CA2112278A1 - Noise-reduction system - Google Patents

Noise-reduction system

Info

Publication number
CA2112278A1
CA2112278A1 CA002112278A CA2112278A CA2112278A1 CA 2112278 A1 CA2112278 A1 CA 2112278A1 CA 002112278 A CA002112278 A CA 002112278A CA 2112278 A CA2112278 A CA 2112278A CA 2112278 A1 CA2112278 A1 CA 2112278A1
Authority
CA
Canada
Prior art keywords
speech
noise
bin
average
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002112278A
Other languages
French (fr)
Inventor
Andrew Sendyk
Jin Yang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harris Canada Inc
Original Assignee
Novatel Communications Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novatel Communications Ltd filed Critical Novatel Communications Ltd
Publication of CA2112278A1 publication Critical patent/CA2112278A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Abstract

ABSTRACT
A noise-suppression circuit (10) divides the signal from a microphone (12) into a plurality of frequency sub-bands by means of a noise band divider (18) and a subtraction circuit (36). By means of gain circuits (32) and (34), it applies separate gains to the separate bands and then recombines them in a signal combiner (38) to generate an output signal in which the noise has been suppressed. Separate gains are applied only to the lower subbands in the voice spectrum. Accordingly, the noise-band divider (18) is required to compute spectral components for only those bands. By employing a sliding-discrete-Fourier-transform method, the noise-band divider (18) computes the spectral components on a sample-by-sample basis, and circuitry (50, 52) for determining the individual gains can therefore update them on a sample-by-sample basis, too.

Description

~ 2 2 1i1 8 NOISE-REDUCTION SYSTEM

BACKGROUND OF THE INVENTION
The present invention is directed to electronic devices for 5 suppressing background noise of the type that, for example, occurs when a mobile-telephone user employs a hands-free telephone in an automobile.
A mobile-cellular-telephone user's voice often has to compete with traffic and similar noise, which tends to reduce the intelligibility of 10 the speech that his cellulal telephone set transmits from his locatioll. To reduce this noise, a general type of noise-suppression system has been proposed in which the signal picked up by the microphone (i.e., speech plus noise) is divided into frequency bins, which are subjected to different gains before being added back together to produce the 15 transmitted signal. ~Of course, this operation can be performed at the receiving end, but for the sake of simplicity we will describe it only as ` occurring at the transmitter end.) The different gains are chosen by -; reference to estimates of the relationship between noise and voice content in the various bins: the greater the noise content in a given bin, 20 the lower the gain will be for that bin. Tn this way, the speech content of . the signal is ernphasized at the expense of its noise content.
The noise-power level is estimated in any one of a number of ways, most of which involve employing a speech detector to identify intervals during which no speech is present and measuring the spectral 25 content of the signal during those no-speech interva]s.
Properly applied, this use of frequency-depelldent ~aills does , , r ' ~. ~ '" '' :, , :
.

~ ~ ~. 2 ~ ~ 8 increase the intelligibility of the received signal. It nonetheless has certain aspects that tend to be disadvantageous. ln the first place, many implementations tend to be afflicted with "flutter." A certain minimum record, orframe of input signal is required in order to divide it into the s requisite number of frequency bands, and the abrupt changes in the gain values at the end of each such record during non-speech intelvals can cause a fluttering sound, which users find annoying. Methods exist for alleviating this problem, but ihey tend to have drawbacks of their own.
For instance, some systems temporally "smooth" the gain values between o input records by incrementally changing the gains, at each sample time during a frame, toward the gain dictated by the complltation at the end of the last frame. This approach does largely eliminatc the flutter problem, but it also reduces the system's responsiveness to changillg noise conditions.
s One could solve the frame problem by using a bank of parallel bandpass filters, each of which continually computes the frequency content of its respective band. But most commonly used bandpass-filter implementations would make obtaining the necessary resolution and reconstructing the jgain-adjusted signals prohibitively computation-intensive for many applications.
Another drawback of conveDtional implementations of this general approach is that they distort the speech signal: the relative amplitudes of the frequency components in the transmitted signal are not the same as they were in the signal that the microphone received.

:: :

~ l :1. 2 ;~ 7 ~

SUM~IARY OF THE INVENTION
: The present invention reduces these effects while retaining the benefits of the frequency-dependent-gain approach.
s One aspect of the present invention, which is p~rticularly applicable to mobile-cellular-telephone installations, takes advantage of the fact that background noise in automobile environments tends to predominate in the lower-frequency part of the speech band, while the information content of the speech fa}ls disproportionately in the higher-10 frequency part. According to this aspect of the invention, gains are separately determined for different bands in the lower-frequency regions, as is conventionAI. But in the upper-frequency bins, which carry a significant part of the intelligibility, gains for different bins are kept equal. As a result, fewer Fourier components and fewer gain values need to be computed, but most of the noise-suppression effect remains, since it is the lower bands that ordinarily contain the most noise.
I Moreover, this approach can avoid most of the distortion that afflicts - conventional frequency-dependent-gain approaches.
In employing this approach, we favor use of a gain function that `` 20 approximates the maximum-likelihood function for high signal-to-noiseratios but approaches a predetermined value between -6db and -20db for low signal-to-noise ratios.
.j In accordance with another aspect of the invention, the gains to be employed for the various frequency bins are re-computed from the `:~ 25 current noise contents at each sample time rather than only once each.~ :

, i :

!i `

' ' i, ' ' ' , .', . .. .

4 2:f~ L"~7~

frame. This largely eliminates the flutter problem without detracting from the system's responsiveness to changing conditions. WiLhout the present invention, such an approach might prove computationally - prohibitive, because the frames used to compute the contents of the s various frequency bins have to be heavily overlapped. In accordance with the present invention, however, the computation is performed by virtue of the "sliding discrete Fourier transform," whereby a Fourier component for a transform of an input record that ends with a given sample is computed from that sample, the corresponding Fourier o component computed for the same-length frame that ended with the previous sample, and the sample with which that same-length frame began. That is, X(ik) =x(i)-x(i-N) + e-j2~ NX(i-l,k), (1) where X(ik) is the kth frequency component in an N-point discrete s Fourier transformation taken over a record that ends with the ith sample, and x(i) is the ith sample of an input signal x from which the transform X is computed. By employing this "sliding DFT," as it is known in some signal-processing contexts, the computational burden that would otherwise result from re-computing the gains at each sample 20 time is greatly reduced.
In accordance with yet another aspect of the invention, the speech detector determines whether speech is present by comparing with a threshold value an average of a plurality of factors Pk associated with respective frequency bins. Each Pk factor is the result of computing a ~s first average of the Fourier components associated with that factor's associated frequency bin for samples that include those taken when the :
.. ~ ,. 9 - ' ' ' ., . ~ :

, '' ~
- ' ,, '" '~'`~" ' ~;
1227g -s -speech detector has indicated the presence of speech, computing a second average of Fourier components associated with that frequency bin for samples taken when the speech detector has indicated the absence of speech, and taking Pk as the ratio that the difference between 5 the first and second averages bears to the first average.

BRIEF DESCRIPI`ION OF THE DRAWINGS
The above and further advantages of the invention may be better understood by referring to the following description in conjunction with o the accompanying drawings, in whicll:

Fig. 1 is a b}ock diagram of the front-end audio-frequellcy section ` of a mobile cellular-telephone transmitter that embodies the teachings of ~ the present invention;
`~ Fig. 2 is a block diagram of the band divider that the transmitte S of Fig. 1 employs;
Fig. 3 is a block diagram of one of the recursive filters employed ~`! in the band divider of Pig. 2; and Fig. 4 is a graph that dep;cts the gain table by which the transmitter of Fig. 1 assigns gains to various frequenc3 bins.

t~
li ., . . i: . .. . .
2 ~22'7 3 DETAII,ED DESCRIPI ION OF ILI,USI'RATIVE EMBODIMENTS
In the transmitter 10 of Fig. 1, a microphoDe 12 converts an incoming acoustic signal into electrical form, and a band-pass filter 14 restricts the spectrum of the resultant signal to a portion of the audible s band in which speech ordinarily occurs. An analog-to-digital converter 16 samples the resultant, filtered signal at a rate sufficient to avoid aliasing, and it converts the samples into digital form. A band divider 18 then determines the contents of various frequency bands of the signal that the incoming digital sequence represents.
o Certain previous noise-suppression arrangements of this general type perform this division into frequency bands in the analog domain;
they use analog bandpass filters. For many applications, however, the size and cost penalties exacted by such an arrangement would be prohibitive, so the division into bands must be performed digitally, lS preferably by obtaining a discrete Fourier transform (DFT). But to obtain Fourier components spaced by, for instance, 100 Hz, the transformation computation must be performed on records that are at least 10 msec in length, and greater frequency resolution requires even longer records for each computation. In the past, this has resulted in a -` 20 tendency to produce flutter, whose elimination, as was explained above, -required either a reduction in responsiveness or a potentially prohibitive increase in computational burden.
In accordance with the present invention, however, the band divider 18 performs the DFT calculation by using the sliding-DFT
approach based on the recursive computation defined by equation (1).
Figs. 2 and 3 depict a way of implementing this computation.
~, :

2 :1 1 2 1 ~

As Fig. 2 shows, the band divider 18 is a sliding-DFT circuit. It includes an N-stage delay line 20, where N is the number of samples in the record required to produce the desired frequency resolution. Block 22 in Fig. 2 represents subtraction of the N-delayed input sequence to s produce a difference signal ~x(i), which is a common input to filters 24a, 24b, and 24c, each of which performs the function of recursively computing a different Fourier component X(i,k).

Fig. 3 depicts filter 24b in detail. As Fig. 3 shows, that filter is implemented simply by a single-stage delay 26, one complex multiplier o 28, and one complex adder 30, which together reculsively compute the contents of a frequellcy bin for a frame that en(ls with the c~lrrellt sample period in accordance with equation (1).
We digress at this point to note that, although Figs. 2 and 3 depict the computations for the various frequency bins in accordance with our ~s invention as being performed in parallel, typical embodiments of the invention will implement these filters and the other digital circuitry in Fig. 1 in a single digital signal processor so that common hardware will embody the various circuits. Many of the computations that are shown conceptually as occurring in parallel will, strictly speaking, be performed 20 serially.
As is conventional in this general class of noise-suppression circuits, a frequency-dependent-gain circuit 32 multiplies the different frequency-bin contents by respective, typically different gain values.
According to one aspect of the present invention, however, individually 25 determined (and thus potentially different) gains are applied only to L, lower-frequency bins, where L, is a number of bins that spans only part of . . - ., . . . . ~,. ,: .,.. - .. .. .

: . , ; ~ .-; ~
, ;: .. . . .. ;
:

2 1 L2~'7~
j - 8 -the spectrum having significant contents, whereas a conventional arrangement would compute separate gains for all such bins.
Specifica]ly, a single multiplication block 34 applies a common - gain, determined in a manner that will be described below, to the sum of s the real parts of the higher-frequency bins. This sum is obtained by adder 36, which subtracts from each time-domain input sample the sum ~ (scaled by 1/2N) of the real parts of the Fourier components '~ corresponding to the L lowest-frequency bins. A signal-combinjng ` circuit 38 adds the result of the multiplier-34 operation to the sum of the o outputs of gain circuit 32 to produce the frequency-suppressed time-domain signal, which can be converted back to analog form by means of a digital-to-analog converter 39 or, more typically, subjected to other digital-signal-processing functions, represented by block 40, required for the particular transmission protocol employed.
As was mentioned above, gain circuits 32 and 34 as well as subtraction circuit 36 all operate on only the real parts of the Fourier coefficients, and the signal combiner 38 generates the output signal merely by adding together the gain-adjusted versions of these real parts without an explicit transformation from the frequency domain to the ~: 20 time domain. To understand this, first consider the straightforward -:
i: result of transforming the Fourier transform back into the time domain: -N-1 .~
Y C P) N ~ (2) k=0 c where y is the time-dornain resu]t of the inverse-transformation process and X(ik) is the kth Fourier component computed over the N-point ~s input record that ends at the ith sample. Without gain modification, of ~i ,~
.: : ~ . . . .
..

::

2 1 1 '278 g course, y = x. Mote that, because of the particular way in which we `~ choose to implement the sliding-DFT algorithm, the proper inverse transformation is reversed in time order from that of the usual DFT
- convention.
s Because of filter 14, we know that at leastX(iO) and X(i,N/2) will be negligible. We can take advantage of this fact and the symmetry property X(ik) = X*(i,N-k) that results from the fact that the input ` sequence x(i) is purely real to arrive at the following expression ~or the inverse transform:

y(i-p) =N ~, [~e {X(i,k)} cos (~`J - Im {X(i,k)} sin [~J ] (3) ~-1 We now take into account the effect of the frequency-dependent gains by multiplying each frequency component by its respective gain G(ik) computed ~or the kth frequency bin at the ith time interval:

y(i-p)= N ~, ~(i,k) [~e {X(i,k)} cos [~`J -Im {X(i,k)} sin [~ ~ (4) At each sample time, however, we are interested only iny(i), rather than the whole time-domain sequence. That is, we need to evaluate equation (4) only for p = O. This means that eJ27 pklN = 1, so the current output sample is simply the sum of the results of multiplying the real parts of the Fourier components by their respective gains:

~ (i) 2 ~ G(i,k)Re {X(i,k)} ( ) Thus, time-domain values can be obtained simply by adding ~ ~t~,~27~
~o together the (scaled) real parts of the frequency-domain values; explicit computation of the inverse transform of equation (2) is not necessary.
We now turn to the manner in which the individual g~ins G(ik) are computed. The general approach is to observe the signal power that s is present in the various frequency bins while speech is not present. The power thus observed will be considered the respective fre~uency bins' noise contents, and the gain for a frequency bin will declease with increased noise. This is the general approach commonly used in noise-suppression arrangements of this type.
10Explanation of the particular manner in which we implement this general approach begins with the assumption that a speech cletector 42 has determined that speech is absent. A power-computatiol1 circuit 44 computes a power value P(ik) = X(i,k)X (ik) for each frequency bin, where the asterisk denotes complex conjugation, and the absence of S speech causes the P(ik) outputs to be applied to a noise-power-update circuit 46. This circuit computes an exponential average of the power present in each bin during periods of speech absence. If the speech detector 42 indicates that speech is absent at time i but that speech was present at time i-l, then circuit 46 computes a bin noise-power level 20 N(ik) from the P(ik) and the noise-power level similarly deterrnined at the last time q at which the speech detector 42 indicated the absence of speech:

N(ik) = ~\NfN(q,k) - P(ik)/ + P(ik), (6) where ~N iS a forgetting factor employed for the exponential averaging.
25Otherwise, the average noise-power level N(ik) for sample time i is computed from its value at the previous sample time and the current ' ;,: : - . , .. : : . .:: .

~; ~ .. l .L 2 2 7 3 ^ bin power value P(ik):
N(ik) = AN~N(i-l,k) - P(i,k)l + P(i~)- (7) ; Regardless of whether the speech detector 42 indicates that speech is present, a signal-power-update circuit 48 computes ror each bin s an exponential average E(i,k) of the power P(i,k) for that bin:
E(i k) = As[E(i-l, k) - P(i k)] + P(i k), (8) where )~s is the exponential-average forgetting factor for the signal-~'i power computation.
i` , j~; Both the gain and the speech-detection determin?ltiolls in the o illustrated embodiment are based on a factor p~, whicll is roughly related to the signal-to-noise ratio of the kth bin: .
,, E(i,k)-N(i,k) E(i k) > N(i k) ~'`! O, E(i,k) < N(i,k)-Block 50 represents the Pk computation. The speech detector 42 S makes its decision based on a comparison between a thieshold value Pth and the mean value Pave of the pk'S in the L bands for which gains are . individually determined:

P~ PI- , (10) 2 7 ~

If Pave is less than p,/" the speech detector 42 indicates that speech is absent. Otherwise, it indicates that speech is present A gain-value generator 52 determines the individual gains G(ik) of the L low-frequency bins in accordance with a gain tab]le that Fig. 4 s depicts~ For Pk values that correspond to a high signal-to noise ratios, the table entries approximate the maximum-likelihood values discussed, for example, in McAulay and Malpass, "Speech Enhancement Using a Soft-Decision Noise Suppression Filter," IEEE Trans. Acoustics. Speech and Signal Processin~, vol. ASSP-28, no. 2, April 1980, pp. 137-145, o particularly equation (31~. For lower SNR values, the table departs from these values, approacllillg a lower limit cletermined empirically to produce desirable results. In the illustrated embodilllent, that limit is -11db, but this subjectively determined lower limit could assume other values between -6db and -20db. Again, the gain-value generator 52, as lS well as all of the other circuits in Fig. 1 except for the microphone 12 and bandpass filter 14, would typically be embodied in the common circuitry of a single digital-signal-processing chip.
While we employ the gain table to assign gains individually to the L lower-frequency bins, the gain applied in block 34 to the higher-20 frequency bins is simp]y the highest of any of the L gains employed at that sample time. This results frorn our recognition that noi~e in automobile environments tends to predominate in the parts of the - spectrum below about 1000 Hz, while much of the information content in the speech signal occurs above that frequency level. Therefore, by 25 computing individual spectral contents and gains for only the "noise band" below 1000 Hz, we have greatly reduced the computation required for this type of noise suppression. Rather th~n computing, say, twenty-: .:
,, - , , ~; . , , . .

. ,:. . . . . .

L 2 ~ rl 3 one spectral components in order to achieve 125-Hz resolution, the present invention requires computing separate gains and spectral components for only srx bins at that resolution and yet achieves most of the noise suppression that would result from separate computation of all 'i 5 bins.
, Of course, the 1000-Hz value is not critical, and some of the value of the present invention can be obtained without requiring that gains for absolutely all lower-frequency bins be determined separately or that a single gain be determined for absolutely all higher-frequency bins.
1o However, we believe that the gains for at least a plurality of the : frequency bins above 800 Hz shollld be commonly determinecl and that those for at least a plurality below 15ûO Hz shollld be determirled separately.
The noise suppression is obtained with much less noticeable S speech distortion than would otherwise result from the different gain values. Moreover, by employing a sliding-DFT method to obtain the various spectral components, we are able to compute the output without ~ an explicit re-transformation into the time domain and without the ,` potentially prohibitive computational burden that, for instance, a fast-20 Fourier-transform algorithm would require for the sample-by-sample gain-value updates that we perform. The present invention thus constitutes a significant advance in the art.

' :
'

Claims (16)

1. For reducing the noise content of a sampled input signal consisting of a sequence of input samples, a noise-reduction circuit comprising:
A) a speech detector for determining whether the input signal includes speech and generating a speech-detector output that indicates whether speech is present or absent in the input signal;
B) a sliding-DFT circuit for recursively computing, for each sample, at least a plurality of the components of the discrete Fourier transform of a sample sequence that ends with that sample, each such Fourier component thereby being associated with a respective frequency bin;
C) a gain-value generator, responsive to the speech-detector output and the computed Fourier components, for generating, from the frequency components associated with each of a plurality of the frequency bins, a gain value associated with that frequency bin by comparing a function of those components computed for samples that include those taken when the speech detector indicated the presence of speech with those components computed only for samples taken when the speech detector indicated the absence of speech;
D) a gain-adjustment circuit for generating an adjusted-Fourier-component value for each bin by multiplying the raw Fourier-component value associated with each bin by the gain value generated for that bin; and E) an output circuit for generating an output from the adjusted frequency-bin values.
2. A noise-reduction circuit as defined in claim 1 wherein the gains for at least a plurality of the frequency bins above 800 Hz are the same while those for at least a plurality of the frequency bins below 1500 Hz are not in general the same.
3. A noise-reductin circuit as defined in claim 2 wherein the gain value for the plurality of frequency bins whose gains are the same is equal to the greatest of the gains of all lower-frequency bins.
4. A noise-reduction circuit as defined in claim 3 wherein the gain-value generator generates the gain value for each of a plurality of frequency bins by computing a first average of the Fourier components associated with that frequency bin for samples that include those taken when the speech detector indicates the presence of speech, computing a second average of the Fourier components associated with that frequency bin for samples taken when the speech detector indicates the absence of speech, and generating as the gain value for that bin a predetermined function of the ratio that the difference between the first and second averages bears to the first average.
5. A noise-reduction circuit as defined in claim 4 wherein the predetermined function yields gain values that approximate maximum-likelihood gain values as the ratio approaches unity and approaches a predetermined value between -6db and -20db as the ratio approaches zero.
6. A noise-reduction circuit as defined in claim 1 wherein the gain-value generator generates the gain value for each of a plurality of frequency bins by computing a first average of the Fourier components associated with that frequency bin for samples that include those taken when the speech detector indicates the presence of speech, computing a second average of the Fourier components associated with that frequency bin for samples taken when the speech detector indicates the absence of speech, and generating as the gain value for that bin a predetermined function of the ratio that the difference between the first and second averages bears to the first average.
7. A noise-reduction circuit as defined in claim 6 wherein the predetermined function yields gain values that approximate maximum-likelihood gain values as the ratio approaches unity and approaches a predetermined value between -6db and -20db as the ratio approaches zero.
8. A noise-reduction circuit as defined in claim 1 wherein the speech detector indicates that speech is present when a value ?ave exceeds a predetermined threshold value and the speech detector indicates the absence of speech when ?ave is less than the predetermined threshold, where ?ave is the average of a plurality of factors ?k associated with respective frequency bins, each factor ?k associated with a given frequency bin being the result of computing a first average of the Fourier components associated with that frequency bin for samples that include those taken when the speech detector has indicated the presence of speech, computing a second average of the Fourier components associated with that frequency bin for samples taken when the speech detector has indicated the absence of speech, and taking as ?k the ratio that the difference between the first and second averages bears to the first average.
9. For reducing the noise content of a sampled input signal consisting of a sequence of input samples, a noise-reduction circuit comprising:
A) a speech detector for determining whether the input signal includes speech and generating a speech-detector output that indicates whether speech is present or absent in the input signal;
B) a DFT circuit for computing, for each sample, at least a plurality of the components of the discrete Fourier transform of a sample sequence that ends with that sample, each such Fourier component thereby being associated with a respective frequency bin;
C) a gain-value generator, responsive to the speech-detector output and the computed Fourier components, for generating, from the frequency components associated with each of a plurality of the frequency bins, a gain value associated with that frequency bin by comparing a function of those components computed for samples taken when the speech detector indicated the presence of speech with those components computed for samples taken when the speech detector indicated the absence of speech, the gains for as least a plurality of the frequency bins above 800 Hz being the same and those for at least a plurality of the frequency bins below 1500 Hz not in general being the same;
D) a gain-adjustment circuit for generating an adjusted-Fourier-component value for each bin by multiplying the raw Fourier-component value associated with each bin by the gain value generated for that bin; and E) an output circuit for generating an output from the adjusted frequency-bin values.
10. A noise-reduction circuit as defined in claim 9 wherein the gain value for the plurality of frequency bins whose gains are the same is equal to the greatest of the gains of all lower-frequency bins.
11. A noise-reduction circuit as defined in claim 10 wherein the gain-value generator generates the gain value for each of a plurality of frequency bins by computing a first average of the Fourier components associated with that frequency bin for samples that include those taken when the speech detector indicates the presence of speech, computing a second average of the Fourier components associated with that frequency bin for samples taken when the speech detector indicates the absence of speech, and generating as the gain value for that bin a predetermined function of the ratio that the difference between the first and second averages bears to the first average.
12. A noise-reduction circuit as defined in claim 11 wherein the predetermined function yields gain values that approximate maximum-likelihood gain values as the ratio approaches unity and approaches a predetermined value between -6db and -20db as the ratio approaches zero.
13. A noise-reduction circuit as defined in claim 9 wherein the gain-value generator generates the gain value for each of a plurality of frequency bins by computing a first average of the Fourier components associated with that frequency bin for samples that include those taken when the speech detector indicates the presence of speech, computing a second average of the Fourier components associated with that frequency bin for samples taken when the speech detector indicates the absence of speech, and generating as the gain value for that bin a predetermined function of the ratio that the difference between the first and second averages bears to the first average.
14. A noise-reduction circuit as defined in claim 13 wherein the predetermined function yields gain values that approximate maximum-likelihood gain values as the ratio approaches unity and approaches a predetermined value between -6db and -20db as the ratio approaches zero.
15. A noise-reduction circuit as defined in claim 9 wherein the speech detector indicates that speech is present when a value ?ave exceeds a predetermined threshold value and the speech detector indicates the absence of speech when ?ave is less than the predetermined threshold, where ?ave is the average of a plurality of factors ?k associated with respective frequency bins, each factor ?k associated with a given frequency bin being the result of computing a first average of the Fourier components associated with that frequency bin for samples that include those taken when the speech detector has indicated the presence of speech, computing a second average of the Fourier components associated with that frequency bin for samples taken when the speech detector indicates the absence of speech, and taking as ?k the ratio that the difference between the first and second averages bears to the first average.
16. In a noise-reduction circuit, adapted to receive a sampled input signal consisting of a sequence of input samples that includes a speech detector for determining whether the input signal includes speech and generating a speech-detector output that indicates whether speech is present or absent in the input signal and circuitry responsive to the speech-detector output and the input signal for processing the input signal to generate as an output signal a noise-reduced version of the input signal the improvement wherein the speech detector comprises means for indicating the absence of speech when ?ave is less than a predetermined threshold where ?ave is the average of a plurality of factors ?k associated with respective frequency bins each factor ?k associated with a given frequency bin being the result of computing a first average of the Fourier components associated with that frequency bin for samples that include those taken when the speech detector has indicated the presence of speech computing a second average of the Fourier components associated with that frequency bin for samples taken when the speech detector has indicated the absence of speech, and taking as ?k the ratio that the difference between the first and second averages bears to the first average.
CA002112278A 1993-02-23 1993-12-23 Noise-reduction system Abandoned CA2112278A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/047,556 1993-02-23
US08/047,556 US5432859A (en) 1993-02-23 1993-02-23 Noise-reduction system

Publications (1)

Publication Number Publication Date
CA2112278A1 true CA2112278A1 (en) 1994-08-24

Family

ID=21949660

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002112278A Abandoned CA2112278A1 (en) 1993-02-23 1993-12-23 Noise-reduction system

Country Status (2)

Country Link
US (1) US5432859A (en)
CA (1) CA2112278A1 (en)

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3685812B2 (en) * 1993-06-29 2005-08-24 ソニー株式会社 Audio signal transmitter / receiver
IT1272653B (en) * 1993-09-20 1997-06-26 Alcatel Italia NOISE REDUCTION METHOD, IN PARTICULAR FOR AUTOMATIC SPEECH RECOGNITION, AND FILTER SUITABLE TO IMPLEMENT THE SAME
JPH07129195A (en) * 1993-11-05 1995-05-19 Nec Corp Sound decoding device
JPH07193548A (en) * 1993-12-25 1995-07-28 Sony Corp Noise reduction processing method
JPH07273840A (en) * 1994-03-25 1995-10-20 Nec Corp Mobile telephone set with voice band control function
FR2722631B1 (en) * 1994-07-13 1996-09-20 France Telecom Etablissement P METHOD AND SYSTEM FOR ADAPTIVE FILTERING BY BLIND EQUALIZATION OF A DIGITAL TELEPHONE SIGNAL AND THEIR APPLICATIONS
US5544250A (en) * 1994-07-18 1996-08-06 Motorola Noise suppression system and method therefor
SE505156C2 (en) * 1995-01-30 1997-07-07 Ericsson Telefon Ab L M Procedure for noise suppression by spectral subtraction
US5768473A (en) * 1995-01-30 1998-06-16 Noise Cancellation Technologies, Inc. Adaptive speech filter
JP3453898B2 (en) * 1995-02-17 2003-10-06 ソニー株式会社 Method and apparatus for reducing noise of audio signal
JP2760373B2 (en) * 1995-03-03 1998-05-28 日本電気株式会社 Noise canceller
JP3591068B2 (en) * 1995-06-30 2004-11-17 ソニー株式会社 Noise reduction method for audio signal
DE19524847C1 (en) * 1995-07-07 1997-02-13 Siemens Ag Device for improving disturbed speech signals
JP3483695B2 (en) * 1996-03-14 2004-01-06 株式会社リコー Voice communication device
US5768392A (en) * 1996-04-16 1998-06-16 Aura Systems Inc. Blind adaptive filtering of unknown signals in unknown noise in quasi-closed loop system
US5721754A (en) * 1996-05-21 1998-02-24 Motorola, Inc. Signal quality detector and methods thereof
US5825898A (en) * 1996-06-27 1998-10-20 Lamar Signal Processing Ltd. System and method for adaptive interference cancelling
US5963899A (en) * 1996-08-07 1999-10-05 U S West, Inc. Method and system for region based filtering of speech
US5806025A (en) * 1996-08-07 1998-09-08 U S West, Inc. Method and system for adaptive filtering of speech signals using signal-to-noise ratio to choose subband filter bank
US6098038A (en) * 1996-09-27 2000-08-01 Oregon Graduate Institute Of Science & Technology Method and system for adaptive speech enhancement using frequency specific signal-to-noise ratio estimates
US6178248B1 (en) 1997-04-14 2001-01-23 Andrea Electronics Corporation Dual-processing interference cancelling system and method
US6122384A (en) * 1997-09-02 2000-09-19 Qualcomm Inc. Noise suppression system and method
US6505057B1 (en) 1998-01-23 2003-01-07 Digisonix Llc Integrated vehicle voice enhancement system and hands-free cellular telephone system
US6157908A (en) * 1998-01-27 2000-12-05 Hm Electronics, Inc. Order point communication system and method
US6175602B1 (en) * 1998-05-27 2001-01-16 Telefonaktiebolaget Lm Ericsson (Publ) Signal noise reduction by spectral subtraction using linear convolution and casual filtering
US6459914B1 (en) * 1998-05-27 2002-10-01 Telefonaktiebolaget Lm Ericsson (Publ) Signal noise reduction by spectral subtraction using spectrum dependent exponential gain function averaging
US6088668A (en) 1998-06-22 2000-07-11 D.S.P.C. Technologies Ltd. Noise suppressor having weighted gain smoothing
EP0967763B1 (en) * 1998-06-29 2004-12-01 Alcatel Multicarrier receiver with per-carrier RLS frequency domain equalisation
US7209567B1 (en) 1998-07-09 2007-04-24 Purdue Research Foundation Communication system with adaptive noise suppression
US6453289B1 (en) * 1998-07-24 2002-09-17 Hughes Electronics Corporation Method of noise reduction for speech codecs
US6122610A (en) * 1998-09-23 2000-09-19 Verance Corporation Noise suppression for low bitrate speech coder
ES2284475T3 (en) 1999-01-07 2007-11-16 Tellabs Operations, Inc. METHOD AND APPARATUS FOR THE SUPPRESSION OF NOISE ADAPTIVELY.
US6363345B1 (en) 1999-02-18 2002-03-26 Andrea Electronics Corporation System, method and apparatus for cancelling noise
US6594367B1 (en) 1999-10-25 2003-07-15 Andrea Electronics Corporation Super directional beamforming design and implementation
KR20020056957A (en) * 1999-12-03 2002-07-10 비센트 비.인그라시아, 알크 엠 아헨 Method and apparatus for suppressing acoustic background noise in a communication system
ATE248497T1 (en) * 1999-12-09 2003-09-15 Frederick Johannes Bruwer VOICE DISTRIBUTION SYSTEM
US6282231B1 (en) * 1999-12-14 2001-08-28 Sirf Technology, Inc. Strong signal cancellation to enhance processing of weak spread spectrum signal
US7058572B1 (en) * 2000-01-28 2006-06-06 Nortel Networks Limited Reducing acoustic noise in wireless and landline based telephony
US7035790B2 (en) * 2000-06-02 2006-04-25 Canon Kabushiki Kaisha Speech processing system
US7072833B2 (en) * 2000-06-02 2006-07-04 Canon Kabushiki Kaisha Speech processing system
US7010483B2 (en) * 2000-06-02 2006-03-07 Canon Kabushiki Kaisha Speech processing system
US20020026253A1 (en) * 2000-06-02 2002-02-28 Rajan Jebu Jacob Speech processing apparatus
JP3574123B2 (en) * 2001-03-28 2004-10-06 三菱電機株式会社 Noise suppression device
US6959276B2 (en) * 2001-09-27 2005-10-25 Microsoft Corporation Including the category of environmental noise when processing speech signals
US6563885B1 (en) * 2001-10-24 2003-05-13 Texas Instruments Incorporated Decimated noise estimation and/or beamforming for wireless communications
US20030169888A1 (en) * 2002-03-08 2003-09-11 Nikolas Subotic Frequency dependent acoustic beam forming and nulling
US6874796B2 (en) * 2002-12-04 2005-04-05 George A. Mercurio Sulky with buck-bar
JP4583781B2 (en) * 2003-06-12 2010-11-17 アルパイン株式会社 Audio correction device
JP4497911B2 (en) * 2003-12-16 2010-07-07 キヤノン株式会社 Signal detection apparatus and method, and program
CA2454296A1 (en) * 2003-12-29 2005-06-29 Nokia Corporation Method and device for speech enhancement in the presence of background noise
US8543390B2 (en) * 2004-10-26 2013-09-24 Qnx Software Systems Limited Multi-channel periodic signal enhancement system
US7610196B2 (en) 2004-10-26 2009-10-27 Qnx Software Systems (Wavemakers), Inc. Periodic signal enhancement system
US7949520B2 (en) * 2004-10-26 2011-05-24 QNX Software Sytems Co. Adaptive filter pitch extraction
US7716046B2 (en) * 2004-10-26 2010-05-11 Qnx Software Systems (Wavemakers), Inc. Advanced periodic signal enhancement
US8170879B2 (en) * 2004-10-26 2012-05-01 Qnx Software Systems Limited Periodic signal enhancement system
US8306821B2 (en) * 2004-10-26 2012-11-06 Qnx Software Systems Limited Sub-band periodic signal enhancement system
US7680652B2 (en) * 2004-10-26 2010-03-16 Qnx Software Systems (Wavemakers), Inc. Periodic signal enhancement system
EP2107557A3 (en) * 2005-01-14 2010-08-25 Panasonic Corporation Scalable decoding apparatus and method
US7742914B2 (en) * 2005-03-07 2010-06-22 Daniel A. Kosek Audio spectral noise reduction method and apparatus
JP4172530B2 (en) * 2005-09-02 2008-10-29 日本電気株式会社 Noise suppression method and apparatus, and computer program
US20070237341A1 (en) * 2006-04-05 2007-10-11 Creative Technology Ltd Frequency domain noise attenuation utilizing two transducers
US8311590B2 (en) * 2006-12-05 2012-11-13 Hewlett-Packard Development Company, L.P. System and method for improved loudspeaker functionality
US20080231557A1 (en) * 2007-03-20 2008-09-25 Leadis Technology, Inc. Emission control in aged active matrix oled display using voltage ratio or current ratio
US8904400B2 (en) * 2007-09-11 2014-12-02 2236008 Ontario Inc. Processing system having a partitioning component for resource partitioning
US8850154B2 (en) 2007-09-11 2014-09-30 2236008 Ontario Inc. Processing system having memory partitioning
US8694310B2 (en) 2007-09-17 2014-04-08 Qnx Software Systems Limited Remote control server protocol system
US8209514B2 (en) * 2008-02-04 2012-06-26 Qnx Software Systems Limited Media processing system having resource partitioning
JP4968147B2 (en) 2008-03-31 2012-07-04 富士通株式会社 Communication terminal, audio output adjustment method of communication terminal
TWI597987B (en) * 2016-02-19 2017-09-01 中強光電股份有限公司 Method and system for reducing fan noise and electric device using same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4630305A (en) * 1985-07-01 1986-12-16 Motorola, Inc. Automatic gain selector for a noise suppression system
US4630304A (en) * 1985-07-01 1986-12-16 Motorola, Inc. Automatic background noise estimator for a noise suppression system
US4628529A (en) * 1985-07-01 1986-12-09 Motorola, Inc. Noise suppression system
US4811404A (en) * 1987-10-01 1989-03-07 Motorola, Inc. Noise suppression system
US4837832A (en) * 1987-10-20 1989-06-06 Sol Fanshel Electronic hearing aid with gain control means for eliminating low frequency noise
IL84948A0 (en) * 1987-12-25 1988-06-30 D S P Group Israel Ltd Noise reduction system
GB8801014D0 (en) * 1988-01-18 1988-02-17 British Telecomm Noise reduction
US5023906A (en) * 1990-04-24 1991-06-11 The Telephone Connection Method for monitoring telephone call progress
EP0459362B1 (en) * 1990-05-28 1997-01-08 Matsushita Electric Industrial Co., Ltd. Voice signal processor
US5251263A (en) * 1992-05-22 1993-10-05 Andrea Electronics Corporation Adaptive noise cancellation and speech enhancement system and apparatus therefor

Also Published As

Publication number Publication date
US5432859A (en) 1995-07-11

Similar Documents

Publication Publication Date Title
US5432859A (en) Noise-reduction system
US6591234B1 (en) Method and apparatus for adaptively suppressing noise
EP1169883B1 (en) System and method for dual microphone signal noise reduction using spectral subtraction
EP1252796B1 (en) System and method for dual microphone signal noise reduction using spectral subtraction
US6487257B1 (en) Signal noise reduction by time-domain spectral subtraction using fixed filters
US5602962A (en) Mobile radio set comprising a speech processing arrangement
US7454010B1 (en) Noise reduction and comfort noise gain control using bark band weiner filter and linear attenuation
EP1065656B1 (en) Method for reducing noise in an input speech signal
US7174022B1 (en) Small array microphone for beam-forming and noise suppression
KR100594563B1 (en) Signal noise reduction by spectral subtraction using linear convolution and causal filtering
US7649988B2 (en) Comfort noise generator using modified Doblinger noise estimate
US8010355B2 (en) Low complexity noise reduction method
US8306821B2 (en) Sub-band periodic signal enhancement system
KR20010043833A (en) Signal noise reduction by spectral subtraction using spectrum dependent exponential gain function averaging
US6507623B1 (en) Signal noise reduction by time-domain spectral subtraction
EP1141950B1 (en) Noise suppression in a mobile communications system
EP1748426A2 (en) Method and apparatus for adaptively suppressing noise
KR20020061806A (en) The noise-eliminator and the designing method of wavelet transformation

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued