CA2118147A1 - Method for Lowering the Phase Transformation Temperature of a Metal Silicide - Google Patents

Method for Lowering the Phase Transformation Temperature of a Metal Silicide

Info

Publication number
CA2118147A1
CA2118147A1 CA2118147A CA2118147A CA2118147A1 CA 2118147 A1 CA2118147 A1 CA 2118147A1 CA 2118147 A CA2118147 A CA 2118147A CA 2118147 A CA2118147 A CA 2118147A CA 2118147 A1 CA2118147 A1 CA 2118147A1
Authority
CA
Canada
Prior art keywords
metal
refractory metal
precursory
wafer
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA2118147A
Other languages
French (fr)
Other versions
CA2118147C (en
Inventor
Cyril Cabral Jr.
Lawrence A. Clevenger
Francois M. D'heurle
James M.E. Harper
Randy W. Mann
Glen L. Miles
Donald W.D. Rakowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CA2118147A1 publication Critical patent/CA2118147A1/en
Application granted granted Critical
Publication of CA2118147C publication Critical patent/CA2118147C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/04Dopants, special
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/147Silicides

Abstract

The phase transformation temperature of a metal silicide layer formed overlying a silicon layer on a semiconductor wafer is lowered.
First, a refractory metal is disposed proximate to the surface of the silicon layer, a precursory metal is deposited in a layer overlying the refractory metal, and the wafer is heated to a temperature sufficient to form the metal silicide from the precursory metal. The precursory metal may be a refractory metal, and is preferably titanium, tungsten, or cobalt. The concentration of the refractory metal at the surface of the silicon layer is preferably less than about 101 atoms/cm3. The refractory metal may be Mo, Co, W, Ta, Nb, Ru, or Cr, and more preferably is Mo or Co. The heating step used to form the silicide is performed at a temperature less than about 700°C, and more preferably between about 600-700°C. Optionally, the wafer is annealed following the step of disposing the refractory metal and prior to the step of depositing the precursory metal layer. Preferably, this annealing step is performed at a wafer temperature of at least about 900°C.
CA002118147A 1993-10-29 1994-10-14 Method for lowering the phase transformation temperature of a metal silicide Expired - Fee Related CA2118147C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US145,921 1980-05-02
US08/145,921 US5510295A (en) 1993-10-29 1993-10-29 Method for lowering the phase transformation temperature of a metal silicide

Publications (2)

Publication Number Publication Date
CA2118147A1 true CA2118147A1 (en) 1995-04-30
CA2118147C CA2118147C (en) 2000-05-16

Family

ID=22515130

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002118147A Expired - Fee Related CA2118147C (en) 1993-10-29 1994-10-14 Method for lowering the phase transformation temperature of a metal silicide

Country Status (10)

Country Link
US (1) US5510295A (en)
EP (1) EP0651076B1 (en)
JP (1) JP2673103B2 (en)
KR (1) KR0155587B1 (en)
AT (1) ATE183251T1 (en)
BR (1) BR9404247A (en)
CA (1) CA2118147C (en)
DE (1) DE69420004T2 (en)
ES (1) ES2136148T3 (en)
TW (1) TW262573B (en)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982812A (en) * 1995-09-08 1997-03-28 Sony Corp Manufacture of semiconductor device
KR0164072B1 (en) * 1995-11-13 1999-02-01 김주용 Method of forming shallow junction in a semiconductor device
JP2956583B2 (en) * 1996-05-31 1999-10-04 日本電気株式会社 Semiconductor device and manufacturing method thereof
JP3393465B2 (en) * 1996-11-13 2003-04-07 東京エレクトロン株式会社 Method for manufacturing semiconductor device
US5997634A (en) * 1996-11-14 1999-12-07 Micron Technology, Inc. Method of forming a crystalline phase material
KR100220253B1 (en) * 1996-12-27 1999-09-15 김영환 Method of manufacturing mosfet
US6284633B1 (en) * 1997-11-24 2001-09-04 Motorola Inc. Method for forming a tensile plasma enhanced nitride capping layer over a gate electrode
US6242333B1 (en) * 1998-01-06 2001-06-05 Texas Instruments Incorporated Method to enhance the formation of nucleation sites on silicon structures and an improved silicon structure
US6022801A (en) 1998-02-18 2000-02-08 International Business Machines Corporation Method for forming an atomically flat interface for a highly disordered metal-silicon barrier film
US6048791A (en) * 1998-03-31 2000-04-11 Kabushiki Kaisha Toshiba Semiconductor device with electrode formed of conductive layer consisting of polysilicon layer and metal-silicide layer and its manufacturing method
US6492266B1 (en) * 1998-07-09 2002-12-10 Advanced Micro Devices, Inc. Method of forming reliable capped copper interconnects
US6156615A (en) * 1998-09-30 2000-12-05 Advanced Micro Devices, Inc. Method for decreasing the contact resistance of silicide contacts by retrograde implantation of source/drain regions
US6204177B1 (en) 1998-11-04 2001-03-20 Advanced Micro Devices, Inc. Method of forming junction leakage free metal silicide in a semiconductor wafer by alloying refractory metal
US6165903A (en) * 1998-11-04 2000-12-26 Advanced Micro Devices, Inc. Method of forming ultra-shallow junctions in a semiconductor wafer with deposited silicon layer to reduce silicon consumption during salicidation
US5970370A (en) * 1998-12-08 1999-10-19 Advanced Micro Devices Manufacturing capping layer for the fabrication of cobalt salicide structures
KR100329769B1 (en) * 1998-12-22 2002-07-18 박종섭 method for forming titanium polycide gate electrode
US6180521B1 (en) 1999-01-06 2001-01-30 International Business Machines Corporation Process for manufacturing a contact barrier
US6274511B1 (en) 1999-02-24 2001-08-14 Advanced Micro Devices, Inc. Method of forming junction-leakage free metal silicide in a semiconductor wafer by amorphization of refractory metal layer
US6255214B1 (en) 1999-02-24 2001-07-03 Advanced Micro Devices, Inc. Method of forming junction-leakage free metal silicide in a semiconductor wafer by amorphization of source and drain regions
US6187617B1 (en) * 1999-07-29 2001-02-13 International Business Machines Corporation Semiconductor structure having heterogeneous silicide regions and method for forming same
US6383906B1 (en) * 1999-08-19 2002-05-07 Advanced Micro Devices, Inc. Method of forming junction-leakage free metal salicide in a semiconductor wafer with ultra-low silicon consumption
US6297148B1 (en) 1999-08-19 2001-10-02 Advanced Micro Devices, Inc. Method of forming a silicon bottom anti-reflective coating with reduced junction leakage during salicidation
US6440851B1 (en) 1999-10-12 2002-08-27 International Business Machines Corporation Method and structure for controlling the interface roughness of cobalt disilicide
US6281117B1 (en) 1999-10-25 2001-08-28 Chartered Semiconductor Manufacturing Ltd. Method to form uniform silicide features
US6096647A (en) * 1999-10-25 2000-08-01 Chartered Semiconductor Manufacturing Ltd. Method to form CoSi2 on shallow junction by Si implantation
US6331486B1 (en) 2000-03-06 2001-12-18 International Business Machines Corporation Method and structure for reduction of contact resistance of metal silicides using a metal-germanium alloy
US6323130B1 (en) 2000-03-06 2001-11-27 International Business Machines Corporation Method for self-aligned formation of silicide contacts using metal silicon alloys for limited silicon consumption and for reduction of bridging
US6413859B1 (en) 2000-03-06 2002-07-02 International Business Machines Corporation Method and structure for retarding high temperature agglomeration of silicides using alloys
US20020031909A1 (en) * 2000-05-11 2002-03-14 Cyril Cabral Self-aligned silicone process for low resistivity contacts to thin film silicon-on-insulator mosfets
TW531803B (en) * 2000-08-31 2003-05-11 Agere Syst Guardian Corp Electronic circuit structure with improved dielectric properties
US6972932B2 (en) * 2000-09-06 2005-12-06 Seagate Technology Llc High-efficiency single-turn write head for high-speed recording
US6645861B2 (en) 2001-04-18 2003-11-11 International Business Machines Corporation Self-aligned silicide process for silicon sidewall source and drain contacts
US6534871B2 (en) * 2001-05-14 2003-03-18 Sharp Laboratories Of America, Inc. Device including an epitaxial nickel silicide on (100) Si or stable nickel silicide on amorphous Si and a method of fabricating the same
US20040050319A1 (en) 2002-09-13 2004-03-18 Semiconductor Technology Academic Research Center Nickel-silicon compound forming method, semiconductor device manufacturing method, and semiconductor device
BE1015721A3 (en) 2003-10-17 2005-07-05 Imec Inter Uni Micro Electr METHOD FOR REDUCING THE CONTACT RESISTANCE OF THE CONNECTION AREAS OF A SEMICONDUCTOR DEVICE.
US20060175664A1 (en) * 2005-02-07 2006-08-10 Micron Technology, Inc. Semiconductor constructions, and methods of forming metal silicides
US7790617B2 (en) * 2005-11-12 2010-09-07 Chartered Semiconductor Manufacturing, Ltd. Formation of metal silicide layer over copper interconnect for reliability enhancement
JP5887848B2 (en) * 2011-11-10 2016-03-16 トヨタ自動車株式会社 Manufacturing method of semiconductor device
CN104779271B (en) * 2014-01-09 2018-05-01 北大方正集团有限公司 MOS structure and preparation method thereof and the method for making metal silicide

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586172A (en) * 1981-07-03 1983-01-13 Toshiba Corp Semiconductor device
JPS6014475A (en) * 1983-07-05 1985-01-25 Mitsubishi Electric Corp Semiconductor device
JPH079893B2 (en) * 1984-10-18 1995-02-01 松下電子工業株式会社 Method for manufacturing semiconductor device
FR2578272B1 (en) * 1985-03-01 1987-05-22 Centre Nat Rech Scient PROCESS FOR FORMING A TUNGSTEN SILICIDE LAYER ON A SUBSTRATE, ESPECIALLY USEFUL FOR REALIZING INTERCONNECTION LAYERS OF INTEGRATED CIRCUITS.
JPS61208869A (en) * 1985-03-14 1986-09-17 Nec Corp Semiconductor device and manufacture thereof
SE454309B (en) * 1986-08-29 1988-04-18 Stiftelsen Inst Mikrovags PROCEDURE TO MAKE THIN LEADING OR SEMI-CONDUCTIVE LAYERS EMBEDDED IN SILICONE MEDIUM ATLANT IMPLANTATION
JPS63276244A (en) * 1987-05-08 1988-11-14 Nec Corp Manufacture of semiconductor device
US5093280A (en) * 1987-10-13 1992-03-03 Northrop Corporation Refractory metal ohmic contacts and method
US4786611A (en) * 1987-10-19 1988-11-22 Motorola, Inc. Adjusting threshold voltages by diffusion through refractory metal silicides
US4981816A (en) * 1988-10-27 1991-01-01 General Electric Company MO/TI Contact to silicon
JPH039530A (en) * 1989-06-07 1991-01-17 Matsushita Electron Corp Manufacture of mos field effect transistor
JPH0727880B2 (en) * 1989-11-10 1995-03-29 株式会社東芝 Method for manufacturing semiconductor device
US5043300A (en) * 1990-04-16 1991-08-27 Applied Materials, Inc. Single anneal step process for forming titanium silicide on semiconductor wafer
US5047367A (en) * 1990-06-08 1991-09-10 Intel Corporation Process for formation of a self aligned titanium nitride/cobalt silicide bilayer
US5023201A (en) * 1990-08-30 1991-06-11 Cornell Research Foundation, Inc. Selective deposition of tungsten on TiSi2
US5138432A (en) * 1990-08-30 1992-08-11 Cornell Research Foundation, Inc. Selective deposition of tungsten on TiSi2
US5122479A (en) * 1991-04-11 1992-06-16 At&T Bell Laboratories Semiconductor device comprising a silicide layer, and method of making the device
US5108954A (en) * 1991-09-23 1992-04-28 Micron Technology, Inc. Method of reducing contact resistance at silicide/active area interfaces and semiconductor devices produced according to the method
KR960006698B1 (en) * 1993-01-19 1996-05-22 금성일렉트론주식회사 Silicide forming method
US5457069A (en) * 1994-08-31 1995-10-10 National Science Council Process for fabricating device having titanium-tungsten barrier layer and silicide layer contacted shallow junction simultaneously formed

Also Published As

Publication number Publication date
US5510295A (en) 1996-04-23
EP0651076B1 (en) 1999-08-11
DE69420004D1 (en) 1999-09-16
JPH07169711A (en) 1995-07-04
ATE183251T1 (en) 1999-08-15
JP2673103B2 (en) 1997-11-05
EP0651076A1 (en) 1995-05-03
KR0155587B1 (en) 1998-11-16
TW262573B (en) 1995-11-11
KR950011644A (en) 1995-05-15
ES2136148T3 (en) 1999-11-16
CA2118147C (en) 2000-05-16
BR9404247A (en) 1995-06-20
DE69420004T2 (en) 2000-03-30

Similar Documents

Publication Publication Date Title
CA2118147A1 (en) Method for Lowering the Phase Transformation Temperature of a Metal Silicide
EP0525637B1 (en) Method for the formation of tin barrier layer with preferential (111) crystallographic orientation
WO2003080887A3 (en) Methods and apparatus for annealing in physical vapor deposition systems
JPH04280425A (en) Wiring formation
JPH07283411A (en) Formation of gate electrode of semiconductor element
US5300455A (en) Process for producing an electrically conductive diffusion barrier at the metal/silicon interface of a MOS transistor
JPS60213046A (en) Method of forming polyside structure on substrate
US6436820B1 (en) Method for the CVD deposition of a low residual halogen content multi-layered titanium nitride film having a combined thickness greater than 1000 Å
US5457069A (en) Process for fabricating device having titanium-tungsten barrier layer and silicide layer contacted shallow junction simultaneously formed
JPS63289813A (en) Heat treatment of semiconductor wafer
KR100231766B1 (en) Method of fabricating metal layer as interconnector in semiconductor integrated circuit
JPH02213127A (en) Semiconductor integrated circuit device metallic part formation
EP1143501A4 (en) Method of forming thin film
Palmstro/m et al. Thin film interactions of Al and Al (Cu) on TiW
US4871691A (en) Selective deposition process of a refractory metal silicide onto silicon areas
EP0392725A3 (en) Method for fabricating integrated circuits with silicide
JP3095519B2 (en) Method for manufacturing semiconductor device
KR960006698B1 (en) Silicide forming method
JP2522924B2 (en) Method for forming metal silicide film
US4643914A (en) Process and apparatus for the growth of films of silicides of refractory metals and films obtained by this process
Ponpon et al. Growth kinetics of titanium silicide during heating by RTA and furnace annealing
DE3711790C2 (en)
Hamamura et al. Structural change of TiN/Ti/SiO2 multilayers by N2 annealing
Pai et al. Arsenic redistribution during cobalt silicide formation
JPH0677250A (en) Manufacture of thin film transistor

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed