive Tissue Augmentation Applications and Methods of Preparing and Using the Same
US20090110730A1 (en) * 2007-10-30 2009-04-30 Celonova Biosciences, Inc. Loadable Polymeric Particles for Marking or Masking Individuals and Methods of Preparing and Using the Same
JP2011500237A (en) 2007-10-30 2011-01-06 バクスター・インターナショナル・インコーポレイテッド Use of regenerative biofunctional collagen biomatrix to treat visceral or cavity wall defects
US20090110731A1 (en) * 2007-10-30 2009-04-30 Celonova Biosciences, Inc. Loadable Polymeric Microparticles for Therapeutic Use in Alopecia and Methods of Preparing and Using the Same
US8846095B2 (en) * 2007-11-14 2014-09-30 Actamax Surgical Materials, Llc Dextran-based polymer tissue adhesive for medical use
EP2214731B1 (en) * 2007-11-14 2014-05-14 Actamax Surgical Materials LLC Oxidized cationic polysaccharide-based polymer tissue adhesive for medical use
BRPI0819075A2 (en) 2007-11-16 2014-10-07 Vicept Therapeutics Inc METHOD FOR TREATING PURPOSE IN AN INDIVIDUAL AND METHOD FOR REDUCING PURPOSE IN AN INDIVIDUAL BEFORE SURGICAL PROCEDURE
US20090143348A1 (en) * 2007-11-30 2009-06-04 Ahmet Tezel Polysaccharide gel compositions and methods for sustained delivery of drugs
US8394782B2 (en) * 2007-11-30 2013-03-12 Allergan, Inc. Polysaccharide gel formulation having increased longevity
US8394784B2 (en) * 2007-11-30 2013-03-12 Allergan, Inc. Polysaccharide gel formulation having multi-stage bioactive agent delivery
US9308068B2 (en) 2007-12-03 2016-04-12 Sofradim Production Implant for parastomal hernia
WO2009086305A2 (en) * 2007-12-21 2009-07-09 Rti Biologics, Inc. Osteoinductive putties and methods of making and using such putties
AU2008345047A1 (en) * 2007-12-26 2009-07-09 Gel-Del Technologies, Inc. Biocompatible protein particles, particle devices and methods thereof
US8311610B2 (en) * 2008-01-31 2012-11-13 C. R. Bard, Inc. Biopsy tissue marker
US8496606B2 (en) 2008-02-04 2013-07-30 The Trustees Of Columbia University In The City Of New York Fluid separation devices, systems and methods
EP2247645B1 (en) * 2008-02-13 2017-12-06 Hyperbranch Medical Technology, Inc. Crosslinked polyalkyleneimine hydrogels with tunable degradation rates
JP5632749B2 (en) * 2008-02-14 2014-11-26 テンジオン, インコーポレイテッド Tissue engineering scaffold
US8642831B2 (en) 2008-02-29 2014-02-04 Ferrosan Medical Devices A/S Device for promotion of hemostasis and/or wound healing
US8293813B2 (en) * 2008-03-05 2012-10-23 Biomet Manufacturing Corporation Cohesive and compression resistant demineralized bone carrier matrix
US20090227976A1 (en) * 2008-03-05 2009-09-10 Calabria Marie F Multiple biocompatible polymeric strand aneurysm embolization system and method
US8682052B2 (en) 2008-03-05 2014-03-25 Conformis, Inc. Implants for altering wear patterns of articular surfaces
JP2011519713A (en) 2008-05-12 2011-07-14 コンフォーミス・インコーポレイテッド Devices and methods for treatment of facet joints and other joints
WO2009148985A2 (en) * 2008-06-03 2009-12-10 E. I. Du Pont De Nemours And Company A tissue coating for preventing undesired tissue-to-tissue adhesions
US9242026B2 (en) 2008-06-27 2016-01-26 Sofradim Production Biosynthetic implant for soft tissue repair
US20100015231A1 (en) * 2008-07-17 2010-01-21 E.I. Du Pont De Nemours And Company Low swell, long-lived hydrogel sealant
US8551136B2 (en) 2008-07-17 2013-10-08 Actamax Surgical Materials, Llc High swell, long-lived hydrogel sealant
US8450475B2 (en) 2008-08-04 2013-05-28 Allergan, Inc. Hyaluronic acid-based gels including lidocaine
US9271706B2 (en) 2008-08-12 2016-03-01 Covidien Lp Medical device for wound closure and method of use
KR101643371B1 (en) * 2008-08-19 2016-07-27 마이크로 테라퓨틱스 인코포레이티드 Detachable tip microcatheter
AU2009288118B2 (en) 2008-09-02 2014-12-11 Allergan, Inc. Threads of hyaluronic acid and/or derivatives thereof, methods of making thereof and uses thereof
US9387280B2 (en) * 2008-09-05 2016-07-12 Synovis Orthopedic And Woundcare, Inc. Device for soft tissue repair or replacement
US9327061B2 (en) * 2008-09-23 2016-05-03 Senorx, Inc. Porous bioabsorbable implant
CA2738494C (en) 2008-09-28 2017-06-06 Knc Ner Acquisition Sub, Inc. Multi-armed catechol compound blends
WO2010042207A2 (en) * 2008-10-09 2010-04-15 Mimedx, Inc. Methods of making collagen fiber medical constructs and related medical constructs, including nerve guides and patches
CN102143996A (en) * 2008-10-30 2011-08-03 大卫·刘 Micro-spherical porous biocompatible scaffolds and methods and apparatus for fabricating same
US9248165B2 (en) 2008-11-05 2016-02-02 Hancock-Jaffe Laboratories, Inc. Composite containing collagen and elastin as a dermal expander and tissue filler
US10016534B2 (en) 2008-11-17 2018-07-10 Gel-Del Technologies, Inc. Protein biomaterial and biocoacervate vessel graft systems and methods of making and using thereof
WO2010059279A2 (en) * 2008-11-19 2010-05-27 E. I. Du Pont De Nemours And Company Hydrogel tissue adhesive formed from aminated polysaccharide and aldehyde-functionalized multi-arm polyether
US8466327B2 (en) 2008-11-19 2013-06-18 Actamax Surgical Materials, Llc Aldehyde-functionalized polyethers and method of making same
AU2009324596B2 (en) * 2008-12-10 2015-02-05 Microvention, Inc. Microcatheter
US20100147921A1 (en) 2008-12-16 2010-06-17 Lee Olson Surgical Apparatus Including Surgical Buttress
US20100160960A1 (en) * 2008-12-19 2010-06-24 E. I. Du Pont De Nemours And Company Hydrogel tissue adhesive having increased degradation time
JP5453453B2 (en) * 2008-12-30 2014-03-26 シー・アール・バード・インコーポレーテッド Marker transmission device for placement of tissue markers
WO2010076282A1 (en) 2008-12-31 2010-07-08 Shell Internationale Research Maatschappij B.V. Minimal gas processing scheme for recycling co2 in a co2 enhanced oil recovery flood
US20100204570A1 (en) * 2009-02-06 2010-08-12 Paul Lubock Anchor markers
JP5890182B2 (en) * 2009-02-12 2016-03-22 インセプト エルエルシー Drug delivery with hydrogel plugs
US8808303B2 (en) 2009-02-24 2014-08-19 Microport Orthopedics Holdings Inc. Orthopedic surgical guide
US8808297B2 (en) 2009-02-24 2014-08-19 Microport Orthopedics Holdings Inc. Orthopedic surgical guide
WO2010099231A2 (en) 2009-02-24 2010-09-02 Conformis, Inc. Automated systems for manufacturing patient-specific orthopedic implants and instrumentation
US9017334B2 (en) 2009-02-24 2015-04-28 Microport Orthopedics Holdings Inc. Patient specific surgical guide locator and mount
US9486215B2 (en) 2009-03-31 2016-11-08 Covidien Lp Surgical stapling apparatus
EP2416811B1 (en) 2009-04-09 2015-09-09 Actamax Surgical Materials LLC Hydrogel tissue adhesive having reduced degradation time
SG175229A1 (en) 2009-04-16 2011-11-28 Conformis Inc Patient-specific joint arthroplasty devices for ligament repair
US9039783B2 (en) 2009-05-18 2015-05-26 Baxter International, Inc. Method for the improvement of mesh implant biocompatibility
EP2442835B1 (en) 2009-06-16 2014-12-10 Baxter International Inc Hemostatic sponge
US8796242B2 (en) 2009-07-02 2014-08-05 Actamax Surgical Materials, Llc Hydrogel tissue adhesive for medical use
US8580950B2 (en) 2009-07-02 2013-11-12 Actamax Surgical Materials, Llc Aldehyde-functionalized polysaccharides
WO2011002888A2 (en) 2009-07-02 2011-01-06 E. I. Du Pont De Nemours And Company Hydrogel tissue adhesive for medical use
WO2011002956A1 (en) 2009-07-02 2011-01-06 E. I. Du Pont De Nemours And Company Aldehyde-functionalized polysaccharides
JP5683587B2 (en) 2009-07-30 2015-03-11 カービラン バイオサージェリー, インコーポレイテッド Modified hyaluronic acid polymer compositions and related methods
FR2949688B1 (en) 2009-09-04 2012-08-24 Sofradim Production FABRIC WITH PICOTS COATED WITH A BIORESORBABLE MICROPOROUS LAYER
US20110081398A1 (en) * 2009-10-01 2011-04-07 Tyco Healthcare Group Lp Multi-mechanism surgical compositions
US8968785B2 (en) * 2009-10-02 2015-03-03 Covidien Lp Surgical compositions
US20110081701A1 (en) * 2009-10-02 2011-04-07 Timothy Sargeant Surgical compositions
US9833225B2 (en) * 2009-10-08 2017-12-05 Covidien Lp Wound closure device
US20110087274A1 (en) * 2009-10-08 2011-04-14 Tyco Healtcare Group LP, New Haven, Ct Wound Closure Device
US20110087273A1 (en) 2009-10-08 2011-04-14 Tyco Healthcare Group Lp Wound Closure Device
US8617206B2 (en) * 2009-10-08 2013-12-31 Covidien Lp Wound closure device
US10293553B2 (en) 2009-10-15 2019-05-21 Covidien Lp Buttress brachytherapy and integrated staple line markers for margin identification
US20150231409A1 (en) 2009-10-15 2015-08-20 Covidien Lp Buttress brachytherapy and integrated staple line markers for margin identification
US9445795B2 (en) * 2009-10-16 2016-09-20 Confluent Surgical, Inc. Prevention of premature gelling of delivery devices for pH dependent forming materials
US20110093057A1 (en) * 2009-10-16 2011-04-21 Confluent Surgical, Inc. Mitigating Thrombus Formation On Medical Devices By Influencing pH Microenvironment Near The Surface
JP2013509963A (en) 2009-11-09 2013-03-21 スポットライト テクノロジー パートナーズ エルエルシー Fragmented hydrogel
US9700650B2 (en) 2009-11-09 2017-07-11 Spotlight Technology Partners Llc Polysaccharide based hydrogels
US8858592B2 (en) 2009-11-24 2014-10-14 Covidien Lp Wound plugs
AU2010327987B2 (en) 2009-12-11 2015-04-02 Conformis, Inc. Patient-specific and patient-engineered orthopedic implants
IN2012DN05177A (en) 2009-12-15 2015-10-23 Incept Llc
CN102753203A (en) 2009-12-16 2012-10-24 巴克斯特国际公司 Hemostatic sponge
US20110171311A1 (en) * 2010-01-13 2011-07-14 Allergan Industrie, Sas Stable hydrogel compositions including additives
US20110171286A1 (en) * 2010-01-13 2011-07-14 Allergan, Inc. Hyaluronic acid compositions for dermatological use
US20110172180A1 (en) 2010-01-13 2011-07-14 Allergan Industrie. Sas Heat stable hyaluronic acid compositions for dermatological use
US9114188B2 (en) 2010-01-13 2015-08-25 Allergan, Industrie, S.A.S. Stable hydrogel compositions including additives
EP2353624A1 (en) 2010-02-10 2011-08-10 Université de la Méditerranée - Aix-Marseille II Embolic material, its process of preparation and its therapeutical uses thereof
US20110218606A1 (en) * 2010-03-02 2011-09-08 Medtronic Vascular, Inc. Methods for Stabilizing Femoral Vessels
US8679404B2 (en) 2010-03-05 2014-03-25 Edwards Lifesciences Corporation Dry prosthetic heart valve packaging system
WO2011110894A2 (en) 2010-03-12 2011-09-15 Allergan Industrie Sas Fluid composition for improving skin conditions
CA2730598C (en) 2010-03-16 2018-03-13 Confluent Surgical, Inc. Modulating drug release rate by controlling the kinetics of the ph transition in hydrogels
HUE043344T2 (en) 2010-03-22 2019-08-28 Allergan Inc Cross-linked hydrogels for soft tissue augmentation
US20110243913A1 (en) * 2010-04-06 2011-10-06 Orthovita, Inc. Biomaterial Compositions and Methods of Use
SA111320355B1 (en) 2010-04-07 2015-01-08 Baxter Heathcare S A Hemostatic sponge
US8460691B2 (en) 2010-04-23 2013-06-11 Warsaw Orthopedic, Inc. Fenestrated wound repair scaffold
US8790699B2 (en) 2010-04-23 2014-07-29 Warsaw Orthpedic, Inc. Foam-formed collagen strand
US8828181B2 (en) 2010-04-30 2014-09-09 E I Du Pont De Nemours And Company Temperature switchable adhesives comprising a crystallizable oil
JP2013525077A (en) 2010-05-03 2013-06-20 テンジオン, インク. Smooth muscle cell construct
US8697111B2 (en) 2010-05-12 2014-04-15 Covidien Lp Osteochondral implant comprising osseous phase and chondral phase
US8858577B2 (en) 2010-05-19 2014-10-14 University Of Utah Research Foundation Tissue stabilization system
US8945156B2 (en) 2010-05-19 2015-02-03 University Of Utah Research Foundation Tissue fixation
US8734930B2 (en) 2010-05-27 2014-05-27 Covidien Lp Hydrogel implants with varying degrees of crosslinking
US8754564B2 (en) 2010-05-27 2014-06-17 Covidien Lp Hydrogel implants with varying degrees of crosslinking
US8591929B2 (en) 2010-05-27 2013-11-26 Covidien Lp Hydrogel implants with varying degrees of crosslinking
US8591950B2 (en) 2010-05-27 2013-11-26 Covidien Lp Hydrogel implants with varying degrees of crosslinking
US8883185B2 (en) 2010-05-27 2014-11-11 Covidien Lp Hydrogel implants with varying degrees of crosslinking
US8734824B2 (en) 2010-05-27 2014-05-27 Covidien LLP Hydrogel implants with varying degrees of crosslinking
US8968783B2 (en) 2010-05-27 2015-03-03 Covidien Lp Hydrogel implants with varying degrees of crosslinking
MX344402B (en) 2010-06-01 2016-12-14 Baxter Int Inc * Process for making dry and stable hemostatic compositions.
KR102002755B1 (en) 2010-06-01 2019-07-23 백스터 인터내셔널 인코포레이티드 Process for making dry and stable hemostatic compositions
EP2575776B1 (en) 2010-06-01 2018-05-30 Baxter International Inc Process for making dry and stable hemostatic compositions
US8409703B2 (en) 2010-07-23 2013-04-02 E I Du Pont De Nemours And Company Temperature switchable adhesive assemblies with temperature non-switchable tack
US8883139B2 (en) 2010-08-19 2014-11-11 Allergan Inc. Compositions and soft tissue replacement methods
US9005605B2 (en) 2010-08-19 2015-04-14 Allergan, Inc. Compositions and soft tissue replacement methods
US8889123B2 (en) 2010-08-19 2014-11-18 Allergan, Inc. Compositions and soft tissue replacement methods
US8697057B2 (en) 2010-08-19 2014-04-15 Allergan, Inc. Compositions and soft tissue replacement methods
US8961501B2 (en) 2010-09-17 2015-02-24 Incept, Llc Method for applying flowable hydrogels to a cornea
US10182973B2 (en) 2010-11-10 2019-01-22 Stryker European Holdings I, Llc Polymeric bone foam composition and method
US9498317B2 (en) 2010-12-16 2016-11-22 Edwards Lifesciences Corporation Prosthetic heart valve delivery systems and packaging
CA2822429A1 (en) * 2010-12-20 2012-06-28 Microvention, Inc. Polymer stents and methods of manufacture
US8518440B2 (en) 2010-12-21 2013-08-27 Confluent Surgical, Inc. Biodegradable osmotic pump implant for drug delivery
US8551525B2 (en) 2010-12-23 2013-10-08 Biostructures, Llc Bone graft materials and methods
US8360765B2 (en) 2011-01-07 2013-01-29 Covidien Lp Systems and method for forming a coaxial implant
US8852214B2 (en) 2011-02-04 2014-10-07 University Of Utah Research Foundation System for tissue fixation to bone
JP5828643B2 (en) * 2011-02-14 2015-12-09 学校法人 関西大学 Elastic spinning of fiber and hollow fiber using gelatin aqueous solution
WO2012112698A2 (en) 2011-02-15 2012-08-23 Conformis, Inc. Patient-adapted and improved articular implants, procedures and tools to address, assess, correct, modify and/or accommodate anatomical variation and/or asymmetry
EP2679252B1 (en) * 2011-02-21 2018-12-26 Atree, Inc. Collagen material and method for producing collagen material
JP6066931B2 (en) 2011-02-25 2017-01-25 マイクロベンション インコーポレイテッド Reinforced balloon catheter
US8479968B2 (en) 2011-03-10 2013-07-09 Covidien Lp Surgical instrument buttress attachment
FR2972626B1 (en) 2011-03-16 2014-04-11 Sofradim Production PROSTHETIC COMPRISING A THREE-DIMENSIONAL KNIT AND ADJUSTED
US10028745B2 (en) 2011-03-30 2018-07-24 Noha, Llc Advanced endovascular clip and method of using same
US9265830B2 (en) 2011-04-20 2016-02-23 Warsaw Orthopedic, Inc. Implantable compositions and methods for preparing the same
CA2835427A1 (en) 2011-05-11 2012-11-15 Microvention, Inc. Device for occluding a lumen
US9393263B2 (en) 2011-06-03 2016-07-19 Allergan, Inc. Dermal filler compositions including antioxidants
US9408797B2 (en) 2011-06-03 2016-08-09 Allergan, Inc. Dermal filler compositions for fine line treatment
KR102154944B1 (en) 2011-06-03 2020-09-11 알러간 인더스트리 에스에이에스 Dermal filler compositions including antioxidants
US20130096081A1 (en) 2011-06-03 2013-04-18 Allergan, Inc. Dermal filler compositions
US9295531B2 (en) * 2011-06-13 2016-03-29 Dentsply International Inc. Collagen coated article
US9522963B2 (en) 2011-06-29 2016-12-20 Covidien Lp Dissolution of oxidized cellulose
FR2977789B1 (en) 2011-07-13 2013-07-19 Sofradim Production PROSTHETIC FOR UMBILIC HERNIA
FR2977790B1 (en) 2011-07-13 2013-07-19 Sofradim Production PROSTHETIC FOR UMBILIC HERNIA
EP3002014A1 (en) 2011-07-28 2016-04-06 Harbor Medtech, Inc. Crosslinked human or animal tissue products and their methods of manufacture and use
US9662422B2 (en) 2011-09-06 2017-05-30 Allergan, Inc. Crosslinked hyaluronic acid-collagen gels for improving tissue graft viability and soft tissue augmentation
US20130244943A1 (en) 2011-09-06 2013-09-19 Allergan, Inc. Hyaluronic acid-collagen matrices for dermal filling and volumizing applications
US10226417B2 (en) 2011-09-16 2019-03-12 Peter Jarrett Drug delivery systems and applications
CN103781499B (en) 2011-09-30 2016-09-28 索弗拉狄姆产品公司 The reversible hardening of lightweight net
US9867909B2 (en) 2011-09-30 2018-01-16 Sofradim Production Multilayer implants for delivery of therapeutic agents
WO2013053755A2 (en) 2011-10-11 2013-04-18 Baxter International Inc. Hemostatic compositions
US20130096063A1 (en) 2011-10-11 2013-04-18 Baxter Healthcare S.A. Hemostatic compositions
AR088531A1 (en) 2011-10-27 2014-06-18 Baxter Int HEMOSTATIC COMPOSITIONS
US8584920B2 (en) 2011-11-04 2013-11-19 Covidien Lp Surgical stapling apparatus including releasable buttress
CN109200013A (en) 2011-12-05 2019-01-15 因赛普特有限责任公司 Medical organogel method and composition
US9237892B2 (en) 2011-12-14 2016-01-19 Covidien Lp Buttress attachment to the cartridge surface
US8967448B2 (en) 2011-12-14 2015-03-03 Covidien Lp Surgical stapling apparatus including buttress attachment via tabs
US9113885B2 (en) 2011-12-14 2015-08-25 Covidien Lp Buttress assembly for use with surgical stapling device
US9351731B2 (en) 2011-12-14 2016-05-31 Covidien Lp Surgical stapling apparatus including releasable surgical buttress
FR2985170B1 (en) 2011-12-29 2014-01-24 Sofradim Production PROSTHESIS FOR INGUINAL HERNIA
FR2985271B1 (en) 2011-12-29 2014-01-24 Sofradim Production KNITTED PICOTS
KR101444877B1 (en) 2011-12-30 2014-10-01 주식회사 삼양바이오팜 In situ crosslinking hydrogel comprising γ-polyglutamic acid and method for producing the same
US9010609B2 (en) 2012-01-26 2015-04-21 Covidien Lp Circular stapler including buttress
US9326773B2 (en) 2012-01-26 2016-05-03 Covidien Lp Surgical device including buttress material
US9010612B2 (en) 2012-01-26 2015-04-21 Covidien Lp Buttress support design for EEA anvil
US8820606B2 (en) 2012-02-24 2014-09-02 Covidien Lp Buttress retention system for linear endostaplers
EP2822474B1 (en) 2012-03-06 2018-05-02 Ferrosan Medical Devices A/S Pressurized container containing haemostatic paste
EP2836167B1 (en) 2012-04-13 2016-09-14 ConforMIS, Inc. Patient adapted joint arthroplasty devices and surgical tools
US9486226B2 (en) 2012-04-18 2016-11-08 Conformis, Inc. Tibial guides, tools, and techniques for resecting the tibial plateau
US9168227B2 (en) 2012-05-31 2015-10-27 Covidien Lp Multi-encapsulated microspheres made with oxidized cellulose for in-situ reactions
US9271937B2 (en) 2012-05-31 2016-03-01 Covidien Lp Oxidized cellulose microspheres
US9675471B2 (en) 2012-06-11 2017-06-13 Conformis, Inc. Devices, techniques and methods for assessing joint spacing, balancing soft tissues and obtaining desired kinematics for joint implant components
CN104349797B (en) 2012-06-12 2017-10-27 弗罗桑医疗设备公司 Dry hemostatic composition
US10124087B2 (en) 2012-06-19 2018-11-13 Covidien Lp Detachable coupling for catheter
US9499636B2 (en) 2012-06-28 2016-11-22 Covidien Lp Dissolution of oxidized cellulose and particle preparation by cross-linking with multivalent cations
US10390935B2 (en) 2012-07-30 2019-08-27 Conextions, Inc. Soft tissue to bone repair devices, systems, and methods
US11253252B2 (en) 2012-07-30 2022-02-22 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
US10219804B2 (en) 2012-07-30 2019-03-05 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
US10835241B2 (en) 2012-07-30 2020-11-17 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
US11944531B2 (en) 2012-07-30 2024-04-02 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
US9629632B2 (en) 2012-07-30 2017-04-25 Conextions, Inc. Soft tissue repair devices, systems, and methods
US9427309B2 (en) 2012-07-30 2016-08-30 Conextions, Inc. Soft tissue repair devices, systems, and methods
FR2994185B1 (en) 2012-08-02 2015-07-31 Sofradim Production PROCESS FOR THE PREPARATION OF A POROUS CHITOSAN LAYER
US20140048580A1 (en) 2012-08-20 2014-02-20 Covidien Lp Buttress attachment features for surgical stapling apparatus
CA2826786A1 (en) 2012-09-17 2014-03-17 Confluent Surgical, Inc. Multi-encapsulated formulations made with oxidized cellulose
FR2995778B1 (en) 2012-09-25 2015-06-26 Sofradim Production ABDOMINAL WALL REINFORCING PROSTHESIS AND METHOD FOR MANUFACTURING THE SAME
FR2995788B1 (en) 2012-09-25 2014-09-26 Sofradim Production HEMOSTATIC PATCH AND PREPARATION METHOD
FR2995779B1 (en) 2012-09-25 2015-09-25 Sofradim Production PROSTHETIC COMPRISING A TREILLIS AND A MEANS OF CONSOLIDATION
CA2880380C (en) 2012-09-28 2020-09-15 Sofradim Production Packaging for a hernia repair device
US9161753B2 (en) 2012-10-10 2015-10-20 Covidien Lp Buttress fixation for a circular stapler
US20140131418A1 (en) 2012-11-09 2014-05-15 Covidien Lp Surgical Stapling Apparatus Including Buttress Attachment
US8859705B2 (en) 2012-11-19 2014-10-14 Actamax Surgical Materials Llc Hydrogel tissue adhesive having decreased gelation time and decreased degradation time
US9597426B2 (en) 2013-01-25 2017-03-21 Covidien Lp Hydrogel filled barbed suture
US20140212355A1 (en) 2013-01-28 2014-07-31 Abbott Cardiovascular Systems Inc. Trans-arterial drug delivery
US20140239047A1 (en) 2013-02-28 2014-08-28 Covidien Lp Adherence concepts for non-woven absorbable felt buttresses
KR20150126647A (en) 2013-03-04 2015-11-12 더멜, 엘엘씨 디/비/에이 에테르노젠, 엘엘씨 Injectable in situ polymerizable collagen composition
US9782173B2 (en) 2013-03-07 2017-10-10 Covidien Lp Circular stapling device including buttress release mechanism
US10413566B2 (en) 2013-03-15 2019-09-17 Covidien Lp Thixotropic oxidized cellulose solutions and medical applications thereof
US9782430B2 (en) 2013-03-15 2017-10-10 Covidien Lp Resorbable oxidized cellulose embolization solution
US10328095B2 (en) 2013-03-15 2019-06-25 Covidien Lp Resorbable oxidized cellulose embolization microspheres
FR3006581B1 (en) 2013-06-07 2016-07-22 Sofradim Production PROSTHESIS BASED ON TEXTILE FOR LAPAROSCOPIC PATHWAY
FR3006578B1 (en) 2013-06-07 2015-05-29 Sofradim Production PROSTHESIS BASED ON TEXTILE FOR LAPAROSCOPIC PATHWAY
US9775928B2 (en) 2013-06-18 2017-10-03 Covidien Lp Adhesive barbed filament
RU2700162C2 (en) 2013-06-21 2019-09-13 Ферросан Медикал Дивайсиз А/С Dry composition expanded under vacuum and syringe for its preservation
EP3027659B1 (en) 2013-07-29 2020-12-09 Actamax Surgical Materials LLC Low swell tissue adhesive and sealant formulations
USD716451S1 (en) 2013-09-24 2014-10-28 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
USD715442S1 (en) 2013-09-24 2014-10-14 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
USD716450S1 (en) 2013-09-24 2014-10-28 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
USD715942S1 (en) 2013-09-24 2014-10-21 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
US10173357B2 (en) 2013-09-26 2019-01-08 Northwestern University Poly(ethylene glycol) cross-linking of soft materials to tailor viscoelastic properties for bioprinting
TWI637992B (en) * 2013-11-26 2018-10-11 住友化學股份有限公司 Rubber composition and vulcanization aid
WO2015086028A1 (en) 2013-12-11 2015-06-18 Ferrosan Medical Devices A/S Dry composition comprising an extrusion enhancer
WO2015116646A1 (en) * 2014-01-28 2015-08-06 Mccoy Enterprises, Llc Collagen permeated medical implants
US11583384B2 (en) 2014-03-12 2023-02-21 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
US9844378B2 (en) 2014-04-29 2017-12-19 Covidien Lp Surgical stapling apparatus and methods of adhering a surgical buttress thereto
EP3000489B1 (en) 2014-09-24 2017-04-05 Sofradim Production Method for preparing an anti-adhesion barrier film
US10449152B2 (en) 2014-09-26 2019-10-22 Covidien Lp Drug loaded microspheres for post-operative chronic pain
EP3000432B1 (en) 2014-09-29 2022-05-04 Sofradim Production Textile-based prosthesis for treatment of inguinal hernia
EP3000433B1 (en) 2014-09-29 2022-09-21 Sofradim Production Device for introducing a prosthesis for hernia treatment into an incision and flexible textile based prosthesis
WO2016051219A1 (en) 2014-09-30 2016-04-07 Allergan Industrie, Sas Stable hydrogel compositions including additives
RU2715235C2 (en) 2014-10-13 2020-02-26 Ферросан Медикал Дивайсиз А/С Dry composition for use in haemostasis and wound healing
US10550187B2 (en) 2014-10-24 2020-02-04 Incept, Llc Extra luminal scaffold
EP3029189B1 (en) 2014-12-05 2021-08-11 Sofradim Production Prosthetic porous knit, method of making same and hernia prosthesis
US20160166504A1 (en) 2014-12-10 2016-06-16 Incept, Llc Hydrogel drug delivery implants
US10835216B2 (en) 2014-12-24 2020-11-17 Covidien Lp Spinneret for manufacture of melt blown nonwoven fabric
AU2015371184B2 (en) 2014-12-24 2020-06-25 Ferrosan Medical Devices A/S Syringe for retaining and mixing first and second substances
US9238090B1 (en) 2014-12-24 2016-01-19 Fettech, Llc Tissue-based compositions
WO2016128783A1 (en) 2015-02-09 2016-08-18 Allergan Industrie Sas Compositions and methods for improving skin appearance
US10470767B2 (en) 2015-02-10 2019-11-12 Covidien Lp Surgical stapling instrument having ultrasonic energy delivery
EP3059255B1 (en) 2015-02-17 2020-05-13 Sofradim Production Method for preparing a chitosan-based matrix comprising a fiber reinforcement member
US11020578B2 (en) 2015-04-10 2021-06-01 Covidien Lp Surgical stapler with integrated bladder
CA2925606A1 (en) 2015-04-23 2016-10-23 Covidien Lp Resorbable oxidized cellulose embolization solution
EP3085337B1 (en) 2015-04-24 2022-09-14 Sofradim Production Prosthesis for supporting a breast structure
WO2016183296A1 (en) 2015-05-12 2016-11-17 Incept, Llc Drug delivery from hydrogels
ES2676072T3 (en) 2015-06-19 2018-07-16 Sofradim Production Synthetic prosthesis comprising a knitted fabric and a non-porous film and method of forming it
BR112017027695A2 (en) 2015-07-03 2018-09-04 Ferrosan Medical Devices As first and second substance retention and mixing syringe
US10307168B2 (en) 2015-08-07 2019-06-04 Terumo Corporation Complex coil and manufacturing techniques
CN108601725B (en) 2015-11-25 2024-03-08 因赛普特有限责任公司 Shape-changing drug delivery device and method
EP3195830B1 (en) 2016-01-25 2020-11-18 Sofradim Production Prosthesis for hernia repair
US10959731B2 (en) 2016-06-14 2021-03-30 Covidien Lp Buttress attachment for surgical stapling instrument
AU2017204280A1 (en) 2016-08-12 2018-03-01 Covidien Lp Thixotropic oxidized cellulose solutions and medical applications thereof
CA3038075A1 (en) 2016-09-23 2018-03-29 Incept, Llc Intracameral drug delivery depots
US11696822B2 (en) 2016-09-28 2023-07-11 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
EP3312325B1 (en) 2016-10-21 2021-09-22 Sofradim Production Method for forming a mesh having a barbed suture attached thereto and the mesh thus obtained
US11026686B2 (en) 2016-11-08 2021-06-08 Covidien Lp Structure for attaching buttress to anvil and/or cartridge of surgical stapling instrument
US10874768B2 (en) 2017-01-20 2020-12-29 Covidien Lp Drug eluting medical device
US10925607B2 (en) 2017-02-28 2021-02-23 Covidien Lp Surgical stapling apparatus with staple sheath
US10912859B2 (en) 2017-03-08 2021-02-09 Baxter International Inc. Additive able to provide underwater adhesion
US11202848B2 (en) 2017-03-08 2021-12-21 Baxter International Inc. Surgical adhesive able to glue in wet conditions
US10368868B2 (en) 2017-03-09 2019-08-06 Covidien Lp Structure for attaching buttress material to anvil and cartridge of surgical stapling instrument
US11096610B2 (en) 2017-03-28 2021-08-24 Covidien Lp Surgical implants including sensing fibers
EP3398554A1 (en) 2017-05-02 2018-11-07 Sofradim Production Prosthesis for inguinal hernia repair
US10849625B2 (en) 2017-08-07 2020-12-01 Covidien Lp Surgical buttress retention systems for surgical stapling apparatus
US10945733B2 (en) 2017-08-23 2021-03-16 Covidien Lp Surgical buttress reload and tip attachment assemblies for surgical stapling apparatus
US11141151B2 (en) 2017-12-08 2021-10-12 Covidien Lp Surgical buttress for circular stapling
US11547397B2 (en) 2017-12-20 2023-01-10 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
US10973509B2 (en) 2017-12-20 2021-04-13 Conextions, Inc. Devices, systems, and methods for repairing soft tissue and attaching soft tissue to bone
KR102245539B1 (en) 2018-02-12 2021-04-29 주식회사 지앤피바이오사이언스 Composition for increasing expression level of growth factor genes containing core-shell structured microparticles as effective component
US11065000B2 (en) 2018-02-22 2021-07-20 Covidien Lp Surgical buttresses for surgical stapling apparatus
US10758237B2 (en) 2018-04-30 2020-09-01 Covidien Lp Circular stapling apparatus with pinned buttress
US11426163B2 (en) 2018-05-09 2022-08-30 Covidien Lp Universal linear surgical stapling buttress
US11284896B2 (en) 2018-05-09 2022-03-29 Covidien Lp Surgical buttress loading and attaching/detaching assemblies
US11432818B2 (en) 2018-05-09 2022-09-06 Covidien Lp Surgical buttress assemblies
EP4321182A2 (en) 2018-05-09 2024-02-14 Ferrosan Medical Devices A/S Method for preparing a haemostatic composition
US11219460B2 (en) 2018-07-02 2022-01-11 Covidien Lp Surgical stapling apparatus with anvil buttress
US10806459B2 (en) 2018-09-14 2020-10-20 Covidien Lp Drug patterned reinforcement material for circular anastomosis
US11197945B2 (en) 2018-09-14 2021-12-14 BioSapien Inc. Biovessels for use in tissue engineering
US10952729B2 (en) 2018-10-03 2021-03-23 Covidien Lp Universal linear buttress retention/release assemblies and methods
WO2020087181A1 (en) * 2018-11-02 2020-05-07 Covalon Technologies Inc. Foam compositions, foam matrices and methods
EP3653171A1 (en) 2018-11-16 2020-05-20 Sofradim Production Implants suitable for soft tissue repair
GB201905040D0 (en) 2019-04-09 2019-05-22 Cambridge Entpr Ltd Tissue equivalent scaffold structure, and methods of procution thereof
US11730472B2 (en) 2019-04-25 2023-08-22 Covidien Lp Surgical system and surgical loading units thereof
US11596403B2 (en) 2019-05-08 2023-03-07 Covidien Lp Surgical stapling device
US11478245B2 (en) 2019-05-08 2022-10-25 Covidien Lp Surgical stapling device
MX2021015975A (en) * 2019-06-20 2022-05-24 Datum Biotech Ltd An implantable structure having a collagen membrane.
US11571208B2 (en) 2019-10-11 2023-02-07 Covidien Lp Surgical buttress loading units
US11523824B2 (en) 2019-12-12 2022-12-13 Covidien Lp Anvil buttress loading for a surgical stapling apparatus
US11547407B2 (en) 2020-03-19 2023-01-10 Covidien Lp Staple line reinforcement for surgical stapling apparatus
US11337699B2 (en) 2020-04-28 2022-05-24 Covidien Lp Magnesium infused surgical buttress for surgical stapler
US11739166B2 (en) 2020-07-02 2023-08-29 Davol Inc. Reactive polysaccharide-based hemostatic agent
US11707276B2 (en) 2020-09-08 2023-07-25 Covidien Lp Surgical buttress assemblies and techniques for surgical stapling
US11399833B2 (en) 2020-10-19 2022-08-02 Covidien Lp Anvil buttress attachment for surgical stapling apparatus
US11534170B2 (en) 2021-01-04 2022-12-27 Covidien Lp Anvil buttress attachment for surgical stapling apparatus
US11596399B2 (en) 2021-06-23 2023-03-07 Covidien Lp Anvil buttress attachment for surgical stapling apparatus
US11510670B1 (en) 2021-06-23 2022-11-29 Covidien Lp Buttress attachment for surgical stapling apparatus
US11672538B2 (en) 2021-06-24 2023-06-13 Covidien Lp Surgical stapling device including a buttress retention assembly
US11678879B2 (en) 2021-07-01 2023-06-20 Covidien Lp Buttress attachment for surgical stapling apparatus
US11684368B2 (en) 2021-07-14 2023-06-27 Covidien Lp Surgical stapling device including a buttress retention assembly
US11801052B2 (en) 2021-08-30 2023-10-31 Covidien Lp Assemblies for surgical stapling instruments
US11751875B2 (en) 2021-10-13 2023-09-12 Coviden Lp Surgical buttress attachment assemblies for surgical stapling apparatus
US11806017B2 (en) 2021-11-23 2023-11-07 Covidien Lp Anvil buttress loading system for surgical stapling apparatus

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3091542A (en) * 1960-09-20 1963-05-28 Dow Chemical Co Insolubilization of water-soluble cellulose ethers
US3619371A (en) * 1967-07-03 1971-11-09 Nat Res Dev Production of a polymeric matrix having a biologically active substance bound thereto
SE343210B (en) * 1967-12-20 1972-03-06 Pharmacia Ab
US3876501A (en) * 1973-05-17 1975-04-08 Baxter Laboratories Inc Binding enzymes to activated water-soluble carbohydrates
GB1479268A (en) * 1973-07-05 1977-07-13 Beecham Group Ltd Pharmaceutical compositions
US4179337A (en) * 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
DE2360794C2 (en) * 1973-12-06 1984-12-06 Hoechst Ag, 6230 Frankfurt Process for the production of peptides
US4200557A (en) * 1973-12-07 1980-04-29 Personal Products Company Absorbent product including grafted insolubilized cellulose ether
US3949073A (en) * 1974-11-18 1976-04-06 The Board Of Trustees Of Leland Stanford Junior University Process for augmenting connective mammalian tissue with in situ polymerizable native collagen solution
CH596313A5 (en) * 1975-05-30 1978-03-15 Battelle Memorial Institute
US4488911A (en) * 1975-10-22 1984-12-18 Luck Edward E Non-antigenic collagen and articles of manufacture
US4002531A (en) * 1976-01-22 1977-01-11 Pierce Chemical Company Modifying enzymes with polyethylene glycol and product produced thereby
NL7704659A (en) * 1976-05-12 1977-11-15 Battelle Institut E V BONE REPLACEMENT, BONE JOINT, OR PROSTHESIS ANCHORING MATERIAL.
GB1578348A (en) * 1976-08-17 1980-11-05 Pharmacia Ab Products and a method for the therapeutic suppression of reaginic antibodies responsible for common allergic
DE2900110A1 (en) * 1979-01-03 1980-07-10 Wolff Walsrode Ag SOLUBLE MACROMOLECULAR SUBSTANCES WITH HIGH DISPERSION, SUSPENDING AND LIQUID RETENTION RESISTANCE, METHOD FOR THEIR PRODUCTION AND USE
JPS6023084B2 (en) * 1979-07-11 1985-06-05 味の素株式会社 blood substitute
CS216992B1 (en) * 1980-07-21 1982-12-31 Miroslav Stol Composite polymere material for the biological and medicinal utilitation and method of preparation thereof
US4314380A (en) * 1980-09-26 1982-02-09 Koken Co., Ltd. Artificial bone
US4415665A (en) * 1980-12-12 1983-11-15 Pharmacia Fine Chemicals Ab Method of covalently binding biologically active organic substances to polymeric substances
US4414147A (en) * 1981-04-17 1983-11-08 Massachusetts Institute Of Technology Methods of decreasing the hydrophobicity of fibroblast and other interferons
JPS58500812A (en) * 1981-05-25 1983-05-19 ヤコブセン,アンケル ヤ−ル Method for recovering gasoline from a mixture of gasoline vapor and air, and equipment used in the method
JPS57206622A (en) * 1981-06-10 1982-12-18 Ajinomoto Co Inc Blood substitute
US4451568A (en) * 1981-07-13 1984-05-29 Battelle Memorial Institute Composition for binding bioactive substances
US4388428A (en) * 1981-07-20 1983-06-14 National Patent Development Corporation Biologically stabilized compositions comprising collagen as the major component with ethylenically unsaturated compounds used as contact lenses
US4357274A (en) * 1981-08-06 1982-11-02 Intermedicat Gmbh Process for the manufacture of sclero protein transplants with increased biological stability
JPS5896026A (en) * 1981-10-30 1983-06-07 Nippon Chemiphar Co Ltd Novel urokinase derivative, its preparation and thrombolytic agent containing the same
US4424208A (en) * 1982-01-11 1984-01-03 Collagen Corporation Collagen implant material and method for augmenting soft tissue
US4582640A (en) * 1982-03-08 1986-04-15 Collagen Corporation Injectable cross-linked collagen implant material
US4609546A (en) * 1982-06-24 1986-09-02 Japan Chemical Research Co., Ltd. Long-acting composition
US4737544A (en) * 1982-08-12 1988-04-12 Biospecific Technologies, Inc. Biospecific polymers
EP0105014B1 (en) * 1982-09-24 1992-05-20 THE UNITED STATES OF AMERICA as represented by the Secretary United States Department of Commerce Repair of tissue in animals
US4973493A (en) * 1982-09-29 1990-11-27 Bio-Metric Systems, Inc. Method of improving the biocompatibility of solid surfaces
US5059654A (en) * 1983-02-14 1991-10-22 Cuno Inc. Affinity matrices of modified polysaccharide supports
JPS6028936A (en) * 1983-07-27 1985-02-14 Koken:Kk Atherocollagen aqueous solution and its preparation
US4500676A (en) * 1983-12-15 1985-02-19 Biomatrix, Inc. Hyaluronate modified polymeric articles
US4487865A (en) * 1983-12-15 1984-12-11 Biomatrix, Inc. Polymeric articles modified with hyaluronate
US4496689A (en) * 1983-12-27 1985-01-29 Miles Laboratories, Inc. Covalently attached complex of alpha-1-proteinase inhibitor with a water soluble polymer
JPS6145765A (en) * 1984-08-07 1986-03-05 宇部興産株式会社 Blood vessel prosthesis and its production
US4687820A (en) * 1984-08-22 1987-08-18 Cuno Incorporated Modified polypeptide supports
US4557764A (en) * 1984-09-05 1985-12-10 Collagen Corporation Process for preparing malleable collagen and the product thereof
US4888366A (en) * 1984-10-24 1989-12-19 Collagen Corporation Inductive collagen-based bone repair preparations
US4563350A (en) * 1984-10-24 1986-01-07 Collagen Corporation Inductive collagen based bone repair preparations
GB8430252D0 (en) * 1984-11-30 1985-01-09 Beecham Group Plc Compounds
US4600533A (en) * 1984-12-24 1986-07-15 Collagen Corporation Collagen membranes for medical use
US4732863A (en) * 1984-12-31 1988-03-22 University Of New Mexico PEG-modified antibody with reduced affinity for cell surface Fc receptors
US4636526A (en) * 1985-02-19 1987-01-13 The Dow Chemical Company Composites of unsintered calcium phosphates and synthetic biodegradable polymers useful as hard tissue prosthetics
US4642117A (en) * 1985-03-22 1987-02-10 Collagen Corporation Mechanically sheared collagen implant material and method
DE3521684A1 (en) * 1985-06-18 1986-12-18 Dr. Müller-Lierheim KG, Biologische Laboratorien, 8033 Planegg METHOD FOR COATING POLYMERS
US4766106A (en) * 1985-06-26 1988-08-23 Cetus Corporation Solubilization of proteins for pharmaceutical compositions using polymer conjugation
EP0250571B1 (en) * 1986-01-06 1991-05-22 The University Of Melbourne Precipitation of collagen in tactoid form
WO1987004478A1 (en) * 1986-01-23 1987-07-30 Ipa-Isorast International S.A. Securing element for cased concrete structures
CA1283046C (en) * 1986-05-29 1991-04-16 Nandini Katre Tumor necrosis factor formulation
US4745180A (en) * 1986-06-27 1988-05-17 Cetus Corporation Solubilization of proteins for pharmaceutical compositions using heparin fragments
US4979959A (en) * 1986-10-17 1990-12-25 Bio-Metric Systems, Inc. Biocompatible coating for solid surfaces
US4847325A (en) * 1988-01-20 1989-07-11 Cetus Corporation Conjugation of polymer to colony stimulating factor-1
ATA255988A (en) * 1988-10-14 1993-05-15 Chemie Linz Gmbh ABSORBENT POLYMER
US5162430A (en) * 1988-11-21 1992-11-10 Collagen Corporation Collagen-polymer conjugates
US5201764A (en) * 1990-02-28 1993-04-13 Autogenesis Technologies, Inc. Biologically compatible collagenous reaction product and articles useful as medical implants produced therefrom
JP3008034B2 (en) * 1990-04-23 2000-02-14 株式会社高研 Composition for transplantation of highly concentrated crosslinked atherocollagen injectable into the body
JPH06501008A (en) * 1990-08-30 1994-01-27 ザ バイオメンブレン インスティテュート Inhibition of metastatic potential and invasiveness by oligosaccharides or oligosaccharide antigens or antibodies

Also Published As

Publication number Publication date
DE68928754T2 (en) 1999-01-14
ES2119743T3 (en) 1998-10-16
WO1990005755A1 (en) 1990-05-31
AU638687B2 (en) 1993-07-08
US5162430A (en) 1992-11-10
US5413791A (en) 1995-05-09
US5324775A (en) 1994-06-28
AU4660989A (en) 1990-06-12
EP0444157B1 (en) 1998-07-22
ATE168708T1 (en) 1998-08-15
JPH04502027A (en) 1992-04-09
JP2505312B2 (en) 1996-06-05
US5328955A (en) 1994-07-12
DE68928754D1 (en) 1998-08-27
CA2003538A1 (en) 1990-05-21
EP0444157A1 (en) 1991-09-04
US5446091A (en) 1995-08-29
US5308889A (en) 1994-05-03
US5550188A (en) 1996-08-27
EP0444157A4 (en) 1991-11-13
US5292802A (en) 1994-03-08

Similar Documents

Publication Publication Date Title
CA2003538C (en) Collagen-polymer conjugates
US5523348A (en) Method of preparing collagen-polymer conjugates
US5264214A (en) Composition for bone repair
US5304595A (en) Collagen-polymer conjugates
AU677789B2 (en) Biocompatible polymer conjugates
US5510121A (en) Glycosaminoglycan-synthetic polymer conjugates
JP4283719B2 (en) Crosslinked polymer composition and method of use thereof
US20050154125A1 (en) Use of hydrophobic crosslinking agents to prepare crosslinked biomaterial compositions
EP0732109A1 (en) Use of hydrophobic crosslinking agents to prepare crosslinked biomaterial compositions
AU682266B2 (en) Cell-gels
EP0674908A1 (en) Collagen implants having improved tensile properties
JPH09249751A (en) Use of hydrophobic crosslinking agent for preparing crosslinked biological material composition
Life et al. 21 Appl. No.: 146,843 22 Filed: Nov. 3, 1993 Related US Application Data
JP2006181389A (en) Use of hydrophobic cross-linking agent for preparing cross-linked biological material composition
JP2008132338A (en) Use of hydrophobic crosslinking agent to prepare crosslinked biological material composition
MXPA96004587A (en) Geles cellula

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed
MKEC Expiry (correction)

Effective date: 20121202