CA2021889A1 - Electrical connector with attachment for automatically shorting select conductors upon disconnection of connector - Google Patents

Electrical connector with attachment for automatically shorting select conductors upon disconnection of connector

Info

Publication number
CA2021889A1
CA2021889A1 CA002021889A CA2021889A CA2021889A1 CA 2021889 A1 CA2021889 A1 CA 2021889A1 CA 002021889 A CA002021889 A CA 002021889A CA 2021889 A CA2021889 A CA 2021889A CA 2021889 A1 CA2021889 A1 CA 2021889A1
Authority
CA
Canada
Prior art keywords
elongated conductive
conductive elements
past
arm portions
elongated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002021889A
Other languages
French (fr)
Inventor
David V. Cronin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Polaroid Corp
Original Assignee
Polaroid Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polaroid Corp filed Critical Polaroid Corp
Publication of CA2021889A1 publication Critical patent/CA2021889A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/70Structural association with built-in electrical component with built-in switch
    • H01R13/703Structural association with built-in electrical component with built-in switch operated by engagement or disengagement of coupling parts, e.g. dual-continuity coupling part
    • H01R13/7031Shorting, shunting or bussing of different terminals interrupted or effected on engagement of coupling part, e.g. for ESD protection, line continuity
    • H01R13/7032Shorting, shunting or bussing of different terminals interrupted or effected on engagement of coupling part, e.g. for ESD protection, line continuity making use of a separate bridging element directly cooperating with the terminals

Abstract

Title: ELECTRICAL CONNECTOR WITH ATTACHMENT FOR
AUTOMATICALLY SHORTING SELECT CONDUCTORS UPON
DISCONNECTION OF CONNECTOR
ABSTRACT OF THE DISCLOSURE
For an electrical connector member which has a plurality of pins which mates with a complementary receptacle member, there is provided a shorting member comprising a thin conductive sheet having a base portion fixedly connected with respect to the connector member in spaced relation with respect to the pins and a plurality of thin elongated arm portions each integrally connected at one end to the base portion and cantilevered therefrom to extend past at least a respective one of the pins, the other end of each arm portion extending laterally outward so as to electrically contact a side of the pin past which that arm portion extends, each of the arm portions having an inherent spring bias so as to urge its laterally extending end portion away from the connector member and into electrical contact with a respective pin so as to short a select number of pins upon disconnection of the connector and receptacle members.

Description

-2 ~

Title: ELECTRICAL CONNECTOR WITH ATTACHMENT FOR
AUTOMATICALLY SHORTING SELECT CONDUCTORS UPON
DISCONNECTION OF CONNECTOR
BACKGROUND OF THE _INVENTION
1. Field of the Invention This invention relates generally to an electrical connector and receptacle assembly in which selected pins or conductive elements of the connector are automatically shorted upon disconnection.
: 2. Descriptlon of the Prior Art For an electrical connector member which mates with a complementary member, it is often necessary upon disconnection that a pluralit.y o~ the pins or conductive elements of the connector member automatically be shorted with respect to each other in order to protect electrical c~omponents from damage as a result of static electrical ~hock. Arrangements for opening the selectively shorted pins of the connector : member upon mating with its complementary receptacle member have generally relied on specially configured surfaces on the receptacle member to operate. Thus, the electrical connector and receptacle members must he specially configured to provide the requisite shorting and opening of selected pins upon disconnect and connect, respectively, thereby adding undue complexity and expense.
one electrical connector-receptacle ar:rangement that provides for an automatic shorting upon . . . .

disconnection and opening upon connection which does not require specially configured receptacle surfaces is disclosed in U.S. Patent No. 3,~67,940 entitled "~lectrical Connecting Spring Device", by W. ~. Wallo, issued September 16, 1969. This patent shows a coiled compression spring mounted in a separable plug and ~ack connector assembly wherein the spring automatically expands and grounds the plug in the absence of the jack. The spring is automatically compressed upon insertion o~ the jack into the plug and compressed so as to separate and electrically disconnect from the plug. This arrangement can operate with a standard jack and therefore does not require that the receptacle end of the connector have specially configured sur~aces to be operable. However, the coiled compression spring is shown as operating on only a single pin or elongated electrical connectcr element and would be difficult to adapt to a connector of the type having a plurality o~
closely spaced apart pins or elongated conductive elements.
Therefore, it is a primary object of this invention to provide an eleatxlcal connector-receptacle arrangement in which a connecl:or member of the type having a plurality of spaced apart conductive elements or pins operates in a simple and economical manner to short a select number of its pins upon its disconnection from a complementary receptacle member.
It is a further object of this invention to provide an electrical connector-receptacle assembly in which a connector member having a plurality of spaced apart conductive elements or pins operates to automatically open the short between selected ones ol the pins upon its connection to a standard receptacle member which has not been specially adapted to effect such opening.

..~

~, ` ', ' , .

~,~2~

Other objects of the invention will be in part obvious and will in part appear hereinafter. The invention accordingly comprises a system possessing a construction, combination of elements and arrangement of parts which are exemplified in the following detailed disclosure.
SUMMARY OF THE INVENTION
An electrical connector and receptacle assembly comprises a connector member configured to define a first substantially planar surface. A plurality o~
elongated conductive elements or pins extend outward from the planar surface in substantially parallel spaced apart insulated relation with respect to each other. A receptacle member is provided for mating connection with the connector member and is configured to define a second substantially planar surface. A
plurality of elongated receptacles extend inward from the second planar surface in substantially parallel spaced apart relation with respect to each other and in complementary receiving relation with respect to the elongated conductive elements or pins so as to accommodate insertion of the elongated conductive elements or pins into respective ones of the receptacles.
A shorting member comprises a thin conductive sheet having a base portion ~ixedly connected with respect to tha connector member in spaced relation with respect to each of the elongatad conductive elements.
A plurality of thin elongated arm portions are each integrally connected at one end to the base portion and cantilevered therefrom so as to extend past at least a respective one of the elongated conductive elements or pins with the other end of each arm portion extending laterally outward so as to be in rontacting relation with respect to a select side of that elongated conductive element or pin past which its respective arm portion extends. Each of the arm portions has an inherent resilient bias so as to urge its other laterally extending end away from the ~irst planar sur~ace and into electrically contacting engagement with the select side of that elongated conductive element or pin past which that arm portion extends.
The insertion of the elongated conductive elements or pins of the connector member into the complementary receptacles of the receptacle member operate to bring the second planar surface of the receptacle member into engagement with the laterally extending other ends of the arm portions so as to deflect the arm portions against the inherent resilient bias towards the ~irst planar surface and out of electrical connection to respective ones of the elongated conductive elements or pins.
In one embodiment, the elongated conductive elements or pins and complementary receptacles are arranged in respective spaced apart linear relation. A
~irst one of the arm portions extends past at least two of the linearly spaced apart ellongated conductive el~ments or pins and the other end o~ the first arm portion extends laterally out~ard so as to be resiliently biased into electrical contact with the select side of the last elongated conductive element or pin past which that first arm portion extends. A
second one of the arm portions overlies the first arm portion and extends past at least one of the linearly spaced apart conductive elongated elements or pins but not past the last elongated conductive element or pin past which the first one of said arm portions extends and the other end of the second arm portion extends laterall~ outward so as to be resiliently biased into electrical contact with the select side of the last , ` ~ .
.

; :

elongated conductive element or pin past which the second arm portion extends. Insertion of the elongated conductive elements or pins of the connector member into the complementary receptacles of the receptacle member operate to bring the second planar surface of the receptacle member into engagement with the laterally extendin~ other ends of the first and second arm portions so as to deflect the arm portions against their inherent resilient bias, towards the first planar surface and out of electrical connection to respective ones of the elongated conductive elements or pins.
In an alternative embodiment, the elongated conductive elements or pins and complementary receptacles are arranged, respectively, in a spaced apart circumferential relationship. The base portion of the shorting member is fixedly connected within the area bounded by the circumferentially spaced apart elongated conductive elements or pins. A first one of the arm portions extends from the area bounded by the circum~erentially spaced apart elonqated conductive elements or pins past a first: one of the elongated conductive elements or pins and the other end of the first arm portion extends lat:erally outward so as to be resiliently biased into electrical contact with the select side of the first elongated conducti~e element or pin. A second one of the arm portions extends from the area bounded by the circum~erentially spaced apart elongated conductive elements or pins past a second one o~ the elongated conductive elements or pins and the 3Q other end of the second arm portion extends laterally outward so as to be resilientl~ biased into electrical contact with the select side of the second elongated conductive element or pin. Insertion of the elongated conductive elements or pins of the connector member into the complementary receptacles of the receptacle 6~ ~ ?, ~

member operate to bring the second planar surface of receptacle member into engagement with the laterally extending other ends of the first and second arm portions so as to deflect the arm portions against their inherent resilient bias towards the first planar surface and out of electrical connection to the first and second elongated conductive leads, respectively.
DESCRIPTION OF ~HE DRAWINGS
The novel Eeatures that are considered characteristic of th~ invention are set forth with particularity in the appended claims. The invention itself, however, both as to its organization and its method of operation together with other objects and advantages thereof will be best understood from the following description of the illustrated embodlment when read in connection with the accompanying drawings wherein:
FIG. 1 is a perspective view of the electrical connector and shorting member of this invention;
FIG. 2 is a top plan view of the electrical connector and shorting member of FIG. 1;
FIG. 3 is a side view of the electrical connector and shorting member of FIG. 1 partially inserted into a complementary receptacle member;
FIG. 4 is a top plan view of an alternate embodiment of the electrical connector and shorting member o~ this invention;
FIG. 5 is a side elevational view of the electrical connector and shorting member of FIG. ~
partially inserted into a complementary receptacle;
FIG. 6 is a side elevational view o~ ~he electrical connector and short.ing member of FIG. 5 inserted further into the complementary receptacle; and '~

2 ~ ~J ~

FIG. 7 is a perspective view of still another embodiment of the electrical connector and shorting member of this invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring now to FIGS. 1 - 3, there is shown generally at 10 the electrical connector and receptacle assembly of this invention comprising a connector member 12 and a receptacle member 20. The connector member 12 in one embodiment may comprise a generally cylindrical housing 14 having a substantially planar surface 16 at one end thereof. A piurality of elongated conductive elements or pins 1~ extend fro~.
the planar surface 16 in substantially parallel, spaced apart, insulated relation with respect to each other.
The conductive elements or pins 18 are preferably circumferentially disposed with respect to each other so as to define a circular arrangament. As will be readily understood, the housing 14 may house a single electrical component such as an integrated circuit, a laser, a light emitting diodel, etc., or a plurality o~
such electrical components. Alternatively, the housing 14 may simply house the electrical connection between the conductive elements or pins 18 and a plurality of corresponding lead wires which ultimately connect to other electrical components remotely stationed with respect to the connector housing 14 in a well-known manner.
The connector member 12 is adapted for ready insertion or withdrawal from the complementary receptacle member 20 which comprises a housing 22 defining a substantially planar surface 24 on one select face thereof. A plurality of elongated receptacles 26 extend inward from the planar surface 2 in substantially parallel spaced apart insulated relation with respect to each other and in ~ .
' .

~2~$~

complementary relation with respect to the elongated conductive elements or pins 18 so as to accommodate ready insertion of the elongated conductive elements or pins 18 into respective ones of the receptacles 26.
As is readily apparent, connection of the connector member 12 to the receptacle member 20 by insertion of the elongated conductive elements or pins 18 into respective corresponding ones of the receptacles 26 operates to bring the planar surface 16 of the connector member 12 into overlapping substantially contiguous relation with respect to the substantially planar surface 24 of the receptacle member 20. The receptacle member housing 22 aside from the planar surface 2~ may have any convenient shape or form and may operate to house either a single electrical component or a plurality of electrical components such as previously recited with respect to the connector housing 14. Alternatively, the receptacle housing 22 may simply operate to house a ~0 plurality of connections between the receptacles 26 and corresponding lead wires which ultimately connect to other electrical components remotely stationed with respect to the receptacle ho~sing 22.
In order to ensure that selected ones of the conductive elements 18 are shorted upon the disconnection of the connector member 12 from the receptacle member 20, there is provided a shorting member as shown generally at 28 comprising a thin conductive sheet having a base portion 30 fixedly connected in overlying relationship with respect to the planar surface 16 of the connector member 12 and in spaced relation with respect to the conductive elements 18. The base portion 3Q of the connector member 12 although preferably residing within the area bounded by the circumferentially spaced apart elongated conductive ' .
~: .

22~

elements or pins 18, as shown, can alternativ~ly be outside this area. ThQ thin conductive sheet of the shorting member 28is cut to define a plurality of thin elongated arm portions two of which are shown at 32A
and 32B. The arm portions 32A and 32B are cantilevered from the base portion 30so as to extend past at least a respective one of the elongated conductive elQments or pins 18A and 18B. The other end of the arm portions 32A and 32B extend laterally outward as shown at 34A
and 34Bso as to be in respective electrically contacting relation with respect to a select side of the conductive elements 18Aandl8B past which said arm portions 32A and 32B respectively extend.
The arm portions 32A and 32B have an inherent resilient spring bias so as to urge their respective laterally extending ends 34A and 34B away from the planar surface 16 and into respective electrically contacting engagement with the select sides of the elongated conductive elements 18A and 18B past which the arm portions 32A and 32B respectively extend.
Thus, as is readily apparent from FIGS. 1-3, when the electrical connector member 12 is disconnected from the receptacle member 20, arm portions 32~ and 32B spri~g upward such that the laterally extending end portions 34A and 34B thereof respectively engage conductive elements or pins 18A and 18B so as to establish an electrical connection therebetween by way of the shor~ing member 28. ~n this manner, the shorting of select conductive elements or pins is accomplished so as to effect protection from static shock which can operate to damage electrical components connected thereto.
Insertion o~ the conductive elements 18 o the connsctor member 12 into the complementary receptacles 26 of the receptacle member 20 operates to move the ~?J ~ S ~ ~

planar surface 24 into engagement with the laterally extending ends 34A and 34B so as to break their electrical connection with conductive elements or pins 18A and 18B, respectively, and thereafter move their respective arm portions 32A and 32B against the force of their inherent resilient spring bias to~ard the ! planar surface 16 of the electrical connector member 12. In this manner, the inherent resilient spring biased arm portions 32A and 32B are substantially flattened between the planar surface 16 of the electrical connector 12 and the planar surface 24 of the receptacle member 20 so as to be out of electrical contact with any of the conductive elements or pins 13.
As will be readily apparent, the number of conductive elements of the connector member 12 to be shorted by tile shorting member 28 is not just limited to the opposing pins 18A and 18B as shown at FIGS. 1 -3 but may also include adjacent pins as shown in the embodiment of FIG. 7 where like numerals designate previously described elements. Moreover, the shortin~
member 28 is not limited to having only two shorting arm portions but may have an~ select number of arm portions extending past respective corresponding conductive elements so as to effectively short any select number of conductive elements upon disconnection of the connector member from the receptacle member.
The shorting member 28 may comprise any metallized eoil and may be fixedly connected with respect to the planar surface 16 of the connector member 12 by any conventional means such as a suitable adhesive or by tack welding.
Referring now to FIGS. 4 - 6 where like numerals designate previously described elements, there is shown an alternate embodiment for the electrical connector and receptacle assembly 10' of this ~ ~ 2 ~

invention. In contrast to the previous embodiment, the plurality of elongated conductive elements or pins 18 are arranged in linear spaced apart relationship with respect to each otherO The connector member 12' 5 further comprises a rectanyularly shaped housing 14' having a substantially planar surface 16' and a plurality of depending side surfaces 36' substantially orthogonal to the planar surface 16'. The shorting member as shown generally at 28' comprises two 10 overlapping thin conductive sheets each having bas~
portions 30' and 30", respectively, fixedly connected in con-tiguous relationship with respect to each oth~r and the side surface 36'. Cantilevered from the underlying base portion 30' there is provided an arm 15 portion 32' which extends past the conductive elements or pins 18A, 18B and 18C with the laterally extending end 34' thereof engaging a s.ide OI the conductive element or pin 18A. In like manner, cantilevered from the base portion 30" there is provided a second arm 20 portion 32" extending past the conductive element or pin 18C with the laterally e:~tending end portion 34"
thereof electrically contact:ing a select side of the conductive element or pin 18C.
Thus, as is readily apparent, when the 25 electrical connector and receptacle are disconnected, the laterally extending end portions 34' and 34" of the spring biased arm portions 32' and 32" engage respectively the conductive elements or pins 18A and l~C so as to create an electrical short by way o~ the 30 contacting base portions 30' and 30".
Insertion of the conductive elements or pins 18 of the connector member 12 into the complementary receptacles 26' of the receptacle member 20' operate to .~ move the planar surface 24' o~ the receptacle member 35 20~ into engagement with the laterally extending Z~i Z~ 2 ~_ ~ Z~ ~Z

portions 34' and 34lt so as to break the electrical connection to their respective conductive elements or pins 18A and 18C. Complete insertion of the connector member 12' with respect to the receptacle member 20' opera'es to substantially flatten the arm portions 32' and 32" of the shorting member 28' between the planar surfaces 16' and 24' thereby electrically disconnecting the short between the conductive elements or pins 18A
and 18C.
Although only two conductive elements or pins 18A and 18C are shown as being shorted upon the disconnection of the connector member 12' from the receptacle member 20', it will be readily understood that the invention is by no means so limited and any 15 select number of pins may be shorted with respect to each other by simply adding additional overlying arm and base portions. Again, the base portions as shown at 30' and 30" may be fixedly connected with respect to the side surface 36' by any c:onventional means such as 20 a suitable adhesive or a tack weld so long as the base portions 30~ and 30" electriaally contact each other.
Zrhus, in this manner there i9~ provided an electrical connector and receptacle assembly in which selected conductive elements may be selectively shorted upon 25 disconnect in a simple and economical manner without specially configured hardware for the receptacle member.
Other embodiments of the invention including additions, subtractions, deletions and other 30 modifications of the preferred disclosed embodiments of the inven~ion will be obvious to those skilled in the Z art and are within the scope of the following claims.

~St~l

Claims (8)

1. An electrical connector comprising:
a connector member defining a substantially planar surface;
a plurality of elongated conductive elements extending from said planar surface in substantially parallel, spaced apart, insulated relation with respect to each other; and a shorting member comprising a thin conductive sheet having a base portion fixedly connected with respect to said connector member in spaced relation with respect to each of said elongated conductive elements, and a plurality of thin elongated arm portions each integrally connected at one end to said base portion and cantilevered therefrom so as to extend past at least a respective one of said elongated conductive elements, the other end of each of said arm portions extending laterally outward 50 as to be in electrically contacting relation with respect to a select side of that elongated conductive element past which that arm portion extends, each said arm portion having an inherent resilient bias so as to urge its said other laterally extending end away from said planar surface and into electrically contacting engagement with said select side of that elongated conductive element past which that arm portion extends.
2. The electrical connector of claim 1 wherein: said elongated conductive elements are arranged in spaced apart linear relation with respect to each other, a first one of said arm portions extends past at least two of said linearly spaced apart elongated conductor elements, and said other end of said first arm portion extends laterally outward so as to be resiliently biased into electrical contact with said select side of the last elongated conductive element past which said first arm portion extends, and a second one of said arm portions overlies said first arm portion and extends past at least one of said linearly spaced apart conductive elongated elements, but not past the last elongated conductive element past which said first one of said arm portions extends and said other end of said second arm portion extends laterally outward so as to be resiliently biased into electrical contact with said select side of the last elongated conductive element past which said second arm portion extends.
3. The electrical connector of claim 2 wherein: said connector member comprises a housing having a first surface which defines said planar surface from which said elongated conductive elements extend and a plurality of depending side surfaces substantially orthogonal to said first surface; and said base portion of said shorting member is fixedly connected with respect to a select one of said side surfaces.
4. The electrical connector of claim 1 wherein said elongated conductive elements are arranged in spaced apart circumferential relation with respect to each other; said base portion of said shorting member is fixedly connected within the area bounded by said circumferentially spaced apart elongated conductive elements; a first one of said arm portions extends from said area bounded by said circumferentially spaced apart elongated conductive elements past a first one of said elongated conductive elements and said other end of said first arm portion extends laterally outward so as to be resiliently biased into electrical contact with said select side of said first elongated conductive element; and a second one of said arm portions extends from said area bounded by said circumferentially spaced apart elongated conductive elements past a second one of said elongated conductive elements and said other end of said second arm portion extends laterally outward so as to be resiliently biased into electrical contact with said select side of said second elongated conductive element.
5. An electrical connector and receptacle assembly comprising:
a connector member defining a first substantially planar surface;
a plurality of elongated conductive elements extending outward from said first planar surface in substantially parallel, spaced apart, insulated relation with respect to each other;
a receptacle member defining a second substantially planar surface;
a plurality of elongated receptacles extending inward from said second planar surface in substantially parallel, spaced apart, insulated relation with respect to each other and in complementary relation with respect to said elongated conductive elements to accommodate insertion of said elongated conductive elements into respective ones of said receptacles; and a shorting member comprising a thin conductive sheet having a base portion fixedly connected with respect to said connector member in spaced relation with respect to each of said elongated conductive elements, and a plurality of thin elongated arm portions each integrally connected at one end to said base portion and cantilevered therefrom so as to extend past at least a respective one of said elongated conductive elements, the other end of each of said arm portions extending laterally outward so as to be in electrically contacting relation with respect to a select side of that elongated conductive element past which said arm portion extends, each said arm portion having an inherent resilient bias so as to urge its said other laterally extending end away from said first planar surface and into electrically contacting engagement with said select side of that elongated conductive element past which that arm portion extends, the insertion of the elongated conductive elements of said connector member into the complementary receptacles of said receptacle member operating to bring said second planar surface of said receptacle member into engagement with the laterally extending other ends of said arm portions so as to deflect said arm portions against their inherent resilient bias towards said first planar surface and out of electrical connection to respective ones of said elongated conductive elements.
6. The assembly of claim 5 wherein: said elongated conductive elements and complementary receptacles are arranged in respective spaced apart linear relation: a first one of said arm portions extends past at least two of said linearly spaced apart elongated conductive elements and said other end of said first arm portion extends laterally outward so as to be resiliently biased into electrical contact with said select side of the last elongated conductive element past which said first arm portion extends; a second one of said arm portions overlies said first arm portion and extends past at least one of said linearly spaced apart conductive elongated elements, but not past the last elongated conductive element past which said first one of said arm portions extends and said other end of said second arm portion extends laterally outward so as to be resiliently biased into electrical contact with said select side of the last elongated conductive element past which said second arm portion extends; and the insertion of the elongated conductive elements of said connector member into the complementary receptacles of said receptacle member operate to bring said second planar surface of said receptacle member into engagement with the laterally extending other ends of said first and second arm portions so as to deflect said arm portions against their inherent resilient bias, towards said first planar surface and out of electrical connection to respective ones of said elongated conductive leads.
7. The assembly of claim 6 wherein: said connector member comprises a housing having a first surface which defines said planar surface from which said elongated conductive elements extend and a plurality of depending side surfaces substantially orthogonal to said first surface; and said base portion of said shorting member is fixedly connected with respect to a select one of said side surfaces.
8. The assembly of claim 5 wherein said elongated conductive elements and complementary receptacles are arranged in respective spaced apart circumferential relation; said base portion of said shorting member is fixedly connected within the area bounded by said circumferentially spaced apart elongated conductive elements; a first one of said arm portions extends from said area bounded by said circumferentially spaced apart elongated conductive elements past a first one of said elongated conductive elements and said other end of said first arm portion extends laterally outward so as to be resiliently biased into electrical contact with said select side of said first elongated conductive element; a second one of said arm portions extends from said area bounded by said circumferentially spaced apart elongated conductive elements past a second one of said elongated conductive elements and said other end of said second arm portion extends laterally outward so as to be resiliently biased into electrical contact with said select side of said second elongated conductive element; and, the insertion of the elongated conductive elements of said connector member into the complementary receptacles of said receptacle member operate to bring said second planar surface of said receptacle member into engagement with the laterally extending other ends of said first and second arm portions so as to deflect said arm portions against their inherent resilient bias, towards said first planar surface and out of electrical connection to said first and second elongated conductive leads, respectively.
CA002021889A 1989-12-11 1990-07-24 Electrical connector with attachment for automatically shorting select conductors upon disconnection of connector Abandoned CA2021889A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US448,228 1989-12-11
US07/448,228 US4971568A (en) 1989-12-11 1989-12-11 Electrical connector with attachment for automatically shorting select conductors upon disconnection of connector

Publications (1)

Publication Number Publication Date
CA2021889A1 true CA2021889A1 (en) 1991-06-12

Family

ID=23779475

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002021889A Abandoned CA2021889A1 (en) 1989-12-11 1990-07-24 Electrical connector with attachment for automatically shorting select conductors upon disconnection of connector

Country Status (8)

Country Link
US (1) US4971568A (en)
EP (1) EP0432368B1 (en)
JP (1) JPH088130B2 (en)
AT (1) ATE114080T1 (en)
CA (1) CA2021889A1 (en)
DE (1) DE69014082T2 (en)
DK (1) DK0432368T3 (en)
ES (1) ES2066920T3 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5163850A (en) * 1991-04-18 1992-11-17 Polaroid Corporation Electrostatic discharge protection devices for semiconductor chip packages
US5108299A (en) * 1991-04-18 1992-04-28 Polaroid Corporation Electrostatic discharge protection devices for semiconductor chip packages
DE4118312C2 (en) * 1991-06-04 1995-03-09 Amphenol Tuchel Elect Contact set for a card with contact zones
JPH089915Y2 (en) * 1991-07-15 1996-03-21 日本航空電子工業株式会社 Connector with switch
US5401180A (en) * 1993-06-01 1995-03-28 Itt Corporation Connector shorting spring
US5490033A (en) * 1994-04-28 1996-02-06 Polaroid Corporation Electrostatic discharge protection device
US5599205A (en) * 1994-07-20 1997-02-04 Polaroid Corporation Electrostatic discharge protection device
GB9423346D0 (en) * 1994-11-18 1995-01-11 Amp Great Britain Electrical interconnection system having retention and shorting features
US5583733A (en) * 1994-12-21 1996-12-10 Polaroid Corporation Electrostatic discharge protection device
EP0734100B1 (en) * 1995-03-20 2003-05-07 The Whitaker Corporation Electrical connector with terminal position assurance
US5609498A (en) * 1995-09-19 1997-03-11 Itt Corporation Secure connector system
US5847914A (en) * 1995-12-21 1998-12-08 Polaroid Corporation Electrostatic discharge protection device
US5697501A (en) * 1995-12-21 1997-12-16 Polaroid Corporation Electrostatic discharge protection device
US5812357A (en) * 1996-10-11 1998-09-22 Polaroid Corporation Electrostatic discharge protection device
US5877933A (en) * 1997-04-16 1999-03-02 Johansen; Arnold W. Electrostatic discharge protection device for magnetoresistive head
US5963415A (en) * 1997-07-05 1999-10-05 Polaroid Corporation Electrostatic discharge protection device
US6065985A (en) * 1998-10-14 2000-05-23 Berg Technology, Inc. Modular jack with flexible shorting structure
US6835079B2 (en) 2002-05-23 2004-12-28 Positronic Industries, Inc. Electrical connector assembly with shorting member
US7354287B1 (en) 2006-10-31 2008-04-08 Caterpillar Inc. Shorting connector
US7789685B2 (en) * 2006-12-18 2010-09-07 Caterpillar Inc Electrical shorting system
US7616421B2 (en) * 2006-12-18 2009-11-10 Caterpillar Inc. Electrical interface system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2197426A (en) * 1936-11-05 1940-04-16 Cinch Mfg Corp Switch and radio tube socket assembly
US3467940A (en) * 1967-03-17 1969-09-16 William H Wallo Electrical connecting spring device
US3600531A (en) * 1970-05-08 1971-08-17 Nat Tel Tronics Corp Self-shorting phono plug
US3851944A (en) * 1973-03-30 1974-12-03 Okzona Inc Current transformer connector
US4070557A (en) * 1976-07-26 1978-01-24 Northern Telecom Limited Apparatus for providing closed loop conditions in vacant module positions
US4179178A (en) * 1978-02-02 1979-12-18 Rca Corporation Plug-in circuit cartridge with electrostatic charge protection
USRE32760E (en) * 1982-12-22 1988-10-04 Amp Domestic Inc. Electrical connector
US4699443A (en) * 1984-12-28 1987-10-13 American Telephone And Telegraph Company Modular telephone jack
US4786258A (en) * 1987-05-13 1988-11-22 Amp Incorporated Electrical connector with shunt
US4798542A (en) * 1987-04-16 1989-01-17 Amp Incorporated Switching connector

Also Published As

Publication number Publication date
DE69014082D1 (en) 1994-12-15
ATE114080T1 (en) 1994-11-15
EP0432368A1 (en) 1991-06-19
US4971568A (en) 1990-11-20
DE69014082T2 (en) 1995-03-23
ES2066920T3 (en) 1995-03-16
DK0432368T3 (en) 1994-12-12
JPH088130B2 (en) 1996-01-29
EP0432368B1 (en) 1994-11-09
JPH03190070A (en) 1991-08-20

Similar Documents

Publication Publication Date Title
CA2021889A1 (en) Electrical connector with attachment for automatically shorting select conductors upon disconnection of connector
EP0214830B1 (en) Fpc connector
US5164880A (en) Electrostatic discharge protection device for a printed circuit board
EP0650230B1 (en) Electrical connector having latch means
US4744768A (en) Coupling connector
US6165017A (en) Cable end connector
US4790764A (en) Electrical power terminal for circuit boards
US6220898B1 (en) Audio jack having means for reliably securing terminals thereof
US6099335A (en) Electrical card connector
US6478630B1 (en) Electrical card connector having polarization mechanism
US5472349A (en) Surface mountable board edge connector
US4237435A (en) Ground fault receptacle re-set guide assembly
CA2351647A1 (en) Interlocking electrical connector assembly having a guiding member and removal recess
US5266042A (en) Electrical jack and patch plug assembly
EP0213831A2 (en) Lamp receiving apparatus
EP0083471B1 (en) Low insertion force connector
EP0454977B1 (en) Electrical plug connector with contact strips embedded in an insulator plate for use on circuit board
US5425646A (en) Printed circuit connector assembly
EP1405371B1 (en) Self-aligning power connector system
US6290513B1 (en) PC card switchably compatible with 16-bit and 32-bit modes
US6540535B1 (en) Socket connector having resilient element for increasing contact force to inserted plug
US4236128A (en) Ground fault receptacle
US4247840A (en) Ground fault receptacle reversible conductors
US6077099A (en) Zero insertion force connector
EP0884802B1 (en) Terminal et boítier comprenant le terminal

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued