CA2070122C - Optical reflective star device - Google Patents

Optical reflective star device

Info

Publication number
CA2070122C
CA2070122C CA002070122A CA2070122A CA2070122C CA 2070122 C CA2070122 C CA 2070122C CA 002070122 A CA002070122 A CA 002070122A CA 2070122 A CA2070122 A CA 2070122A CA 2070122 C CA2070122 C CA 2070122C
Authority
CA
Canada
Prior art keywords
polarisation
ports
reflective
star
orthogonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002070122A
Other languages
French (fr)
Other versions
CA2070122A1 (en
Inventor
Mattijs Oskar Van Deventer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke KPN NV
Original Assignee
Koninklijke KPN NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke KPN NV filed Critical Koninklijke KPN NV
Publication of CA2070122A1 publication Critical patent/CA2070122A1/en
Application granted granted Critical
Publication of CA2070122C publication Critical patent/CA2070122C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • H04B10/2725Star-type networks without a headend
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2817Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using reflective elements to split or combine optical signals

Abstract

An optical reflective star device having a number of ports for distributing each signal fed to a port over the other ports. Said optical reflective star device is made up a number of star elements and comprises a number of reflectors provided at reflection points in the reflective star device. At least one of the reflectors is an orthogonal polarisation reflector.

Description

Optical reflective star device The invention relates to an optical reflective star coupler device having a number of ports for distributing each signal fed to a port over all ports, comprising a number of star coupler units and a number of reflectors connected to a number of ports of the star coupler units, thereby providing reflection points in the reflective star device.
Such a device is disclosed by the paper entitled "Reflective Single-Mode Fibre-Optic Passive Star Couplers" published in Journal of Lightwave Technology, vol. 6, no. 3, March 1988, pages 392-398.
The paper mentioned describes the construction of various star configurations and also the advantages of lower losses of the star configuration compared with the bus configuration. A star configuration is therefore being used to an ever increasing extent in LAN networks.
In the paper mentioned, reflective star coupler devices are given preference over transmission star coupler devices since, in the first-named devices, the number of glass fibres, and therefore the components associated therewith, is reduced by a factor of two compared with the transmission star device. Instead of separate inputs and outputs for a transmitting and a receiving device, the reflective star device has ports which each serve both to input and output the signals to the reflective star device from a transmitting and receiving device. The various connections could in that case be provided with diplexers for separating the transmitted and received signals.
The known reflective star device is made up of a number of star elements, for example 3dB coupling devices, transmission star coupler elements or reflective star coupler elements which distribute a signal fed to a port of such a star element over all ports thereof. Reflectors are connected to a number of ports of the star elements to create reflection points.
If a signal is fed to one of the ports of the reflective star device, said signal is distributed over the other ports thereof, but a reflection signal is also presented via the feed port to the transmitting and receiving device connected thereto. It is generally known that certain lasers are extremely sensitive to externally injected light, in particular if said light has a frequency near the characteristic optical oscillation frequency. In addition, such lasers are especially sensitive to reflections in their own polarisation direction and less sensitive to reflections having a perpendicular polarisation. In a conventional CA 02070l22 l998-04-28 reflective star device, the signal also reflected to its own port may have any random polarisation.
One of the standard solutions used is to couple lasers badly into the glass fibre, with the disadvantage of a large power loss.
Another standard solution is to use optical isolators for all the lasers, with the result that a large number of additional components are neces-sary, and in particular one optical isolator for each port.
The object of the invention is to provide a reflective star device of the type mentioned in the introduction in which the above-mentioned problems are avoided.
According to the invention this object is achieved in that at least one of the reflectors is an orthogonal polarisation reflector.
The invention is based on the insight that an optical polarisation reflector, as for example known from Optics Letters, Vol.
16, No. lO, 1991, pp. 711-713 or Optics Communications, Vol. 72, No. 6, 1989, pp. 341-344, always reflects the orthogonal polarisation and this orthogonality is retained in any reciprocal system. The result is that the reflection having a perpendicular polarisation enters the laser. The optical isolation requirements on the laser side can therefore be eased.
As a result, it is generally possible to waive the use of the large number of isolators, it only being necessary to replace the much smaller number of normal reflectors by a number of orthogonal polarisation reflectors.
In one embodiment of the invention, the orthogonal polarisation reflector is formed by a 45 Faraday rotator and a following mirror or reflective facet.
In another embodiment, the orthogonal polarisation reflector contains a signal transmission loop, as a result of which the signal fed to the polarisation reflector is again fed back in the reverse direction.
Said signal transmission loop incorporates a non-reciprocal element.
In a further elaboration of the invention, said non-reciprocal element is formed by a 90 Faraday rotator. In addition, the signal transmission loop may contain a half-~ retarder.
In another, further elaboration of the invention, the signal transmission loop contains, in addition to the 9O Faraday rotator, also an odd number of mirrors or reflective facets.
The invention furthermore relates to an optical transmission network provided with one or more reflective star devices according to one of the embodiments mentioned above.

CA 02070l22 l998-04-28 Under extreme conditions, a polarisation filter which filters out the residual signal having undesirable polarisation may be provided in such a network in the transmitting section of one or more of the transmitting and receiving devices connected to the network.
The invention will be explained in greater detail below by reference to the drawings. In the drawings:
Figure 1 shows a block diagram of a conventional network made up of one or more reflective star devices;
Figure 2 shows an embodiment of the reflective star device according to the invention;
Figures 3, 4 and 5 show embodiments of orthogonal polarisation reflectors according to the invention.
Figure 1 shows conventional reflective star device N having the ports l-n associated therewith. Connected to the port 1 is a transmitting and receiving device TRl having the transmitter coupling-in loss L
associated therewith. The transmitter emits an optical signal having a power PT. which signal is distributed over the other ports by the reflective star device N, with the result that a power PR is received in the transceiver TRn. This network has the property that a reflection signal having the power PB is also emitted in the direction of the transceiver TRl.
The following equations apply to the network or topology described:
PBmax = PT/(L2.n) (1) PRmin = PT/ ( L ~ n) (2) In the equations mentioned, PT is the transmitting power, PBmax is the maximum permitted power reflected to the transmitter and PRmin is the minimum permitted received power. The following relationships can be derived from Equations 1 and 2:
L = PRmin / PBmax (3) n = PBmax . PT / P2Rmin ( 4) Typical values may be:
PT = 10 mW (10 dBm) PR min = 1 ~W (-30 dBm) PB max = 10 nW (-50 dBm) For this example with the requirements imposed in this case, it follows for the optimum network that L = 100 (20 dB coupling-in loss) and n = 100 connections or ports.

The reflection sensitivity is often assumed to be one number.
However, for so-called DFB lasers, for example, it is known that they are much more sensitive to injection of light at or around the characteristic optical frequency than at other frequencies. A DFB laser is also much more sensitive to reflections in its own polarisation direction than in other polarisation directions and is the least sensitive in a polarisation direction perpendicular to its own polarisation direction.
This is certainly the case if the DFB laser is followed by a polarising device.
For a conventional reflective star device, it is the case that the reflection has a random polarisation direction. This is due to the fact that, in the glass fibre to the star, the polarisation can alter randomly and that, at the point of reflection, the polarisation of the returning or reflected signal is the same as the outgoing signal (the linear polarisation), or alternatively precisely orthogonal (in the case of circular polarisation), or alternatively something inbetween (in the case of elliptical polarisation), to put it briefly, random.
A trend is observable in the manufacture of semiconductor lasers in which high-power lasers are coupled in badly in order to reduce the reflection sensitivity in this way. It will be possible to use such bad coupling-in in a reflective star device, but at the expense of large power loss.
The paper entitled "Reflective Single-Mode Fibre-Optic Passive Star Couplers" gives a number of examples of the construction of reflective star devices. This paper describes how the reflective star device has a number of reflection points at which reflectors are provided.
Figure 2 describes a reflective star device according to the invention of limited size.
This reflective star device consists of three three by three transmission star devices, which reflective star device has nine input/output ports l-9 formed by the right-hand ports of the three by three star devices. Connected to one of the left-hand ports of the three by three star devices is one orthogonal polarisation reflector OPR in each case. The remaining left-hand ports of said three by three reflection devices are connected to the left-hand ports of the other three by three reflection devices. The configuration shown in Figure 2 therefore fulfils the proposal according to the invention that orthogonal polarisation reflectors are provided instead of the known standard ~;

CA 02070l22 l998-04-28 reflectors. As a result, the polarisation of the returning reflected signal at a port will be orthogonal to the polarisation of the outgoing signal. This orthogonality is retained over all the glass fibres and coupling-in devices, provided, of course, that these do not have a polarisation-dependent loss. In this way, a reflection signal will be fed to the laser of the sending transceiver device which has a polarisation in a direction which is the least sensitive for the laser.
Figure 3 shows the basic diagram of an orthogonal polarisation reflector consisting of a 45 Faraday rotator and a mirror. Vertically polarised light returns horizontally polarised, counterclockwise polarised light returns clockwise polarised, etc. The mirror may simply be formed by a reflective facet.
Figure 4 shows an orthogonal polarisation reflector according to the invention consisting of a signal transmission loop which incorporates a non-reciprocal element which, according to the embodiment shown, takes the form of a 90 Faraday rotator. Connected to said 90 Faraday rotator is a half-~ retarder.
Figure 5 shows another embodiment of an orthogonal polarisation reflector in which a mirror, a 90 Faraday rotator FR 90 and two mirrors are consecutively incorporated in the signal transmission loop. The mirrors may be replaced by reflective facets.
If the decrease in the reflection sensitivity in the reflective star device according to the invention is represented by "X", equations (1) to (4) inclusive become:
PLaser = PT/(X-L ~n) (5) PR PT/(L-n) (6) L = PR/ (PB ~ X) n = X-PB-PT/P R (8) The factor X can easily become 10-100 (10-20 dB), depending on the quality of the Faraday rotator, the network and the optional use of a polarisation device.
If the factor X is assumed to equal lO (10 dB), it follows that:
L = 10 (10 dB coupling-in loss) and n = 1000 connections.
In the known solution of optical isolators at the transmitting side, n isolators are needed in a reflective star device having n ports.
The invention offers the advantage that, instead of the isolators, only ~n Faraday rotators need to be provided at the reflection points of the reflective star device, which results in an appreciable saving in , CA 02070122 1998-02-04 _ equipment and cost.
One or more reflective star devices according to the invention can be incorporated in an optical transmission network, a number of ports being obtained for the connection of transceiver devices.
If desired, a polarisation filter can be provided in the trans-mitting section of one or more transceiver devices.

~'

Claims (8)

1. Optical reflective star coupler device having a number of ports and distributing each signal fed to a port over all ports, comprising a number of star coupler units and a number of reflectors connected to a number of ports of the star coupler units, thereby providing reflection points in the reflective star device, characterised in that at least one of the reflectors is an orthogonal polarisation reflector reflecting an incoming signal of a first polarisation state and rotating said first polarisation state into a second polarisation state orthogonal to said first polarisation state.
2. Device according to Claim 1, characterised in that the orthogonal polarisation reflector contains a 45° Faraday rotator and a following mirror or reflector facet.
3. Device according to Claim 1, characterised in that the orthogonal polarisation reflector contains a signal transmission return loop which incorporates a non-reciprocal element.
4. Device according to Claim 3, characterised in that the non-reciprocal element is formed by a 90° Faraday rotator.
5. Device according to Claim 4, characterised in that the signal transmission return loop contains a half-.lambda. retarder.
6. Device according to Claim 4, characterised in that the signal transmission return loop contains an odd number of mirrors or reflective facets.
7. Optical transmission network provided with one or more reflective star coupler devices according to one of the preceding claims and a number of ports for the connection of transmitting and receiving devices.
8. Transmission network according to Claim 7, whereby a polarisation filter is provided in the transmitting section of one or more transmitting and receiving devices.
CA002070122A 1991-06-03 1992-06-01 Optical reflective star device Expired - Fee Related CA2070122C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL9100952 1991-06-03
NL9100952A NL9100952A (en) 1991-06-03 1991-06-03 OPTICAL REFLECTION STAR DEVICE.

Publications (2)

Publication Number Publication Date
CA2070122A1 CA2070122A1 (en) 1992-12-04
CA2070122C true CA2070122C (en) 1998-12-08

Family

ID=19859316

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002070122A Expired - Fee Related CA2070122C (en) 1991-06-03 1992-06-01 Optical reflective star device

Country Status (10)

Country Link
US (1) US5276749A (en)
EP (1) EP0517315B1 (en)
JP (1) JPH07281051A (en)
AT (1) ATE130106T1 (en)
CA (1) CA2070122C (en)
DE (1) DE69205891T2 (en)
ES (1) ES2078643T3 (en)
FI (1) FI922562A (en)
NL (1) NL9100952A (en)
NO (1) NO301618B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10263706B2 (en) 2017-04-18 2019-04-16 The Boeing Company Single-fiber bidirectional controller area network bus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4787693A (en) * 1987-11-02 1988-11-29 American Telephone And Telegraph Company, At&T Bell Laboratories Passive star coupler
GB2214746B (en) * 1988-01-19 1992-05-06 Plessey Co Plc Optical interconnection
US4844593A (en) * 1988-05-16 1989-07-04 Hewlett-Packard Company Optical feedback isolator
US4917456A (en) * 1988-07-15 1990-04-17 At&T Bell Laboratories Optical crossover network
US4943136A (en) * 1988-12-09 1990-07-24 The Boeing Company Optical backplane interconnection
GB2228799A (en) * 1989-03-02 1990-09-05 British Telecomm Optical star coupler

Also Published As

Publication number Publication date
ATE130106T1 (en) 1995-11-15
CA2070122A1 (en) 1992-12-04
ES2078643T3 (en) 1995-12-16
NO922142L (en) 1992-12-04
NL9100952A (en) 1993-01-04
JPH07281051A (en) 1995-10-27
FI922562A (en) 1992-12-04
FI922562A0 (en) 1992-06-03
EP0517315B1 (en) 1995-11-08
NO922142D0 (en) 1992-05-29
US5276749A (en) 1994-01-04
DE69205891D1 (en) 1995-12-14
DE69205891T2 (en) 1996-06-05
EP0517315A1 (en) 1992-12-09
NO301618B1 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
CN102082610B (en) Self-injection locking light source and light source self-injection locking method and system
EP0444694B1 (en) Optical coupler
US5604627A (en) Optical amplifier device
US6999653B2 (en) 4-port wavelength selective router
US20040086214A1 (en) Optical circulator for bi-directional communication
JPH11196045A (en) Light dispersion compensator
US6882764B1 (en) Polarization independent packaging for polarization sensitive optical waveguide amplifier
EP0489807B1 (en) Optical switching network
CA2070122C (en) Optical reflective star device
US6850655B2 (en) Optical apparatus with faraday rotator, static gain flattening filter and variable optical attenuator
CN103229441A (en) Optical module, burst transmission method thereof, laser and optical network system
US5373386A (en) Transmission/reception circuit in a passive optical telecommunication system
US5297223A (en) Transmission systems for polarization-independent transmission of signals
Yoshinaga et al. Influence of reflected light on erbium-doped fiber amplifiers for optical AM video signal transmission systems
US5293264A (en) Transmission system for the polarization-insensitive transmission of signals
JPH08204258A (en) Fiber type diffusion compensator
GB2253533A (en) Optical transmission monitoring
JPH09269428A (en) Reflective return light compensation circuit
EP1050982A1 (en) Optical coupler and circuit employing an optical coupler
EP0530877B1 (en) Optical reflective star device
JP3039435B2 (en) Optical subscriber transmission system
AU673840B2 (en) An optical isolator and an optical telecommunications system
WO1993025014A1 (en) An optical isolator and an optical telecommunications system
JPH07146451A (en) Optical communication device with isolator and system using it
JPH08181665A (en) Optical two-way transmitter

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed