CA2068322A1 - Method and apparatus for grading shell eggs - Google Patents

Method and apparatus for grading shell eggs

Info

Publication number
CA2068322A1
CA2068322A1 CA002068322A CA2068322A CA2068322A1 CA 2068322 A1 CA2068322 A1 CA 2068322A1 CA 002068322 A CA002068322 A CA 002068322A CA 2068322 A CA2068322 A CA 2068322A CA 2068322 A1 CA2068322 A1 CA 2068322A1
Authority
CA
Canada
Prior art keywords
egg
eggs
stream
signal
image data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002068322A
Other languages
French (fr)
Inventor
Ian R. Summers
Donald S. Bloser
Blake R. Painter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ovascan Pty Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2068322A1 publication Critical patent/CA2068322A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K43/00Testing, sorting or cleaning eggs ; Conveying devices ; Pick-up devices
    • A01K43/04Grading eggs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/08Eggs, e.g. by candling
    • G01N33/085Eggs, e.g. by candling by candling

Abstract

In the grading of shell eggs passing in a stream through a candling bed, images of the eggs are compared with image data characteristic of eggs of known grade so as to assign a grade to each egg in the stream. Positional information representative of the movement of the eggs is combined with the assigned grade to control a mechanical egg routing device. Images of multiple egg streams may be multiplexed and processed together. The images may be Fourier transformed before comparison.

Description

~ )70~'1 2 0 ~ ,~ 3 2 ~1/Al)9()/~ 5-1() Title: "METHOD AND APPARATUS FOR GRADING SHELL EGGS"

Technical Field This invention relates t~ a method and apparatus for the grading of shell eggs contained in a moving stream. The invention is primarily intended for use with existing egg grading machines but is also able to form part of a purpose-built machine.
Backqround Art The inspection of eggs to assess their wholesomeness is an essential part of guality control.
Modern egg handling and grading facilities have highly automated egg washing, weighing, grading and packaging eguipment yet still depend to a large degree on human operators for the inspection and grading of the eggs.
This operation is commonly referred to as candling.
The process of candling and the routing of eggs to selected lines Eor appropriate handling is well developed. Currently, operators visually identify - - . . . .

.

: ' ;~ .' 2Q~ 2?r - 2 - ~;
?^
fa~llty or flawed e9cJs in a moving strearn of eggs passing through an inspection station, or candling booth, and with the aid oÇ manual controls they notify the grading equiprnent to identify and route the eggs to the appropriate packing station.
By way of example, on a modern egg grading rnachine such as the "Diamond 8200" (Registered trade mar~) automatic grader two operators view eggs as they are passed over high intensity lights while being slowly rotated. During this operation various faults or flaws are identified by the operators. Eggs that are "leakers" or broken pieces are removed by hand at the candling station. All others are either tagged or allowed to pass freely.
First quality (grade) eggs are allowed to flow directly to the main packing station, whilst defective or lesser grade eggs are allocated to one of up to four alternative packing stations. On the "Diamond 8200"
grader, allocation of lesser grade eggs is performed within the candling booth using two wands, which are integrated with the grading machine control system.
Each wand serve.s half the egg stream proceediny through the candling booth and is equipped with a finger grip at one end containing two buttons with a third button or "tip" located at its other extremity. To activate the wand, the "tip" is touched onto the surface of the egg to be graded by the operator. This action indicates a .. . .. .

.
, , . , , , , : . .

(; -- 3 - 2~ 322 ~ault and when use~ in conjunction with the other two buttons, four categories can be identified. Similar systems of fault identification are used with other makes of automatic grading machines.
The disadvantages of current rnanual egg candling systems include:
(a) A full capacity system requires at least two highly skilled operators at any one time.
(b) Operators must be vigilant at all times; with flow rates in excess of ~5000 eggs/hour the operators experience high levels of fatigue and occupational stress. .;, (c) Lack of attention or misjudgment allows undergrade eggs to pass, resulting in poor quality eggs ~! reaching the ma~rketplace. Often operators ; over-compensate and tend to "overpull" by routing ~irst quality eggs to les3er grades, with consequential economic loss to the producer.
Disclosure of the Invention ~` It is an object of this invention to provide a method and apparatus for grading shell eggs contained in a moving stream which will overcome, or at least ameliorate, one or more of the above disadvantages.
Accordingly, in one aspect this invention consists in an apparatus for grading shell eggs contained in a moving stream comprising means.to generate image data characteristic of each egg shell and its contents;

,~., ~ .

... . .

~()')1/()7~)X~ 54(~
2 ~

means to cornpare said irnage data with irnage data characteristic of e(~gs of known grade to assign a grade to each egg in said stream; reference means to provide a position signal indicative of the movement of said stream of eggsi and control means responsive to said grade assigned to each egg and t:o said position signal to provide an output signal for control of a mechanical egg routing device.
In a second aspect this invention consists in a method for grading shell eggs contained in a moving stream comprising the steps of generating image data characteristic of each egg shell and i.ts contents;
comparing said image data with image data characteristic of eggs of known grade to assign a grade to each egg in said stream; obtaining positional information indicative of the movement of said stream of eggs; and generating : an output for control of a mechanical egg routing device from said grade assigned to each egg and said positional information.
In practice, this invention is preferably utilised in connection with an egg grading machine of known type such as the "Diamond 82pO" described above. In such a system the eggs are conveyed in a continuous stream over .
a high intensity light source with a rolling action so that each egg can be viewed from a number oE aspects.
The image data is preferably generated by means of a series of video cameras positioned above the egg ,: ~ : . ' . .
. . - . , .
: . . . .

.. . .

206~322 stream to capture imaqes of one or rnore eggs as the~
pass over the light source. Pre~erably the video cameras are switched so khat their output signals are sequenced at the vertical blank:ing interval time of the video cameras such that a multiplexed cornposite video output from each of the cameras is represented as a single video signal. The timing of the multiplexing, or camera swi.tching is preferably synchronised ko the flow rate of the egg stream by means of a posikional signal indicative of the movement of the egg strearn. Such a positional signal can for example, be obtained frorn any suitable m-ving part of the conveyor system.
The miltiplexed video signal is preferably digitised to produce a digital stream of image data and then p~ocessed to enhance the characteristic data. The processing preferably includes a fourier transform to convert the digitised image from the "time domain" to the "frequency domain". The image data is preferably further processed to effect a comparison with known data to determine whether the eggs fall within the nominated .limits of various egg grades.
Preferably, the processing provides for adjustment of the parameters applied to the comparison to control the selection criteria for acceptance or rejection of individual eggs to various grades. Preferably, the control signal is interfaced to the control system of known grading equipment to opera.e the grading equipment -: ' . ~, .: ' .

~V(~ '~ I /()71iX l l'C '1 /, l J~

C~ 6 - t~

to divert appropriate egc~s to the selected packiny stations.
It will therefore be apparent that this invention provides automated characterisat:ion and recording of flaws and faults in shell eggs in a moving stream to high levels of certainty and in accordance with a predetermined selection criteria. By means of the output control signal generated, an identified egg can be allocated to the appropriate packing station for its assigned grade. Further, the data generated in relation to each egg can be stored for future analysis.
Additionally, the invention enables the ge~eration of a .r- printout indicating the types of faults and flaws in eggs and the basis of the comparison of the data with known data. In this way a feedback control or a self teaching process in respect of the inspection process can be effected to continually improve the level of certainty of correct grading of the eggs.
Additionally, this invention provides a mechanism whereby eggs can be graded by weight and/or colour.
Further, the invention can provide statistical data and totals of egg faults as well as identifying batch faults (that is faults attributable to an individual producer). The invention can also be utilised to examine other characteristics of eggs, for example the identification of fertile eggs in chicken hatcheries.

~,'' : ' , , , -.:,, ~ : . .
:. , ' ... .
~. , . . ~

\V()9l/()7()X-I l'(~l/AI~"(~/()()~I() _ 7 - ~ 3~

Brief pesc iptlQl_Qf ~he_Dr~w n~ls One preferred embodiment of this invention will now be described, by way of example only, with reference to the accompany drawing, which is a schernatic block diagram of an apparatus according to this invention.
Mode for CarrYinq Out th~ In~ ion The invention will be described in the form of an add on device for use with an existing egg grading machine such as the "Diamond 8200" automatic grader. It will however be appreciated that the invention can also be incorporated into a purp)se-built rnachine using a conveying and diverting sycce~ of substantially conventional type as found in existing grading machines.
The egg grading machine (not shown) includes a conveying system which carries columnar streams of eggs over a high intensity light source known as a candling bed. The eggs are conveyed with a rolling action so that each egg can be viewed from a number of aspects as it passes over the candling bed. In the "Diamond 8200"
machine there are twelve co'lmns of eggs passing over the candling bed. An array of video cameras or image sensors is positioned }n a selected formation across the egg stream so as to permit each camera -to capture images of one or more columns of eggs as they pass over the candling bed. The prefer~ed arrangement is a bank of 6 to 12 cameras which can scan up to 24 rows of eggs.
Referring particularly to Figure 1, the egg grading , , , . . . -:

..

/()71)~ 1 1 '( I /A I l')(J/~ J

apparatus 1 is shown divided by a dotted line 2 into a hardware portion 3 to the left and a (generally) software portion ~ to the right. It will be appreciated that such a division is in practice fairl~ arbitrary and will vary according to the particular embodiment. As shown in Figure 1 the rows of eggs 5 are scanned by a banl~ of cameras 6 whose outputs 7 are transmitted to a video multiplexer unit 10 to provide a multiplexed analogue composite video signal 11. The rnultiplexer selects the output from each camera according to a sequence defined by control signals 12 output from a digitiser 13. The timing af the multiplexing is synchronised to the flow rate of the egg stream by a controlling interface 14 which receives positional information 15 from a shaft er.coder 16. The switching of the multiplexer occurs at the vertical blanking interval time of the video cameras so that the composite video output from the multiplexer consists of complete images from each camera. Since the vertical blanking interval of the cameras occurs much more rapidly than the movement of the egg stream, it is possible to synchronise the switching of the multiplexer without losing overall synchronism with the moving eggs.
The shaft encoder responds to a rotating shaft (not shown) forming part of the egg conveying system.
The controlled sequential switching from one video camera to the next produces video images of the eggs ,~.. ~ . .. .
- ~ `

, - '3 - %0~;~32~ , which appear stationary despite the velocity of the egg stream. The cligitiser 13 convert:s the analogue composite vicleo signal 11, according to the timing imposed by controlling interface 1~, into a stream of digital image data (A-BUS) 17 for processing by a Fourler data processor (FDP) 18. In conventionally known manner, the data transmitted via A-BUS 17 represents all the grey scales in the image frame as integers, typically 0 to 255.
It will be apparent that, in order to nspect 2~
rows of eggs with 12 cameras, it is necessa.y to view more than one row with~each camera. Accord ngly, the video frames are divided into segments, eacl containing the image of one row, so that the signals transmitted via bus 17 include data for each segment. Typically, the segments are quadrants of the video frame. The effective result is to multiply the number of cameras at the expense of some image resolution. This sacrifice of resolution confers the important advantage that the Fourier transform is performed more rapidly. In the preferred embodiment each segment extracted from a video frame comprises 128 x 128 pixels and is sufficient to characterise the eggs.
The digitiser also outputs an identifying data stream via identifying bus (ID-BUS) 20 which indicates the source of each image of an egg included in the A-BUS
17 data stream transmitted to the FDP 18. Depending on : , , , .

s~9f~33 ~ 1~ . 10 ~

the speed of the eg~ strearn, a camera may capture a number o~ images of each egg in subseq~lent frames. For each egg, the ID-BUS 20 information includes the number of the camera which views the egg, the segment of the camera image which includes the eg~, and whether there are multiple images of the particular egg. Since, as has been described, the eggs roll as they pass over the candling bed, subsequent images of the same egg may be different. The comparison of different images is performed Dy software and will be described below.
The FDP 18 unit performs a multi-dimensional Fourier transform on the A-BUS 17 data and is able to perform windowing and filtering to delete unwanted data and amplify the characteristic data to produce an enhanced image. The FDP unit is configured and controlled by a dedicated micro-computer 21 in communication with a master processor 22. In this way, computation intensive tasks are shared.
As the transformation of data in the FDP takes a finite time (strongly dependent on the resolution of the original image), the ID-BUS 20 data is passed to a buffer (ID-FIFO) 23 which delays the information so that it can later be married to the output of the FDP b~ an ACCEPT DATA software block 24 running in the master processor 22. The output of the FDP, via a vector bus (V-BUS) 25, comprises a stream of complex components from which are selected four complex components by an .
` , .
.... . . . .

' .
~', ' ' ~ ' ;"
~ ' 206~22 F~T component 'grabber' (F~TGRA) 26. The FFTGRA 26 selects cornponents frorn the V-BUS data stream accordin~
to prede~ined parameters prograrnrned by the rnaster processor via a processor bus (P-BUS~ 27. When the selected data is accumulated, an interrupt (IRQ-BUS) 30 informs the master processor. At this point the ACCEPT
DATA software takes over the V-BUS data 25 and combines it with the ID-BUS data 20 delayed, as described above, in the ID-FIFO 23.
The FFTGRA element of the preferred embodiment is modular in nature so that more or less components can be extracted from the V-BUS data according to particular requirements. In order to extract more components for greater discriminàtion in the grading process, additional FFTGRA boards 31 may be included. In those circumstances a daisy chain interrupt structure is used for IRQ-BUS 30 in order to inform the rnaster processor.
The V-BUS data is also directed to display circuitry (FFTDIS) 32, including a video monitor 33, so that the transformed data may be inspected. The cameras 6 are synchronised to FFTDIS by a sync signal 3~ so that all images are stable.
In the preferred embodiment the display unit has access to both the V-BUS 25 and A-BUS 17 so that both transformed and untransformed data may be viewed. It should be noted that the display of information in this manner ser~es only to benefit operators of the egg ,;, . .
:: .
,, `
` ' '' ' ' ' ' ' ' . . ` '~ ' '~ ' .

~'()(JI~()7(~X-I l'(l/,~l,')()/~J~
~R3~ - 12 - ~~

gradlng machine and takes no par~ in the gradin~ process.
The master processor 22 stores 35 the output of the ACCEPT DATA block 2~ and compares it, in a DECIDE
QUALITY block 36, with known data so as to categorise each egg into one of the selected grades. Figure 1 depicts the sum of acguired knowledge about what characterises grades of eggs as a knowledge base block 37 having access to data files 90. In the comparison, represented by DECIDE QUALITY block 36, adjustrnent can be made to the parametbrs applied so as to control the criteria by which eggs are assigned a particular grade.
That is, the yrading can essentially be 'fine tuned' to account for observed and consistent departure fro~ the grading required. In this portion of the software, also, the comparison of multiple images of the same egg mentioned earlier is resolved.
Similarly, the configuration information used to initiallse and control such components as the FDP and FFTGRA are shown collectively in Figure 1 as a configuration block 41 accessing configuration files 42. The statistical numbers of eggs assigned particular grades can be collected and utilised for further adjustment for the selection criteria.
Once a grade has been assigned to an egg by the DECIDE QUALITY block 36 details of ].ower grade eggs are passed to a buffer (BAD-FIFO) 43 to be delayed as the eggs pass through the machine and then to a grading ., ~". , . . ~ , , : . , ' , .
;. . , . :

~ ' ' : .

~ -- 13 - 206~322 machine interace 9~ which provides an output to the control systern of the grading equipment 95. The control systern operates the mechanical routing devices associated with the known machine. In rnost rnachines first quality eggs are not diverled but simply pass along the conveyor to a final packing station whereas eggs falling into designated lesser grades are appropriately diverted to different paclcing stations.
The ranges of acceptable characteristic grades can be preset from prior analysis or extrapolation of the characteri$tic image data of eggs of various grades or alternatively a learn mode in~which the characteristics of eggs in the stream are stored and an external input of the grade provided as a means of establishing the criteria for the assigning of grades.
The foregoing describes only one embodiment of this invention and modifications may be made thereto without departing from the scope of the invention.

.
:. ' ;~,................... :
.

Claims (20)

CLAIMS:-
1. An apparatus for grading shell eggs contained in a moving stream comprising means to generate image data characteristic of each egg shell and its contents;
processing means to compare said image data with image data characteristic of eggs of known grade to assign a grade to each egg in said stream; reference means to provide a position signal indicative of the movement of said stream of eggs; and control means responsive to said grade assigned to each egg and to said position signal to provide an output signal for control of a mechanical egg routing device.
2. An apparatus as claimed in claim 1 further comprising means to perform a fourier transform of said image data prior to comparison by said processing means.
3. An apparatus as claimed in claim 2 wherein said image data is a video signal generated by one or more video cameras positioned adjacent said moving stream.
4. An apparatus as claimed in claim 3 including a plurality of said video cameras and a multiplexer switched at the vertical blanking interval of said cameras to generate a multiplexed ouput signal.
5. An apparatus as claimed in claim 4 wherein said position signal is used to synchronise the multiplexer to the egg stream.
6. An apparatus as claimed in claim 4 or claim 5 further comprising means to digitise said multiplexed output signal to produce a digitised output signal.
7. An apparatus as claimed in claim 6 wherein said means to perform a fourier transform operates on said digitised output signal.
8. An apparatus as claimed in claim 7 wherein said means to digitise an output from said multiplexer provides data block identification information to said processing means for identification of the data corresponding to selected images from the fourier transformed signal.
9. An apparatus as claimed in claim 8 wherein said data block identification information is delayed before being provided to said processing means to compensate for the fourier transform processing time.
10. An apparatus as claimed in any one of the preceeding claims wherein said position signal is provided by a shaft encoder responsive to the rotation of a shaft forming part of a conveyor for said moving stream.
11. A method for grading shell eggs contained in a moving stream comprising the steps of:
generating image data characteristic of each egg shell and its contents;
comparing said image data with image data characteristic of eggs of known grade to assign a grade to each egg in said stream;
obtaining a position signal indicative of the movement of said stream of eggs; and generating an output signal for control of a mechanical egg routing device from said grade assigned to each egg and said position signal.
12. A method as claimed in claim 11 further comprising the step of performing a fourier transform of said image data.
13. A method as claimed in claim 12 wherein said image data is a video signal generated by means of one or more cameras positioned adjacent said moving stream.
14. A method as claimed in claim 13 further comprising the step of multiplexing outputs from a plurality of said video cameras and switching said multiplexer at the vertical blanking interval of said cameras to provide a multiplexed signal.
15. A method as claimed in claim 14 further comprising the step of using said position signal to synchronise said multiplexing with the movement of said egg stream.
16. A method as claimed in claim 14 or claim 15 further comprising the step of digitising said multiplexed signal and to produce a digitised signal.
17. A method as claimed in claim 16 further including the step of performing a fourier transform on the digitised signal.
18. A method as claimed in claim 17 further comprising the step of providing data block identification information for identification of data corresponding to selected images from said fourier transformed signal.
19. A method as claimed in claim 18 further including the step of delaying said data block identification information to compensate for the fourier transform processing time.
20. A method as claimed in any one of claims 11 to 19 further including the step of obtaining said position signal from a shaft encoder responsive to the rotation of a shaft forming part of a conveyor for said moving stream.
CA002068322A 1989-11-10 1990-11-09 Method and apparatus for grading shell eggs Abandoned CA2068322A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AUPJ7331 1989-11-10
AUPJ733189 1989-11-10

Publications (1)

Publication Number Publication Date
CA2068322A1 true CA2068322A1 (en) 1991-05-11

Family

ID=3774348

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002068322A Abandoned CA2068322A1 (en) 1989-11-10 1990-11-09 Method and apparatus for grading shell eggs

Country Status (5)

Country Link
US (1) US5321491A (en)
EP (1) EP0501981A4 (en)
KR (1) KR920702905A (en)
CA (1) CA2068322A1 (en)
WO (1) WO1991007084A1 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59500567D1 (en) * 1994-02-11 1997-10-02 Siemens Ag ARRANGEMENT FOR THE SPECIAL TREATMENT OF FUZZY RULES WITH DIFFERENTIAL IMPORTANCE
US5504572A (en) * 1994-06-28 1996-04-02 Taylor; Mark A. Electronic imaging apparatus for determining the presence of structure within opaque objects and methods of making the same
US5845002A (en) * 1994-11-03 1998-12-01 Sunkist Growers, Inc. Method and apparatus for detecting surface features of translucent objects
FR2738638B1 (en) * 1995-09-13 1998-02-27 Rangeard Patrick MIRAGE AND CALIBRATION DEVICE
KR980007965A (en) * 1996-07-16 1998-04-30 도모스에 시게오 I (egg) selection method and egg (egg) sorting device
US5900929A (en) * 1997-01-17 1999-05-04 Embrex, Inc. Method and apparatus for selectively injecting poultry eggs
US5745228A (en) * 1997-01-17 1998-04-28 Embrex, Inc. Method and apparatus for distinguishing live from infertile poultry eggs
US6234320B1 (en) 1999-05-11 2001-05-22 Embrex, Inc. Method and apparatus for selectively classifying poultry eggs
US7218775B2 (en) * 2001-09-17 2007-05-15 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Agriculture And Agrifood Method and apparatus for identifying and quantifying characteristics of seeds and other small objects
CA2390056A1 (en) * 2002-06-07 2003-12-07 Du Pont Canada Inc. Method and system for managing commodity information in a supply chain of production
GB0315971D0 (en) * 2003-07-08 2003-08-13 Deans Foods Ltd Screening apparatus and method
NL1024619C2 (en) * 2003-10-24 2005-04-27 Staalkat Internat B V Device for inspecting objects.
US20060018998A1 (en) * 2004-07-21 2006-01-26 Green Nancy R Methods of providing consumers with a recognizable nutritional identifier
US20060038978A1 (en) * 2004-08-18 2006-02-23 David Zweig Automatic candling machine
BRPI0606581A2 (en) * 2005-01-18 2009-07-21 Embrex Inc in ovo injection apparatus, method of processing a plurality of eggs held in the respective cavities of an egg holder, and egg processing apparatus
EP2148581A2 (en) * 2007-05-10 2010-02-03 Eggnology Ltd. An in-shell-scrambled-egg, a method for preparing such egg and an in-shell egg scrambler
EP2178777A4 (en) * 2007-07-17 2013-05-29 Food Processing Systems Egg orienting and accumulating system with forward and reverse interconnected conveyors for preventing egg overflow/ride up and prior to exiting in individual rows upon spool bars
WO2010074572A1 (en) * 2008-12-23 2010-07-01 Fps Food Processing Systems B.V. Method and apparatus for classifying eggs
US8499718B2 (en) * 2010-01-20 2013-08-06 Ten Media, Llc Systems and methods for processing eggs
ES2554865T3 (en) 2010-01-20 2015-12-23 Ten Media, Llc Systems and methods for processing eggs and other objects
US8823758B2 (en) 2010-01-20 2014-09-02 Ten Media, Llc Systems and methods for processing eggs
US8455026B2 (en) 2010-01-20 2013-06-04 Ten Media, Llc Systems and methods for processing eggs
US8715757B2 (en) * 2010-01-20 2014-05-06 Ten Media, Llc Systems and methods for processing eggs
US20110177208A1 (en) * 2010-01-20 2011-07-21 Newmarket Impressions, Llc Systems and methods for processing eggs
US8455030B2 (en) * 2010-01-20 2013-06-04 Ten Media, Llc Systems and methods for processing eggs
US8657098B2 (en) * 2010-01-20 2014-02-25 Ten Media, Llc Systems and methods for processing eggs
WO2011119825A2 (en) 2010-03-24 2011-09-29 Fps Food Processing Systems, B.V. Advanced egg breaking system
US9315317B2 (en) 2012-02-21 2016-04-19 Ten Media, Llc Container for eggs
PL2893341T3 (en) * 2012-09-04 2018-08-31 Katholieke Universiteit Leuven Method and apparatus for examining eggs
EP3303159A4 (en) 2015-01-24 2019-03-20 YTA Holdings, LLC Method and system for applying ink markings on food products
WO2016118971A1 (en) 2015-01-24 2016-07-28 Ten Media, Llc Dba Ten Ag Tech Co. Method and system for marking food products with source verification information
US9721335B2 (en) 2015-01-25 2017-08-01 Yta Holdings, Llc Method and system for determining quality of markings applied to food products
US9919821B2 (en) 2015-01-26 2018-03-20 Yta Holdings, Llc Method and system for positioning food products for laser marking thereon
US20160227743A1 (en) * 2015-01-26 2016-08-11 Ten Media, Llc Dba Ten Ag Tech Co. Method and system for monitoring food processing operations

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR694958A (en) * 1930-05-03 1930-12-10 Method and apparatus for classifying eggs, fruits and other articles according to their size or weight
US2636925A (en) * 1949-06-06 1953-04-28 Gascoigne Tom Electronic egg grader
NL129193C (en) * 1960-04-27
US4486775A (en) * 1980-10-17 1984-12-04 Micro Consultants Limited Object recognition
JPH0731052B2 (en) * 1983-02-17 1995-04-10 富士通オートメーション株式会社 Automatic egg transfer inspection device
US4624367A (en) * 1984-04-20 1986-11-25 Shafer John L Method and apparatus for determining conformity of a predetermined shape related characteristics of an object or stream of objects by shape analysis
US4805778A (en) * 1984-09-21 1989-02-21 Nambu Electric Co., Ltd. Method and apparatus for the manipulation of products
US4679075A (en) * 1985-04-29 1987-07-07 Emhart Industries, Inc. Glassware inspection using optical streak detection
JPS62211544A (en) * 1986-03-13 1987-09-17 Niigata Eng Co Ltd Inspecting method for egg
FR2608899B1 (en) * 1986-12-29 1990-02-23 Simonet Andre PROCESS FOR QUALIFYING CARCASSES OF BUTCHER ANIMALS, AND CORRESPONDING INSTALLATION
DK676487A (en) * 1987-12-22 1989-06-23 Slagteriernes Forskningsinst PROCEDURE FOR DETERMINING QUALITY CHARACTERISTICS OF INDIVIDUAL CREATURE GENERATOR AND PLANT FOR USE IN DETERMINING THE PROPERTIES

Also Published As

Publication number Publication date
EP0501981A1 (en) 1992-09-09
WO1991007084A1 (en) 1991-05-30
KR920702905A (en) 1992-12-17
US5321491A (en) 1994-06-14
EP0501981A4 (en) 1993-05-19

Similar Documents

Publication Publication Date Title
CA2068322A1 (en) Method and apparatus for grading shell eggs
US5189708A (en) Methods and apparatus for optically determining the acceptability of products
EP0545129B1 (en) Method to detect manmade fibres and/or defective fibres and/or other foreign materials in the processing of silk waste, and relative apparatus
ATE208070T1 (en) METHOD AND APPARATUS FOR LOCATING A MOVING ZONE AND DETERMINING THE RATE AND DIRECTION OF MOTION OF AN AREA OF RELATIVE MOTION IN A SCENE
US4661985A (en) Process for measuring lamina size distribution
DE69620176D1 (en) SYSTEM FOR INSPECTING AND SEPARATING DEFECTIVE ITEMS
CZ278655B6 (en) Process of distributing parcels, and apparatus for making the same
WO1999053390A3 (en) Methods and apparatus for gauging group choices
JPS582980A (en) Automatically optical inspection apparatus and method
NZ232132A (en) Optical flaw detection of transparent articles
WO1998014046A1 (en) Method and apparatus for the quality assessment of seed
CA2061865A1 (en) Methods and apparatus for optically determining the acceptability of products
US6546071B2 (en) Analysis of samples
US5912988A (en) Image processing method and apparatus for distortion compensation
US5208870A (en) Image inspection methods and apparatus
AU7655291A (en) Inspecting garments
AU636929B2 (en) Method and apparatus for grading shell eggs
US5263094A (en) Method of and an equipment for optical inspection of strip and sheet products
US20020085093A1 (en) Lumber grading system
US20080283449A1 (en) Method of Analyzing and Sorting Eggs
JPH05501918A (en) Method and apparatus for grading shell eggs
Young Use of linescan cameras and a DSP processing system for high-speed wood inspection
GB1571836A (en) Electronic image analyzer method and apparatus
FR2543457A1 (en) METHOD AND DEVICE FOR SORTING OBJECTS ACCORDING TO THEIR EXTERNAL APPEARANCE, PARTICULARLY FOR COLORIMETRIC DRAWING OF OBJECTS
CA2212742A1 (en) Paced iterative decision training system and method

Legal Events

Date Code Title Description
FZDE Discontinued