CA2032014C - Organic coatings with ion reactive pigments especially for active metals - Google Patents

Organic coatings with ion reactive pigments especially for active metals Download PDF

Info

Publication number
CA2032014C
CA2032014C CA002032014A CA2032014A CA2032014C CA 2032014 C CA2032014 C CA 2032014C CA 002032014 A CA002032014 A CA 002032014A CA 2032014 A CA2032014 A CA 2032014A CA 2032014 C CA2032014 C CA 2032014C
Authority
CA
Canada
Prior art keywords
pigment
composition
chromate
coating
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002032014A
Other languages
French (fr)
Other versions
CA2032014A1 (en
Inventor
Mark F. Mosser
William A. Harvey, Iii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sermatech International Inc
Original Assignee
Sermatech International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sermatech International Inc filed Critical Sermatech International Inc
Publication of CA2032014A1 publication Critical patent/CA2032014A1/en
Application granted granted Critical
Publication of CA2032014C publication Critical patent/CA2032014C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • B05D5/083Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers
    • B05D5/086Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers having an anchoring layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/10Anti-corrosive paints containing metal dust
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/10Anti-corrosive paints containing metal dust
    • C09D5/103Anti-corrosive paints containing metal dust containing Al
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • Y10T428/12569Synthetic resin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12583Component contains compound of adjacent metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31681Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]

Abstract

A coating composition and method of use thereof for coating metal substrates, especially galvanically active metals, containing resinous organic polymer, a corrosion inhibiting leachable pigment and an ion reactive pigment generally in the form of metallic spheroid particles. Coated materials have improved corrosion resistance.

Description

ORGANIC COATINGS 1RITH ION REACTlYB PIGI~NTS
ESPECIALLY FOR ACTIVE METALS
BACKGROUND OF THE INVENTION
This invention relates to a coating composition containing an organic resinous polymer, commonly synthetic polymers and two pigments, especially useful for - coating active metal parts, which coating imparts increased resistance to corrosion. Specifically, the improved resistance to corrosion is associated with chemical attack accelerated by corrosive ions in salt spray and acid rain conditions. The invention also provides for metal parts coated with the composition of the invention and a method of coating the metal parts with said composition. The terms used herein are further explained hereinafter.
Electrochemically active metals such as magnesium, zinc and aluminum are widely used in aerospace, aviation, marine, defense, and other industries as structural materials . They are highly desirable because of their weight/
strength ratios, and/or ease of fabrication:
Magnesium, zinc and aluminum are high in electrochemical activity as measured by their standard half cell potentials and their galvanic potentials.
These metals have common "surface" chemistry. These metals generally form a natural protective film of hydroxide, oxide or carbonate in most environments.
However, these films dissolve or are attached in acid solutions and corrosion occurs by pitting and general attack. In particular, these natural protective films are more rapidly attacked as the environment increases in acidity and specifically ZO in the presence of certain ions, including chloride and sulfate ions. Often sulfate, sulfide and chloride ions are found together in precipitation.
There is a pressing and serious need to provide coating compositions w~~ ~~~~ and coated metal parts of such galvanically active metals to render these parts less s~
ZIpBp.FifEFMMeI pine to corrosion and more resistant to such environmental damage.
P114ALEIYMA PA telp~
u~s~ e~s e~
~cavEn msi e~sas~

20320~~
PRIOR ART
U.S. Patent Nos. 4,724,172 to Mosser et al., 4,659,613 to Mosser et al., 4,617,056 to Mosser et al., 4,606,967 to Mosser, 4,537,632 to Mosser and 3,248,251 to Allen describe inorganic binder coating compositions cont>3,'n;ng phosphate ions with chromate and/or molybdate as well as aluminum particles.
The compositions are used to coat metal parts, in particular steel. They are not suitable for coating magnesium alloys, zinc alloys and. most aluminum alloys.
U.S. Patent No. 4,532,289 to Mosser et al. describes the use of polyvinylidene fluoride with phosphate, chromate andlor molybdate and optionally aluminum. The composition is used to coat metals.
U.S. Patent No. 4,675,350 to Marchetti et al. describes. an epoxy cured polyamide-imide resin which is used as a laminate.
U.S. Patent No. 4,252,707 to Ruid describes a coating composition containing a water soluble salt of a polyamide-imide containing as pigments red chromate and metallic aluminum.
Mansfeld et al. , °'The Evaluation of Corrosion Protection Measures for Metal Matrix Composites" in Corrosion Science, vol. 26, no. 9, pps. 727-734, ( 1986) , describes the use of an epoxylpolyamide coating to protect MgJ
graphite or Al/graphite substrates.
Magnesium Electron Ltd. brochure (MEL) entitled "Surface Treatments for Magnesium Alloys in Aerospace and Defense", Amax Magnesium brochure, entitled "Corrosion and Protection of Magnesium", The Ministry of Technology ( Great Britain) D . T . D . 911 C brochure entitled "Process Specification -Protection W~~~~~~ of Magnesium - Rich Alloys Against Corrosion'° (May 1963) and Military S~TE soo x90 50. FIFTEEMH ST.
PNrApEIDMA. PA fef01 tmsi eTSaxx rE~~a~Ea ixlsi eTSe3e. -2-20320.4 Specification MIL-M-45202 entitled "Magnesium Alloys, Anodic Treatment of"
(1963) describe methods of pretreating magnesium substrates or methods of coating magnesium materials . The Ministry of Technology, D . T . D . 911 C brochure describes the use of an organic primer with strontium chromate and aluminum stearate for coating magnesium rich alloys .
Amoco Chemicals Corporation/Bulletin AM-1 entitled "Amoco Amide-Imide Polymers" describes polyamide-imide polymers with powdered aluminum for bonding metal parts .
The Amoco and MEL publications describe the curing -of polymer coatings on metal parts .
The term "metal" as used throughout this application is defined herein to include the elemental metal itself, its alloys and the protective film foamed upon exposure of the metal and its alloys to environmental conditions .
SU~dABY OF THE INVENTION
The invention provides for a coating composition containing as essential components a resinous organic polymer, for instance an organic synthetic polymer and two inorganic pigments. The composition is useful for coating metal substrates, especially galvanically active metals. The composition may be liquid or non-liquid although generally the coating composition when applied to the metal to be coated is liquid. It may be designated as a coating or a paint. The invention also provides for metal parts coated with the composition of the invention. The invention further provides for a method of coating metals with the uwafcEs WEIBEt 4 STAlLBII
&ME 300 270 S0 fIFIEEMN 5T
PHIJIDfADMA CA Iy102 ~2lsl eTSn~s7 rE>~ECaven nlst srsa7a~ -3 composition of the invention. Other embodiments will become apparent from the description herein.
The organic resinous polymers that are useful in accordance with the invention for the coating are constituted by any polymer suitable for coating metal parts . The term "resinous polymers" is to be understood broadly to include organic naturally occurring and synthetic polymers. Hereinafter the term used to designate the polymers may be for convenience, "synthetic polymer" . The synthetic polymer functions as a matrix for the two inorganic pigments as well as being a barrier protective coating for the metal parts. The resinous polymers commonly used in the invention are generally soluble in organic solvents or they may be insoluble, in which case they are in dispersion in a suitable organic liquid or in water ( or partially aqueous) .
The coating compositions of the invention may also be in non-liquid physical form, for instance as a powder, which contains in admixture the dry resin, pigments and optional ingredients. Hereinafter reference will generally be made to the liquid composition but it is to be understood that such reference includes the non-liquid composition.
The organic polymers used in this invention are those film formers which are capable of being cured at a temperature less than the tempering or heat treatment temperature of the metal substrate to be coated. The maximum cure temperature is dictated by the temper and alloy of the chosen substrate and is not dependent on any specific polymer. One skilled in the art will know what adjustment would be advisable for optimum results.
The Hquid (or non-liquid) coating composition of the invention uw/~~.y~!,Es includes a first ent which functions to react with corrosive ions such as we~are ~API~R p~
SUIfE 500 ?3p;p. fsTEEMN ST
GHAAOELPNIA. VA f9~02 ~xis~ e~s~
~FAECO~EH 17~5197517~ _ A _ chloride ions and a second pigment which is a corrosion inhibiting teachable pigment .
The ion reactive pigments protect metal substrates from corrosion due to ions. Though the mode of operation or exact function of the ion reactive pigments is not fully known or understood, it is speculated that the pigments may also have a passivating or neutralizing effect to contribute to maintain the pIi in the alkaline range within the coating film. This possible effect contributes to allow the second pigment, e.g., a chromate to operate. Such pigments usually perform best in the allcaliue range as opposed to the acid range. Whatever the effect of the ion reactive pigments, it is believed to coast with the second pigment in an overall beneficial effect. The ion reactive pigments which function in this manner are generally powders (or pulverulent) metallic spheroid particles. These metallic spheroid particles can be the same metal or metal alloy as the metal substrate coated or a different metal or metal alloy from the. metal or metal alloy substrate coated. In the specification (and claims) wherein the term "spheroid-like" is used, it is intended to include the term "dust" and to include particles made by air atomizing, inert gas atomizing, atritting, and other techniques known in the art for the preparation of metal particles.
In accordance with the invention the metallic spheroid particles generally do not exceed a certain average maximum size as further described herein .
The second pigment which is a constituent of the liquid ( or non-liquid) composition of the invention is a teachable pigment. The teachable pigment is capable of passivating or inhibiting corrosion of metal; it is also an oxidation uw ocr~ces wuaea t sr~a surre soo 730 SO. ~rtTeeMH 51 %ItACElPIIA. PA 191 uist ersa~
fa.ECOP~en asst elsaae~

20320~.~
inhibitor. The leachable pigment leaches out of the cured coating and assists in the formation of protective films on the metal.
The invention provides further for coated metal parts and alloys thereof which are galvanically active (as measured by their galvanic potential) .
The metals that generally benefit most by being coated with the coating of the invention are metals designated as "active" metals, that is, metals that are anodic to ferrous materials. However, it is also contemplated that the coatings may be useful on steel and ferrous alloys.
The invention further provides for a method of coating the metal parts with the liquid (or non-liquid) composition of the invention. This method calls preferably curing for the coated metal part at a temperature below the tempering temperature of the metal substrate. Preferred embodiments are described in greater detail hereinafter.
The invention provides in a typical embodiment for a liquid coating composition in which the organic polymer is an epoxytpolyamide-imide dissolved in an appropriate organic solvent. The ion reactive pigment is aluminum spheroids of an average equivalent spherical mean diameter (E5D) of about 2 to about 10 E.~m and the leachable pigment is a chromate.
The invention also contemplates a non-liquid composition which includes the above described components without the liquid solvent or carrier for the polymeric resin. At the time of application to the metal part, an appropriate liquid can be added to these components or the coating can be applied as a dry powder by flocking, fluid bed, or electrostatic powder spraying. Use of powder coatings is not general, many resins do not melt and flow so care should be taken uW 5 on resin selection.
wrrees~erua sum soo x70 50. fllEEHfH ST.
PNlAOE(DiNA. PA 1e1U2 (2151 B73.NN
r~cavrtn ulsl ere a'w 2~3201~
The invention further provides in a typical embodiment for a magnesium, zinc or aluminum metal part or alloys thereof which is coated with the cured composition described above.
The invention further provides in a typical embodiment, a method for applying by a suitable method, the liquid coating composition to the metal part and curing the composition coated on the metal substrate at a temperature less than about 800°F or at a temperature which is preferably less than the tempering temperature of the metals coated with the costing of the invention.
The invention described herein provides for remarkably improved protection against corrosion in severe environmental conditions such as salt spray, salt air or acid rain conditions .
It is to be noted that the coatings of the invention are not what are called "sacrificial" coatings .
Further, in a sense, the coating of the invention may be deemed to be what is called "barrier" films. Conventional barrier films however are generally not loaded with conductive metallic pigments . This causes the impedance to be as high as possible. If highly loaded with conductive metallic particles (such as aluminum powder), the impedance would be lowered, which is undesirable in a barrier film. Yet the barrier films of the invention, contrary to the conventional type, allow for high loading with the metallic pigments. This is further discussed hereinafter.
uw oR~cEs weuca a sT~n,eR
SlllfE SOD
?;f0 SO. FIiTEENTH ST.
H4ApEtDHIA. PA l9fOP
Izlsl eTSaxD
IEtECOVEn Izlsl eTSS».

2032a~.4 I)ETAZi~ED DESCRIPTION OF THE PREFERRED EliI~OND~ENTS
A description of the individual components of the coating composition of the invention is set forth herein. Preferred embodiments describing preferred individual components of the invention are set forth herein. Optional ingredients are discussed herein further below.
The Organic polymer In accordance with the invention, the liquid or non-liquid composition contains an organic resin or polymer. The polymer may be, as stated, organic, synthetic or not, thermoplastic or thermosetting. The composition containing the organic polymer can be in a liquid or non-liquid form. The polymer disclosed herein can be dissolved in suitable solvents or in some cases, dispersed in a suitable liquid or solvent mixture. This may include water. In accordance with the invention, any suitable polymer may be selected by one skilled in the art which is capable of functioning as a matrix for the pigments used (and other optional ingredients ) and coating the specified active metals . It is evident that depending on the particular application or use and other pertinent considerations, an appropriate choice of polymer can readily be made .
Classes of polymers (and copolymers thereof) suitable for use in the invention include hydrophobic polymers such as polyolefins, copolyolefins, ionomers , polyamides , copolyamides , halogenated polyolefins , polyesters , unsaturated polyesters, silicone polyesters, epoxy resin polymers, phanoxy uw asw;Es wcyaca w $rer~ea surtE soo Z70 80, fIFIEEMN ST.
AfEIDEIDWA. PA tYIO~
um erscxs fECar~En mss ers.ros.
_8_ 20320.4 resins, alkyd resins, silicone alkyd resins and acrylic resins. Specific polymers suitable for use in the invention include but not limited to the following are;
Polyimide Polyethylene Polypropylene Polyphenylene sulfide Polyvinylidene fluoride Polyamide-imide Polyamide-imide (epoxy modified)Fluorinated ethylene propylene (FEP) Polytetrafluoroethylene (PTFE)Polyurethane Ethylene copolymers Ethylene vinyl acetate copolymers Epoxy polyamide Polyvinyl chloride Polyvinyl fluoride Organosiloxazane Polyvinylidine chloride Polystyrene and others Polyacrylonitrile Cellulose acetate A preferred polymer is an epoxy polyamide-imide.
The polymers useful as components of the composition of the invention include those polymers which can be cured at a temperature that does not adversely effect the properties of the metal to which the coating is applied.
A
preferred temperature range for curing the polymer is from ambient temperature to about 800°F frequently to about 500°F. The polymer may form a film by solvent evaporation, by melting and flowing out onto the surface, by coalescing of resin particles from a latex and by other methods. The film may be thermoplastic or thermosetting.
The polymer should be chemically capable of forming a suitable adherent film on the substrate of interest and for best results, be capable of bonding with the individual pigment particles in the coating film.
If desired two or more polymers may be used in the composition and the coatings of the invention.
The weight percentage of the organic polymer in the liquid composition generally ranges from about 5 to about 90%.
uw aims Weises r sn~a scare soo ~70.$p, iiTEEMN 51.
RItADE(DIM. PA 191Q2 nls~a~se~e3 rF~cov~n alsl ers e~

2Q~20~:4 Generally the minimum amount of organic polymer is that amount or ratio which in conjunction with the pigments will impart a perceptible improvement or resistance to corrosion for metal substrates coated with the composition.
The maximum amount or ratio of organic polymer is that amount or ratio beyond which no significant improved resistance to corrosion of metal substrates is observed.
The organic polymer acts as a carrier and matrix for the pigments further described herein and also as a protective barrier coating for metal substrates . In general the thicl~ess of the polymer citing does not exceed about 40 um. The coating may be thinner or thicker depending on the application, the pigment sizes and other factors lQtown to one skilled in the art. It is understood that the coating thickness should make allowance for the variety in individual sizes of the pigments used in accordance with the invention. It will be recalled that the sizes of the individual particles in the powders vary within a range so as to give the distribution of sizes noted herein (e.g. ESD).
Solvents (or liquids to disperse the polymer) which are useful in accordance with the invention include but are not limited to aliphatic hydrocarbons, aromatic solvents, alcohols and other oxygenated solvents, substituted hydrocarbons, phenols, substituted aromatic hydrocarbons and halogenated aliphatic hydrocarbons. Each resin system has a group of solvents and diluents compatible with the resin and suitable for film forming. In some curses the organic solvent is only used to disperse the resin powder. It is contemplated that water can be used as solvent/diluent or dispersant for some resin pigment compositions .
uw affcEs weuea s &r~r~a &NfE 500 Z!0 60 fIFfEfMN ST.
RILAOf1P111A. PA fifp~
afsi eTSe~
eiECrov~En mss sTSme.

2~~~0~.4 The Pigments Used In The Polymer Comp~itians In accordance with the invention the liquid or non-liquid composition contains two essential inorganic components hereinafter called "pigments" .
The first pigment is called herein an ion reactive, the other a compound which is teachable out of the cured coating. The pigments are discussed in the following sections.
The Ion R~tiee Pigment It has been found in accordance with the invention that the metal substrate protection provided by the ion reactive pigment acting in conjunction with the other components of the composition, is surprisingly, and remarkably improved over what would have been expected. While it is known, as discussed herefnabove, that aluminum (or other like metals) can be used as pigments to protect metal substrates, often in conjunction with inorganic phosphate coatings, it has been found in accordance with the invention, that only a particular preferred shape can impart the remarkably improved resistant properties of the present invention to severe environmental conditions typically salt spray or an acid atmosphere.
The word "reacting" as used hereirn relates to the metallic pigment "reacting" instead of or in preference to the metal substrate (which is being sought to be protected) but is not reacting galvanically or sacrificially, i.e. in the sense of providing electrons to the substrate. This difference is especially '~'"°FF~ES ertinent with respect to the com ositions in which zinc dust is one of the we'sex ~ &r~n.ea p p surtesoo ZID50 F6TEEMHST ~
FHSADElDHIA PA 19102 ph"'entCU .
ims~ eTSa~a »covEa a,s> eTS.e~

The shape of these metal particles is spherical or spheroidal-like including particles called metal "dusts" . Furthermore, it has been found that spheroids of a particular size maximize the properties discussed above.
Preferred are metal spheroids of an average equivalent diameter ~S ) as defined hereinafter of less than about 10 ~m and preferably not over 44 ~m maximum particle size.
Coatings formulated using inert gas atomized aluminum pigment particles show superior performance when compared with air atomized pigments. Inert gas atomized aluminum particles having ESD parameters of 2-4 ~m have improved performance when compared to larger particles. Such metal spheroids appear to maJdmize the protection of the substrate surfaces. It was expected that spheroid pigments when used in a barrier coating would provide less protection against environmental conditions than a flake-type pigment as is known in the prior art .
See "Inorganic Primer Pigments" by Smith, incorporated herein by reference.
The ion rear_tive pigments used in the invention are spheroid particles of any suitable metal. illustrative of the class of metal spheroids are aluminum;
magnesium, zinc, cadmium and other alloys. Magnesiumlaluminum alloys and alloys of the other above-mentioned metals are included. U.S. Patent No. 4,537,632 to Mosser describes metallic powders. Zinc dust in the form of spheroids or non-spheroids has also been found useful. This metallic pigment functions to control the pH and act it is believed, reactive to react, complex, neutralize, passivate or counteract in anyway (that is not fully understood), the adverse effect of the ions on the metal, in salt spray, industrial, ocean air or acid rain environments.
Preferably, this action contributes to maintain the pH in the range of to about 9 to 10. Mores preferably, for maximum effect of the teachable pigment the pH is to remain slightly on the basic side . Further, the optimum pH at which the second pigment will act best will depend on the particular pigments . For instance, the following pigments seem to work best at the following pHs: zinc chromate, about 8.0; barium metaborate, about 10.00; zinc borate, about 5Ø
Illustrative ions which attack these metal substrates in severe environmental conditions include chlorides, and other halides, sulfates, sulfites, phosphates, and all the ions produced by the reaction of acid gases (NOx) , ( SOx) with water. The metallic spheroid particles by functioning as an ion reactive pigment, protect the metal especially the active metals described herein from chemical attack by the ions .
In the case of aluminum serving as the ion reactive pigment in salt spraylsalt or acid air environments, it is thought that aluminum hydroxide reacts with chloride ions to fovrm an aluminum chlorohydrate complex according to the following reaction:
Al(OH)~ +H30"'+C1- -> [Al(H~O)6]~~C13,-~.
For the ion :reactive pigment to function effectively as desired, it has been found desirable that it be used in a proportion with the leachable pigment described further herein in an amount to give an improvement in the tests used herein ( a . g. , the CASS and salt spray test) . The maximum amount of ion reactive pigment is that amount beyond which no improved worthwhile resistance to corrosion of metal substrates is imparted by the coating composition without significantly comprising other film properties .
The range of combined functional pigments of the invention ( by 'volume) to the balance of the components in the dried, cured coating may range i"rom about 5 to about 95$; commonly about 15 to 50$. If excess were used it would ~~32a~4 result in a coating film having less than 100% density. 1''nis is not desirable with respect to barrier corrosion resistance, so that exceeding the recommended pigment volume concentration ( CPV C ) may not result in optimum coating performance.
When determining the optimum ratio of the two kinds of inorganic pigments to each other factors such as pigment density, reactivity, leaching rate, particle size, particle shape and opaqueness should be considered by one skilled in the art. Substitution of a less dense pigment on an equivalent weight basis for a denser pigment may result in exceeding the CPV C and introducing film porosity and other defects . This may or may not be significant depending on whether or not barrier sealer film properties are essential. The ratio of leaching pigment to total functional pigment as described in the invention by volume can vary from about 1 % to about 99%. In practice, the ratio typically ranges from 10% to 50% by volume.
As discussed herein, the mode of action of the ion reactive pigment is not fully explainable. However, the reactive Cl- ion is believed to be prevented from reacting with the metal substrate. That is the C1- ion preferentisllp corrodes the aluminum pigment rather than the metal substrate.
It is also believed the slightly alkaline condition of the coating composition due to the corrosion of Al(OH)3, as the aluminum pigment corrodes, also "ties up" the Cl- from reacting with the metal substrate. Thus in a general manner, in accordance with the invention, any metal spheroid can be used as an ion reactive pigment if it will react preferentially with the corrosive ions in the environment.
Regarding the particular nature of the metal, the metallic spheroid W~~;.E"r,,eR particles can be the same metal as the substrate metal of the part to be coated or sup soo ao so va-rearrtH sr rnMOE./rHU vm9nre it can be of a different active metal.
/z,m e7se~
TEIECOPIEH /2151 BIS~

2d3~~~.4 The metal spheroidal particles used in the coating composition may be metals such as zinc, cadmium, magnesium, aluminum or other active metals which have the spheroidal configuration. The nature of the metal selected is generally related to the particular physical-chemical properties required or intended for the coating. A metal is generally selected which does not detract from the iunprovements provided by the invention. The preferred metallic pigments are those which preferentially corrode instead of the metal substrate and protect the substrate from chemical attack by ions generated by the conditions discussed.
Whale as explained partially above, it is believed that the ion reactive pigment functions by reacting with corrosive ions such as chloride ions and in addition controls pIi within the coating, it is believed to perform other useful functions within the coating film. For example, barrier coating films are protective only while they are undamaged. A film containing metallic flake pigment is less able to withstand damage caused by impact because of the structure of the flake pigmented layer. Reverse or direct impact will produce interlamellar failure since the coating is anisotropic. Coatings pigmented with spheroidal pigments, particularly of aluminum are ductile and malleable and able to withstand or absorb impact stress by pigment deformation.
Use of spheroidal pigments allow for high loadings of very small metallic pigment particles and still maintain low viscosity coatings. Use of flake pigments at high loadings would result in coatings of ultra high viscosity and poor physical properties on application .
Surprisingly, coatings of the invention containing high loadings of metallic pigments are extremely resistant to corrosion. Normally, (as referred to uw avlcEs wc~ecs r STAPIBR

270 SO. fiIEENTN ST
M11AOEIDiM. PA IA103 ~zm eTSax7 TE~coraEN tzlsl eTSe7s.

above) it is desirable to reduce conductive metallic pigment loadings in an anti-corrosive barrier films to maintain as low electrical conductivity in the films as possible. The present coating in contrast is quite high in pigment loading.
(~ommonly the loading with pigments may be high as about sixty (60) volume percent or more.
In a preferred embodiment aluminum spheroid particles are used as the ion reactive pigments. Th.e aluminum spheroid particles can be produced through air or gas atomized techniques as known in the prior art. For techniques on how aluminum spherical particles are obtained reference is made to U.S. Patent Nos.
~~,537,632 to Mosser, 4,65!x,613 to Mosser et al. and 4,724,172 to Mosser et al. Air-atomized grades of aluminum powder are produced by aspirating molten metal through a nozzle into a supersonic stream of air. A stream of liquid aluminum is broken into individual droplets by the jet of air, each droplet is initially flattened and elongated by the force of the gas stream. Under ideal conditions, these droplets would rapidly contract into a spherical shape in order to minimize surface area and surface energy. However;. when the molten aluminum contacts the air, a hard, dense oxide film immediately forms on the surface of the liquid drop. This oxide ;hell causes the droplet to solidify in its initial distorted shape.
Consequently, air-atomized aluminum powder particles are irregular in shape and generally the smaller the particle, the greater its variance from the perfectly spherical shape.
Special spherical grades of atomized aluminum are also commercially available.
Spherical powders are produced by aspirating molten aluminum into a jet of a reducing gas, such as hydrogen or an exothermic mixture of combusted methane, or an inert gas, such as helium or nitrogen. These grades of gas-atomized aluminum are referred 20320.4 to as "spherical" powders although they never actually achieve perfect sphericity because of the effect of gravity on the molten metal droplet. Air-atomized and non-oxidizing gas-atomized powders are typically characterized according to one of the following measured parameters: particle size or average particle diameter, particle size distribution, and particle shape or configuration. Particle size, the parameter most commonly used to distinguish grades of powder, is generally synonymous with particle diameter; however, particle diameter can only be determined accurately for spherical powders.
Since actual atomized powder particles rarely exhibit a perfect spherical shape (for reasons mentioned above), the particle size is most usefully established by measuring a characteristic propertg of an irregular particle that can be related to the same property of an ideal regularly shaped particle. By choosing a sphere as the ideal shape, the size of both air- and non-oxidizsng gas-atomized powders can be reliably described as "equivalent to a sphere in diameter ( d)"
, thereby combining the parameters of size and shape in a single variable . An unequivocal, reproducible particle size having one dimension is thus established with this definition.
The equivalent spherical diameters (ESD) and average equivalent spherical diameters (ESD) of aluminum or other metal particles in a particular grade of powder are measured by automated sedimentation equipment such as the Micromeritic SediGraph 5000E particle size analyzer. This device uses low energy X-rays to determine the concentration of particles at various depths in a column of known fluid. The SediGraph determines the population of particles of a particular mass in the powder grade by measuring the density of particles at a u'"5 given level within the fluid. Grades of atomized powders are completely WLIAER API~R
SUffE 500 by $p F%1EEHTH 5T
pH[~[ylM. VA 181 (2151 E75meJ
TEIECOVIETi 1315) 875 _1~_ nharacterized by the population size distribution measured by the sedimentation technique and the ESA corresponding to the median value in the distribution.
In accordant;e with this invention, both air- and non-oxidizing gas-atomized aluminum powders are described using average equivalent spherical diameter ES ) measurements provided by sedimentation equipment. Additional iinformation regarding analytical test methods for characterizing aluminum powders is provided in the Alca3 pamphlet section PAP917 (FA2D-2) entitled "~,luality Control and Analytical Test Methods for Alcoa Aluminum Powders" . For additional :information about sedimentation measurements, see the pamphlet entitled "A
Short Course in Fine Particle Technology" provided by Micrometrics Instrument Corporation .
I~chable Pig In accordance with the invention the composition contains a second pigment, a leachable pigment capable of inhibiting or passivating the corrosion of metal. The leachable pigment is typically a salt containing chromate, molybdate, vanadate, tungstate, plumbate, phosphate or metaborate as well as others as listed in the publication by Smith, entitled "Inorganic Primer Pigments" , Federation Series on Coatings Technology which is incorporated herein by reference. The ration of the salt can be any ration which forms a salt with the above-mentioned ion and produces a salt of limited solubility typically strontium, zinc, barium, potassium, sodium, calcium, lithium, magnesium as well as others .
A preferred leachable pigment in accordance with the invention are chromate containing pigments . In accordance with the invention, pref erred salts 2U32~~.4 which form the teachable pigment include strontium chromate, zinc chromate, zinc tetraoxycbromate, zinc potassium chromate, barium chromate, and barium metaborate .
Chromate is believed to act as an oxidizing inhibitor. The chromate is also thought to form a thin oxide layer on the metal to be protected which acts as a protective film. The chromate is known to leach out of the organic resin polymer and thereby passivate the metal by forming a protective film.
Chromate pigments can be manufactured (precipitated) out of alkaline solutions and leach out as slightly alkalane materials . The slightly alkaline pH of the coating composition facilitates neutralizing the environmental solution containing the reactive ions, e.g. Cl-and S0~-. It is believed that the ion reactive pigment assists in stabilizing the pH in the neutral to slightly alkaline range, allowing the teachable pigment to be more effective.
In accordance with the invention the ratio of teachable pigment to the ion reactive pigment is in the range of about 5 % to about 95%.
The minimum amount of teachable pigment is that amount which in conjunction with the organic resin and ion reactive pigment will impart a perceptible improvement in resistance to acidic and/or salt corrosion for metal substrates coated wi'~.h the composition. The minimum amount is about >0.5%.
The maximum amount of teachable chromate is that amount beyond which no improved resistance to corrosion of metal substrates is imparted by the coating composition.
It is evident that one skilled in the art can without undue experimentation determine the optimum amounts, ratios, etc. depending on the metal to be coated, severity and expected duration of exposure and other such '"'"~qcES factors and considerations .
Wtieta~r~.ea by y~ iKTEEMN ST

n,s~ eTS ex3 TEtscovea t2,s) eTSa~s.

20320~.~
flnfianaa Ingredients In accordance with the invention, optional ingredients may be added to the coating composition. These optional ingredients include but are not limited to extenders, fillers, lubricants or refractory compounds such as silicone, mica, titanium dioxide, carbon black. Surface active compounds dons, cationics, and non-Tonics) are also useful. The optional ingredients may be added to impart desired qualities to the composition but are not to be added in quantities which would lessen, interfere or detract from the ability of the coating composition to protect metal substrates in salt spray, salt air, acid rain, or other severe environmental conditions .
Metal Substrates to be Coal In accordance with the invention, metals which benefit most from being coated with the composition disclosed is this application are those active metals which corrode or deteriorate in salt spray, salt air, acid rain or other severe environmental conditions due to the action of ions such as Cl- or S04- (or equivalent ions) in the presence of low pH. For purposes of this application, those metals designated as "active metals" as defined herein, will particularly benefit from being coated with the composition of the invention. "Active metals"
are defined herein as those metals and alloys thereof which are electrochemically (i.e. galvanically) active metals as measured by a galvanic potential of greater than -0.6 volts with respect to a calomel electrode in 5% salt solution, i.e.
those uwavr_es metals anodic to steel. Thus, active metals in accordance with the invention Wessex r. 8rer~,eR
aIME 500 2.'fD SO. E1E1EEMN n f'NfulOEIDMA. PA t,102 t2tsi arsa~
TELFCOPEiI (2t5> 075dt9~

2~32~~4 include but are not limited to magnesium, aluminum, manganese, zinc, and cadmium alloys, of these metals, and metal matrix composites incorporating these metals or alloys thereof .
In addition, coating of these metals and alloys are suitable substrates .
For example, zinc plated steel is a suitable substrate. Electrolytic and mechanical platings of zinc, zinc alloys, aluminum and cadmium are surfaces suitable for the coating. Usually these surfaces are conversion coated "chromated" or "phosphated" . In addition, ion vapor deposited aluminum is a suitable substrate.
Coatings containing aluminum or other active metal pigments in ceramic coatings such as are described by Allen in U.S. Patent No. 3,248,251 and Brumbaugh, U . S . Patent No . 3 , 869 , 293 are suitable substrates . Particularly pref erred metal substrates include magnesium and aluminum and alloys thereof including aluminum/lithium alloys, because of their desirable properties as discussed hereinabove.
As previously noted "active" metals all have an oxide or hydroxide protective film or scale. It is this film that is attacked by the acidic environment and chloride ion. For proper protection of these active metals, this oxidelhydroxide surface should be replaced with a chemical pretreatment. The pretreatments possibly depend on the metal and alloy being protected, and are known. Magnesium is protected by anodizing and by conversion coatings. These treatments are known and are described in numerous references. A convenient reference that includes all the substrates in question is Metals Handbook, Ninth Edition, Volume 5, Surface Cleaning, Finishing, and C_ oatin~. (ASM Metals Park Ohio) . V~lhile a variety of surface treatments are possible, a few are commonly uW~qcE5 used. For example magnesium is anodized using the HAE Process and by the Dow weiaeaan.ee suite soo ~7p $p iIiTEEHTN $T
GNI ADE(DWA. VA f910~
a,s ersa~
rc~coven iz,si msa~s., 2Q320~.4 1Z Process. When not anodized magnesium alloys are conversion coated using several kinds of "chrome pickle" or "chrome manganese treatments" .
Aluminum alloys are anodized in a variety of baths including sulfuric, chromic, phosphoric, and other acids and mixtures. Conversion coatings are applied to aluminum alloys that are not anodized. These conversion coatings are usually chromate based acidic solutions in which the aluminum alloy components are processed.
Zinc and cadmium surfaces are usually treated in a "chrome pickle"
solution, a dichromate sulfuric acid mixture. These are described in the above referenced volume.
All these passivated, anodized or conversion coated surfaces of the active metals are suitable as bases for coatings of the invention. The invention can be applied directly over these metal surfaces or in some cases, directly over the cleaned, untreated metal surface. This is common in the case of application the invention to aluminum-filled coatings. It is also expected that some surfaces, such as anodized surfaces, may be pretreated with a sealer coating to impregnate and infiltrate interstitial porosity. Such sealers must be compatible with the coating of the invention to ensure adhesion and proper bonding. When compatible such sealers may enhance the coating performance .
As is discussed herein, the metals to be coated are active metals. The metal or non-metal part (e. g. ceramic) may be coated with that metal or the part may be constituted of the metal. Generally the metal surface to be treated, i.e.
the base for the coating of the invention, is pretreated, as discussed, but it need not be so pretreated.
uw o~~ces We~see t &rArue sane soo x7p 9p. fitFEMN ST
GipVlpe(DNW. PA 19102 (2~5167197~
7c(~cov~en ms( e7sa~9.

METHOD OF THE INVENTION
In accordance with the invention, a method of coating metals with the composition of the invention is provided. Before testing the metal in accordance with the invention, the part to be treated is first pretreated with a conventional pretreatment such as a chromate conversion coating or an anpdization. The substrate is then coated by applying, brushing, rolling, spraying, diptspinning or dipping the liquid composition of invention . After the liquid composition has been coated on the part, the composition is cured either by heating for a given period of time or by an appropriate sir curing! setting mechanism. The curing temperature should be below the tempering temperature of the metal substrate itself . The curing steps may remove excess solvent and permit cross-linkage of the resinous polymer to occur, if required. The cross-linking of the polymer provides for a coating of improved durability in severe environmental conditions.
After curing, the coated metal part is ready for use in these environmental conditions, where it displays markedly improved resistance to corrosion. It is often found that sealer coats compatible with the resin used in the composition of the invention may be applied over the functional coating. Thus, the coatW g of the invention may have a top coat thereover. Use of multi-step sealers and complex processing are preferablg avoided.
The following examples of the embodiments of the invention, namely the coating composition, coated metal parts and method of applying the coated composition to metal parts are offered by way of illustration and not by way of limitation .
uw oiiicEs Weues s &r~r~e SU(fE 300 ,gyp $p. iIiTEENTN ST
RILAOEIHM. DA t9f02 n,s~ e~3~es ,~cavea n,s~ eTSms.

The amounts of ingredients in the compositions listed in the following examples are given in weight gram units, unless designated differently.
~CAII~LB 1 In this example three different coating compositions are prepared and fwaluated for their corrosion resistance properties .
All of the cw3ting compositions contain amide-imide epoxy resins .
One formulation contains strontium chromate as a leachable pigment.
'.Chis formulation is designated as Composition lA and its ingredients are listed below.
COMPOSITION lA
Amide-imide resin, Amoco AI-10* 250.0 Epoxy resin, Ciba Geigy G~-6010* 60.1 N-Methyl-2-Pyrrolidone (NMP) 981.7 Ethyl acetate 67.1 Silicon resin, GE SR-112* 4. 0 Fluorocarbon surfactant, 3M FC-430* 2.7 Strontium Chromate 134.0 Total 1,449.6 This formulation was made by completely dissolving the AI-10 amide-iimide resin and epoxy resins into NMP. The ethyl acetate and surfactants were 'then added. The strontium chromate pigment was dispersed, added and filtered 'through a 325 mesh screen.
* Trade-mark ~~3~0:~4 Another formulation contains aluminum powder pigment. This formulation is designated as Composition 1B and its ingredients are listed below.

Amide-imide resin, Amoco AI-10 250.0 Epoxy resin, Ciba Geigy GY-6010 60.1 yn,~P 9 81. 7 Ethyl acetate ~ 67.1 Silicone resin, GE SR-112 4.0 Fluorocarbon surfactant, 3M FC-430 2.7 3-4 lun ESD aluminum spherical powder, Valimet H-3 469~8 Total 1,835.4 The coating was prepared in the same manner as Composition 1A.
Another formulation contains both the aluminum powder pigment and the strontium chromate. This formulation is designated as Composition 1C and its ingredients are listed below. Composition 1C constitutes one of the formulations of the invention .

Amide-imide resin, Amoco AI-10 621.5 Epoxy resin, Ciba Geigy GY-6010 149.5 uw aF~ccs WEIHER Is 472.0 RMp , pp $p. F6TFENfH

PWJvDElDh4A
PA 19,02 l acetate 169.0 Eth ,2,5,d y ~,~.oPea n,s, ersaas.

Silicone :resin, GE SR-112 10.0 Fluorocarbon surfactant, 3M FC-430 6.7 Strontium chromate 333.7 3-4 ~.un ESD aluminum spherical powder, Valimet H-3* 1,168.0 Total 4,930.4 Each of the three coatings was spray applied onto separate ASTM Alloy No. AZ31B magnesium panels.
This magne~;ium alloy has a nominal composition of 3.0% Al, 1.0% Zn, 0.3% Mn, the balance is IVIg.
Prior to coating, the AZ31B magnesium was chromate conversion coated using the Dow 1 process developed by Dow Chemical Co. The process steps include vapor degreasing in 1,1,1-trichloroethane. The panels were immersed for 15 seconds in 10 wt. % rdtric acid, cold water rinsed, a 1 minute dipped in acid chromate aqueous solutia~n ( 15 wt. % Na~Cr20~ and 25 wt. % HN03 ( SG 1. 42) ) , cold water rinsed, and dried.
All coatings were spray applied to a dry film thickness of 0.6 - 1.2 mil ( 1 mil=0. 001 inch) . E;ach coat was dried at 175°F for 15 minutes prior to a one :hour 300°F cure.
The coated panels were then coated with a topcoat containing a gray amide-imide epoxy. This topcoat is designated Composition 1D and its ingredients are listed below. It con~,ains only pigments to give it a giay color and does not contain the corrosion inhibitive pigments of Compositions lA, 1B and 1C.
* Tradc~-mark _._._~~,_:..~._,.._._.__ _._.

Amide-imide resin, Amoco AI-10 860.5 Epoxy resin, Ciba Geigy GY-6010 207.2 NMP 2,726.0 Ethyl acetate 231.2 Silicone :resin, GE SR-112 13.9 Fluorocarbon surfactant, 3M FC-430 9.3 Fumed Silica (Cab-O-Sil M-5*) 3 . 2 -Ti02 (DuPont R-1 *) 2 6 9 . 0 Carbon black, Cabot Regal 4008 29.0 Total 4,349.3 Composition 1D was prepared by dissolving AI-10 amide-imide resin in NMP. The epoxy resin, ethyl acetate, and surfactants are stirred in until homogeneous . The pigments are dispersed by a 24 hour ball mill cycle . The composition was filtered through a 325 mesh screen.
The following compositions conita,'ning a primer and topcoat as listed below were then subjected to a variety of tests .
System No. Primer Topcoat Total Thickness (mils) 1. lA 1D 2 2. 1B 1D 2 3. 1C 1D 2 * Trade-mark 203~0~.4 The panels were first tested for initial crosshatch adhesion, ASTM D
3359. All three systems yielded excellent intercoat adhesion results, characterized by a 5B classification which is the highest rating for adhesion of coating films to metallic substrates.
Unscribed panels of each coating system were also exposed to Copper Accelerated Acetic Acid-Salt Spray (Fog) Testing (CASS TEST), ASTM B 388.
This test is conducted at a pH of 3.1 to 3.3 and simulates severe acidic exposure conditions .
The results after six weeks of exposure are shown below.
S stem Six Weeks Exposure 1 ~ Moderate white corrosion products on the entire panel 2 ~ Moderate white corrosion products on the entire panel 3 ~ No corrosion products The results showed the improved effectiveness of the pigment combination in accordance with the invention in combating acidic environment corrosion.
Similar high levels of corrosion resistance were achieved with sgstem 3 in neutral Salt Spray (ASTM B 117) and Humidity Exposure (ASTM D 2247).
BX.A1~PLE 2 In Composition 1C, strontium chromate is substituted on an eduivalent volume basis by barium metaborate as the teachable pigment. Following the ,~~ procedure in Example 1 in which ma esium ~,~ gn panels are coated, and after ~so «sT
'nIMF~PNA. YA t9nOt appropriate curing, good resistance to acid corrosion is observed on the coated mss e~saxo ~~p a~s~ e~sesw magnesium panels with this coating, 2~~20:~4 EXAIVIPhE 3 Similarly, in Composition 1C, strontium chromate is substituted on an equivalent volume basis with basic zinc molybdate. After appropriate curing and following the procedure of Example 1 in which magnesium panels are coated, good resistance to corrosion in the salt spray test is observable.
L$ ~
In Composition 1C, strontium chromate is substituted on an equivalent volume basis by zinc phosphate. After appropriate curing and following the procedure of Example 1 in which magnesium panels are coated, the coating is observed to inhibit the formatian of corrosion products.
I~ 5 In Composition 1C, aluminum powder is replaced by cadmium powder in equivalent volume amount. A coating with good corrosion resistance results.
EILAMPhE 6 In Composition 1C, the resin is substituted by a phenoxy resin and dissolved in a suitable solvent. A satisfactory coating is obtained following a similar procedure of Example 1 in which magnesium panels are coated.
uw af~cEe W rwu t 8rntue &IIfE 509 39p SO. f97EFXfH 5T.
PNKApfIDIMA. PA 19193 13~5Y e15-03A7 rtu~ov~Y YIisY ersmw i In Composition 1C, the resin is substituted with polyvinylidene fluoride and suitable solvents. After following the procedure in Example 1 in which the magnesium panels are coated, the composition displays useful properties as a corrosion resistant coating to the CABS test.
E3~
In Composition 1C, the~resin is substituted with polyethylene and suitable solvents . After following the procedure in Example 1 in which the magnesium panels are coated, the composition displays good corrosion resistent properties to salt spray.
EXA~~ 9 In Composition 1C, the resin is substituted with polyimide. After performing the procedure in Example 1 in which the magnesium panels are coated, the composition displays good corrosion resistent properties to acid exposure .

In this example, the use of zinc ehromate/aluminum powder pigmented amide-imide coatings without the epoxy low temperature cure a3ditive is demonstrated. The 500°F temperature required for cure limits the metal alloys that Wciacs~ saga 9UfE 500 zio zo vsrEErrtH sr w,u~namu v~ mm a~si e~s.ex~
rEiECavfn ais~ a~sr~w can be coated with this system. One of the formulations used in the Example is designated Composition l0A and its ingredients are as follows:

Amide-imide resin, Amoco AI-10 26.47 N-Methyl-2-Pyrrolidone (NMP) 104.03 Ethyl acetate 7.12 Xylene ~ 18.60 Silicone resin, GE SR-112 0.42 Fluorocarbon surfactant, 3M FC-430 0.29 Zinc chromate 27.59 3-4 iun ESD aluminum spherical powder, Valimet H-3 94.73 Total 279.25 This combination was dispersed on a Hockmeyer mixer until the pigments were well dispersed. It was filtered through a 325 mesh screen.
Composition lOB consisted of the following:
COMPOSITION lOB
Amide-imide resin, Amoco AI-10 860.5 NMP 2,720.0 Ethyl acetate 231.2 uw aslc~s w"'°"~""'~ Silicone resin, GE SR-112 13.9 ~>b.«,n AWaOEIYHIA PA 191(p (215) ITS~BJ
TElECOVEA (8151075178' Fluorocarbon surfactant, 3M FC-430 9.3 Fumed silica (Cab-O-Sil M5) 3.0 TiOz, R-100 DuPont* 269.0 Carbon black, Cabot Regal 400 R* 29.0 Total 4,141.9 The composition lOB was processed in the same manner as coating "1C"
and will be used as the protective barrier film over Composition 10A.
Both of these coatings were applied over two separate substrates both capable of withstanding 500°F cure temperature. The first substrate was ANSI
3003 aluminum with major alloy elements, 1.28% manganese, and 0.126$ copper which was vapor degreased in 1,1,1 trichloroethane, chromate conversion coated 'by application of Alodine 1200S (l.2ozlgal concentration) for 1 minute. The substrate was then water rinsed and dried prior to application of the coatings .
The second substrate is AISI 1010 steel which was vapor degreased and blasted with clean :100 mesh aluminum oxide grit . A chromate / phosphate iinorganic coating, pigmented with small aluminum spheroidal particles was applied .
'this inorganic base coating is disclosed in. Mosser (U . S . Patent 4, 537, 632) and is similar to Example 1 in that patent. This inorganic basecoat was spray applied to the steel substrate, oven. dried at 175°F for 15 minutes and cured at 650°F for 30 minutes. After cooling, a second coat was applied and the drying and curing steps repeated. The substrate was then burnished to mechanically cold work the <:vating surface by light blasting with 140-270 mesh glass beads or A1~03 grit.
'.Che basecoat becomes electrically conductive and sacrificial by this process .
* Trade-mark 2~~~~~~
The amide-imide l0A composition was spray applied to 1.0 mil dry film thickness, dried at 175°F for 15 minutes and cured at 500°F for 30 minutes.
Amide-imide lOB composition was applied and cured over l0A according to above procedure.
A summary of the coatings and substrates is set forth as follows C
S stem Alloy Pretreat Primer Topcoat 1 3003 Alodine l0A lOB
2 1010 Blast , per U.S. l0A
Patent 4,537,632 Composition 2 resisted corrosive environments well and endured 1, 000 hours scribed in ASTM B 117 with only some scribe corrosion. Unscribed exterior exposure panels at 15 weeks exposed to 5~ daily salt spray were corrosion free.
Composition 1 on conversion coated ANSI 3003 aluminum substrate was very corrosion resistant as evidenced by scribed panels showing no corrosion at 1,000 hours salt spray AST1H B 117. Physical properties such as impact resistance and flexibility over a conical mandrel were excellent for both compositions 1 and 2.
EXA~I~E 11 In this example, the coatings 10A and lOB and the substa~te are ,~~"",~" the same as in Example 10 except that the coatings are cured at 300°F for one ~~.«~"s,. hour instead of 500°F for one-half hour.
vntaor~t~HU. v~,moe a~s~ sise~
~toov~n a~s~e~s-e~w It is found that the physical properties of l0A and lOB systems are compromised. The films tend to crack and craze upon direct impact testing or conical mandrel bend. At 300°F cure, a thermoplastic film was formed when the solvents evaporated. No apparent imidization reaction had occurred to cross link the film and improve its properties .
EX~L$ 12 A British Ministry of Defense specification clear epoxy sealant I)TD-5562 was pigmented with strontium chromate and aluminum 3-4 Erm ES
spherical powder in the same pigmentlpigment and pigment/resin weight ratio as Composition 1C in Example 1. This was to demonstrate the efficacy of this pigment combination. An unpigmented DTD-5562 epoxy was run as a control on the same magnesium substrate panels .
DTD-5562 British Defense Specification epoxy sealant was prepared in which 30-35% by weight of the composition consists of resin solids, the balance is high hydrocarbon volatile solvent. This formulation is designated ss Composition 12A and its ir~ngredieats are listed below .
C011~OSITION 12A
DTD-5562*, Epoxy 400.0 Strontium <:hromate 55.4 3-4 )un ESD spherical aluminum powder, ~~alimet H-3 193.9 Total 649.3 * Trade-mark 2~32a~4 These pigments were stirred under Hockmeyer disperser agitation.
The coating was then filtered through a 200 mesh sieve.
COII~OSITTON 12B
DTD-5562 clear epoxy sealant without any pigment additions was .
designated 12B .
Two types of magnesium panel substrate, AZ31B and AZ91C were coated with the above Compositions 12A and 12B . The AZ31B magnesium was f9rst pretreated with the Dow 1 process outlined in Example 1. The AZ91C
magnesium was given a chrome-manganese pretreatment as follows: The panels were grit burnished at 10 p. s . i. with A1~03 grit 90-120 mesh to remove the mill applied coating. The AZ91C panels were immersed 15 seconds in 10 wt. % HN03 and rinsed with cold water. The panels were then immersed for 2 hours in an aqueous chrome manganese bath composition (10% wt. Na~Cr20~°2H2O, 5%
wt.
MnS04' SH20, and wt. 5 % MgSO.~, ~ 7H~0) . They were then rinsed with cold water and dried.
These coatings were spray applied to both substrates, with each coat cured at 400°F for 40 minutes.
Coatings were applied to substrates as shown below:
System No. Substrate C
1. AZ31B 12A
2, AZ31B 12B
uwor~~cES 3, AZ91C 12A
WPJBGII i STAI'LLR
SUIfE 600 230 SO. iIF7EEMN 5T. 4 . AZ91 C 12B
vNE~pEt~w~. vA ioiar a,si e~s.eoe5 TELECOPER (x161 BT5-0~9~

2J3~~:~~
All systems were subjected to four heat cycles. A heat cycle is defined as 8 hours at 300°F
16 hours salt spray, ASTM B 117 8 hours at 300°F
Z6 hours LASS, ASTM B 368 On both AZ31B and AZ91G magnesium where one coat of pigmented 12A was applied, no corrosion occurmd. Where clear unpigmented 12B sealant was applied to both substrates, moderate to severe white corrosion products had occurred. This result supports the utility of strontium chromate-aluminum powder (leachable - ion reactive) pigment combination.

An ambient cure Steel Structures Painting Council ( SSPC) reference epoxy primer was pigmented with strontium chromate and 3-~ ~m ESD
spherical aluminum powder. This formulation is designated Composition 13A and its ingredients are listed below. Anothel° SSPC primer is prepared without the aluminum powder, being the same in other aspects. This formulation is designated Composition 13B and its ingredients are listed below.
uw awcEs Weuex ~ &re~a 54RE 5a0 270 SO. iIFTEEMH Sf AllA0ELY1M. DA 191M
(215) 875830.7 TELECOt'IER (215) E15E74n Epoxy resin, Ciba Geigy GY-6010 89.62 Strontium Chromate 33.33 3-4 dun ESD spherical aluminum powder, ~Talimet H-3 116.67 Magnesium ;silicate 42.00 Mica, 325 mesh 13.87 Organophil:ic clay, NL Industries, Bentone 27 3.75 Methanol/water 95/5$ 1.50 Urea leveling agent, Bettle 216-8, American Cyanamide 4.87 Methyl isobutyl ketone 14.25 Xylene 42.37 Cellosolve 22.50 Polyamide, Ciba Geigy XUHY283* 62.25 Total 446.91 The compositions were mixed for 20 minutes with a Hockmeyer disperser than screened through a 100 mesh screen and finally mixed with a polyamide curing agent, Ciba Geigy XUHY283.

This coating is the same as Composition 13A, except it does not contain aluminum powder pigment .
* Trade-mark 2~3~014 The coatings were spray applied to 2 mils dry film thickness on AISI-SAE 1010 steel, AA 7075 aluminum alloy and AZ31B magnesium panels.
Aluminum and magnesium were pretreated as detailed in Examples 1 and 10. The steel was degreased and grit blasted with 90-120 mesh Ah03 grit . Panels were allowed one week at room temperature to fully cure .
The tabulation below shows the substrate and the corresponding primer f or each system .

System No. Substrate Primer 1, 1010 steel 13A

2. 7075 A1 13A

g, AZ31B 13A

1010 Steel 13B

5. 7075 A1 13B

6 , AZ31B-Mg 13B

The systems were exposed to CABS ASTM B 368 exposure, unscribed, for five weeks. All three substrates, steel, aluminum, and magnesium that were coated with composition 13A developed only very slight corrosion over less than 1% of panel surface area. Panels of all three substrates, coated with 13B, which does not contain any aluminum Powder, but only strontium chromate pigment developed severe corrosion over more than 50%
of panel surface area. These results demonstrate the utility of spherical aluminum powder (3-4 Eun ESD) as an ion reactive pigment along with the chromate. In this case, the aluminum reacts with chloride ion, minimi7in_g chloride ion attack s on the substrate.
weuea ~ 8~ren,es surre tm x7D 59 iIF7EEMN ST
PN1ADGL%11A.FA t9t02 uts~ eTSax~
Tf~covea nts~ e~s ~.

EXA~LE 14 In this example, the utility of various types of metallic pigment as ion reactive reagent is demonstrated in an amide-imide film. The metallic pigments tested here were a 5 dim average particle size aluminum powder -Reynolds LSD-693, an 8 ~.im average particle size zinc dust - New Jersey zinc #122, and a 325 mesh magnesium powder - Reade RMC-325. The metallic :pigments were formulated into Composition 1C type formulas in which the 3-4 ~m 'ESD aluminum powder is replaced on an equal volume basis . Strontium chromate was included in all these formulations at the level used in composition 1C.
One of the formulations is designated as Composition 14A and :includes the following ingredients.
CO11~OSITION 14A
Amide-imide resin, Amoco AI-10 38.31 N-Methyl-2;-Pyrrolidone 150.34 Ethyl acetate 10.28 Silicone resin, GE SR-112 0.62 Fluorocarbon surfactant, 3M FC-430 0.41 Epoxy resin, Ciba Geigy GY-6010 9.20 lun ESD aluminum powder, LSA 693 Reynolds* 72.00 Strontium Chromate 20.00 Total 31.16 * Trade-mark ~~3v~k~
This composition was stirred until the resins dissolved at room temperature. Figments then were added and were well dispersed on a high speed stirrer. The coating was screened through 200 mesh.
Another of the formulations was designated Composition 14B and consists of the following ingredients.

Amide-i.mide resin, Amoco AI-10 36.39 N-Methyl-2-Pyrrolidone 143.00 Ethyl acetate 9.77 Silicone resin, GE SR-112 0.58 Fluorocarbon surfactant, 3M FC-430 0.39 Epoxy resin, Ciba Geigy GY-6010 8.74 8 ~.m average zinc dust, #122 New Jersey zinc 177.00 Strontium Chromate 19.50 Total 395.37 The processing steps are same as for Composition 14A.
Another of the formulations is designated Composition 14C and consists of the following ingredients.
uw ar~cEs we~sea ~I sTenee SUITE SOD
2JOS0 iRTEEMHST
WILA~EIYHIA.FA 191px 121s7 ms.am., IEIEGOPIER (215) 875~EJ9' ~~3~4~~

Amide-imide resin, Amoco AI-10 38.31 N-Methyl-2-Pyrrolidone 150.34 Ethyl acetate 10.28 Silicone resin, GE SR-112 0.62 Fluorocarbon surfactant, 3M FC-430 0.41 Epoxy resin, Ciba Geigy GY-6010 9.20 325 mesh magnesium powder, Recede 46.40 Strontium Chromate 20.60 Total 276.16 The processing steps are the same as for Composition 14A.
The substrates were treated as follows:
1. Steel - grit blasted as in Example 10.
2. 7075-T6 aluminum - Alodine 1200S treatment as in Example 10.
3. Magnesium AZ31B - Dow 1 treated as in Example 1.
Formulations 14A, 14B and 14C were spray applied to all three substrates at 1.0 mil dry film thickness. The panels were dried for 15 minutes at 175°F
prior to I hour at 300°F cure. Composition 1D topcoat was also applied to all panels and cured as above. The following is a summary of coating systems:
System No. Substrate Primer Topcoat '""'°"xES 1. 1010 Steel 14A 1D
We~ses a &rtr~n su,r~ soo x'°~o °"'~"""s' 2. 7075-T6 A1 14A 1D
A44AOEViG. vn ,9,oz aui e~sex~
r~cavea,s,s,e~s~ss., 3. AZ31B-Mg 14A 1D

~632Q~.4 4. 1010 Steel 14B 1D
5. 7075-T6 A1 14B 1D
6. AZ31B-Mg 14B 1D
7. 1010 Steel 14C 1D
9. AZ31B-Mg 14C 1D

Panels were scribed and exposed for 1,000 hours in salt spray (ASTM B 117 method) . The steel substrate systems all showed corrosion problems such as creep and scribe rust. However, all three active metal pigmented (aluminum, zinc and magnesium) formulations protected light metal substrates 7075 Aluminum and AZ31B-Magnesium very well as evidenced by lack of corrosion of the test specimens.
E,~LAlItIP'LE 15 Die cast zinc ASTM alloy AC41A housings having a major alloy composition of 0. 25$ copper, 3.5-4.3 o aluminum, were coated with coatings 1C
and 1D specified in Example 1. The zinc was cleaned by vapor degreasing in 1,1,1-trichloroethane and then pretreated by chromating in ( Na2Cr20~ ~ 2H2O, 6 ml concentration H~S0.4, balance is H~O to 1 liter) for 10 seconds. The zinc pants then were rinsed in cold water and dried. Composition 1C was applied as primer and 1D as topcoat and cured as indicated in Example 1.
A coated zinc die case housing was "X" scribed and placed in salt uwaF~cES spray AS TM B 117 for 500 hours. At the end of the test, no corrosion was iYE'.u6f ~ SrArieR
&INfE 500 Zip SO. FIF1EEMH S7 RIEADELH11A. PA lylpp relsl ersax~
rExECOr~a ~zls~ e7sa».
_42-evident. A similar coated die cast housing was placed in an immersion solution of 0.5$ NaCI and 2.5% methanol. At the end of 500 hours, no corrosion was evident. In each case the scribe area was clean and without evidence of corrosion. There was no creep or blistering along the scribe line.

This example incorporates the pigment combination strontium chromate and 3-4 Erm ~D) aluminum powder formulated into an acrylic-urethane coating system.. This formulation is designated Composition 16A and consists of two parts which are individually prepared and then mixed together as set forth below. This composition is then cured at ambient room temperature .

:Part A
Strontium Chromate 45.9 3-4 lrm ESD spherical aluminum powder, Alcan 521'~* 162. 8 Acrylic resin, Acryloid AU-568*, Rohm & Haas 113.9 N-Butyl acetate-polyurethane grade 97.7 2-Exthoxyethyl acetate-polyurethane, grade 95.6 Sand grind with equal weight of sand to 6+ Hegman grind dispersion, then let down with Acryloid AU-568, acrylic :resin 181.6 * Trade-mark Part B
Desmodur 1s-75 isocyanate* resin, Mobay 232.3 N-Butyl acetate-polyurethane grade 28.1 2-Ethoxyei:hyl acetate-polyurethane grade 27.5 After Parta A and B were mixed, add SF-~~023 silicone surfactant 0.4 Total gg5,g Composition 16A is suitable for spray application to a variety of active metal substrates after the substrates have been pretreated. Aluminum alloy 2024 or 7075 is suitable after Alodine 1200 treatment as detailed in Example 10. This coating will act: well as a barrier as well as leachable corrosion :inhibitor and ion reactive.
)~R.AIl~LB 17 Barium chromate is a leaching pigment like strontium chromate, however, it leaches Cr~'~' ion much more slowly. Like strontium chromate, it uvill passivate active metal surfaces .
In Example 1, barium chromate can be substituted on an equivalent volume basis for strontium chromate in Compositions lA and 1C. In this case the pigment combination its barium chromate and 3-4 inn (~ aluminum powder. The consequences of using barium chromate are that it should last long in mildly corrosive environments, however, its slow leach rate makes it less appropriate for very corrosive situations . In midly corrosive environments * Trade-mark the use of barium chromate is quite suitable. Additionally, immersion service applications may be suitable . Thus depending on the application intended appropriate selection of the pigments will be made.
r~ la A coating of Composition 1C was applied to a landing gear latch spring manufactured from UNS 530200 stainless steel. The spring (normally used by air plane manufacturers) had been grit blasted with 100 mesh- aluminum oxide abrasive then passivated as per Federal Specification Q~,1-P-35a Type I
prior to coating.
The coating of the invention was topcoated with a sealer of Composition 1D. After greater than 100,000 cycles of fatigue testing representing airplane takeoffs and landings, the spring showed no failure.
After further testing in ASTM B 11'I Salt Fog for 168 hours no corrosion was visible on the spring.
This illustrates the particular utility of the typical coating of the invention for aircraft manufacturers for parts likely to be exposed to acidic and salt spray environments, as well as by exposure to hot exhaust sir from the jet engines .
This illustrates the value of typical coating of the invention on steel parts.
It is evident that numerous variations can be made which are within the scope and the spirit of the invention and substantial equivalents with '"'"~«es substantiall the same results are intended to be within the scope of the we~sea E sr~e Y
suite wo ~eyp FIFTfEMHST invention and the claims shown below.
aNUnetwae. v~ moz ~2,s~ ers.e~e~
rE< ecovea tx~si e~s e~w

Claims (27)

1. A coating composition especially suited for the surface of galvanically active metals, which composition imparts improved resistance to corrosion of metal due to acid and salt environments, comprising:
a resinous thermosetting polymer of a mixture of:
an epoxy resin having at least two epoxide groups; and an aromatic homopolymer;
wherein said mixture is curable to form a polyamide-imide resin;
a leachable pigment, selected from the group consisting of chromate, molybdate, vanadate, tungstate, phosphate, plumbate and metaborate salts, for inhibiting corrosion of the metals and said teachable pigment being capable of passing through a 325 mesh filter; and a metallic spheroid-like, ion-reactive pigment, selected from the group consisting of aluminum, magnesium, and cadmium and their alloys, which has an equivalent spherical diameter in the range of about 2 to about 10 µm; and wherein the ratio, by volume, of said teachable pigment to said ion-reactive pigment is from about 1:99 to about 99:1; and the ratio, by volume, of the combined amount of said teachable and ion-reactive pigments to the balance of the components in the dried, cured coating formed from said composition is from about 5:95 to about 95:5.
2. The composition of claim 1 wherein the weight percentage of the resinous polymer in the composition ranges from about 5% to about 90%.
3. The coating composition of claim 1, wherein the ion-reactive pigment is selected from the group consisting of aluminum and its alloys.
4. The composition of claim 1, wherein the active metal surface is selected from the group consisting of magnesium, aluminum, manganese, zinc, cadmium and their alloys.
5. The composition of claim 1, wherein the teachable pigment is a salt selected from the group consisting of strontium chromate, zinc chromate, zinc tetraoxy chromate, zinc potassium chromate, barium chromate and barium metaborate.
6. The composition of claim 1, wherein the teachable pigment is a chromate salt.
7. The liquid composition of claim 6, wherein the second pigment is strontium chromate
8. The composition of claim 1, wherein said composition is a liquid.
9. A coating composition for the surface of a ferrous alloy which comprises a thermosetting mixture of:
an epoxy resin having at least two epoxide groups, and an aromatic homopolymer which can cure to form a polyamide-imide resin;
and a chromate salt pigment of a size which passes through a 325 mesh filter for inhibiting corrosion of the metal; and an aluminum spheroid pigment of an equivalent spherical diameter in the range of about 2 to about 10 µm which is reactive with acid ions like Cl-1 or SO4.-2 ions;
wherein the ratio, by volume, of said chromate salt pigment to said aluminum spheroid pigment is from about 1:99 to about 99:1; and the ratio, by volume, of the combined amount of said chromate salt and aluminum spheroid pigments to the balance of the components in the dried, cured coating formed from said composition is from about 5:95 to about 95:5.
10. A coating composition for metal or metal alloy surfaces to improve their resistance to acidic and corrosive salt ions in the environment, which composition comprises, in combination:
a first and second inorganic pigment; and a film-forming thermosetting resinous polymer of a mixture of an epoxy resin having at least two epoxide groups and an aromatic homopolymer that can cure to form a polyamide-imide resin;
wherein the first pigment consisting essentially of ion-reactive metallic spheroidal particles of an equivalent spherical diameter in the range of about 2 to about 10 µm, which first pigment contributes to controlling the pH of the coating, thereby promoting the function of the second pigment, and which first pigment also causes the corrosive ions of the environment to react preferentially with it rather than with the metal surface; and wherein the second pigment is a corrosion-inhibiting salt which is leachable out of the resinous polymer, thereby passivating the metal surface by forming a protective film thereon, which second pigment is of a size which passes through a 325 mesh filter and is selected from the group consisting of chromate, molybdate, vanadate, tungstate, plumbate, phosphate, borate and metaborate;
wherein the film-forming resinous polymer forms a matrix for bonding with the first and second pigment in the coating, and wherein the ratio, by volume, of said first pigment to said second pigment is from about 1:99 to about 99:1;
and the ratio, by volume, of the combined amount of said first and second pigments to the balance of the components in the dried, cured coating formed from said composition is from about 5:95 to about 95:5.
11. The coating composition of claim 10, wherein the weight percentage of the resinous polymer in the .liquid composition ranges from about 5% to about 90%.
12. The coating composition of claim 11, which is air-cured or thermo-cured on the metal surfaces.
13. The coating composition of claim 12, wherein the thermo-curing is a temperature from about ambient to below the tempering temperature of the metal.
14. The coating composition of claim 13, wherein the curing temperature is a temperature between ambient and about 800°F.
15. The coating composition of claim 14, wherein the curing temperature is between about 250°F and about 500°F.
16. The coating composition of claim 11, wherein the second pigment is a salt selected from the group consisting of molybdate, metaborate, borate, and chromate salts.
17. The coating composition of claim 16, wherein the second pigment is a chromate salt selected from the group consisting of strontium chromate, zinc chromate, zinc tetraoxychromate, zinc potassium chromate and barium chromate.
18. The coating composition of claim 16, wherein the second pigment is zinc chromate, barium metaborate, or zinc borate.
19. The coating composition of claim 11, wherein the first pigment is selected from the group consisting of aluminum, magnesium, cadmium and their alloys.
20. The coating composition of claim 19, wherein the first pigment is aluminum.
21. The coating composition of claim 19, wherein said ratio by volume of the combined amount of said first and second pigments to the balance of the components is from about 15:85 to about 50:50.
22. The coating composition of claim 10, wherein the metallic surface is galvanically active.
23. The liquid coating composition of claim 22, wherein said galvanically active metal surface is selected from the group consisting of aluminum, magnesium, cadmium, manganese and zinc.
24. The liquid coating composition of claim 22, wherein the galvanically active metal surface is selected from the group consisting of aluminum and magnesium.
25. The coating composition of claim 10, wherein the metal surface is a ferrous alloy.
26. The coating composition of claim 25, wherein the ferrous alloy is stainless steel.
27. A metal part comprising a coating according to any one of claims 1-26.
CA002032014A 1990-02-05 1990-12-11 Organic coatings with ion reactive pigments especially for active metals Expired - Lifetime CA2032014C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US475,353 1990-02-05
US07/475,353 US5116672A (en) 1990-02-05 1990-02-05 Organic coatings with ion reactive pigments especially for active metals

Publications (2)

Publication Number Publication Date
CA2032014A1 CA2032014A1 (en) 1991-08-06
CA2032014C true CA2032014C (en) 2001-05-08

Family

ID=23887201

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002032014A Expired - Lifetime CA2032014C (en) 1990-02-05 1990-12-11 Organic coatings with ion reactive pigments especially for active metals

Country Status (5)

Country Link
US (2) US5116672A (en)
EP (1) EP0441061B1 (en)
JP (1) JP3130057B2 (en)
CA (1) CA2032014C (en)
DE (1) DE69028980T2 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5985454A (en) * 1990-02-05 1999-11-16 Sermatech International Incorporated Anti-fouling coating for turbomachinery
US5840422A (en) * 1992-01-21 1998-11-24 W. R. Grace & Co.-Conn. pH control polymer
JP3564130B2 (en) * 1992-09-14 2004-09-08 サイテク・テクノロジー・コーポレーシヨン Reduced galvanic decomposition of hybrid metal / composite structures
DE4443048A1 (en) * 1994-12-05 1996-06-13 Merck Patent Gmbh Effect powder coatings
US5478413A (en) * 1994-12-27 1995-12-26 Sermatech International, Inc. Environmentally friendly coating compositions
EP0739953B1 (en) * 1995-04-25 2002-11-27 Sermatech International Inc. Anti-fouling coating for turbomachinery
US6150033A (en) * 1995-06-06 2000-11-21 Sermatech International, Inc. Environmentally friendly coating compositions, bonding solution, and coated parts
US5866652A (en) * 1996-02-27 1999-02-02 The Boeing Company Chromate-free protective coatings
US6627117B2 (en) * 1998-06-09 2003-09-30 Geotech Chemical Company, Llc Method for applying a coating that acts as an electrolytic barrier and a cathodic corrosion prevention system
DE19933186A1 (en) * 1999-07-15 2001-01-18 Henkel Kgaa Process for applying no-rinse products to running metal belts
JP4689855B2 (en) * 2001-03-23 2011-05-25 イーケーシー テクノロジー,インコーポレイティド Residue stripper composition and method of use thereof
US6544351B2 (en) * 2001-07-12 2003-04-08 General Electric Company Compositions and methods for producing coatings with improved surface smoothness and articles having such coatings
PL202259B1 (en) * 2002-11-15 2009-06-30 Enter Eko Spo & Lstrok Ka Z Og Hybrid protective coating for metallic surfaces, particularly water wall tubes in power boilers
SE526172C2 (en) * 2003-05-08 2005-07-19 Saab Ab Method of treating a surface
JP4382389B2 (en) * 2003-05-15 2009-12-09 三菱製鋼株式会社 Manufacturing method of magnesium or magnesium alloy product
US7273337B2 (en) * 2003-06-30 2007-09-25 Illinois Tool Works Inc. Partially coated fastener assembly and method for coating
US7476445B2 (en) * 2006-10-02 2009-01-13 Nippon Steel Corporation Surface-treated metal sheet
EP2229241B1 (en) * 2007-12-04 2019-06-05 Oerlikon Metco (US) Inc. Multi-layer anti-corrosive coating
US7789953B2 (en) 2008-03-28 2010-09-07 Praxair S.T. Technology, Inc. High temperature resistant coating compositions
US8697251B2 (en) * 2010-01-20 2014-04-15 United States Pipe And Foundry Company, Llc Protective coating for metal surfaces
US8802190B2 (en) 2011-07-11 2014-08-12 Honda Motor Co., Ltd. Weldable corrosion resistant coating for steel and method of manufacture
US20140303283A1 (en) * 2013-03-15 2014-10-09 The Sherwin-Williams Company Curable compositions
FR3004129B1 (en) 2013-04-08 2015-03-27 Hispano Suiza Sa FABRICATION OF COILS FOR ELECTROTECHNIC COMPONENTS USING NON - COLLATE ANODIZED ALUMINUM BANDS.
KR200481470Y1 (en) * 2014-05-15 2016-10-06 김선영 Disposing apparatus for pet excrements
PL3283668T3 (en) 2015-04-15 2020-05-18 Henkel Ag & Co. Kgaa Thin corrosion protective coatings incorporating polyamidoamine polymers
JP6403212B2 (en) * 2015-04-23 2018-10-10 住鉱潤滑剤株式会社 Polyamideimide coating composition and coating method thereof, and polyamideimide coating
CN107604346A (en) * 2017-09-06 2018-01-19 中航沈飞民用飞机有限责任公司 The processing method of a kind of aging method of chemical conversion solution and the chemical conversion solution newly prepared to sheet metal
CN114468777B (en) * 2022-02-25 2023-03-21 武汉苏泊尔炊具有限公司 Non-stick coating, cookware and method of making cookware
CN114605916A (en) * 2022-02-25 2022-06-10 武汉苏泊尔炊具有限公司 Non-stick paint, non-stick coating and non-stick cooker
CN114601342B (en) * 2022-02-25 2023-04-07 武汉苏泊尔炊具有限公司 Cooker and method of manufacturing cooker

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3248251A (en) * 1963-06-28 1966-04-26 Teleflex Inc Inorganic coating and bonding composition
US4097445A (en) * 1976-02-02 1978-06-27 Monsanto Company Poly(ester-amide) hot melt adhesives containing spheroidal metal powders
US4252707A (en) * 1977-01-04 1981-02-24 Ruid John O Polyamide-imide-acid binder with amine base
JPS6026505B2 (en) * 1982-09-30 1985-06-24 新日本製鐵株式会社 Method for producing inorganic filled resin composition
IT1208665B (en) * 1984-01-04 1989-07-10 Sperimentale Metallurg Spa E T HIGH RESISTANCE THERMAL RESISTANT COATING FOR METAL SHEETS
US4606967A (en) * 1983-10-19 1986-08-19 Sermatech International Inc. Spherical aluminum particles in coatings
US4537632A (en) * 1983-10-19 1985-08-27 Sermatech International, Inc. Spherical aluminum particles in coatings
US4532289A (en) * 1983-11-28 1985-07-30 Sermatech International, Inc. Primer coating composition
US4724172A (en) * 1983-12-29 1988-02-09 Sermatech International, Inc. Thick coating compositions
US4617056A (en) * 1983-12-29 1986-10-14 Sermatech International, Inc. Thick coating compositions
US4659613A (en) * 1983-12-29 1987-04-21 Sermatech International, Inc. Parts coated with thick coating compositions of uni- and polymodal types
JPS6151067A (en) * 1984-08-21 1986-03-13 Mitsubishi Rayon Co Ltd Surface coating composition
US4675350A (en) * 1984-11-13 1987-06-23 Westinghouse Electric Corp. Compatible self-crosslinking poly (amide-imide) polyepoxide resin blends and laminates made therewith
US4806161A (en) * 1987-12-04 1989-02-21 Teleflex Incorporated Coating compositions

Also Published As

Publication number Publication date
US5116672A (en) 1992-05-26
US5409970A (en) 1995-04-25
EP0441061A1 (en) 1991-08-14
EP0441061B1 (en) 1996-10-23
CA2032014A1 (en) 1991-08-06
DE69028980D1 (en) 1996-11-28
JPH04213371A (en) 1992-08-04
JP3130057B2 (en) 2001-01-31
DE69028980T2 (en) 1997-04-03

Similar Documents

Publication Publication Date Title
CA2032014C (en) Organic coatings with ion reactive pigments especially for active metals
US7291402B2 (en) Surface-treated steel sheets of good white rust resistance, and method for producing them
CA1121930A (en) Synergistic primer for fluoropolymer coatings
US20030072962A1 (en) Steel sheet having organic coating and method for manufacturing the same
JP2006342419A (en) Highly corrosion resistant surface treated steel sheet, and its production method
JP2003105554A (en) Surface treated steel sheet having excellent white rust resistance, and production method therefor
JP2005298837A (en) Metal surface treatment composition and metal plate using the same
WO2022028411A1 (en) Chromium-free anticorrosive coating composition and article made therefrom
CN101680095A (en) Non-chromium containing black multi-layer coatings
JP4208050B2 (en) Powder coating composition, method of coating anticorrosive coating, steel for automobile
JP2002105393A (en) Anticorrosive powder coating composition for steel material, steel material coated with the coating and method for producing the coated steel material
KR100775109B1 (en) Coated metal plate with excellent corrosion resistance and reduced environmental impact
JP2004162097A (en) Highly corrosion resistant surface treated steel sheet, and production method therefor
JP2005206947A (en) Surface treated steel sheet having excellent white rust resistance, and production method therefor
KR100205844B1 (en) Organic composite coated steel sheet and method
US6740361B1 (en) Passivating of zinc surfaces
JP2006082369A (en) Highly corrosion-resistant surface treated steel sheet and its manufacturing method
JPH115062A (en) Organic coated steel sheet excellent in corrosion resistance
JPH04143296A (en) Organic coated rust preventive steel sheet having excellent image clarity of coating film and production thereof
JPH0938569A (en) Zinc-resin type surface treated steel sheet with excellent scratch resistance and corrosion resistance
US20220127744A1 (en) Methods and Compositions for Improved Adherence of Organic Coatings to Materials
JP2005206921A (en) Nonchromate type surface-treated metal sheet
KR960004785B1 (en) Resin solution of plating steel sheets for treating a chromate and the making method using the same
JP2976405B2 (en) Organic composite coated steel sheet with excellent water-resistant secondary adhesion and post-processing corrosion resistance
JP5194316B2 (en) Water-based rough surface forming agent

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry