CA2088176C - Switchable resonant filter for optical radiation - Google Patents

Switchable resonant filter for optical radiation Download PDF

Info

Publication number
CA2088176C
CA2088176C CA002088176A CA2088176A CA2088176C CA 2088176 C CA2088176 C CA 2088176C CA 002088176 A CA002088176 A CA 002088176A CA 2088176 A CA2088176 A CA 2088176A CA 2088176 C CA2088176 C CA 2088176C
Authority
CA
Canada
Prior art keywords
electrode
membrane
filter
substrate
spacer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002088176A
Other languages
French (fr)
Other versions
CA2088176A1 (en
Inventor
Gregory A. Magel
Jon C. Zimmerman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Publication of CA2088176A1 publication Critical patent/CA2088176A1/en
Application granted granted Critical
Publication of CA2088176C publication Critical patent/CA2088176C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • H01Q15/002Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective said selective devices being reconfigurable or tunable, e.g. using switches or diodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0801Means for wavelength selection or discrimination
    • G01J5/0802Optical filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/002Optical devices or arrangements for the control of light using movable or deformable optical elements the movement or the deformation controlling the frequency of light, e.g. by Doppler effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/204Filters in which spectral selection is performed by means of a conductive grid or array, e.g. frequency selective surfaces

Abstract

A structure and its method for manufacture for a switchable optical filter.
The structure comprises a substrate (10) transparent to the radiation of interest, which contains or supports an electrode (12). A spacer layer (16) suspends the membrane over the electrode (12) such that no spacer lies between the electrode (12) and the membrane (22), yet some spacer (16) remains elsewhere to support the membrane (22). The membrane has slots (24) in it which are of a specified length in order to resonate at a particular wavelength of radiation. When the electrode (12) is activated, the membrane (22) deflects and its varying proximity to the substrate changes the wavelength of transmission.

Description

20~b.~'~~
SI~YITCHABLE RESONANT FILTER FOR OPTICAL RADIATION
RACKGR.OUND OF THE ~'VENTION
1. Field of the invention This invention relates to optical sensors, more specifically to filters for said sensors.
2. Backeround of the invention Optical sensing systems, either in the visible range, or the non-visible, such as infrared, can fall victim to jamming effects. In visible systems, this is normally referred to as veiling. Veiling illuminance is defined as light that is spread across a large portion of the field of view, lessening system effectiveness by lowering scene contrast. Common sources of veiling are sunlight and high-intensity sources.
Jamming can also be caused deliberately, such as in defense applications, when an enemy electro-optic source is aimed at the subject system.
A number of sensors currently in use contain fixed stop-band interference filters in slides or wheels for protection from these problems. This approach supplies a limited number of stop-band filter choices and requires operating mechanisms with control circuitry, whether, they are mechanical or electromechanical.
Activation of these filters takes fractions of seconds, not including operator response time. This fixed-filter approach works well for single-wavelength, non-agile threats.
However, fixed-filter techniques are limited against the agile threats expected on the modern battlefield.
Another weakness of the fixed-filter system becomes apparent when ~t~88.~'~~
considering bandwidth. In the 8 to 12 micron ( 10-6 meter, or um) wavelength range, it is not practical to use filters having a bandwidth less than 1 micron. For an infrared system, such as a Forward-Looking InfraRed (FLIR), the integrated transynission of a filter with a single 1 micron stop-band is no better than 50%.
Narrower-band filters tend to be more expensive and have insufficient integrated transmission.
Another area of concern with current technology is the difficulty of automation.
The system detector can be used to sense when a filter is needed. However, the sensor cannot detect when the filter is no longer needed, since the filter prevents the sensor from seeing the threat. The sensor could be damaged if the filter is switched out and the threat is still present. The long cycle times of mechanical filter assemblies increase the likelihood of damage, if the threat is still present.

2~8~~.'~6 The present invention disclosed herein comprises a switchable resonant filter for optical radiation. One embodiment of the present invention comprises a membrane monolithically manufactured on an substrate coated with anti-reflective layers, and containing electrodes. The membrane is formed upon a spacer layer which is laid over the substrate and electrodes, and portions of the spacer layer over the electrodes are removed, via holes etched in the membrane. The holes in the membrane act as antennas for radiation that has the same wavelength as the electrical length of the holes. The electrodes can be addressed to pull the membrane down to the substrate, changing the ef~'ective index of refraction surrounding the antennas, and thus change the resonant wavelength of the antennas. The preferred embodiment of the present invention acts as a switch for transmission of radiation at specific wavelengths through the membrane and substrate.
TI-ys742 Pale 3 ~~881~~
Bgi,IEF DESCRIPTIO1V ~F THE DR.AWIIeTGS
For a more complete understanding of the present invention and for further advantages thereof, reference is now made to the following Detailed Description taken in conjunction with the accompanying Drawings in which:
FIGURE 1A shows a side view of a switchable filter membrane device with the membrane undeflected.
FIGURE 1B shows a side view of a switchable filter membrane device when the membrane is deflected.
FIGURE 2.' . shows a flow chart of the manufacturing process flaw for a switchable resonant filter for optical radiation.
FIGURE 3 shows the dimensions of a possible geometry of a resonant slot to be made in a membrane.
FIGURE 4 shows an alternate embodiment wherein the membrane is transparent and includes conducting members.

DETAILEED DESCRIPTION OF THE PREFERRED Eli~IBODIMENTS
It is well known that a wire can act as an antenna for certain wavelengths of electromagnetic radiation. The length of the wire as well as the index of refraction, or the dielectric constant, of the surrounding medium, determines the wavelength of the radiation it absorbs. The index of refraction of the medium determines the wavelength of radiation having a given frequency. If the antenna is embedded in a higher index medium, for example, the antenna would have to be shorter to absorb waves of a certain frequency. If made small enough, the antennas will absorb extremely high frequency waves such as infrared (IR).
Consider a fixed wire or antenna illuminated by a variety of wavelengths. If the effective length of the antenna were lei, the antennas would absorb wavelengths, ~,, for which len equals integral multiples of one-half ~.. The absorption is caused by losses due to the finite conductivity of the metal.
Instead of a wire, it is possible to make something similar from a sheet of metal with slots the same length as the antenna in the sheet of metal. The behavior of this structure is such that it reflects all wavelengths because of the sheet of metal, except those that are resonant at the length of the slots. Therefore, all wavelengths except for the selected one are stopped. Radiation of the selected wavelength is passed, and the structure transmits it. The result is a filter selectively passing wavelengths to which these slots are tuned. One particular application is in the infrared range, but it could be used for any wavelength of radiation, limited only by the practicality of fabricating slots with the required dimensions.

~~~~~.rr~
If the surrounding medium is changed, that will change the wavelength to which the slots are resonant. In order to cause this change, the effective dielectric constant around the slot or slots must be changed. This effectively switches the wavelength that the slots will transmit.
One embodiment of the present invention is shown as a side view in Figures 1A and 1B. A substrate 10, contains an electrode, 12, and can be coated with anti-reflection coatings 14, or another insulating coating. A spacer material 16 lies on top of the coating, if used, or the electrode. The spacer 16 must be selectively removable, such as with an etch. A thin metal membrane 22 rests upon the spacer. The membrane 22 has slots 24 patterned into it, which also act as etch access holes to remove the spacer. The materials of these various components of this structure will be discussed further as part of the manufacturing process.
Figure 1B shows the membrane 22 in contact with the substrate or its coating.
This is caused by activation of the electrode 12. When a charge is placed upon electrode 12, by addressing circuitry not shown, electrostatic forces build between the electrode and the membrane, attracting the membrane to the electrode. The membrane will eventually come to rest on the substrate. If the anti-reflection coatings are not used, some kind of insulating layer is necessary to prevent shorting between the electrode and the membrane.
The movement of the membrane causes the effective refractive index of the medium surrounding the slots to change. If the slots were initially designed to transmit a wavelength ~,, the initial transmitted wavelength of radiation would be ~08~1°~~
1Jn~~., where nee. is approximately equal to the refractive index of the surrounding gas or vacuum. When the membrane comes into contact with the substrate the transmitted wavelength changes to 7Jne~., where nee. is in the range 1.0 <
ne,~ G neubatra~~
If the membrane is in contact with a different medium on one side than the other, the effective index is a special kind of average of the indices of the two surrounding media:
nIZ + ~z n.8 2 where n1 and n2 are the indices of refraction for the medium on either side of the membrane. This change in the peak transmitted wavelength will allow the sensing system to discriminate against jamming, by reducing transmission of the jamming wavelengths.
Figure 2 shows a flow chart for the manufacture of such a filter. The initial step 26 is to define an electrode, or electrodes, in the substrate. The substrate is preferably transparent to the wavelength of interest, such as .silicon, or gallium arsenide, which is well-suited for the 8-12 micron wavelength band. The electrode can be formed in many ways. The electrode could be formed by doping, either blanket or patterned. After an implant, a drive-in diffusion may be necessary to activate the dopant and provide su~ciently low resistivity for the electrode, Alternatively, a deposited film electrode, of a transparent conducting material, sut;h as indium tin oxide, or a metal patterned transversely in such a way as to minimally obscure the path of light through the device, is possible. Further, the electrode could also be the substrate, where the substrate is partially conductive. There is an inherent trade-off between the conductivity and transparency of the lower electrode.
Continuing in the process, the next step is step 28, which is the deposition of the spacer layer. If anti-reflection coatings are to be used, the "top" layer, the one between the electrode and the spacer layer, must be applied before the spacer is deposited. For example, they could be deposited by evaporation. The effective index seen by the slots will then be influenced more by the coating index, than by the substrate index. According to the preferred embodiment of the present invention, the spacer comprises a polymer layer, applied by spinning.
The major requirement of the structure is that in its unactuated state, the membrane is far enough away from the substrate such that the substrate does not affect the wavelength that is absorbed or transmitted by the slot. This distance can be less than a wavelength. The closer the membrane is to the substrate, the more critical the distance between them becomes.
The thickness of the spacer must be such that when it is removed, the membrane will be held suff ciently far from the substrate so that the effective refractive index seen by the membrane is significantly different from the index experienced when it approaches or touches the substrate. The effective index of the surrounding medium can be that of air, which is approximately 1.0, if the membrane is far enough away on both sides from any other medium.
In step 30, the membrane is deposited, most likely by sputtering. The membrane is a thin, tensile film of a reflective metal such as gold or aluminum alloy.
TI-16?42 Pale 8 After the membrane is deposited, it is patterned and etched in step 32 to form the tiny access holes for the etch, as well as the slots. It is possible that the slots will suffice as the etch access holes.
An isotropic selective etch, such as a plasma etch, is used in step 34 to remove the spacer over the electrodes, under the slots, and leave spacer around the edges to support the membrane. Depending on the etch process selected, it may be beneficial to dice the wafer upon which the structure has been constructed before etching. More than one such device may be manufactured upon one wafer. The amount and position of remaining spacer is controlled by the extent of the access holes in the membrane, and the time of the etch. The final result is a thin metal membrane containing a resonant slot pattern supported over an air space where the spacer has been removed. An alternate embodiment could involve multiple electrodes under a single membrane. The spacer would then be left in a grid-like pattern, allowing each electrode to control a defined area of the membrane. The membrane can be electrostatically deflected by application of a voltage between the membrane and the underlying electrode. After the completed structure is finished, it must be packaged and placed in the sensing system, as in step 36. The device will typically be held by the edges, somewhere in the sensing module. The electrical connections are normally best done firom the substrate side of the device. Protective packaging may be necessary, depending upon the operating environment of the system.
One problem with using a straight-line slot is that it transmits only radiation whose electric field vector is aligned with the direction of the slot. One solution is to use a pattern of slots oriented in a variety of directions. However, the efficiency of the maximum transmission for a given polarization will be limited by the fraction of properly-oriented slots. To alleviate this problem, it is possible to create a polarization-insensitive device by using a cross or tripole. In the tripole, the slot is designed such that there are three legs, each 120° degrees from the two adjacent legs.
The geometry of a tripole slot is shown in Figure 3. In the case of a tripole, the size is determined by three factors: the freespace optical wavelength of the radiation of interest, ~,°; the effective refractive index of the surrounding medium, nee.; and, a geometrical factor, K. The geometrical factor for a tripole equals ~ 0.27. The angle 40 is 120°. The length of a leg is measured from its end, 42A or 428, to the center of the joint, 44. This distance, Lz., is shown by line 46. The length, Lz., at which the first resonance of a tripole occurs is given by the formula:
Lr = 0.27 ( ~° ) .
n~.
When the device is in operation and the membrane contacts the substrate, the center wavelength of the transmitted band is shifted. The width of the transmitted wavelength band is affected, amont' other things, by the uniformity of the sizes of the 9Qtr1 slots, as determined by fabrication parameters. The transmission wavelength is longer than before, allowing a swatch between two optical bands, or an ON/OFF
switch for certain wavelengths. Additionally, it could be used as a radiation chopper, as one of many alternatives.
An alternate embodiment of the present invention could be to use a TI-16742 Page 1~

20~8~.'~~
transparent membrane with a number of conducting members in it. This is shown in Figure 4. In Figure 4, the membrane 22 is transparent. The membrane has within. it, or on one of its surfaces, conducting members 48. These are shown as tripoles, but could be of any geometry desired, limited only by manufacturing concerns.
Thus, although there has been described to this point particular embodiments of a switchable resonant filter for optical radiation, it is not intended tnat such specific references be considered as limitations upon the scope of this invention except in-so-far as set forth in the following claims.

Claims (31)

1. An optical filter comprising:
a. a substrate substantially transparent to a predetermined wavelength of optical radiation;
b. at least one electrode formed proximate said substrate;
c. a spacer formed upon a layer containing said electrode such that said spacer does not cover said electrode;
d. a membrane formed upon said spacer such that said membrane is suspended over said electrode, supported by said spacer; and e. slots formed in said membrane such that said slots are resonant for optical radiation of said predetermined wavelength.
2. The filter of claim 1 wherein said substrate further comprises gallium arsenide.
3. The filter of claim 1 wherein said substrate further comprises silicon.
4. The filter of claim 1 wherein said electrode further comprises a partially conductive substrate.
5. The filter of claim 1 wherein said electrode further comprises a doped region in the substrate.
6. The filter of claim 1 wherein said electrode further comprises a film electrode of a transparent conducting material.
7. The filter of claim 6 wherein said transparent conducting material is indium tin oxide.~
8. The filter of claim 1 wherein said electrode further comprises metal patterned transversely so as to minimally obscure the path of light.
9. The filter of claim 1 wherein said membrane is of aluminum alloy.
10. The filter of claim 1 wherein said membrane is of gold.
11. An optical filter comprising:
a. a substrate substantially transparent to a predetermined wavelength of optical radiation which has two parallel faces;
b. at least one electrode formed proximate one of said two parallel faces;
c. anti-reflection coatings formed upon the substrate on at least one of said two parallel faces;
d. a spacer formed upon a layer containing said electrode such that said spacer does not cover said electrode;
e. a membrane formed upon said spacer such that said membrane is suspended over said electrode, supported by said spacer;
f. slots formed in said membrane such that said slots are resonant for optical radiation of a predetermined wavelength.
12. The filter of claim 11 wherein said substrate further comprises gallium arsenide.
13. The filter of claim 11 wherein said substrate further comprises silicon.
14. The filter of claim 11 wherein said electrode further comprises a partially conductive substrate.
15. The filter of claim 11 wherein said electrode further comprises a doped region in the substrate.
16. The filter of claim 11 wherein said electrode further comprises a film electrode of a transparent conducting material.
17. The filter of claim 16 wherein said transparent conducting material is indium tin oxide.
18. The filter of claim 11 wherein said electrode further comprises metal patterned transversely so as to minimally obscure the path of light.
19. The filter of claim 11 wherein said membrane is of aluminum alloy.
20. The filter of claim 11 wherein said membrane is of gold.
21. A method of forming an optical filter comprising:
a. defining an electrode proximate a substrate;
b. depositing a layer of spacer material upon said electrode;
c. forming a membrane over said spacer;
d. etching plasma access holes in said membrane, wherein said access holes comprise slots which are resonant at a certain wavelength of optical radiation; and e. removing said spacer material such that said material is not present over said electrode, but remains elsewhere to support said membrane, such that said membrane is operable to deflect towards said substrate when said electrode is activated.
22. The method of claim 21 wherein said defining step further comprises doping the substrate to form the electrode.
23. The method of claim 21 wherein said defining step further comprises depositing a film electrode.
24. The method of claim 23 wherein said film electrode is a transparent conducting material.
25. The method of claim 24 wherein said transparent conducting material is indium tin oxide.
26. The method of claim 23 wherein said film electrode is metal patterned transversely so as to minimally obscure the path of light.
27. The method of claim 21 wherein said depositing step further comprises depositing anti-reflection coatings upon said substrate.
28. The method of claim 21 wherein said forming step further comprises sputtering said membrane upon said spacer.
29. The method of claim 21 wherein said removing step further comprises a plasma etch.
30. A method for optical filtering comprising:
a. directing optical radiation toward a membrane including at least one slot which is resonant for a selected predetermined wavelength of said optical radiation;
b. activating an electrode proximate a substrate having a selected refractive index, said electrode for attracting said membrane; and c. moving said membrane including said slot toward said substrate to change the wavelength of said optical radiation at which said slot resonates.
31. An optical filter comprising:
a. a substrate substantially transparent to a predetermined wavelength of optical radiation;
b. at least one electrode formed proximate said substrate;
c. a spacer formed upon a layer containing said electrode such that said spacer does not cover said electrode;
d. a membrane substantially transparent to said predetermined wavelength formed upon said spacer such that said membrane is suspended over said electrode, supported by said spacer, wherein said membrane includes conducting members.
CA002088176A 1992-02-05 1993-01-27 Switchable resonant filter for optical radiation Expired - Fee Related CA2088176C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US831,719 1992-02-05
US07/831,719 US5231532A (en) 1992-02-05 1992-02-05 Switchable resonant filter for optical radiation

Publications (2)

Publication Number Publication Date
CA2088176A1 CA2088176A1 (en) 1993-08-06
CA2088176C true CA2088176C (en) 2002-08-13

Family

ID=25259707

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002088176A Expired - Fee Related CA2088176C (en) 1992-02-05 1993-01-27 Switchable resonant filter for optical radiation

Country Status (7)

Country Link
US (1) US5231532A (en)
EP (1) EP0554847B1 (en)
JP (1) JPH06221921A (en)
KR (1) KR100294035B1 (en)
CA (1) CA2088176C (en)
DE (1) DE69305375T2 (en)
TW (1) TW235339B (en)

Families Citing this family (198)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5835255A (en) * 1986-04-23 1998-11-10 Etalon, Inc. Visible spectrum modulator arrays
US6674562B1 (en) 1994-05-05 2004-01-06 Iridigm Display Corporation Interferometric modulation of radiation
US7830587B2 (en) 1993-03-17 2010-11-09 Qualcomm Mems Technologies, Inc. Method and device for modulating light with semiconductor substrate
DE4336841C1 (en) * 1993-10-28 1995-05-04 Deutsche Aerospace Cover for radar antennas
US6680792B2 (en) 1994-05-05 2004-01-20 Iridigm Display Corporation Interferometric modulation of radiation
US7826120B2 (en) * 1994-05-05 2010-11-02 Qualcomm Mems Technologies, Inc. Method and device for multi-color interferometric modulation
US7123216B1 (en) 1994-05-05 2006-10-17 Idc, Llc Photonic MEMS and structures
US6710908B2 (en) 1994-05-05 2004-03-23 Iridigm Display Corporation Controlling micro-electro-mechanical cavities
US7852545B2 (en) * 1994-05-05 2010-12-14 Qualcomm Mems Technologies, Inc. Method and device for modulating light
US7550794B2 (en) 2002-09-20 2009-06-23 Idc, Llc Micromechanical systems device comprising a displaceable electrode and a charge-trapping layer
US6040937A (en) * 1994-05-05 2000-03-21 Etalon, Inc. Interferometric modulation
US7619810B2 (en) * 1994-05-05 2009-11-17 Idc, Llc Systems and methods of testing micro-electromechanical devices
US7738157B2 (en) 1994-05-05 2010-06-15 Qualcomm Mems Technologies, Inc. System and method for a MEMS device
US7138984B1 (en) 2001-06-05 2006-11-21 Idc, Llc Directly laminated touch sensitive screen
US7297471B1 (en) 2003-04-15 2007-11-20 Idc, Llc Method for manufacturing an array of interferometric modulators
US20010003487A1 (en) * 1996-11-05 2001-06-14 Mark W. Miles Visible spectrum modulator arrays
US7460291B2 (en) 1994-05-05 2008-12-02 Idc, Llc Separable modulator
US7808694B2 (en) 1994-05-05 2010-10-05 Qualcomm Mems Technologies, Inc. Method and device for modulating light
US7776631B2 (en) 1994-05-05 2010-08-17 Qualcomm Mems Technologies, Inc. MEMS device and method of forming a MEMS device
US8014059B2 (en) 1994-05-05 2011-09-06 Qualcomm Mems Technologies, Inc. System and method for charge control in a MEMS device
JP2674545B2 (en) * 1995-01-20 1997-11-12 日本電気株式会社 Infrared detector and driving method thereof
US7907319B2 (en) 1995-11-06 2011-03-15 Qualcomm Mems Technologies, Inc. Method and device for modulating light with optical compensation
US5646772A (en) * 1996-05-10 1997-07-08 Lucent Technologies Inc. Methods and apparatus for a multi-electrode micromechanical optical modulator
US7471444B2 (en) 1996-12-19 2008-12-30 Idc, Llc Interferometric modulation of radiation
US7532377B2 (en) 1998-04-08 2009-05-12 Idc, Llc Movable micro-electromechanical device
KR100703140B1 (en) 1998-04-08 2007-04-05 이리다임 디스플레이 코포레이션 Interferometric modulation and its manufacturing method
US8928967B2 (en) 1998-04-08 2015-01-06 Qualcomm Mems Technologies, Inc. Method and device for modulating light
WO2003007049A1 (en) * 1999-10-05 2003-01-23 Iridigm Display Corporation Photonic mems and structures
US6962771B1 (en) * 2000-10-13 2005-11-08 Taiwan Semiconductor Manufacturing Company, Ltd. Dual damascene process
JP2002207182A (en) * 2001-01-10 2002-07-26 Sony Corp Optical multilayered structure and method for manufacturing the same, optical switching element, and image display device
US6589625B1 (en) 2001-08-01 2003-07-08 Iridigm Display Corporation Hermetic seal and method to create the same
US6794119B2 (en) 2002-02-12 2004-09-21 Iridigm Display Corporation Method for fabricating a structure for a microelectromechanical systems (MEMS) device
US6574033B1 (en) 2002-02-27 2003-06-03 Iridigm Display Corporation Microelectromechanical systems device and method for fabricating same
US7781850B2 (en) 2002-09-20 2010-08-24 Qualcomm Mems Technologies, Inc. Controlling electromechanical behavior of structures within a microelectromechanical systems device
TWI289708B (en) 2002-12-25 2007-11-11 Qualcomm Mems Technologies Inc Optical interference type color display
TW200413810A (en) 2003-01-29 2004-08-01 Prime View Int Co Ltd Light interference display panel and its manufacturing method
TW594360B (en) 2003-04-21 2004-06-21 Prime View Int Corp Ltd A method for fabricating an interference display cell
TW570896B (en) 2003-05-26 2004-01-11 Prime View Int Co Ltd A method for fabricating an interference display cell
US7221495B2 (en) 2003-06-24 2007-05-22 Idc Llc Thin film precursor stack for MEMS manufacturing
JP3786106B2 (en) * 2003-08-11 2006-06-14 セイコーエプソン株式会社 Wavelength tunable optical filter and manufacturing method thereof
TWI231865B (en) 2003-08-26 2005-05-01 Prime View Int Co Ltd An interference display cell and fabrication method thereof
TW593126B (en) 2003-09-30 2004-06-21 Prime View Int Co Ltd A structure of a micro electro mechanical system and manufacturing the same
US7012726B1 (en) 2003-11-03 2006-03-14 Idc, Llc MEMS devices with unreleased thin film components
US7161728B2 (en) 2003-12-09 2007-01-09 Idc, Llc Area array modulation and lead reduction in interferometric modulators
US7142346B2 (en) 2003-12-09 2006-11-28 Idc, Llc System and method for addressing a MEMS display
US7532194B2 (en) 2004-02-03 2009-05-12 Idc, Llc Driver voltage adjuster
US7342705B2 (en) 2004-02-03 2008-03-11 Idc, Llc Spatial light modulator with integrated optical compensation structure
US7119945B2 (en) * 2004-03-03 2006-10-10 Idc, Llc Altering temporal response of microelectromechanical elements
US7706050B2 (en) 2004-03-05 2010-04-27 Qualcomm Mems Technologies, Inc. Integrated modulator illumination
US7720148B2 (en) * 2004-03-26 2010-05-18 The Hong Kong University Of Science And Technology Efficient multi-frame motion estimation for video compression
US7476327B2 (en) 2004-05-04 2009-01-13 Idc, Llc Method of manufacture for microelectromechanical devices
US7060895B2 (en) 2004-05-04 2006-06-13 Idc, Llc Modifying the electro-mechanical behavior of devices
US7164520B2 (en) 2004-05-12 2007-01-16 Idc, Llc Packaging for an interferometric modulator
US7256922B2 (en) 2004-07-02 2007-08-14 Idc, Llc Interferometric modulators with thin film transistors
KR101354520B1 (en) * 2004-07-29 2014-01-21 퀄컴 엠이엠에스 테크놀로지스, 인크. System and method for micro-electromechanical operating of an interferometric modulator
US7889163B2 (en) 2004-08-27 2011-02-15 Qualcomm Mems Technologies, Inc. Drive method for MEMS devices
US7515147B2 (en) 2004-08-27 2009-04-07 Idc, Llc Staggered column drive circuit systems and methods
US7560299B2 (en) 2004-08-27 2009-07-14 Idc, Llc Systems and methods of actuating MEMS display elements
US7551159B2 (en) 2004-08-27 2009-06-23 Idc, Llc System and method of sensing actuation and release voltages of an interferometric modulator
US7499208B2 (en) 2004-08-27 2009-03-03 Udc, Llc Current mode display driver circuit realization feature
US7602375B2 (en) 2004-09-27 2009-10-13 Idc, Llc Method and system for writing data to MEMS display elements
US7808703B2 (en) 2004-09-27 2010-10-05 Qualcomm Mems Technologies, Inc. System and method for implementation of interferometric modulator displays
US7415186B2 (en) 2004-09-27 2008-08-19 Idc, Llc Methods for visually inspecting interferometric modulators for defects
US7289256B2 (en) 2004-09-27 2007-10-30 Idc, Llc Electrical characterization of interferometric modulators
US8878825B2 (en) 2004-09-27 2014-11-04 Qualcomm Mems Technologies, Inc. System and method for providing a variable refresh rate of an interferometric modulator display
US7653371B2 (en) 2004-09-27 2010-01-26 Qualcomm Mems Technologies, Inc. Selectable capacitance circuit
US7586484B2 (en) 2004-09-27 2009-09-08 Idc, Llc Controller and driver features for bi-stable display
US7369294B2 (en) 2004-09-27 2008-05-06 Idc, Llc Ornamental display device
US7359066B2 (en) 2004-09-27 2008-04-15 Idc, Llc Electro-optical measurement of hysteresis in interferometric modulators
US8008736B2 (en) 2004-09-27 2011-08-30 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device
US7692839B2 (en) 2004-09-27 2010-04-06 Qualcomm Mems Technologies, Inc. System and method of providing MEMS device with anti-stiction coating
US7701631B2 (en) 2004-09-27 2010-04-20 Qualcomm Mems Technologies, Inc. Device having patterned spacers for backplates and method of making the same
US7944599B2 (en) 2004-09-27 2011-05-17 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US7405924B2 (en) 2004-09-27 2008-07-29 Idc, Llc System and method for protecting microelectromechanical systems array using structurally reinforced back-plate
US7843410B2 (en) 2004-09-27 2010-11-30 Qualcomm Mems Technologies, Inc. Method and device for electrically programmable display
US7583429B2 (en) 2004-09-27 2009-09-01 Idc, Llc Ornamental display device
US7420725B2 (en) 2004-09-27 2008-09-02 Idc, Llc Device having a conductive light absorbing mask and method for fabricating same
US7161730B2 (en) 2004-09-27 2007-01-09 Idc, Llc System and method for providing thermal compensation for an interferometric modulator display
US7136213B2 (en) 2004-09-27 2006-11-14 Idc, Llc Interferometric modulators having charge persistence
US7310179B2 (en) 2004-09-27 2007-12-18 Idc, Llc Method and device for selective adjustment of hysteresis window
US7679627B2 (en) 2004-09-27 2010-03-16 Qualcomm Mems Technologies, Inc. Controller and driver features for bi-stable display
US7130104B2 (en) 2004-09-27 2006-10-31 Idc, Llc Methods and devices for inhibiting tilting of a mirror in an interferometric modulator
US7936497B2 (en) 2004-09-27 2011-05-03 Qualcomm Mems Technologies, Inc. MEMS device having deformable membrane characterized by mechanical persistence
US7554714B2 (en) 2004-09-27 2009-06-30 Idc, Llc Device and method for manipulation of thermal response in a modulator
US7345805B2 (en) 2004-09-27 2008-03-18 Idc, Llc Interferometric modulator array with integrated MEMS electrical switches
US7349136B2 (en) 2004-09-27 2008-03-25 Idc, Llc Method and device for a display having transparent components integrated therein
US20060176487A1 (en) 2004-09-27 2006-08-10 William Cummings Process control monitors for interferometric modulators
US7564612B2 (en) 2004-09-27 2009-07-21 Idc, Llc Photonic MEMS and structures
US7492502B2 (en) 2004-09-27 2009-02-17 Idc, Llc Method of fabricating a free-standing microstructure
US7369296B2 (en) 2004-09-27 2008-05-06 Idc, Llc Device and method for modifying actuation voltage thresholds of a deformable membrane in an interferometric modulator
US7446927B2 (en) 2004-09-27 2008-11-04 Idc, Llc MEMS switch with set and latch electrodes
US7916103B2 (en) 2004-09-27 2011-03-29 Qualcomm Mems Technologies, Inc. System and method for display device with end-of-life phenomena
US7532195B2 (en) 2004-09-27 2009-05-12 Idc, Llc Method and system for reducing power consumption in a display
US7373026B2 (en) 2004-09-27 2008-05-13 Idc, Llc MEMS device fabricated on a pre-patterned substrate
US7289259B2 (en) 2004-09-27 2007-10-30 Idc, Llc Conductive bus structure for interferometric modulator array
US7259449B2 (en) 2004-09-27 2007-08-21 Idc, Llc Method and system for sealing a substrate
US7535466B2 (en) 2004-09-27 2009-05-19 Idc, Llc System with server based control of client device display features
US7626581B2 (en) 2004-09-27 2009-12-01 Idc, Llc Device and method for display memory using manipulation of mechanical response
US7417735B2 (en) 2004-09-27 2008-08-26 Idc, Llc Systems and methods for measuring color and contrast in specular reflective devices
US7893919B2 (en) 2004-09-27 2011-02-22 Qualcomm Mems Technologies, Inc. Display region architectures
US7405861B2 (en) 2004-09-27 2008-07-29 Idc, Llc Method and device for protecting interferometric modulators from electrostatic discharge
US7343080B2 (en) 2004-09-27 2008-03-11 Idc, Llc System and method of testing humidity in a sealed MEMS device
US7424198B2 (en) 2004-09-27 2008-09-09 Idc, Llc Method and device for packaging a substrate
US7304784B2 (en) 2004-09-27 2007-12-04 Idc, Llc Reflective display device having viewable display on both sides
US7368803B2 (en) 2004-09-27 2008-05-06 Idc, Llc System and method for protecting microelectromechanical systems array using back-plate with non-flat portion
US7527995B2 (en) 2004-09-27 2009-05-05 Qualcomm Mems Technologies, Inc. Method of making prestructure for MEMS systems
WO2006037044A1 (en) 2004-09-27 2006-04-06 Idc, Llc Method and device for multistate interferometric light modulation
US7317568B2 (en) 2004-09-27 2008-01-08 Idc, Llc System and method of implementation of interferometric modulators for display mirrors
US7675669B2 (en) 2004-09-27 2010-03-09 Qualcomm Mems Technologies, Inc. Method and system for driving interferometric modulators
US7355780B2 (en) 2004-09-27 2008-04-08 Idc, Llc System and method of illuminating interferometric modulators using backlighting
US7710629B2 (en) 2004-09-27 2010-05-04 Qualcomm Mems Technologies, Inc. System and method for display device with reinforcing substance
US7545550B2 (en) 2004-09-27 2009-06-09 Idc, Llc Systems and methods of actuating MEMS display elements
US7898521B2 (en) 2004-09-27 2011-03-01 Qualcomm Mems Technologies, Inc. Device and method for wavelength filtering
US7813026B2 (en) 2004-09-27 2010-10-12 Qualcomm Mems Technologies, Inc. System and method of reducing color shift in a display
US7920135B2 (en) 2004-09-27 2011-04-05 Qualcomm Mems Technologies, Inc. Method and system for driving a bi-stable display
US7630119B2 (en) 2004-09-27 2009-12-08 Qualcomm Mems Technologies, Inc. Apparatus and method for reducing slippage between structures in an interferometric modulator
US7553684B2 (en) 2004-09-27 2009-06-30 Idc, Llc Method of fabricating interferometric devices using lift-off processing techniques
US7719500B2 (en) 2004-09-27 2010-05-18 Qualcomm Mems Technologies, Inc. Reflective display pixels arranged in non-rectangular arrays
US7684104B2 (en) 2004-09-27 2010-03-23 Idc, Llc MEMS using filler material and method
US7372613B2 (en) 2004-09-27 2008-05-13 Idc, Llc Method and device for multistate interferometric light modulation
US8310441B2 (en) 2004-09-27 2012-11-13 Qualcomm Mems Technologies, Inc. Method and system for writing data to MEMS display elements
US20060076634A1 (en) 2004-09-27 2006-04-13 Lauren Palmateer Method and system for packaging MEMS devices with incorporated getter
US7321456B2 (en) 2004-09-27 2008-01-22 Idc, Llc Method and device for corner interferometric modulation
US7429334B2 (en) 2004-09-27 2008-09-30 Idc, Llc Methods of fabricating interferometric modulators by selectively removing a material
US7668415B2 (en) 2004-09-27 2010-02-23 Qualcomm Mems Technologies, Inc. Method and device for providing electronic circuitry on a backplate
US7299681B2 (en) 2004-09-27 2007-11-27 Idc, Llc Method and system for detecting leak in electronic devices
US8124434B2 (en) 2004-09-27 2012-02-28 Qualcomm Mems Technologies, Inc. Method and system for packaging a display
US7453579B2 (en) 2004-09-27 2008-11-18 Idc, Llc Measurement of the dynamic characteristics of interferometric modulators
US7327510B2 (en) 2004-09-27 2008-02-05 Idc, Llc Process for modifying offset voltage characteristics of an interferometric modulator
US7302157B2 (en) 2004-09-27 2007-11-27 Idc, Llc System and method for multi-level brightness in interferometric modulation
US7417783B2 (en) 2004-09-27 2008-08-26 Idc, Llc Mirror and mirror layer for optical modulator and method
US7460246B2 (en) 2004-09-27 2008-12-02 Idc, Llc Method and system for sensing light using interferometric elements
US7724993B2 (en) 2004-09-27 2010-05-25 Qualcomm Mems Technologies, Inc. MEMS switches with deforming membranes
TW200628877A (en) 2005-02-04 2006-08-16 Prime View Int Co Ltd Method of manufacturing optical interference type color display
US7948457B2 (en) 2005-05-05 2011-05-24 Qualcomm Mems Technologies, Inc. Systems and methods of actuating MEMS display elements
US7920136B2 (en) 2005-05-05 2011-04-05 Qualcomm Mems Technologies, Inc. System and method of driving a MEMS display device
WO2006121784A1 (en) 2005-05-05 2006-11-16 Qualcomm Incorporated, Inc. Dynamic driver ic and display panel configuration
CN101228091A (en) 2005-07-22 2008-07-23 高通股份有限公司 Support structure for MEMS device and methods thereof
EP2495212A3 (en) 2005-07-22 2012-10-31 QUALCOMM MEMS Technologies, Inc. Mems devices having support structures and methods of fabricating the same
WO2007013939A1 (en) 2005-07-22 2007-02-01 Qualcomm Incorporated Support structure for mems device and methods therefor
CN101228093B (en) 2005-07-22 2012-11-28 高通Mems科技公司 MEMS devices having support structures and methods of fabricating the same
EP1754683A1 (en) * 2005-08-18 2007-02-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Micromechanical element
US7355779B2 (en) 2005-09-02 2008-04-08 Idc, Llc Method and system for driving MEMS display elements
US7630114B2 (en) 2005-10-28 2009-12-08 Idc, Llc Diffusion barrier layer for MEMS devices
US8391630B2 (en) 2005-12-22 2013-03-05 Qualcomm Mems Technologies, Inc. System and method for power reduction when decompressing video streams for interferometric modulator displays
US7795061B2 (en) 2005-12-29 2010-09-14 Qualcomm Mems Technologies, Inc. Method of creating MEMS device cavities by a non-etching process
US7636151B2 (en) 2006-01-06 2009-12-22 Qualcomm Mems Technologies, Inc. System and method for providing residual stress test structures
US7916980B2 (en) 2006-01-13 2011-03-29 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US7382515B2 (en) 2006-01-18 2008-06-03 Qualcomm Mems Technologies, Inc. Silicon-rich silicon nitrides as etch stops in MEMS manufacture
US8194056B2 (en) 2006-02-09 2012-06-05 Qualcomm Mems Technologies Inc. Method and system for writing data to MEMS display elements
US7582952B2 (en) 2006-02-21 2009-09-01 Qualcomm Mems Technologies, Inc. Method for providing and removing discharging interconnect for chip-on-glass output leads and structures thereof
US7547568B2 (en) 2006-02-22 2009-06-16 Qualcomm Mems Technologies, Inc. Electrical conditioning of MEMS device and insulating layer thereof
US7550810B2 (en) 2006-02-23 2009-06-23 Qualcomm Mems Technologies, Inc. MEMS device having a layer movable at asymmetric rates
US7450295B2 (en) 2006-03-02 2008-11-11 Qualcomm Mems Technologies, Inc. Methods for producing MEMS with protective coatings using multi-component sacrificial layers
US7643203B2 (en) 2006-04-10 2010-01-05 Qualcomm Mems Technologies, Inc. Interferometric optical display system with broadband characteristics
US7903047B2 (en) 2006-04-17 2011-03-08 Qualcomm Mems Technologies, Inc. Mode indicator for interferometric modulator displays
US7527996B2 (en) 2006-04-19 2009-05-05 Qualcomm Mems Technologies, Inc. Non-planar surface structures and process for microelectromechanical systems
US7623287B2 (en) 2006-04-19 2009-11-24 Qualcomm Mems Technologies, Inc. Non-planar surface structures and process for microelectromechanical systems
US7711239B2 (en) 2006-04-19 2010-05-04 Qualcomm Mems Technologies, Inc. Microelectromechanical device and method utilizing nanoparticles
US7417784B2 (en) 2006-04-19 2008-08-26 Qualcomm Mems Technologies, Inc. Microelectromechanical device and method utilizing a porous surface
US8049713B2 (en) 2006-04-24 2011-11-01 Qualcomm Mems Technologies, Inc. Power consumption optimized display update
US7369292B2 (en) 2006-05-03 2008-05-06 Qualcomm Mems Technologies, Inc. Electrode and interconnect materials for MEMS devices
US7321457B2 (en) 2006-06-01 2008-01-22 Qualcomm Incorporated Process and structure for fabrication of MEMS device having isolated edge posts
US7405863B2 (en) 2006-06-01 2008-07-29 Qualcomm Mems Technologies, Inc. Patterning of mechanical layer in MEMS to reduce stresses at supports
US7649671B2 (en) 2006-06-01 2010-01-19 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device with electrostatic actuation and release
US7471442B2 (en) 2006-06-15 2008-12-30 Qualcomm Mems Technologies, Inc. Method and apparatus for low range bit depth enhancements for MEMS display architectures
US7702192B2 (en) 2006-06-21 2010-04-20 Qualcomm Mems Technologies, Inc. Systems and methods for driving MEMS display
US7835061B2 (en) 2006-06-28 2010-11-16 Qualcomm Mems Technologies, Inc. Support structures for free-standing electromechanical devices
US7385744B2 (en) 2006-06-28 2008-06-10 Qualcomm Mems Technologies, Inc. Support structure for free-standing MEMS device and methods for forming the same
US7777715B2 (en) 2006-06-29 2010-08-17 Qualcomm Mems Technologies, Inc. Passive circuits for de-multiplexing display inputs
US7527998B2 (en) 2006-06-30 2009-05-05 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US7388704B2 (en) 2006-06-30 2008-06-17 Qualcomm Mems Technologies, Inc. Determination of interferometric modulator mirror curvature and airgap variation using digital photographs
JP4327183B2 (en) * 2006-07-31 2009-09-09 株式会社日立製作所 High pressure fuel pump control device for internal combustion engine
US7566664B2 (en) 2006-08-02 2009-07-28 Qualcomm Mems Technologies, Inc. Selective etching of MEMS using gaseous halides and reactive co-etchants
US7763546B2 (en) 2006-08-02 2010-07-27 Qualcomm Mems Technologies, Inc. Methods for reducing surface charges during the manufacture of microelectromechanical systems devices
US8872085B2 (en) 2006-10-06 2014-10-28 Qualcomm Mems Technologies, Inc. Display device having front illuminator with turning features
KR101628340B1 (en) 2006-10-06 2016-06-08 퀄컴 엠이엠에스 테크놀로지스, 인크. Display device, and method of forming display
US7545552B2 (en) 2006-10-19 2009-06-09 Qualcomm Mems Technologies, Inc. Sacrificial spacer process and resultant structure for MEMS support structure
US7706042B2 (en) 2006-12-20 2010-04-27 Qualcomm Mems Technologies, Inc. MEMS device and interconnects for same
US7535621B2 (en) 2006-12-27 2009-05-19 Qualcomm Mems Technologies, Inc. Aluminum fluoride films for microelectromechanical system applications
US7733552B2 (en) 2007-03-21 2010-06-08 Qualcomm Mems Technologies, Inc MEMS cavity-coating layers and methods
US7719752B2 (en) 2007-05-11 2010-05-18 Qualcomm Mems Technologies, Inc. MEMS structures, methods of fabricating MEMS components on separate substrates and assembly of same
US7625825B2 (en) 2007-06-14 2009-12-01 Qualcomm Mems Technologies, Inc. Method of patterning mechanical layer for MEMS structures
US7569488B2 (en) * 2007-06-22 2009-08-04 Qualcomm Mems Technologies, Inc. Methods of making a MEMS device by monitoring a process parameter
US8068268B2 (en) 2007-07-03 2011-11-29 Qualcomm Mems Technologies, Inc. MEMS devices having improved uniformity and methods for making them
US8068710B2 (en) 2007-12-07 2011-11-29 Qualcomm Mems Technologies, Inc. Decoupled holographic film and diffuser
US7863079B2 (en) 2008-02-05 2011-01-04 Qualcomm Mems Technologies, Inc. Methods of reducing CD loss in a microelectromechanical device
US7851239B2 (en) * 2008-06-05 2010-12-14 Qualcomm Mems Technologies, Inc. Low temperature amorphous silicon sacrificial layer for controlled adhesion in MEMS devices
JP5342016B2 (en) 2009-01-13 2013-11-13 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Large area light panel and screen
US8736590B2 (en) 2009-03-27 2014-05-27 Qualcomm Mems Technologies, Inc. Low voltage driver scheme for interferometric modulators
US7864403B2 (en) 2009-03-27 2011-01-04 Qualcomm Mems Technologies, Inc. Post-release adjustment of interferometric modulator reflectivity
WO2010138763A1 (en) 2009-05-29 2010-12-02 Qualcomm Mems Technologies, Inc. Illumination devices and methods of fabrication thereof
CN102834761A (en) 2010-04-09 2012-12-19 高通Mems科技公司 Mechanical layer and methods of forming the same
US8402647B2 (en) 2010-08-25 2013-03-26 Qualcomm Mems Technologies Inc. Methods of manufacturing illumination systems
US9134527B2 (en) 2011-04-04 2015-09-15 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8963159B2 (en) 2011-04-04 2015-02-24 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8659816B2 (en) 2011-04-25 2014-02-25 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of making the same
JP6320216B2 (en) * 2014-07-23 2018-05-09 浜松ホトニクス株式会社 Optical shutter

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3001447A (en) * 1957-08-29 1961-09-26 Zeiss Ikon A G Stuttgart Image reproducing device for visible and invisible radiation images
US3924228A (en) * 1975-01-06 1975-12-02 Bendix Corp Electrostatically actuated display panel
US4087810A (en) * 1976-06-30 1978-05-02 International Business Machines Corporation Membrane deformographic display, and method of making
US4441791A (en) * 1980-09-02 1984-04-10 Texas Instruments Incorporated Deformable mirror light modulator
US4638309A (en) * 1983-09-08 1987-01-20 Texas Instruments Incorporated Spatial light modulator drive system
US4566935A (en) * 1984-07-31 1986-01-28 Texas Instruments Incorporated Spatial light modulator and method
DE3614016A1 (en) * 1986-04-25 1987-10-29 Dornier System Gmbh RADAR TRANSPARENT FILM WITH CONTROLLABLE INFRARED REFLECTION FOR CURRENT PURPOSES
US4871220A (en) * 1988-06-15 1989-10-03 Litton Systems, Inc. Short wavelength pass filter having a metal mesh on a semiconducting substrate
GB2246474A (en) * 1990-07-24 1992-01-29 British Aerospace A layered frequency selective surface assembly

Also Published As

Publication number Publication date
EP0554847A1 (en) 1993-08-11
JPH06221921A (en) 1994-08-12
CA2088176A1 (en) 1993-08-06
DE69305375T2 (en) 1997-02-27
TW235339B (en) 1994-12-01
DE69305375D1 (en) 1996-11-21
EP0554847B1 (en) 1996-10-16
KR100294035B1 (en) 2001-09-17
US5231532A (en) 1993-07-27

Similar Documents

Publication Publication Date Title
CA2088176C (en) Switchable resonant filter for optical radiation
EP1961077B1 (en) Selective reflective and absorptive surfaces and method for resonantly coupling incident radiation
EP1969391B1 (en) Thin film emitter-absorber apparatus and methods
US11037973B2 (en) Optical surface-scattering elements and metasurfaces
US20190079321A1 (en) Active metasurfaces for dynamic polarization conversion
US9007687B2 (en) Thin film emitter-absorber apparatus and methods
US6144512A (en) Dynamic filter structures
US7864394B1 (en) Dynamically variable metamaterial lens and method
EP0468623B1 (en) A layered frequency selective surface assembly and method of modulating the power or frequency characteristics thereof
KR102026739B1 (en) tunable nano-antenna and methods of manufacturing and operating the same
EP3216087A1 (en) Multiband wavelength selective device
JP5325299B2 (en) Tunable nanowire resonant cavity for light modulation
CN111856783A (en) Optical device and method for manufacturing the same
WO2013062795A1 (en) Electrically-tunable optical filter based on fano resonance
KR101928440B1 (en) Tunable terahertz metamaterial filter
EP0922972A1 (en) Optically black absorption or emission surface and method for producing the same
US5270872A (en) Superconducting submicron filter
IL263286A (en) Optically transparent electromagnetically shielding element comprising a plurality of zones
Nemati et al. Electrically tunable polarization-insensitive MIM plasmonic metasurface operating in transmission mode
US10955721B1 (en) Multi-order, tunable Fabry-Perot etalon filter with wavelength down-selector
Lv et al. Tunable liquid crystal metasurface with polarization selection characteristic
WO2001039324A1 (en) Scanning continuous lens antenna device
US5161068A (en) Superconducting searching filter
Liang et al. Reconfigurable frequency selective surfaces with silicon switches
US7796334B1 (en) Apparatus for reflecting high-intensity electromagnetic radiation

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed