CA2200840A1 - Liquid charging nozzle plate - Google Patents

Liquid charging nozzle plate

Info

Publication number
CA2200840A1
CA2200840A1 CA002200840A CA2200840A CA2200840A1 CA 2200840 A1 CA2200840 A1 CA 2200840A1 CA 002200840 A CA002200840 A CA 002200840A CA 2200840 A CA2200840 A CA 2200840A CA 2200840 A1 CA2200840 A1 CA 2200840A1
Authority
CA
Canada
Prior art keywords
liquid filling
nozzle plate
liquid
holes
filling nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002200840A
Other languages
French (fr)
Inventor
Masanori Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tetra Laval Holdings and Finance SA
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2200840A1 publication Critical patent/CA2200840A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B3/00Packaging plastic material, semiliquids, liquids or mixed solids and liquids, in individual containers or receptacles, e.g. bags, sacks, boxes, cartons, cans, or jars
    • B65B3/04Methods of, or means for, filling the material into the containers or receptacles
    • B65B3/06Methods of, or means for, filling the material into the containers or receptacles by gravity flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/02Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus
    • B67C3/22Details
    • B67C3/26Filling-heads; Means for engaging filling-heads with bottle necks
    • B67C3/2608Filling-heads; Means for engaging filling-heads with bottle necks comprising anti-dripping means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B39/00Nozzles, funnels or guides for introducing articles or materials into containers or wrappers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B39/00Nozzles, funnels or guides for introducing articles or materials into containers or wrappers
    • B65B2039/008Strainer means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/02Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus
    • B67C3/22Details
    • B67C3/26Filling-heads; Means for engaging filling-heads with bottle necks
    • B67C2003/2645Means to avoid overfilling by preventing gas returning from the container into the filling tank via the liquid valve, e.g. mesh screens

Abstract

A liquid charging nozzle plate (10) comprising a plate body provided with a plurality of through holes (11). This liquid charging nozzle plate (10) is used by fixing the same to a lower end opening of a liquid charging tube (67).
The outflow of a liquid with which the liquid charging tube (67) is filled is prevented owing to the surface tension of the liquid in the through holes (11) of the liquid charging nozzle plate (10). On an inner circumferential surface (13) of each through hole (11), projections (15) are provided which extend in the circumferential direction so that the inner diameter of the through hole (11) decreases. Owing to the cross-sectional shape of this through hole (11), the dripping of the liquid from the through hole (11) can be prevented effectively. Even when the through holes (51) are formed cross-sectionally to an elongated slit-like shape, the dripping of a liquid therefrom can also be prevented effectively.

Description

225~

DESCRIPTION

Nozzle Plate for Filling Liquid Technical Field:
The present invention relates to a liquid filling nozzle plate used to fill a container with a liquid.

Background Art:
Conventionally, liquid filling apparatuses have been developed and used for automatically filling containers with liquids, e.g. milk and juice.
Fig. 10 is a sectional side view schematically showing an essential part of a liquid filling apparatus of the type described above. As shown in the figure, the liquid filling apparatus is arranged as follows: A pipe 61 is connected to the bottom of a liquid tank 60, and two check valves 63 and 65 are installed in the pipe 61. Further, a liquid filling tube 67 is attached to a portion of the pipe 61 below the check valves 63 and 65, while a pipe 69 is connected to a portion of the pipe 61 between the two check valves 63 and 65, and a liquid volumetric discharge machine 71 is attached to the lower end of the pipe 69.
Both the two check valves 63 and 65 are resiliently biased upwardly by respective coil springs 64 and 66 so that a liquid can be led only downwardly.
The liquid volumetric discharge machine 71 has a cylinder 73 and a piston 75 vertically movably received in 22~084~

the cylinder 73. The vertical stroke of the piston 75 is fixed.
A liquid filling nozzle plate 80 is attached to the lower end opening of the liquid filling tube 67.
Figs. ll(a) and ll(b) show the conventional liquid filling nozzle plate 80. Fig. ll(a) is a plan view, and Fig. ll(b) is a front view. As shown in the figures, the liquid filling nozzle plate 80 is formed from a metallic disk 81 provided with a large number of through-holes 83.
There is another conventional nozzle plate consisting of a sieve plate formed from a wire net. This nozzle plate is constructed of a wire net formed by weaving a plurality of longitudinal and lateral metal wires. In this nozzle plate, through-holes are formed in the gaps between the wires.
Next, the operation of the liquid filling apparatus will be described by using mainly Fig. 10. First, the liquid in the liquid tank 60 fills a part extending from the top of the pipe 61 to the end of the liquid filling tube 67 and a part extending from the top of the pipe 69 to the top of the piston 75.
When the piston 75 is pushed down in the direction of the arrow A, the check valve 63 opens, and the liquid in the liquid tank 60 is introduced into the liquid volumetric discharge machine 71.
Then, when the piston 75 is pushed up in the direction of the arrow B, the check valve 63 is closed, while the check valve 65 opens. Consequently, the liquid in the ~2 ~0840 liquid volumetric discharge machine 71 is passed through the liquid filling tube 67 and discharged from the through-holes 83 of the liquid filling nozzle plate 80, thereby being supplied into a container (not shown).
The liquid filling nozzle plate 80 is provided to prevent the liquid filling the liquid filling tube 67 from flowing out (so-called dripping) when no liquid is desired to discharge from the liquid filling nozzle plate 80.
More specifically, the surface tension of the liquid filling the liquid filling tube 67 acts in the large number of through-holes 83 provided in the liquid filling nozzle plate 80, thereby preventing the liquid from flowing out by gravity. Thus, dripping of liquid is prevented.
However, the through-holes 83 provided in the conventional liquid filling nozzle plate 80 are so shaped that, as shown in the sectional view of Fig. 12, the inner surfaces 85 of the through-holes 83 extend straight in the vertical direction.
Therefore, the surface tension acting in the through-holes 83 is not satisfactorily high, so that dripping ofliquid is likely to occur. To increase the surface tension in order to prevent dripping of liquid, the diameters of the through-holes 83 may be reduced. However, if the diameters of the through-holes 83 are reduced, the fluid resistance occurring when the liquid is discharged increases undesirably.
In contrast, the wire-net sieve plate provides relatively large surface tension owing to the complicated 220084u surface configuration of the openings and is therefore capable of effectively preventing dripping of liquid. With the wire-net sieve plate, however, solid matters in the filling liquid, e.g. fibers and fruit flesh, may be entangled or caught in the intersections of the wires, causing the sieve plate to be clogged. Moreover, because the sieve plate is a wire net, the mechanical strength is low.
In view of the above-described circumstances, an object of the present invention is to provide a liquid filling nozzle plate capable of effectively preventing dripping of liquid without the need to reduce the diameters of through-holes.
Another object of the present invention is to provide a liquid filling nozzle plate capable of effectively preventing dripping of liquid without causing the holes to be clogged with solid matter in the filling liquid.
Still another object of the present invention is to provide a liquid filling nozzle plate having high mechanical strength.

Disclosure of Invention:
To attain the above-described objects, the present invention provides a liquid filling nozzle plate comprising a plate member provided with a large number of through-holes, the nozzle plate being attached to the lower end opening of a liquid filling tube to prevent a liquid filling the liquid filling tube from flowing out by the surface ~20~4ù

tension of the liquid, wherein the inner peripheral surface of each of the through-holes provided in the liquid filling nozzle plate is provided with a circumferential projection projecting in a direction in which the inner diameter of the through-hole is reduced.
In addition, the present invention provides a liquid filling nozzle plate comprising a plate member provided with a large number of through-holes, the nozzle plate being attached to the lower end opening of a liquid filling tube so as to prevent a liquid filling the liquid filling tube from flowing out by the surface tension of the liquid, wherein the through-holes provided in the liquid filling nozzle plate each have an elongated slit-shaped opening configuration.
According to either of the above-described inventions, the surface tension acting to hold the liquid in the through-holes increases, whereby dripping of liquid from the through-holes can be effectively prevented.

Brief Description of Drawings:
Fig. 1 an enlarged sectional side view of an essential part of a liquid filling nozzle plate 10 according to one embodiment of the present invention, which is set forth in claim l; Figs. 2(a) and 2(b) are views for comparatively describing the operation of the liquid filling nozzle plate 10 according to the present invention of this application and the operation of a liquid filling nozzle plate 80 according to the prior art; Fig. 3 is an enlarged sectional 2200~40 side view of an essential part of a liquid filling nozzle plate 20 according to another embodiment; Fig. 4 shows one example of a method of producing the liquid filling nozzle plate 20; Fig. 5 shows another method of producing the liquid filling nozzle plate 20; Fig. 6 is an enlarged sectional side view of an essential part of a liquid filling nozzle plate 30 according to still another embodiment; Fig. 7 is an enlarged sectional side view showing a liquid filling nozzle plate 40 according to a further embodiment; Figs. 8(a), 8(b), 8(c) and 8(d) are enlarged sectional side views respectively showing the structures of through-holes in liquid filling nozzle plates according to still further embodiments; Fig. 9 is an enlarged plan view of an essential part of a liquid filling nozzle plate 50 according to one embodiment of the present invention, which is set forth in claim 6; Fig. 10 is a sectional side view schematically showing an essential part of a liquid filling apparatus; Figs. ll(a) and ll(b) are plan and front views, respectively, showing a conventional liquid filling nozzle plate 80; and Fig. 12 is an enlarged sectional side view of an essential part of the liquid filling nozzle plate 80.

Best Mode for Carrying Out the Invention:
Embodiments of the present invention will be described below in detail with reference to the drawings.
Fig. 1 is an enlarged sectional side view of an essential part of a liquid filling nozzle plate 10 according 220a~4~

to one embodiment of the present invention, which is set forth in claim 1. As shown in the figure, through-holes 11 in the liquid filling nozzle plate 10 are each provided with circumferential projections 15 at the upper and lower ends of the inner peripheral surface 13 thereof such that the projections 15 project in a direction in which the inner diameters of the through-holes 11 are reduced.
It should be noted that these projections 15 describe approximately circular arcs as seen in a sectional side view, and thus the inner surface of each through-hole 11 defines a configuration approximately similar to a sphere with its upper and lower ends cut parallel to each other.
It has been confirmed by an experiment carried out by the inventor of this application that dripping of liquid can be prevented more reliably than in the prior art by forming the through-holes 11 as described above. The reason for this may be considered as follows:
In this embodiment, as shown in Fig. 2(a), a liquid filling the space above the liquid filling nozzle plate 10 also fills each through-hole 11. However, the liquid is kept from dropping from the through-hole 11 by the surface tension in a state where the liquid surface projects downward in an approximately circular arc shape from the underside of the through-hole 11.
In the case of the liquid filling nozzle plate 80 according to the prior art also, as shown in Fig. 2(b), the liquid filling each through-hole 83 is kept from dropping by the surface tension in a state where the liquid surface ~ 2 0 3 8 4 u projects downward in an approximately circular arc shape from the underside of the through-hole 83.
In comparison of the two nozzle plates, the through-hole 11 in this embodiment is provided at its lower end with a projection 15, which projects inwardly. The projection 15 extends in a direction which is approximately coincident with the circular arc defined by the liquid surface projecting in an approximately circular arc shape from the underside of the through-hole 11. In other words, the direction in which the projection 15 of the through-hole 11 projects approximately coincides with the direction of the surface tension in which the liquid surface tends to form a circular arc shape. Consequently, the liquid can be effectively held at the lower end of the through-hole 11.
In the prior art, on the other hand, the whole inner peripheral surface of the through-hole 83 extends straight in the vertical direction. Therefore, the circular arc defined by the liquid surface projecting in an approximately circular arc shape at the lower end of the through-hole 83 is not at all coincident with the shape of the lower end portion of the through-hole 83. Accordingly, force that holds the liquid at the lower end of the through-hole 83 is smaller than in the case of the above-described embodiment of this application.
Incidentally, the liquid filling nozzle plate 10 according to this embodiment is produced by etching or machining a corrosion-resistant metal sheet.
Next, Fig. 3 is an enlarged sectional side view of an 2~ G084U

g essential part of a liquid filling nozzle plate 20 according to another embodiment. As shown in the figure, in this embodiment an inwardly projecting circumferential projection 23 is also provided at the center of each through-hole 21 in addition to those provided at the upper and lower ends of the through-hole 21. With this arrangement, force that acts to hold the liquid also acts at the central projection 23, and at the same time, the length of the through-hole 21 increases. Therefore, the surface tension acts even more effectively to hold the liquid.
Fig. 4 is a view showing one example of a method of producing the liquid filling nozzle plate 20. As shown in the figure, the liquid filling nozzle plate 20 is produced by coating a mask material 27 on both sides of a corrosion-resistant metal plate 25. At this time, those portions ofthe metal plate 25 which are to become upper and lower openings of the through-holes 21 are left as circular portions 28 not coated with the mask material. When the metal plate 25 is dipped in an etching solution, the metal plate 25 is etched from the surfaces of the portions 28 as shown by the dotted lines. Thus, a liquid filling nozzle plate 20 such as that shown in Fig. 3 can be produced.
However, the etching rate changes with the concentration of the etching solution, etc. Consequently, the resulting through-holes 21 do not always have a configuration such as that shown in Fig. 3. It is therefore necessary to select an etching material and other conditions.

--1 o--It should be noted that the liquid filling nozzle plate 20 may also be produced as shown in Fig. 5. That is, two liquid filling nozzle plates 10 as shown in Fig. 1 are prepared, and the two nozzle plates 10 are laid one on top of the other and fixed together as one unit.
Next, Fig. 6 is an enlarged sectional side view showing an essential part of a liquid filling nozzle plate 30 according to still another embodiment. In this embodiment also, projections 35 are provided at the upper and lower ends of each through-hole 31 as in the case of the above-described embodiment shown in Fig. 1. However, this embodiment differs from the embodiment shown in Fig. 1 in that each through-hole 31 has an inner surface configuration defined by two frustums of right-circular cones joined together at their bases.
With the through-holes 31 formed as described above also, dripping of liquid can be prevented more reliably than in the prior art for the same reason stated above in connection with the embodiment shown in Fig. 1.
Next, Fig. 7 is an enlarged sectional side view showing a liquid filling nozzle plate 40 according to a further embodiment. This embodiment is produced by laying two liquid filling nozzle plates 30 as shown in Fig. 6 one on top of the other and fixing them together as one unit. With this arrangement, force that acts to hold the liquid also acts at the central projection 45 in each through-hole 41, and at the same time, the length of the through-hole 41 increases. Therefore, dripping of liquid can be prevented even more effectively.
Next, Figs. 8(a), 8(b), 8(c) and 8(d) are enlarged sectional side views respectively showing the structures of through-holes in liquid filling nozzle plates according to still further embodiments.
More specifically, as shown in Figs. 8(a) and 8(b), each through-hole in a liquid filling nozzle plate may be provided with a projection 46 or 47 only at the lower end thereof. Alternatively, as shown in Figs. 8(c) and 8(d), each through-hole may be provided with a projection 48 or 49 only at the center thereof.
Although in the above-described embodiments the through-holes have a circular configuration (as seen from above the liquid filling nozzle plate), it should be noted that the present invention is not necessarily limited to the circular configuration, and that the through-holes may have other configurations, e.g. a square, rectangular, elliptical or polygonal configuration, as a matter of course.
Fig. 9 is an enlarged plan view of an essential part of a liquid filling nozzle plate 50 according to one embodiment of the present invention, which is set forth in claim 6. As shown in the figure, through-holes 51 provided in the liquid filling nozzle plate 50 have an elongated slit-like shape.
It has been confirmed by an experiment carried out by the inventor of this application that dripping of liquid can be prevented more reliably than in the prior art by forming the through-holes 51 as described above. The reason for this may be considered as follows:

~2~ 0084u In the through-holes 51 according to this embodiment, two longitudinal opposite sides 53 are close to each other;
therefore, the surface tension increases correspondingly, and thus dripping of liquid is prevented more effectively than in the case of through-holes of the same area which have other shapes (circular or square shape). As the two sides 53 are brought closer to each other, the surface tension increases, as will be understood from the phenomenon that, when the lower ends of two parallel flat plates disposed close to each other are immersed in a water tank, for example, the height of a water column pulled up in the space defined between the two flat plates by the capillary action increases as the spacing between the two flat plates decreases.
It should be noted that the opening ratio F of the liquid filling nozzle plate 50 according to this embodiment is preferably in the range of from 65% to 35%, more preferably in the range of from 67% to 43%. The expression of the opening ratio F is shown below:
F=~(2WLl-0.43W)/SL2}X100(%) where W : the width (at the shorter side) of the through-holes 51 Ll: the width (at the longer side) of the through-holes 51 L2: the pitch between the through-holes 51 in a direction parallel to the longer side 220084u S : the pitch between the through-holes 51 in a direction parallel to the shorter side Industrial Applicability:
As has been described above, the liquid filling nozzle plate according to the present invention is used being attached to the lower end opening of a liquid filling tube of a liquid filling apparatus. The liquid filling nozzle plate effectively prevents dripping of liquid from the liquid filling tube.

Claims (9)

WHAT IS CLAIMED IS:
1. A liquid filling nozzle plate comprising a plate member provided with a large number of through-holes, said nozzle plate being attached to a lower end opening of a liquid filling tube to prevent a liquid filling said liquid filling tube from flowing out by a surface tension of said liquid, wherein an inner peripheral surface of each of said through-holes provided in said liquid filling nozzle plate is provided with a circumferential projection projecting in a direction in which an inner diameter of the through-hole is reduced.
2. A liquid filling nozzle plate according to claim 1, wherein said through-holes each have an approximately circular or elliptical opening configuration.
3. A liquid filling nozzle plate according to claim 1, wherein said projection is provided at each of upper and lower ends and/or a central portion in each through-hole.
4. A liquid filling nozzle plate according to claim 1, wherein said through-holes each have an elongated slit-shaped opening configuration.
5. A liquid filling nozzle plate according to claim 1, comprising a plurality of said liquid filling nozzle plates each having said projection provided in each through-hole, said liquid filling nozzle plates being laid one on top of another.
6. A liquid filling nozzle plate comprising a plate member provided with a large number of through-holes, said nozzle plate being attached to a lower end opening of a liquid filling tube to prevent a liquid filling said liquid filling tube from flowing out by a surface tension of said liquid, wherein said through-holes provided in said liquid filling nozzle plate each have an elongated slit-like shape.
7. A liquid filling nozzle plate according to claim 6, wherein an inner peripheral surface of each of said through-holes is provided with a circumferential projection projecting in a direction in which an inner diameter of the through-hole is reduced.
8. A liquid filling nozzle plate according to claim 7, wherein said projection is provided at each of upper and lower ends and/or a central portion in each through-hole.
9. A liquid filling nozzle plate according to claim 6, wherein an opening ratio of said through-holes is in a range of from 67% to 43%.
CA002200840A 1994-09-28 1995-09-26 Liquid charging nozzle plate Abandoned CA2200840A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP25952494A JP3568598B2 (en) 1994-09-28 1994-09-28 Nozzle plate for liquid filling
JP259524/1994 1994-09-28

Publications (1)

Publication Number Publication Date
CA2200840A1 true CA2200840A1 (en) 1996-04-04

Family

ID=17335305

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002200840A Abandoned CA2200840A1 (en) 1994-09-28 1995-09-26 Liquid charging nozzle plate

Country Status (15)

Country Link
US (1) US5909846A (en)
EP (1) EP0784010B1 (en)
JP (1) JP3568598B2 (en)
KR (1) KR100359150B1 (en)
CN (1) CN1067642C (en)
AT (1) ATE189166T1 (en)
AU (1) AU3534295A (en)
CA (1) CA2200840A1 (en)
DE (1) DE69514819T2 (en)
ES (1) ES2144629T3 (en)
FI (1) FI971281A (en)
NO (1) NO313001B1 (en)
NZ (1) NZ293004A (en)
RU (1) RU2143988C1 (en)
WO (1) WO1996009956A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3925995B2 (en) * 1997-09-10 2007-06-06 旭化成エレクトロニクス株式会社 Viscous liquid supply method
US6539963B1 (en) * 1999-07-14 2003-04-01 Micron Technology, Inc. Pressurized liquid diffuser
JP3957640B2 (en) * 2002-02-21 2007-08-15 アイシン化工株式会社 Wide slit nozzle and coating method with wide slit nozzle
GB2388585A (en) 2002-05-17 2003-11-19 Unilever Plc Dosing system with multi-spout nozzle
US7490784B2 (en) * 2002-06-10 2009-02-17 Siemens Aktiengesellschaft Injector for injecting fuel
US6968867B2 (en) * 2003-12-30 2005-11-29 Kimberly-Clark Worldwide, Inc. Apparatus and method for controlling concentration gradients
US7651015B2 (en) * 2004-02-13 2010-01-26 Intelligent Coffee Company, Llc Liquid concentrate/extract beverage dispenser with replaceable concentrate/extract cartridge
US8091735B2 (en) * 2004-02-13 2012-01-10 Intelligent Coffee Company, Llc Liquid dispensing system
DE602005022879D1 (en) 2004-02-13 2010-09-23 Intelligent Coffee Company Llc LIQUID CONCENTRATE / EXTRACT BEVERAGE DISPENSER WITH REPLACEABLE CARTRIDGE
US7594616B2 (en) 2005-04-19 2009-09-29 Evergreen Packaging Inc. Fluid discharge nozzle
JP4867577B2 (en) * 2006-10-27 2012-02-01 東洋製罐株式会社 Filling nozzle
CN101590990B (en) * 2008-05-26 2012-02-22 汤军 Hole type turning cover filling machine and using method thereof
CN102387862B (en) 2009-04-03 2014-05-28 株式会社科特拉 Method and device for manufacturing exhaust emission control catalyst and nozzle used for the device
US8881958B2 (en) 2009-12-16 2014-11-11 Intelligent Coffee Company, Llc Fluid dose-measuring device
KR101198805B1 (en) * 2010-12-02 2012-11-07 현대자동차주식회사 Injector for vehicle
DE102013220007A1 (en) * 2013-10-02 2015-04-02 Robert Bosch Gmbh Filling nozzle for liquid or pasty filling material, metering device with a filling nozzle and use of the filling nozzle
JP6311350B2 (en) * 2014-02-27 2018-04-18 大日本印刷株式会社 Perforated plate for liquid filling nozzle and liquid filling apparatus
JP6303637B2 (en) * 2014-03-12 2018-04-04 大日本印刷株式会社 Perforated plate for liquid filling nozzle and liquid filling apparatus
CN104044779A (en) * 2014-06-13 2014-09-17 苏州柏德纳科技有限公司 Mixed filling module
CN108472842B (en) * 2015-10-12 2020-10-23 希悦尔公司 Liquid dispensing system
DE102016009208A1 (en) * 2016-07-29 2018-02-01 Khs Corpoplast Gmbh Forming and filling station of a plant for producing filled containers from preforms by introduced under pressure into the preform contents
DE102017010272B3 (en) * 2017-11-07 2019-03-21 Khs Corpoplast Gmbh Forming and filling station of a plant for producing filled containers from preforms by introduced under pressure into the preform contents
CN108403149B (en) * 2018-03-16 2024-02-13 吴叶聪 Dropping device
CN109205537B (en) * 2018-10-08 2023-12-15 广州达意隆包装机械股份有限公司 Filling valve and filling equipment

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2626420C3 (en) * 1976-06-12 1979-11-29 Ibm Deutschland Gmbh, 7000 Stuttgart Process for the simultaneous etching of several through holes
US4057190A (en) * 1976-06-17 1977-11-08 Bendix Corporation Fuel break-up disc for injection valve
SE409836B (en) * 1977-04-25 1979-09-10 Tetra Pak Int FILLING TUBES FOR FILLING A FILLING TUBE SURROUNDING ROW OF CONNECTED PACKAGING CONTAINERS WITH LIQUID GOODS
US4169008A (en) * 1977-06-13 1979-09-25 International Business Machines Corporation Process for producing uniform nozzle orifices in silicon wafers
US4528070A (en) * 1983-02-04 1985-07-09 Burlington Industries, Inc. Orifice plate constructions
JPS62135104A (en) * 1985-12-05 1987-06-18 有限会社 ア−ル・アイ電子工業 Liquid-sag preventive nozzle for dispenser
JPS63164499U (en) * 1987-04-14 1988-10-26
CN2042065U (en) * 1988-12-08 1989-08-02 中南制药机械厂 Leakageproof unit of liquid pouring machine
ZA915594B (en) * 1990-08-13 1993-03-31 Colgate Palmolive Co Package filling method and apparatus
JPH0753970B2 (en) * 1990-08-15 1995-06-07 建設省土木研究所長 Pore water pressure measurement method in ground by simultaneous formation of multi-stage sealing material layers
JP2551969Y2 (en) * 1991-01-16 1997-10-27 四国化工機株式会社 Filling nozzle
US5094278A (en) * 1991-02-19 1992-03-10 Shikoku Kakoki Co., Ltd. Filling nozzle
US5167776A (en) * 1991-04-16 1992-12-01 Hewlett-Packard Company Thermal inkjet printhead orifice plate and method of manufacture
US5484507A (en) * 1993-12-01 1996-01-16 Ford Motor Company Self compensating process for aligning an aperture with crystal planes in a substrate
US5472144A (en) * 1994-07-11 1995-12-05 Elopak Systems A.G. Filling apparatus clog-free nozzle screen

Also Published As

Publication number Publication date
EP0784010A1 (en) 1997-07-16
NO313001B1 (en) 2002-07-29
NZ293004A (en) 1998-09-24
EP0784010A4 (en) 1998-06-03
ATE189166T1 (en) 2000-02-15
KR100359150B1 (en) 2003-01-24
CN1158589A (en) 1997-09-03
EP0784010B1 (en) 2000-01-26
CN1067642C (en) 2001-06-27
DE69514819D1 (en) 2000-03-02
FI971281A0 (en) 1997-03-26
WO1996009956A1 (en) 1996-04-04
NO971265L (en) 1997-03-19
AU3534295A (en) 1996-04-19
JPH0891302A (en) 1996-04-09
KR970706171A (en) 1997-11-03
ES2144629T3 (en) 2000-06-16
RU2143988C1 (en) 2000-01-10
NO971265D0 (en) 1997-03-19
JP3568598B2 (en) 2004-09-22
DE69514819T2 (en) 2000-06-29
US5909846A (en) 1999-06-08
FI971281A (en) 1997-03-26

Similar Documents

Publication Publication Date Title
US5909846A (en) Nozzle plate for filling liquid
AU636198B2 (en) Filling nozzle
US3410540A (en) Vapor-liquid contact system and method
US4512379A (en) Spout for liquid packing apparatus
KR100346970B1 (en) Improved mass transfer device
CN1258224A (en) Liquid distributor
US4958669A (en) Device for filling specified amount of liquid
CN1901981A (en) Vapour-liquid distribution tray
SK42896A3 (en) High-efficient tray assembly with downcomer set of production chemical column
EP0596744B1 (en) Apparatus and method for filling packages with a fluid material
KR102504035B1 (en) Liquid double dispensing device, especially used in apparatuses where the liquid state flows under gravity.
CN1240458C (en) Internal flap of liquid distributor
US5472144A (en) Filling apparatus clog-free nozzle screen
US4775499A (en) Gas-liquid contacting apparatus
WO2015074803A1 (en) Filling valve for liquids
JP5057372B2 (en) Liquid distributor for mass exchange and / or heat exchange towers
DE3346558C2 (en)
CN2355766Y (en) Tray of column with multiple step-down liquid pipes
CN115942989A (en) Device for distributing a fluid in a downflow reactor
JPH0824620A (en) Liquid distributor for mass and/or heat exchanging tower with at least two liquid flow paths
CN2332469Y (en) High performance liquid distributor of packed tower
CN217567497U (en) Liquid guide plate of liquid distributor
JP3869533B2 (en) Liquid distributor for material and / or heat exchange tower
KR101859514B1 (en) Distribution plate
RU2056933C1 (en) Fitting on for heat-mass-exchanging apparatuses

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued