CA2183925A1 - Process for stabilizing the content of glycated protein of a sample on a matrix material - Google Patents

Process for stabilizing the content of glycated protein of a sample on a matrix material

Info

Publication number
CA2183925A1
CA2183925A1 CA002183925A CA2183925A CA2183925A1 CA 2183925 A1 CA2183925 A1 CA 2183925A1 CA 002183925 A CA002183925 A CA 002183925A CA 2183925 A CA2183925 A CA 2183925A CA 2183925 A1 CA2183925 A1 CA 2183925A1
Authority
CA
Canada
Prior art keywords
matrix material
sample
layer
salt
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002183925A
Other languages
French (fr)
Inventor
Rolf Nagel
Jurgen Mistele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roche Diagnostics GmbH
Original Assignee
Boehringer Mannheim GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer Mannheim GmbH filed Critical Boehringer Mannheim GmbH
Publication of CA2183925A1 publication Critical patent/CA2183925A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6842Proteomic analysis of subsets of protein mixtures with reduced complexity, e.g. membrane proteins, phosphoproteins, organelle proteins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/72Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood
    • G01N33/721Haemoglobin
    • G01N33/723Glycosylated haemoglobin
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/72Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood pigments, e.g. haemoglobin, bilirubin or other porphyrins; involving occult blood
    • G01N33/721Haemoglobin
    • G01N33/726Devices

Abstract

The invention concerns a method for stabilizing the content of glycated protein in a sample on a matrix material, which is characterized in that the matrix material is impregnated with boric acid buffer with a pH which is larger or equal to 10.5 or a transition metal salt as well as an at appropriate matrix material, an element for collecting, transporting and storing sample material to be analysed with such a matrix material and a system containing such an element and a sealable covering.

Description

The invention concerns a process for stabilizing the content of glycated protein of a sample on a matrix material and an appropriately treated matrix material for this. In addition the invention concerns an element for collecting, transporting and storing sample material to be analysed containing an absorptive matrix material and a system containing such an element and a sealable covering in which the element can be transported.
The glycation of haemoglobin and serum proteins is increased in patients with diabetes mellitus. The increase is dependent on the glucose concentration and the incubation period of protein with glucose. In these cases the serum proteins, including haemoglobin, are not glycated enzymatically but rather by means of an uncatalysed chemical reaction of glucose with amino groups of proteins. Facperts assume that the concentration of a particular protein-glucose adduct reflects the glucose concentration over a particular period as well as the turn-over rate of the protein. Glycated haemoglobin is regarded as an indicator of the average blood glucose concentration during the last two to three months before the blood collection and examination. Glycated serum protein shows the blood glucose concentration during a shorter period of time. The determination of glycated protein such as glycated haemoglobin (FibAl ~ or glycated serum protein is therefore considerably important for the long-term glycemic control of diabetes patients.
In order to examine blood for the content of glycated protein the sample must often be transported to a far distant laboratory. The content of glycated protein in the sample should not change during this transport period and during a possible subsequent waiting period.
The examination of blood samples which had been stored for a long period for glycated haemoglobin is reported in Clinical Chemistry 29 1080 - 1082 (1983). This shows that 2~83f~25 whole blood can be stored up to 21 days at room temperature with essentially no change in the HbAlc content However, the transport of liquid blood samples is complicated and involves risks such as breakage of the transport vessel. In addition the puncture of a vein is necessary to collect whole blood although the amounts obtained by withdrawing capillary blood from the finger pad would be sut~icient for the analysis. Thus methods have been developed for the transport and analysis of smaller amounts of blood in which capillary blood is applied to filter paper and allowed to dry there. The filter paper is subsequently transported to the site of the examination. Here a disk containing the sample is cut out from the filter paper, eluted and the eluate is examined. The report in Clinical Chemistry 28 386 -387 (1982) refers to such a method. In this report it is stated that the content of glycated protein changes considerably compared to the original sample during blood sample storage on filter paper. After storage ofwhole blood on filter paper considerably increased measured values for glycated protein are found.
The impregnation of filter paper with glucose oxidase to prevent the increase in the content of glycated haemoglobin caused by storage of blood on filter paper is described in Clinical Chemistry 32 869 - 871 (1986). However, impregnation with glucose oxidase was not able to completely prevent the increase ofglycated protein. The false increase in the values can only be reduced by this measure. A further disadvantage of impregnating with glucose oxidase is its own instability during storage under the usual storage conditions.
Similar conclusions are reached by an article in Diabetes Care ~0_, 352 - 355 (1987). Here it is reported that the treatment of filter paper with glucose oxidase or with ethanol cannot satisfactorily prevent a false increase 'tn the values for glycated haemoglobin when blood is stored on filter paper.
The present invention seeks to stabilize the content of glycated protein in a sample when stored on a matrix material. After storage of the glycated protein on a matric material a value should be found for the glycated protein which corresponds to that found after sample collection and before storage.
The invention concerns a process for stabilizing the content of glycated protein of a sample on a matrix material by impregnating the matrix material with a boric acid buffer with a pH greater than or equal to 10.5. A comparable stabilization is also possible when the matrix material carnes a transition metal salt.
The invention in addition concerns an element comprising the matrix material impregnated with boric acid buffer with a pH greater than or equal to 10.5 or it carnes a transition metal salt.
An additional subject matter of the invention is an element for collecting, transporting and storing sample material to be analysed containing an absorptive matrix material wherein the element is characterized in that the matrix material is impregnated with boric acid buffer with a pH greater than or equal to 10.5 or it carries a transition metal salt.
Finally a subject matter of the invention is a system containing an element characterized as above and a sealable covering in which the element can be transported which is characterized in that the element is such as has already been characterized above as being according to the invention.
Within the scope of the present invention matrix materials denote absorptive materials which are capable of absorbing a liquid containing glycated protein. Glycated protein, i.e.
protein carrying sugar residues, is mainly located in the blood but also in sample materials derived from blood such as serum or plasma and moreover also in other body fluids such as urine or saliva. Materials which can absorb such sample materials are preferably fibres but can also be in principle non-fibrous. Preferred fibrous absorptive matrix materials are fleeces, fabrics or knitted fabrics. Fleeces are quite especially preferred.
The fibrous matrix materials can contain glass, cellulose, polyester fibres and also viscose and polyvinyl alcohol. Fleece materials containing meltable copolyester fibres in addition to glass fibres, polyester fibres, polyamide fibres, cellulose fibres or cellulose derivative fibres as described in the European Patent Application 0 571 941 can also be used advantageously as the matrix material. Non-fibrous materials can for example be membranes. ' According to the invention it has turned out that sample material containing glycated protein that is located on a matrix material can be stored very well without any essential change in the content of gfycated protein if the matrix material is impregnated with boric acid buffer with a pH of greater than or equal to 10.5 or if the matrix material carries a transition metal salt. In this case the concentration of the boric acid buffer is of secondary importance. Particularly good results are obtained ifthe boric acid buffer has a pH value of more than or equal to 11. Suitable buffer concentrations are in the range between 300 and 1000 mmol/1, which corresponds to about 18.6 - 62 g/100 ml.
Transition metal salts have a similarly good stabilizing action such as nickel or copper salts.
Nickel salts are particularly preferred. ~t~ater-soluble transition metal salts are preferably used according to the invention. Corresponding chlorides are far example well suited. In order to be active according to the invention transition metal salt concentrations on the matrix material of more than 5 g/m2 and particularly preferably of more than 10 g/m2 have proven to be suitable according to the invention.
Sample material containing glycated protein such as for example glycated haemoglobin which has been applied to a matrix material as described above has resulted in values for glycated protein that are comparable with the original concentration even when measured aRer a long period of storage at increased temperature. All liquids come into consideration as the sample material which have already been mentioned above. Blood or samples derived from blood such as plasma or serum are quite especially preferred. However, according to the invention in principle all liquids can be used that can contain glycated proteins.
In addition all proteins come basically into consideration as glycated proteins which are formed by chemical reaction of a protein with glucose. Glycated haemoglobin which is also ~ 2183925 _5_ named HbAlc is of particular importance. Glycated albumin or glycated serum proteins should also be mentioned in this connection A matrix material as described above which can be used according to the invention to ' stabilize the content ofglycated protein ofa sample can also be contained in an element for collecting, transporting and storing sample material to be analysed. Such an element can for example be made like the HbAlc Via Post~ sold by Boehringer Mannheim. This element is described in Klin. Lab. 39 1080 - 1082 (1993). Instead of a round unimpregnated section of filter paper which is attached to a carrier material, a treated matrix material according to the invention as described above can be used onto which the liquid sample material and in particular blood can be applied in such a way that it is absorbed by the matrix material. In this way the element can be transported to the examination site where the sample is eluted from the matrix material and the eluate can be examined. By using the matrix material according to the invention the sample material contained therein can be stored for a long period without major changes in the content of glycated protein. The application of the matrix material according to the invention has proven to be particularly suitable in particular for the interesting parameter HbAlc.
An element has proven to be particularly suitable for application of the present invention which contains a first and a second layer of absorptive matrix material which are arranged next to and touching one another on an inert carrier material in a contact that enables transfer of liquid in such a way that liquid can pass from the first into the second layer when the first layer is filled with liquid and the first layer can be completely separated from the second layer after application and drying of the sample material. Such an element is described in the German Patent Application P 19 523 061.2. According to the invention a matrix material is used for the first layer which is impregnated as described above and either carries a boric acid buffer with a pH larger than or equal to 10.5 or a transition metal salt.
An important property of the absorptive matrix materials that can be used in such an element is their absorptivity. The absorptivity of the matrix material of the first layer should be equal to or larger than that of the neighbouring layer. This avoids interfering suction effects from developing when sample material is applied to the first layer The absorptivity can be determined according to DIN 53106. For this purpose the lower ' end of samples of 200 +/- I mm in length and 15 +/- 0. I mm in width are immersed perpendicularly 25 mm into distilled water and the distance which the water migrates within min is measured in mm. A person skilled in the art knows how different absorptivities can be adjusted in matrix materials with the same components. For example when manufacturing fleeces different thicknesses can be used. The thicker the fibres used the lower is the absorptivity. A further method is to vary the density of fleeces.
The absorptivity is reduced by an increase in density.
When using fabrics, fabrics with finer fr.bres have a higher absorptivity than fabrics with coarser fibres. However, the absorptivity can also be controlled by different types of twisting of the threads. In addition variations in the absorptivity can be achieved via the type of weaving. Further possibilities for varying the absorptivity can be achieved by using different mixtures of fibres. Thus for e>:ample the absorptivity is reduced by the addition of hydrophobic fibres.
Stiff materials come into particular consideration as the inert support material on which the matrix material layers are located such as for example plastic foil, cardboard, coated paper etc. The matrix material layers are attached to the inert support material in such a way that the uptake of liquid by the matrix materials is not impaired. This can be achieved by using a double-sided adhesive tape or for example also by using hot-melt adhesive.
The matrix material layers must be attached to the inert support material in such a way that the first layer can be completely separated from the second layer after applying and drying the liquid sample material. This is then in particular possible when the first layer is attached only relatively loosely or at certain points only.
The two matrix material layers must be located on the support material next to and touching one another in such a way that liquid can pass from the first layer into the second ~~$3925 layer when the first layer is filled with liquid. This is then possible when at least the edges of the two layers are touching. It is even better, however, if there is a slight overlap of the two layers. It is particularly preferred that the layers are arranged such that the second layer slightly overlaps the first layer.
The size of the matrix material layers must be selected such that the first layer, which is later also to be used as the analytical layer, can be completely filled with the sample liquid.
Excess sample liquid is then taken up by the second layer. The amount of sample which is adequate to determine a particular analyte depends on the type of analyte to be determined.
However, as a rule 5-20 p1 and usually 10 p1 sample is adequate. This volume must be taken up by the first matrix layer and capable of being eluted again later.
For safety reasons the second matrix layer which has the function of a suction layer should be able to absorb a Larger volume. Suction volumes of 10 - 50 p1, preferably 10 - 30 w1 particularly preferably 20 trl are usually adequate for this purpose. It is expedient that the usual dimensions of the matrix material layers are such that the suction volume of the two matrix material layers taken together is at least 30 p1 and preferably at least 50 p1. Such a dimension ensures that the same amount of sample is applied on the first matrix layer of various elements according to the invention with small as well as with large drops of liquid.
In order to achieve an adequate suction volume the smaller first layer usually has an area of3x3 to 8x8 mm.
The arrangement of matrix material layers described above enables a homogeneous distribution of liquid sample material to be achieved in the first layer. Due to the fact that the first layer is completely filled with liquid sample material, reproducible amounts always reach the analysis after separation and elution of the first layer.
In order to transport an element according to the invention after applying the sample material to the analytical station it has also proven to be expedient to transport it in a sealable covering. The covering and element thus form a system. An envelope is for example suitable as the sealable covering such as a letter envelope which encompasses a front part and two side parts as well as a backflap and a sealing flap with which the _ 213925 envelope can for example be glued. Such a covering is also described in the German Patent Application P 19 523 061.2.
The invention is elucidated further in the following examples, and by reference to the accompanying drawing in which:
FIG. 1-is a perspective view of an element of the invention.
With further reference to Fig. 1, an element 10 includes a first layer 1 of absorptive matrix material, a second layer 2 of absorptive matrix material and a support foil 3.
A double-sided adhesive tape 4 mounts layers 1 and 2 on foil-3_ Foil 3 has a semi-circular recess or punch hole 5.

_ g _ Example 1 Stabilizing HbA~ by-boric acid buff A first layer ( 1) of an absorptive matrix material is fixed with the aid of a double-sided ' adhesive tape (4) to a polyester support foil (3) of dimensions 49 x 6 mm with a semicircular punch hole (5) of S mm at its short-sided end as shown in figure 1 in such a way that 0.5-to 1 mm ofits width is glued onto the adhesive tape (4). The later detachability is positively influenced by this relatively narrow attachment.
The second layer (2) of the absorptive matrix material is glued in a width of 5 mm or more.
A fleece which has been manufactured on a paper machine which has the following data is used for the first layer of absorptive matrix material:
80 parts polyester fibres (fibre diameter 1.7 Dtex), 20 parts viscose, 20 parts polyvinyl alcohol; area weight 80 g/m2; suction height 102 mm (DIN 53106).
This fleece was impregnated with one of the boric acid buffers listed in table 1 (62 g boric acid suspended in 800 ml distilled water, adjusted to the desired pH value with 5 mol/1 potassium hydroxide solution and filled up to 1000 ml with distilled water), dried at 50°C
and subsequently cut to a size of 6 x 6 rnm. This matrix takes up ca. 10 p1 of liquid.
A fleece is used for the second layer of absorptive matrix material which corresponds to the first layer but is not impregnated with baric acid buffer.
Ca. 10 ltl EDTA blood containing 5.1 % IibAlc supplemented with 500 mg/dl glucose is applied in each case to the elements according to the invention manufactured in this manner and dried at room temperature for at least 2 hours. In order to simulate a transport the dried sample carriers were stressed for 5 days at 35°C in shipping envelopes.
After removing the first matrix layer with tweezers, the matrix material is eluted in 1 ml haemolysis reagent for the Tina-quant~ test of Boehringer Mannheim GmbH
(Germany) (order number 1 488 457). Subsequently HbAlc is determined according to the immunological method of determinatio:a of Boehringer Mannheim Gmbl-I (Germany) on a Hitachi 717 instrument from Boehringer Mannheim GmbH using reagent with order number 1 488 414 from Boehringer Mannheim GmbH.
The measured results are summarized in table 1 for elements in which the matrix material contains no boric acid buffer or boric acid buffer ofvarious pH values.
Table 1 Storage conditions 5 days at Matrix impregnated with 2 to 8C 35C
HbAlc (%) HbAlc (%) without boric acid 5.6 11.2 boric acid pH 6.3 5.3 10.6 boric acid pH 7.0 5.4 10.1 boric acid pH 8.0 5.3 9.1 boric acid pH 9.0 5.2 7.9 boric acid pH 10.0 5.5 7.0 boric acid pH 10.5 5.0 6.0 boric acid pH 11.0 5.2 5.5 boric acid pH 12.0 5.1 5.3 The result shows that boric acid buffer above a pH value of 10.5 leads to a stabilization of the non-enzymatically glycosylated protein to such an extent that after temperature stress adequate unchanged concentration values are present.
Ezample 2 Stabilization ofHbAl,. by nickel(IIlchloride Analogously to example 1 elements for collecting, transporting and storing sample material to be analysed are manufactured in which, however, the first matrix layer has been - 11 - 21$3925 impregnated with a NiCl2 concentration series between 0 and 200 mmol/I NiCl2 (0; 9.6;
14.4; 19.2; 24.0 and 48 g/1 nickel chloride-6 hydrate dissolved in 1000 ml distilled water) in such a way that various nickel salt concentrations are present in the matrix as listed in table 2. A blood sample such as the one used in example 1 containing 5.1 % I-ibAl c supplemented with 500 mgldl glucose was used. Determination oFHbAlc as in example 1 resulted in the concentration values listed in table 2.
Table 2 Storage conditions 5 days at Matrix impregnated with 2 to 8C 35C
NiCl2 (glm2) HbAlc (%) 116A1c (%) 0 5.6 11.2 4.2 5.4 8.2 6.3 5.1 6.3 8.4 5.2 5.7 10.5 - 4.9 5.8 , 21.0 5.3 4.9

Claims (21)

1. A method for stabilizing the content of glycated protein of a sample on a matrix material, wherein the matrix material is impregnated with a boric acid buffer with a pH which is greater than or equal to 10.5 or with a transition metal salt.
2. A method as claimed in claim 1, wherein the matrix material is impregnated with the boric acid buffer, said buffer establishing a pH of at least 10.5.
3. A method as claimed in claim 2, wherein said pH is at least 11.
4. A method as claimed in claim 1, wherein the matrix material is impregnated with said transition metal salt.
5. A method as claimed in claim 4, wherein said salt is a water-soluble salt present in a concentration of more than 5 g/m2 of said matrix material.
6. A method as claimed in claim 5, wherein said concentration is more than 10 g/m2.
7. A method as claimed in claim 4, 5 or 6, wherein said salt is a nickel salt.
8. A method as claimed in claim 4, 5 or 6, wherein said salt is a copper salt.
9. A method as claimed in any one of claims 1 to 8, wherein said matrix material comprises a fleece.
10. An element comprising a matrix material impregnated with boric acid buffer with a pH which is greater than or equal to 10.5 or with a transition metal salt.
11. An element as claimed in claim 10, wherein the matrix material is impregnated with boric acid buffer with a pH which is greater than or equal to 11.
12. An element as claimed in claim 10 or 11, wherein the matrix material is impregnated with a nickel or copper salt.
13. An element as claimed in claim 10 or 11, wherein the matrix material is impregnated with a water-soluble nickel salt.
14. An element as claimed in claim 12 or 13, wherein the salt is present in a concentration of more than 5 g/m2 of said matrix material.
15. An element as claimed in claim 12 or 13, wherein said concentration is more than 10 g/m2.
16. An element as claimed in any one of claims 10 to 15, wherein said matrix material comprises a fleece.
17. An element for collecting, transporting and storing sample material to be analysed comprising an element for taking up sample material to be tested for a content of glycated protein, said element being as defined in claim 10, 1 l, 12, 13, 14, 15 or 16.
18. An element according to claim 17, further including a support for said matrix material.
19. A device for collecting, transporting and storing sample material to be analysed comprising first and second layers of absorptive matrix material which are arranged next to and touching one another on an inert carrier material, in a contact that enables transfer of liquid in such a way that liquid can pass from the first into the second layer when the first layer is filled with liquid, and the first layer can be completely separated from the second layer after application and drying of the sample material, said first layer being composed of an element as defined in claim 10, 11, 12, 13, 14, 15, 16 or 17.
20. A device according to claim 19 further comprising a sealable covering in which the first and second layers and the inert carrier material are transportable.
21. A device containing an element for collecting, transporting and storing sample material to be analysed, said device comprising a sealable covering in which the element is transportable, wherein the element is as defined in claim 17.
CA002183925A 1995-08-24 1996-08-22 Process for stabilizing the content of glycated protein of a sample on a matrix material Abandoned CA2183925A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19531173.6 1995-08-24
DE19531173A DE19531173A1 (en) 1995-08-24 1995-08-24 Method for stabilizing the content of glycated protein in a sample on a matrix material

Publications (1)

Publication Number Publication Date
CA2183925A1 true CA2183925A1 (en) 1997-02-25

Family

ID=7770291

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002183925A Abandoned CA2183925A1 (en) 1995-08-24 1996-08-22 Process for stabilizing the content of glycated protein of a sample on a matrix material

Country Status (6)

Country Link
US (3) US5959076A (en)
EP (1) EP0760377A3 (en)
JP (1) JPH09166597A (en)
AU (1) AU682999B2 (en)
CA (1) CA2183925A1 (en)
DE (1) DE19531173A1 (en)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19531173A1 (en) * 1995-08-24 1997-02-27 Boehringer Mannheim Gmbh Method for stabilizing the content of glycated protein in a sample on a matrix material
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US7195923B2 (en) * 2001-01-31 2007-03-27 Scripps Laboratories, Inc. Ratiometric determination of glycated protein
JP4272051B2 (en) 2001-06-12 2009-06-03 ペリカン テクノロジーズ インコーポレイテッド Blood sampling apparatus and method
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US7025774B2 (en) 2001-06-12 2006-04-11 Pelikan Technologies, Inc. Tissue penetration device
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
DE60238119D1 (en) 2001-06-12 2010-12-09 Pelikan Technologies Inc ELECTRIC ACTUATOR ELEMENT FOR A LANZETTE
EP1404234B1 (en) 2001-06-12 2011-02-09 Pelikan Technologies Inc. Apparatus for improving success rate of blood yield from a fingerstick
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
ES2336081T3 (en) 2001-06-12 2010-04-08 Pelikan Technologies Inc. SELF-OPTIMIZATION PUNCTURE DEVICE WITH MEANS OF ADAPTATION TO TEMPORARY VARIATIONS IN CUTANEOUS PROPERTIES.
WO2002100254A2 (en) 2001-06-12 2002-12-19 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
GB2380259A (en) * 2001-09-05 2003-04-02 Whatman Plc Stable storage of proteins
EP1423514A2 (en) * 2001-09-05 2004-06-02 WHATMAN plc Stable storage of proteins
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7708701B2 (en) 2002-04-19 2010-05-04 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7175642B2 (en) 2002-04-19 2007-02-13 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7291117B2 (en) 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
DK1633235T3 (en) 2003-06-06 2014-08-18 Sanofi Aventis Deutschland Apparatus for sampling body fluid and detecting analyte
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
EP1671096A4 (en) 2003-09-29 2009-09-16 Pelikan Technologies Inc Method and apparatus for an improved sample capture device
EP1680014A4 (en) 2003-10-14 2009-01-21 Pelikan Technologies Inc Method and apparatus for a variable user interface
EP1706026B1 (en) 2003-12-31 2017-03-01 Sanofi-Aventis Deutschland GmbH Method and apparatus for improving fluidic flow and sample capture
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
US8828203B2 (en) 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
WO2005120365A1 (en) 2004-06-03 2005-12-22 Pelikan Technologies, Inc. Method and apparatus for a fluid sampling device
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
WO2009126900A1 (en) 2008-04-11 2009-10-15 Pelikan Technologies, Inc. Method and apparatus for analyte detecting device
EP2392144A1 (en) 2009-01-29 2011-12-07 Dolby Laboratories Licensing Corporation Methods and devices for sub-sampling and interleaving multiple images, eg stereoscopic
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
CN116438435A (en) * 2020-11-25 2023-07-14 株式会社普欧威盖特 Medium for separating and storing plasma or serum, method for producing same, device, kit, and method for measuring glycated protein

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4001459A (en) * 1974-06-18 1977-01-04 General Foods Corporation Fibrous protein materials
JPS5259174A (en) * 1975-11-10 1977-05-16 Asahi Chem Ind Co Ltd Preparation of n-substituted uracil compounds
US4136025A (en) * 1977-08-18 1979-01-23 Ppg Industries, Inc. Method of cleaning membrane filter
GB2024829B (en) * 1978-06-28 1982-08-04 Amicon Corp Method and product for separation of glycoproteins
US4216234A (en) * 1978-09-21 1980-08-05 Blue Wing Corporation Lipid encapsulated feed supplement and process for producing same
JPS55161238U (en) * 1979-05-04 1980-11-19
SE432194B (en) * 1980-09-17 1984-03-26 Landstingens Inkopscentral MOISTURIZING AND BACTERIODIC ABSORPTION BODY FOR URINE AND FAECES, WHICH INCLUDE A WATER-SOLUBLE COPPER SALT
US4621049A (en) * 1984-11-19 1986-11-04 Miles Laboratories, Inc. Enzymatic high range glucose test
CA1304886C (en) * 1986-07-10 1992-07-07 Heinz Dobeli Metal chelate resins
EP0319545B1 (en) * 1986-08-28 1992-03-18 Enzacor Properties Limited Animal growth promotant
DE3720736A1 (en) * 1987-06-23 1989-01-05 Erwin Dr Schleicher Method, reagents and equipment for the simple determination of non-enzymatically glycosylated proteins in body fluids
US5151348A (en) * 1988-12-23 1992-09-29 E. I. Du Pont De Nemours And Company Enzyme-linked immunoassay for measurement of cyclosporin a levels in whole blood samples
JPH02226070A (en) * 1989-02-27 1990-09-07 Fuji Photo Film Co Ltd Method for determining glycoprotein
US5110745A (en) * 1989-06-01 1992-05-05 The Trustees Of The University Of Pennsylvania Methods of detecting glycated proteins
JP2874297B2 (en) * 1989-12-18 1999-03-24 東ソー株式会社 Packing material for reversed phase chromatography and method for producing the same
DE4103220A1 (en) * 1991-02-02 1992-08-06 Boehringer Mannheim Gmbh METHOD FOR STABILIZING 1-METHYLHYDANTOINASE, USE OF A STABILIZED 1-METHYLHYDANTOINASE FOR DETERMINING AN ANALYTIC, CORRESPONDING DETERMINATION PROCEDURE, AND APPROPRIATE AGENTS
DE4217732A1 (en) * 1992-05-29 1993-12-02 Boehringer Mannheim Gmbh Test carrier containing fleece layer
DE19523061A1 (en) * 1995-06-24 1997-01-02 Boehringer Mannheim Gmbh Element and system for collecting, transporting and storing sample material to be analyzed
DE19531173A1 (en) * 1995-08-24 1997-02-27 Boehringer Mannheim Gmbh Method for stabilizing the content of glycated protein in a sample on a matrix material
US6231815B1 (en) * 1996-12-03 2001-05-15 Roche Diagnostics Gmbh Storage and transport system for sample material

Also Published As

Publication number Publication date
DE19531173A1 (en) 1997-02-27
US7078480B2 (en) 2006-07-18
US6552165B1 (en) 2003-04-22
AU682999B2 (en) 1997-10-23
EP0760377A2 (en) 1997-03-05
US20030199079A1 (en) 2003-10-23
JPH09166597A (en) 1997-06-24
US5959076A (en) 1999-09-28
AU6213096A (en) 1997-02-27
EP0760377A3 (en) 1998-03-04

Similar Documents

Publication Publication Date Title
US6552165B1 (en) Process for stabilizing the content of glycated protein of a sample on a matrix material
US6231815B1 (en) Storage and transport system for sample material
US4906439A (en) Biological diagnostic device and method of use
EP0383619B1 (en) Solid-phase analytical device
US7407813B2 (en) Assays
EP0306772B1 (en) Lateral flow chromatographic binding assay device
US6399293B1 (en) Methods and test devices for determination of glycated haemoglobin
EP0441325A2 (en) Non-instrumented cholesterol assay
CA2179567C (en) Element and system for collecting, transporting and storing sample material to be analyzed
JPH11230963A (en) Apparatus for measurement of plasma or serum sample
EP0270569A1 (en) Cell detection system and method
WO1992001226A1 (en) Analytical test device for specific binding assays
US5753497A (en) Diagnostic assay providing blood separation
EP0239174B1 (en) Biological diagnostic device
US6379318B1 (en) Method for preventing blood denaturation and blood test tool to be used therein
WO2003014726A1 (en) A lateral flow plasma separation device
JP3285451B2 (en) Analysis method and analysis element for whole blood sample
AU629174B2 (en) A device and a method for removing blood cells from body fluids which contain erythrocytes, and the use thereof
US6265223B1 (en) Diagnostic assay
GB2206411A (en) Analysis
US6177283B1 (en) Diagnostic assay
CN212111447U (en) Noninvasive urine-globin detection reagent strip and kit
JPS5861465A (en) Analytical method for blood
JPH07191020A (en) Method for analyzing whole-blood sample using whole-blood analyzing element
JPH0961426A (en) Dry measuring instrument for blood specimen utilizing hapten

Legal Events

Date Code Title Description
FZDE Discontinued

Effective date: 20020822