CA2212384A1 - Pressure sensors and pressure transmitters - Google Patents

Pressure sensors and pressure transmitters

Info

Publication number
CA2212384A1
CA2212384A1 CA002212384A CA2212384A CA2212384A1 CA 2212384 A1 CA2212384 A1 CA 2212384A1 CA 002212384 A CA002212384 A CA 002212384A CA 2212384 A CA2212384 A CA 2212384A CA 2212384 A1 CA2212384 A1 CA 2212384A1
Authority
CA
Canada
Prior art keywords
pressure
transmitter
sensor
pressure responsive
responsive structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002212384A
Other languages
French (fr)
Inventor
Roger L. Frick
Bennett L. Louwagie
Adrian C. Toy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rosemount Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2212384A1 publication Critical patent/CA2212384A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0072Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance
    • G01L9/0075Transmitting or indicating the displacement of flexible diaphragms using variations in capacitance using a ceramic diaphragm, e.g. alumina, fused quartz, glass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/12Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor
    • G01L9/125Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in capacitance, i.e. electric circuits therefor with temperature compensating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • Y10T29/49139Assembling to base an electrical component, e.g., capacitor, etc. by inserting component lead or terminal into base aperture
    • Y10T29/4914Assembling to base an electrical component, e.g., capacitor, etc. by inserting component lead or terminal into base aperture with deforming of lead or terminal
    • Y10T29/49142Assembling to base an electrical component, e.g., capacitor, etc. by inserting component lead or terminal into base aperture with deforming of lead or terminal including metal fusion

Abstract

First capacitance pressure sensor (70A, B) has a fusion bonded single crystal structure (sapphire with cavity). Second one (70A, B) has an elongated and thick single crystal structure. Third one (70A, B) uses the electric field emanating from the back sides of the capacitor plates. First differential pressure transmitter uses a process barrier (71) and an elongated member as a sensor (70A, B). Second differential pressure transmitter uses single crystal structures with stress isolation members as sensors (70A, B). Basically thick slab cavity capacitance sapphire sensors are directly exposed to a process fluid. Slab: 15x3x2 cubic mm, cavity cross section: 1mm x 0.5 micro m, capacitance: 42 pF.

Description

W096n7123 PCTrUS96/0252 PRESSURE SENSORS AND PRESSURE TRANSMITTERS
BACKGROUn~D OF THE IN~JENTION
The present invention relates to the process control industry. In particular, the invention relates S to a pressure sensor in a pressure transmitter.
Pressure transmitters in process applications measure pressure of a process and responsively co~l-n; cate the information over a two-wire proce~s applicatio~ loop, ~or example a 4-20 mA current loop.
Pressure s~nsors in transmitters typically comprise some type o~ a pressure responsive structure which has a def~ectable ~i~phrclgm that moves in response to appiied pressure. These structures can be used to measure both absolute and di~felential pressure. As used herein, a differential pressure sensor is a sensor which measures a relatively small pressure di~ferential (such as that generated across an orifice in a flow tube or between two different heights in a fluid filled container) over a relatively wide absolute pressure range. In a typical prior art transmittcr, to measure differential pressure, two dif~erent pressures are applied to opposing sides of the structure causing a relative deformation in the structure which is measured. Measurement of the de~ormation, for example, can be by measuring a change in electrical capacitance due to movement of capacitor plates carried on the structure or by change in resistance of a resistive strain gauge.
Highly accurate absolute pressure sensors have been desired. Howeuer, it has been difficult to obtain an absolute pressure sensor which can deliver an accurate output over a wide pressure range, from 0.4 psi to 4000 psi for example. It would also be desirable to measure differentiaLpressure with two absolute pressure sensors because this is mechanically much simpler than W O96J27123 PCTrUS96102522 it is to mechanically couple two pressures to a differential pressure sensor. Additionally, an over-pressure in a such a di~erential pressure sensor can damage the differential pressure sensor.
~owever, it has been difficult to obtain absol~te pressure sensors with sufficient accuracy to allow differential pressures in the 0.4 psi to 40 psi range to be measured in a device which must withstand static or line pressure extremes of as much as 4000 psia. For example, 0.01% of 4 psid requires 0.00001% of 4000 psia (10-7 or ().1 ppm).
Typical known pressure sensors used in process applications have unit-to-unit variations in sensitivity to sense~ pressure as well as unit-to-unit variations in undesired responses to extraneous parameters such as temperature. This can be a particular problem when the outputs of two absolute or gauge pressure sensors are combined to provide an output representing differential pressure or when the sensor is used over a large pressure range. Additionally, mechanical stress associated with mounting the sensor to the pressure transmitter result:s in relatively large errors in pressure measurement.
SU~ARY OF THE IN~nENTION
A pressure transmitter in a process control application for transmitting pressure on a process control loop inclucles an absolute pressure sensor. ~he absolute pressure sensor has a cavity therein in which cavity walls defori~ or are placed under stress as the walls respond to applied pressure. The pressure sensor includes a support structure which provides stress isolation. A sensor coupled to the cavity walls provides a pressure related output signal. In one embodimentr the sensor and support structure are W O96/27123 PCTrUS~G~25~2 integral with one another such that there are no joints between the sensor structure and the support structure.
The material and dimensions of the pressure sensor are selected such that the pressure related signal is very accurate and may be used over a wide pressure range or in pair~ as differential pressure sensors.
BRIEF DE~SCRIPTION OF THE DRAWINGS
Figure 1 is a cross-sectional view of a pressure transmitter.
Figure 2 is a cut-away perspective view of an -insert which carries a pressure sensor.
Figure 3 is a cross-sectional perspective view o~ a pressure sensor.
Figure 4 is a graph which illustrates operation of the present invention.
Figure 4A is a graph of stress attenuation versus I./W for a pressure sensor.
Figure 5 is a displacement plot of one-quarter of a pressure sensor where Q/T equals 1Ø
' Figure 6 is a cross sectional view of another embodiment of the pressure sensor.
Figure 7 is a cross-sectional view of a pressure sensor.
Figure 8 is a cross-sectional view of the pressure sensor of Figure 7.
Figure 9 is a top plan view of a top substrate of the pressure sensor of Figure 7.
Figure :L0 is a top plan view of a bottom substrate of the plressure sensor of Figure 7.
Figure 11 is a schematic diagram of circuitry for measuring capacitance of a pressure sensor.
Figure 12 is a cross-sectional view of a sensor body.

WO 961?7~23 PCI~/US9~102522 Figure 13 i5 a bottom plan view of the sensor body of Figure 12.
Figure 14 is a cross-sectional view of a sensor body.
Figure 1.5 is a bottom plan view of the sensor body of Figure 14.
Figures 16A through 16G show cross-sectional views o:E various embodiments of the invention.
Figures 17A and 17B show two embodiments of capacitor plates.
Figure 18 is a graph of bonding temperature as a percent of melting point temperature versus bonding strength as a percent of material strength.
DETATT.~n DESCRIPTION OF THE PREFERRED EMBODIMENTS
Figure ~. shows pressure transmitter 50 having transmitter body 52, sensor body 54 and ~lange 55.
Sensor body 54 in~cludes pressure sensors 70A and 70B
which measure absolute pressure P1 and absolute pressure P2~ respec:tively,.o~ process ~luid. Transmitter body 52 include.s transmit~er (I/O) circuitry 60 which sends information related to pressures P1 and P2 over a two-wire process control loop, such as a 4-20 mA current loop. Circuit boa.rd 57 couples sensor circuit board 58 to sensors 70A and 70B and receives electrical signals related to pressures P1 and P2. Circuitry on sensor circuit board 58 d!igitizes and processes these signals, and comm-ln; cates pressure information to transmitter circuitry 60 using data bus 62. Inserts 67A and 67B
carry sensors 70A and 70B. A process barrier 71 forms cavity 75 and prevents pressures P1 and P2 from escaping sensor body 54 should insert 67A or 67B fail. Cavity 75 may be a vacuum or filled with an inert gas. Feed-throughs 73A, 73B and 73C provide electrical pathways across barrier 71 between circuit boards 57 and 58.

W O96/27123 PCTnUS96102522 Figure 2 is a cut-away perspective view o~
insert 6;7A which carries sensor 70A. In one embodimen*, insert 70A comprises alumina. Additionally, sensor 70A
should be small relative to housing 54 and positioned relatively close to sensor 70B to reduce thermal variations and thereby improve accuracy. This is achieved because the thermal time constant of the sensor is significantly less than the thermal time constant of the housing to mini~ize temperature gradients within the sensing element.
Figure 3 shows sensor 70A in accordance with on~ en~odiment. S~ensor 70A includes upper substrate 72 and lower subst:rate 74 which form cavity 76 therebetween. Eigure 3 shows overall length L, thickne~;s T, width w, m; n; mllm cavity width w o~ the deflecting structure of the sensing cavity and central deflection y due to applied pressure P.
Typical prior art sensors have a ratio of m~; ~11~ to mi n i r~ll~ pressure range which can be accurately sensed of about 100:1. Thls is primarily limited by non-repeatable errors in the structure and noise. Further, prior art sensors are typically limited by the use of materials with imperfect elasticity, inadequate stress isolation and poor signal-to-noise ratio of the sensing element. For example, metal based pressure sensors have problems with hysteresis, material creep and relaxation. Ceramic based sensors are ~ormed of a matrix of crystals typically bonded with silicon glass and also exhibit these problems. Glass-based sensors are subject to instability due to phase changes ancl viscosity of the glass. It has been recognized that single crystal materials have superior elastic properties and that sensors based on such materials can have improved accuracy. Single crystal diaphragm WO 96~27~23 PCI~/US96/02522 sensors have also been used, however they have typically been placed under high tensile stress due to internal p~essurization. Additionally, this type of sensor typically includes glass or metal structural elements and use;s a low strength bonding material such as glass frit, solder or epoxy. Further, this type of sensor has typically had ;nArle~uate stress isolation.
Additionally, typical prior art sensors have used an oil fill, such as silicon oil, for use with over--pressure pro1_ection me~h~n; 6~ . The oil fill is also used when coupling a corrosion resistant isolation diaphragm to the pressure sensor. These sensors are subject to ~ailure due to loss of fill fluid. Typical prior art isolati~Lg ~i~rh~agms have been form formed in metal cmd are used to keep particles and corrosive materials away ~Erom the pressure sensor. These ~i~phragms must ~e thin in order to m; n; ~; ~e errors, however this makes the diaphragm particularly fragile and limits li~e o~ thLe ~;~ph~agm. Further, different = 20 ~i~phragm materials are required for different applications and there is no metal which can be used universally.
The present disclosure sets forth a pressure sensingi structure formed of a single crystal material.
Joints in the mat~erial are formed using fusion bonding such that they are substantially free of foreign materials which could lead to inaccuracies. The structure may be surrounded by process fluid which applies pressure to the structure. This is possible because!the struct:ure is formed of a corrosion resistant material. The brittle material is deformed by compression whichL provides a higher ratio of working stress--to-error s1_ress and therefore a higher signal-to-noise ratio. This results because brittle materials are W O96127123 PCTnUS96/02522 stronger in comp,ression than in tension. This configuration causes the sensor to be less sensitive to corrosia,n of the outer surface because the output is less dependent on the cube of thickness and more closely linearly related to thickness. Placement of the structure in the process fluid improves relia~ility because the isolaLtion ~;~ph~agms and oil ~ill are elimin~ted. An elon~ated shaft provides stress isolatia,n and is formed of the same single crystal material to help reduce errors. Electrical le~ds are provided through the elongated shaft and isolated from process fluid. A path through the shaft can also be used to apply a re~.erence pressure. In one embodiment, corrosia,n resistant material such as sapphire is used and an internal sen.sor is used which allows the oil fill and iso:Lating ~;~ph~agms to be eliminated. In one embodiment, matched sensors are used as dual sensors to measure~di~ferential pressure, which helps reduce errors common to the two sensors. Capacitance sensing is desirable ~ecause it provides a stable, low noise signal. Capacitor~s have no inherent thermal noise and they have a high ,gauge factor with a correspondingly high output which m;n;m;~es the noise contribution of electronic detection circuitry. They also have excellent zero stability and very low zero temperature coefficients. Thec,e factors make it practical to detect the very low pressure changes in a high pressure sensor that are encountered in a differential pressure transmitter based on two independent sensing elements.
Improved pressure resolution is achieved by use of electronic circuitry.
It is we:Ll known that the deflection y due to bending in a diaphragm is proportional to ( w2) where w W O96~?.7~23 PCTAUS96/025Z2 is the effective m;n;mum width of the diaphragm and T is (Y T2) . The sensor output is therefore highly dependent on dimensional variations.
It is known that deflection due to shear in a diaphra~m proportional to W2/T. (Y~ T ) This reduces the variation in output versus sensor ~imen~ions but this variation can be further reduced by relying on "bulk" deflection as defined below.
The deflectio~ y of cavity 76 will depend on lo the effects of bending deflection, shear deflection and 'bulk" deflection. Assuming that W/w equals a constant which is greater than 2, this can be expressed as follows:
Y ~ Kl P~K2 Plw\+K3Plw~
w ~ IJ~ T~ E\TI Equation 1 where:
Rl = "bulk" deflection constant for material;
K2 = shear deflection constant for material;
R3 = bending deflection constant for material;
W = sensor width;
P = external pressure;
y = central deflection of cavity 76 due to applied pressure P;
w = width of cavity 76;
T = thickness at slot 76 of sensor 70 (for a square cross section, T=W/2);
t = depth of cavity 76;

W O96/27123 PCTnJS96102522 L = sensor length which is much greater than sensor width w and SensQr thickness T;
E = Young's modulus; and G = shear modulus.
Equation 1 illustrates that shear and bending deflection on cavity 76 are dependent on cavity width w and sens,or thickness T.
The term Nbulk" deflection as used herein describes the RIP/E component of Ecluation 1, where y is directly proportional to width w of cavity 76. (y ~ w) Therefore, bulk dLeflection is highly accurate and desirable in dete~n; n; ng pressure and is substantially independent of var:Lations in thickness T such as those which occur with corrosion. One aspect of the present invention includes providing a pressure sensor having ~ nsions such that bulk mode deflection component of total deflection oE the sensor is increased.
Figure 4 is a graph of Equation 1 which shows total de!flection and its individual components: bulk deflection, shear deflection and bending deflection.
When w/T is between 1 and 4, shear deflection pre~sm;n~tes total deflection. As w/T gets smaller, the contribution of shear deflection relative to bulk deflection gets smaller. For w/T less than 1.0, bulk deflection is the pre~c~m;n~nt factor contributing to total deflection of- sensor 70A due to applied pressure.
Thus, one aspect of the invention includes pressure sensors having a ratio of w (cavity width) divided by T
(thickness from an outer surface to an inner surface) of less than or equal to about 1Ø For shear deflection to exceed bending deflection w/T should be less than 4Ø In one embocliment, the ratio of w/T is: 0.05 <
w/T <1Ø The minimllm w/T value is determined by how W O96127123 PCTrUS96102522 t r small w can be practically made and inaccuracies due to the~nal gradients as T is made large.
It is desirable to m;n;~; ze tensile stresses in sensors made of brittle materials because this reduces the possibility of failure due to cracking of the sensor. One aspect o~ the invention includes surrounding the sensor with the measured pressure and suitably dimensioning the sensor such that the hydrostatic compressive stress can be made to exceed the tensile! bending stresses. Since the stresses are generally additive, the entire structure can be kept in compression. This occurs when w/T is less than about 2.3.
Stress isolation of sensor 70A is also achieved. Stress due to mounting sensor 70A to housing 54 causes a force to be exerted on the sensor (in addition to the force due to applied pressure) and introduces an er30r into pressure measurements. The elongated structure reduces the effects of mounting stress to-provide accurate measurement of differential pressures and a wide operating span. Generally, mounting stress attenuates distal to the mount as sensor length L increases. Any mounting stress errors must be sufficiently attenuated over length L to achieve the desired pressure error. Figure 4A is a graph which shows a relationship between stress attenuation and L/W
for the sensor of Figure 3. The vertical axis of Figure 4A shows the ratio of the stress at the mounting point (~0~ , to the measured stress due to the mounting stress (a~s~ , A change in the mounting stress ( ~Mot~r) causes an error in the pressure measurement due to the change in mounting stress at the pressure sensor (~M~St~) ~ In one embodiment, a O.01~ accuracy is requir,ed such thi~t when measuring a pressure of 4 psi W O96127123 PCTrUS96/02522 the error due to mounting stress must be less than 4x104 psi. A typical ~aMo~ value is 400 psi such that the attenuation of the mounting stress must be *x104 psi/by 400 psi = 10~. As shown in Figure 4A, this occurs at S approximately L/W of 4. In an embodiment in which two sensors are used for differential pressure measurement ancl they are match.ed within 10~ accuracy, C~M~Su U D/aMO~
is reduced by a fac:tor 10 such that L/W is approximately 3. In one embodiment, L/W is between 3 and 5.
Figure 5 is a cross-sectional view showing a displacement plot for sensor 70A. Figure 5 shows one-quarter of the cross section of sensor 70A. In Figure 5, sensor thickness T is approximately equal to ca~ity width w. An applied pressure P of 4500 psi lS displaces sensor 70A. In Figure S, about half the deflect1on is due1_o shear tension and about half is due to bulk deflecti.on. This is shown in Figure 4 where shear and bulk deflection meet. If sensor 70 were entirely in bulk mode co~ ession, sensor 70 would retain :its rectanc~lar shape as pressure was applied.
The shape distortion is due primarily to shear deflection.
Ficgure 6 is a cross sectional view of sensor 120 inclucLing elongated portion 122 and end portion 124 which form ravity 125 having width w. In one embodiment, ca.vity 125 is square. Dimensions T, W
and L a.re also shown in Figure 3. End portion 124 carries capacitive plate 128 which forms a capacitor with plate 126 carried on portion 122. Conductors 130 and 132 connect t:o plate 126 and 128, respectively.
Pressure P causes c:avity 12S to deform, thereby changing the capacitance between plates 126 and 128.
Figure 7 is a cross-sectional view of pressure sensor 200. Pressure sensor 200 includes top substrate W O9~S27123 PCTAUS96/025Z2 t 202 and lower substrate 204. Via hole 203 extends through substrate 202 ~or coupling to electrical conductors in cav:ity 205. Figure 8 shows top guard conductor 210, top capacitor conductor 212, top guard S conductor 214, bottom guard conductor 216, bottom capacitor conductor 218 and bottom guard conductor 220.
Fic~ure 5~ is a top plan view of substrate 202 in which electrical conductors on the under side of substrate 202 are visible therethrough. Figure 9 shows capacitor lo plate 222 connected to conductor 212 and surrounded by guard 224 which connects to conductors 214 and 210.
Figure 9 also shows vias 203 and 226 which extend through substrate 202 to conductors 210 and 212, respectively.
Figure L0 is a top plan view of bottom substrate 204 in which electrical conductors carried on the underside of substrate 204 are visible therethrough.
In the example, substrate 104 is sapphire. Figure 10 shows capacitor plate 228 which capacitively interacts with capacitor plate 222. Plate 228 is ~urrounded by electrical guard 2.30 and temperature sensor 232. Guard 230 shields plate 228 from stray capacitance and temperature probe 232 changes resistance based upon temperature. This provides temperature measurement of sensor 200, and allows compensation of pressure measurements based upon temperature for increased accuracy. Ron~;ng is preferably fusion bonding, also known as direct fusion bonding, or wafer bonding in which flat, polished surfaces are mated and are bonded with the application of heat. Etching is with P~C13 gas at 900 to 1100~ C with an SiO2 mask. It is desirable to align the crystal structure of the substrates such that the resulting crystal structure is substantially continuous after bonding. Further, the fusion bond CA 022l2384 l997-08-06 W O96~7123 PCTrUS96/02522 should be made at a tempera~ure as close as possible to the melting point. For this reason, the electrode material should ke capable of withstanding the high ~usion bond temperatures. For example, chrome, tungsten tantalum platinum and iridium allow bond temperatures in t]~e 1300~ C to 1700~ C range so that bond strength is ~-~i~;~ed and healing of discontinuitie6 in the crystal can occur. A typical bonding time is one hour. Other conductors include metal s:ilicides such as molybdenum silicide.
In a differential pressure transmitter a tempera1ure di~ference between the two sensors will cause an error. Acceptable performance will require that the difference be less than about 1~ F and that the difference be mea~ured to a precision o~ better than about 0 1~F and compensated. In a typical application, this will require that ~he sensor spacing be less than 0.5 inches.
A temperature gradient within a sensing - 20 element will also cause an error. Acceptable performance will require that the temperature difference between the inside and outside of the sensor be less thaLn about 0.001CF and that the sensors be closely matched. A senso~ width or thickness of greater than about 0.25 inches will place unreasonable demands on sensor matching in a typical application.
Figure 11 is a simplified schematic diagram of circuitry 250 for sensing differential pressure using two absclute pressure sensors having pressure responsive capacitors C~ and C2 carried therein. Each pressure sensor includes guard electrodes 252 which form capacitors connected to earth ground 253 of transmitter 50. The housing of the transmitter thus provides a shield or guard to stabilize the capacitance signal and W ~96~27~23 PCT~US96~252 prevent electrical noise ~rom being coupled into the circuit. In addition, a guard electrode can be formed on the exterior sur~ace o~ the sensor or the interior surface of the ceramic inserts shown in Figure 1.
Electrical isolation can be provided to accommodate 4-20 mA circuits that have connections to earth ground in other places. Capacitor Cl is driven by square wave generata,r 254 and <apacitor C2 i~ driven by square wave generata,r 256. The negative input of low noise differen,tial ampli:Eier 258 is connected to the undriven plates of capacitors C~ and C2, and the positive input of differe~tial amplifier 258 is connected to electrical ground. Differential amplifier 258 has negative feedback through capacitor CI and has charge ~Q i~rom capacitor Cl and Cz ~lowing in and out of the negative input. The output of differential amplifier 258 is a square wave representative of differential capacitance which is converted into a digital format by A/D
converter 260. In circuit 250, AQ is given as:

~Q = V~( Cl - C 2) Equation 2 And, the amplifier output is:

V~ = AQ/CI Equation 3 VPP~ ( CI C2/CI ) Cl should be selected to be approximately equal to (CI-C2)/2 at m~ ~ di~erential pressure, for example, 1 pF. Additionally, to compensate for manufact:uring variations, it is desirable to have separate gain adjustments for each sensor.
Additionally, circuitry should be included to measure W O96/27123 PCTnUS9GJ~5~2 Cl, C2or Cl+C2, independently, in order to compensate ~or variations in output due to common mode or line pressure. Circuitry ~or detecting capacitance output is set forth in U.S. Patent 5,083,091, entitled "Charge salanced Feedback Measurement Circuit," commonly assigned with the present application.
The ouL~L from converter 260 is provided to interface circuitry 262. Inter~ace 262 is connected to a 4-20 ~ current loop and provides the digital signLa 10from A/D converter 260 to current loop 264 in either a digital or analog ~ormat. Inter~ace 262 also provides power to circuitry 250 from loop 264. Interface 262 is also cap,able of receiving commAnds, such as those pursuant to the HART~ c~ ..;cations standard.
15Figures :L2 and 13 show another embodiment having sensor body 300 which carries pressure sensors 200A and 200B. Figure 12 is a side cross-sectional view of sensor body 300 and Figure 13 is a bottom plan view of body 300. Body 300 includes circuit boards 57 and 58 connected by wires through ~eed-throughs 73A, 73B and 73C through process barrier 71. Sensors 200A and 200B
are carried in alumina insert 302. Process barrier 71 forms che~mber 75 whLch may be a vacuum or filled with an inert gas. A groove 304 extends around alumina insert 302 and provides thermal and stress isolation. Mounting holes 306 are used ~to couple body 300 to a conduit ~not shown). In another embodiment, a bond between the sensor and the transmitter body is a fusion bond.
Figures 14 and 15 show sensor body 310 including middle sh~ell 312 which carries alumina insert 314. Sensors 200A and 200B are seated in alumina insert 314 which also car:ries ASIC chip 316. ASIC chip 316 performs the same flmctions as circuit board 57. Groove 318 provides stress isolation for insert 314 and sensors W O961~7123 PCT~US96/~2SZ2 200A and 200B. Process ~arrier 320 seals shell 312 and provides a second barrier to process ~1uid. Cavity 3~2 in shell 312 may carry a vacuum or inert gas. Feed-throughs 324 prov:ide a path for electric connections from ASIC chip 316 to circuit board 326. The design shown in Figure ~ allows the sensor assembly to be tested prior to weLding shell 312 into sensor body 310.
High temperature operations (such as ~razing the sensor to the alumina insert) can be conducted before mounting the sensor assen~ly in the housing.
In one embodiment, a pressure sensor of the invention has din~ensions as follows:

15Dimension Size (Range)Preferred T 0.02 to 0.2 inches 0.05 inch L 0.15 to 1.5 inches 0.6 inch W 0.02 to 0.2 inches 0.1 inch w 0.01 to 0.1 inches 0.05 inch 20C,avity 5xlO~ to lxlO~
Thic:kness t inches 0.000020 inch y (gap de~lection'l 2xlO~ to 5x10-5 at 9500 psi inches 0.000012 inch A typical capacitance for the sensor is 42 pF at zero pSl.
In one en~odiment, parameters of a pressure sensor are as ~ollows:

-PROPERTYZERO FULL SCALE SPAN
(0 psi)(4500 psi)(4500 psi) Gap (At Center) 20 11.25 8.75 (y Inches) Gap (Effective 20 12.37 7.63 Average) (~ I~ches) Sensor 42.2 68.2 26.0 Capac.itance (No Parasitics) (E'~) Parasitic 1.97 1.994 0.024 Capacitor (w/o Guard Shiel.d and assumes 0.6 inch l.ength) (E'f ) Sensor Tempe:rature Coefficient (PSI/C) -Q.059 0.534 0.593 ~pp~/C] -13.1 118.6 131.7 Figures 16A through 16G show cross-sections of a pressure sensor in accordance with one aspect of the invention. Figure :16A shows a rectangular structure in which all interior angles are 90~. Figure 16B shows a hexagonal sensor st:ructure in which all interior angles are 60~. A rhombus structure is shown in Figure 16C in which two inner angles are 60~ and two angles are 30~.
Figure 1~5D shows a triangular structure in which all interior angles are 60~. The structures shown in Figure 16A through 16D are convenient structures for sapphire because they tend to lie along planes of a sapphire crystal. Figure 16E shows a sensor 340 in which a CA 022l2384 l997-08-06 W 096l27t23 PCTAUS96/02522 rounded portion 342 is coupled to a rectangular portion 344. Cavity 346 is formed in rectangular portion 344_ Figure 16F shows another embodiment in which the cavity is formed in the rounded portion. Various alternatives S are also available including rounding both portions, such as shown in Figure 16G. A round cross section is desi.rable because :it can be closely fit into a round hole and can ~e sealed with a round O-ring. It can be fabricated by macll; n; ng a square structure with a diamond grinding wheel.
Figures 17A through 17B show example configurations of the electrodes for capacitive plates.
Electrode instability causes errors in capacitive pressure sensors wh.Lch have small gaps. Residual stress causes the pressure sensor structure to warp. Further, dimensional changes in the electrode surface change the gap ~;mension t. These changes can be caused by oxidation and reduc:tion or migration of atoms on the opposing surfaces. Figures 17A and 17B show examples of a solution to this problem in wnlch the capacitor plates are broken apart inl:o strips having widths and spacings which result in a capacitance that is substantially equal to a solid electrode. For example, if the substrate has a dielectric constant of 10 times the gap dielectric constant,, then the spacings could be about 10 times the gap ~;msn~ion and the widths could be less - than about the gap ~l~me~ion. This reduces the amount of material available to warp the sensor structure.
Further, the strips can be configured so that most of the electrical flux emerges from the back side of the electrodes. As the back side of the electrode is in contact with sapphire, it is protected from surface effects and will provide a stable capacitance even if the inside surface changes dimensions. Figures 17A and 17B show two ex~nple configurations which increase the amount of flux emanating ~rom the back side of the electrodes. Variations on this embodiment include providing guarcl electrodes (298) which overlie each plate electrode i~nd shield each plate electrode.
Although these plat;es are spaced apart, they are similar to a con1_inuous capacitor plate because of their spacing and relative size.
In one embodiment, the capacitor electrodes are implanted into the surface of the substrate. This provides electrode stability by protecting the electrode and helpling to reduce the amount of the change in the capacitance over time. A sapphire substrate is implanted with V ions at a dose of lXl0l8 ions/cm2 and an lS energy level of 200 KeV. This changes the resistivity of the sapphire from very highly resistant to about 15 Ohms/sq. The implanting process concentrates most of the V approximately l000 A beneath the original sapphire surface. An example of an implanted electrode 300 is shown in phantom in Figure 17B.
Figure 18 is a graph of bonding te~perature as a percent of melt;ing point temperature versus bond strength as a percent of material strength. For mA~;~um stability and accuracy, it is desirable to have the bond strength as close ~s possible to the material strength so that the sensor structure behaves as a unitary body.
In one embodiment of the invention, bonding temperature is the range indic~ted at 350 in Figure 18. Sapphire, quartz or silicon can be used in forming a pressure sensor, and their melting points are 2050~ C, 1723~ C
and 1415~ C, respec:tively. The desired range 350 shown in ~igure 18 is from a temperature of about 68% of the melting point abso]ute temperature. In one embodiment, bonding temperature should not exceed about 95~ of the W O96127123 PCTrUS9~102522 melting point temperature. The desired fusion bond as used herein is a bond having a strength which is substantially the same as the strength of the underlying crystal material, and is formed by the application of heat Wit]l substantially no foreign material in the bond.
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. Single crystal materials include ~apphire, silicon, quartz, ruby and diamond. General;ly, these are materials with low hysteresis which are highly stable thereby providing little creep. In ge!neral, materials with higher melting points will be more stable thus, sapphire is one preferred material. ~he cavity of the sensor can be a vacuum or ~illed with a fluid or gas. The electrodes can include conductors such as metals, metal oxides or doped semiconductors and can be protected with an insulating dielectric material such as quartz. In another embodiment, the stress isolation structure is formed o:E a polycrystalline material. Further, the bonding can be formed with or without the use of pressure.

Claims (48)

WHAT IS CLAIMED IS:
1. A pressure transmitter in a process control system for transmitting pressure on a process control loop the transmitter comprising:
I/O circuitry coupling to the loop for transmitting information on the loop;
compensation circuitry receiving a pressure related signal and responsively controlling the I/O circuitry to transmit pressure information on the loop;
a transmitter housing containing the I/O
circuitry and the compensation circuitry;
a mounting portion in the housing formed of a mounting portion material;
a process barrier in the housing which isolates the I/O circuitry and the compensation circuitry from the mounting portion;
an elongated member formed substantially of a brittle corrosion-resistant material which is different than the mounting portion material coupled to the mounting portion at a proximal end and having a passageway extending therethrough;
a pressure responsive portion at a distal end of the elongated member for immersion in a process fluid and deforming in response to process fluid pressure; and a sensor coupled to the pressure responsive portion and having an electrical connection to the compensation circuitry through the passageway of the elongated portion and a feed-through in the process barrier, wherein the sensor and electrical connection are isolated from process fluid by the elongated member.
2. The pressure transmitter of claim 1 wherein the elongated member defines a cavity therethrough for applying a reference pressure to the pressure responsive structure.
3. The pressure transmitter of claim 1 including a second elongated member coupled to the mounting portion and carrying a second pressure responsive portion having a second sensor coupled to the compensation circuitry, wherein the pressure information relates to a differential pressure.
4. The pressure transmitter of claim 1 wherein the elongated member and pressure responsive portion include bonds which are substantially free of foreign material.
5. The pressure transmitter of claim 1 wherein the elongated member and the pressure responsive portion have a width w and a thickness T, and w/T is less than about 4Ø
6. The pressure transmitter of claim 5 wherein the elongated member and the pressure responsive portion have a width w and a thickness T, and w/T is less than about 2.3.
7. The pressure transmitter of claim 6 wherein the elongated member and the pressure responsive portion have a width w and a thickness T, and w/T is less than about 1Ø
8. The pressure transmitter of claim 1 including electrical conductors implanted in the elongated member and providing the electrical connection between the sensor and the compensation circuitry.
9. The pressure transmitter of claim 1 wherein the elongated member has a length L exposed to process fluid and a maximum width w and L/w is greater than about 3Ø
10. A pressure sensor in a pressure transmitter, comprising:
a pressure responsive structure of a brittle, corrosion resistant material comprising more than one substrate of single crystal material bonded to at least a second substrate of single crystal material;
a capacitance sensor coupled to the pressure responsive structure providing a capacitive output in response to deformation of the pressure responsive structure due to an applied pressure;
and wherein the bond between the substrates is a fusion bond which has a bond strength of crystal substantially equal to the single crystal material strength and is formed at a temperature between about 65 percent and 95 percent of an absolute temperature corresponding to a melting point of the material.
11. The pressure sensor of claim 10 wherein the pressure responsive structure has a cavity width w and a thickness T, and. w/T is less than about 4Ø
12. The pressure sensor of claim 10 wherein the pressure responsive structure includes a passageway therethrough for providing a reference pressure proximate the capacitance sensor.
13. The pressure sensor of claim 10 wherein the pressure responsive structure includes electrical conductors extending therethrough able to withstand a temperature used to form the bond.
14. The pressure sensor of claim 13 wherein the electrical conductors are implanted in the pressure responsive structure.
15. The pressure sensor of claim 13 wherein the material comprises sapphire.
16. A pressure sensor in a pressure transmitter, comprising:
an elongated pressure responsive structure of a single crystal, corrosion-resistant material, the elongated structure having a pressure sensor width w and a thickness T;
a capacitance sensor coupled to the pressure responsive structure providing a capacitive output in response to deformation of the pressure responsive structure due to an applied pressure;
and wherein w/T is less than about 4Ø
17. The pressure sensor of claim 16 wherein the pressure responsive structure includes more than one substrate and a bond between substrates is a fusion bond which has a strength substantially equal to the single crystal material strength and is formed at a bonding temperature between about 65 percent and about 95 percent of an absolute temperature corresponding to a melting point of the material.
18. The pressure sensor of claim 16 wherein the elongated pressure responsive structure includes a cavity extending therethrough for providing a reference pressure proximate the capacitance sensor.
19. The pressure sensor of claim 16 including electrical conductors implanted in the pressure responsive structure.
20. The pressure sensor of claim 17 including electrical conductors in the pressure responsive structure having a melting point greater than the bonding temperature.
21. The pressure sensor of claim 16 wherein the pressure responsive structure is coupled to a pressure transmitter housing by a stress isolating structure of the same single crystal, corrosion-resistant material.
22. The pressure sensor of claim 21 wherein the joint between the pressure sensing structure and the pressure transmitter housing is a fusion bond.
23. The pressure sensor of claim 16 wherein the capacitance sensor includes conducting electrodes formed of conducting strips on opposing surfaces of a cavity gap.
24. The pressure sensor of claim 23 wherein the conducting strips have width and spacing substantially equal or less than a cavity gap spacing.
25. The pressure sensor of claim 21 wherein the pressure responsive structure and stress isolating structure are surrounded by and directly exposed to process pressure fluid.
26. The pressure sensor of claim 16 wherein the material comprises sapphire.
27. A pressure sensor in a pressure transmitter, comprising:
a pressure responsive structure;

a first capacitor plate having a back side attached to the pressure responsive structure and a front side;
a second capacitor plate having a back side attached to the pressure responsive structure and a front side, the first and second capacitor plates positioned to provide relative deflection therebetween in response to pressure applied to the pressure responsive structure; and wherein the electric field between the first and second capacitor plates emanates substantially between the back sides of the first and second capacitor plates.
28. The pressure sensor of claim 27 wherein the pressure responsive structure includes a cavity and the capacitor plates are positioned on opposite sides of the cavity.
29. The pressure sensor of claim 28 including a plurality of first capacitor plates on a first side of the cavity adjacent the first capacitor plate and a plurality of second capacitor plates on a second side of the cavity adjacent the second capacitor plate.
30. The pressure sensor of claim 29 wherein the first capacitor plates are laterally offset relative to the second capacitor plates.
31. The pressure sensor of claim 27 wherein the pressure responsive material comprises sapphire.
32. The pressure sensor of claim 27 wherein the pressure responsive structure comprises first and second portions fusion bonded together and forming a gap therebetween which carries the first and second capacitor plates.
33. The pressure sensor of claim 27 wherein the pressure responsive structure has a length between a mounting portion and a sensing portion selected to provide a desired stress isolation.
34. A transmitter for providing an output related to a differential pressure, comprising:
a transmitter body;
a first pressure responsive structure formed substantially of a single crystal material coupled to a first process pressure;
a first sensing means coupled to the first pressure responsive structure having an output related to the response of the first pressure responsive structure to the first process pressure;
a first stress isolation member coupling the first pressure responsive structure to the transmitter body, the first stress isolation member formed substantially of the single crystal material;
a second pressure responsive structure formed substantially of a single crystal material coupled to a second process pressure;
a second sensing means coupled to the second pressure responsive structure having an output related to the response of the second pressure responsive structure to the second process pressure;
a second stress isolation member coupling the second pressure responsive structure to the transmitter body, the second stress isolation member formed substantially of the single crystal material; and output means in the transmitter body coupled to the first and second sensors for determining the difference in pressure between the first and second process pressures and providing an output related to a differential pressure therebetween.
35. The transmitter of claim 34 wherein the first and second pressure responsive members are exposed directly to the process fluid and the single crystal material is substantially resistant to corrosion due to the process fluid.
36. The transmitter of claim 34 wherein the sensing means comprises capacitor electrodes and the output is a capacitance related to pressure.
37. The transmitter of claim 34 wherein the first and second pressure sensing structures are coupled to first and second reference pressures and the pressure sensing structures are responsive to a difference between a reference pressure and a process pressure.
38. The transmitter of claim 37 wherein the reference pressures are coupled together and are equal.
39. The transmitter of claim 38 wherein the reference pressures are substantially independent of process pressure.
40. The transmitter of claim 37 wherein the reference pressure is substantially a vacuum.
41. The transmitter of claim 37 wherein the reference pressure is transmitted via a gas.
42. The transmitter of claim 34 wherein the single crystal material is sapphire.
43. The transmitter of claim 34 wherein the first and second pressure responsive structures are maintained at substantially the same temperature by the transmitter housing.
44. The transmitter of claim 43 wherein the pressure responsive structures are spaced apart such that they maintain a temperature differential within a predetermined range over a predetermined temperature gradient in the transmitter housing.
45. The transmitter of claim 34 wherein a process pressure range is greater than 1000 psi and a differential pressure range is less than 30 psi.
46. The transmitter of claim 34 wherein each pressure responsive structure is maintained at a substantially uniform temperature throughout.
47. The transmitter of claim 34 wherein there are joints between the pressure responsive structure and the stress isolating means and the joints are substantially free of foreign material.
48. The transmitted of claim 47 wherein the joints are fusion bonds.
CA002212384A 1995-02-28 1996-02-22 Pressure sensors and pressure transmitters Abandoned CA2212384A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/395,778 1995-02-28
US08/395,778 US5637802A (en) 1995-02-28 1995-02-28 Capacitive pressure sensor for a pressure transmitted where electric field emanates substantially from back sides of plates

Publications (1)

Publication Number Publication Date
CA2212384A1 true CA2212384A1 (en) 1996-09-06

Family

ID=23564468

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002212384A Abandoned CA2212384A1 (en) 1995-02-28 1996-02-22 Pressure sensors and pressure transmitters

Country Status (7)

Country Link
US (4) US5637802A (en)
EP (1) EP0812413A1 (en)
JP (1) JP3723217B2 (en)
CN (1) CN1176693A (en)
BR (1) BR9607134A (en)
CA (1) CA2212384A1 (en)
WO (1) WO1996027123A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014066978A1 (en) * 2012-10-29 2014-05-08 MEMS-Vision International Inc. Methods and systems for humidity and pressure sensor overlay integration with electronics

Families Citing this family (167)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6403771B1 (en) 1991-02-19 2002-06-11 Actinium Pharmaceuticals, Limited Method and means for site directed therapy
US5637802A (en) 1995-02-28 1997-06-10 Rosemount Inc. Capacitive pressure sensor for a pressure transmitted where electric field emanates substantially from back sides of plates
US6484585B1 (en) 1995-02-28 2002-11-26 Rosemount Inc. Pressure sensor for a pressure transmitter
US5665899A (en) * 1996-02-23 1997-09-09 Rosemount Inc. Pressure sensor diagnostics in a process transmitter
NO304328B1 (en) * 1996-02-27 1998-11-30 Nyfotek As TrykkmÕler
US6017143A (en) 1996-03-28 2000-01-25 Rosemount Inc. Device in a process system for detecting events
US7949495B2 (en) 1996-03-28 2011-05-24 Rosemount, Inc. Process variable transmitter with diagnostics
US6654697B1 (en) 1996-03-28 2003-11-25 Rosemount Inc. Flow measurement with diagnostics
US8290721B2 (en) 1996-03-28 2012-10-16 Rosemount Inc. Flow measurement diagnostics
US6539267B1 (en) 1996-03-28 2003-03-25 Rosemount Inc. Device in a process system for determining statistical parameter
US7254518B2 (en) * 1996-03-28 2007-08-07 Rosemount Inc. Pressure transmitter with diagnostics
US6519546B1 (en) 1996-11-07 2003-02-11 Rosemount Inc. Auto correcting temperature transmitter with resistance based sensor
US6754601B1 (en) 1996-11-07 2004-06-22 Rosemount Inc. Diagnostics for resistive elements of process devices
US6434504B1 (en) 1996-11-07 2002-08-13 Rosemount Inc. Resistance based process control device diagnostics
US6601005B1 (en) 1996-11-07 2003-07-29 Rosemount Inc. Process device diagnostics using process variable sensor signal
US6370448B1 (en) 1997-10-13 2002-04-09 Rosemount Inc. Communication technique for field devices in industrial processes
US6059453A (en) * 1998-04-20 2000-05-09 Rosemount Inc. Temperature probe with sapphire thermowell
US6177727B1 (en) * 1998-05-01 2001-01-23 Motorola, Inc. Saddle bracket for solid state pressure gauge
JP2000012723A (en) 1998-06-23 2000-01-14 Nitto Denko Corp Circuit board mounting structure and multilayer circuit board therefor
US6615149B1 (en) 1998-12-10 2003-09-02 Rosemount Inc. Spectral diagnostics in a magnetic flow meter
US6611775B1 (en) 1998-12-10 2003-08-26 Rosemount Inc. Electrode leakage diagnostics in a magnetic flow meter
US6694285B1 (en) 1999-03-13 2004-02-17 Textron System Corporation Method and apparatus for monitoring rotating machinery
US6546814B1 (en) 1999-03-13 2003-04-15 Textron Systems Corporation Method and apparatus for estimating torque in rotating machinery
US6425293B1 (en) * 1999-03-13 2002-07-30 Textron Systems Corporation Sensor plug
US6508131B2 (en) 1999-05-14 2003-01-21 Rosemount Inc. Process sensor module having a single ungrounded input/output conductor
US6295875B1 (en) 1999-05-14 2001-10-02 Rosemount Inc. Process pressure measurement devices with improved error compensation
US6356191B1 (en) 1999-06-17 2002-03-12 Rosemount Inc. Error compensation for a process fluid temperature transmitter
JP4824234B2 (en) 1999-07-01 2011-11-30 ローズマウント インコーポレイテッド Two-wire temperature transmitter and process temperature measurement method
US6505517B1 (en) 1999-07-23 2003-01-14 Rosemount Inc. High accuracy signal processing for magnetic flowmeter
US6470755B1 (en) * 1999-08-05 2002-10-29 Dieterich Standard, Inc. Noise reducing differential pressure measurement probe
US6473711B1 (en) 1999-08-13 2002-10-29 Rosemount Inc. Interchangeable differential, absolute and gage type of pressure transmitter
US6701274B1 (en) 1999-08-27 2004-03-02 Rosemount Inc. Prediction of error magnitude in a pressure transmitter
US6556145B1 (en) 1999-09-24 2003-04-29 Rosemount Inc. Two-wire fluid temperature transmitter with thermocouple diagnostics
US6484107B1 (en) * 1999-09-28 2002-11-19 Rosemount Inc. Selectable on-off logic modes for a sensor module
JP3620795B2 (en) 2000-01-06 2005-02-16 ローズマウント インコーポレイテッド Grain growth in electrical interconnects for microelectromechanical systems.
US6520020B1 (en) * 2000-01-06 2003-02-18 Rosemount Inc. Method and apparatus for a direct bonded isolated pressure sensor
US6508129B1 (en) * 2000-01-06 2003-01-21 Rosemount Inc. Pressure sensor capsule with improved isolation
US6505516B1 (en) * 2000-01-06 2003-01-14 Rosemount Inc. Capacitive pressure sensing with moving dielectric
US6561038B2 (en) * 2000-01-06 2003-05-13 Rosemount Inc. Sensor with fluid isolation barrier
JP3771425B2 (en) 2000-07-04 2006-04-26 株式会社山武 Capacitive pressure sensor and manufacturing method thereof
US6782754B1 (en) 2000-07-07 2004-08-31 Rosemount, Inc. Pressure transmitter for clean environments
US6465281B1 (en) 2000-09-08 2002-10-15 Motorola, Inc. Method of manufacturing a semiconductor wafer level package
US6735484B1 (en) 2000-09-20 2004-05-11 Fargo Electronics, Inc. Printer with a process diagnostics system for detecting events
US6629059B2 (en) 2001-05-14 2003-09-30 Fisher-Rosemount Systems, Inc. Hand held diagnostic and communication device with automatic bus detection
DE10124933A1 (en) * 2001-05-21 2002-11-28 Endress & Hauser Gmbh & Co Kg Device used for process measurement and control technology comprises a lid made from a metallic material, and a metallic housing of a measuring apparatus
US6516672B2 (en) 2001-05-21 2003-02-11 Rosemount Inc. Sigma-delta analog to digital converter for capacitive pressure sensor and process transmitter
US6772036B2 (en) 2001-08-30 2004-08-03 Fisher-Rosemount Systems, Inc. Control system using process model
AU2002342150A1 (en) 2001-10-30 2003-05-12 George S. Lesinski Implantation method for a hearing aid microactuator implanted into the cochlea
US6720777B2 (en) 2002-02-15 2004-04-13 Rosemount Inc. Bridged capacitor sensor measurement circuit
US6839546B2 (en) 2002-04-22 2005-01-04 Rosemount Inc. Process transmitter with wireless communication link
US6848316B2 (en) * 2002-05-08 2005-02-01 Rosemount Inc. Pressure sensor assembly
US6843133B2 (en) * 2002-06-18 2005-01-18 Rosemount, Inc. Capacitive pressure transmitter
US6828802B2 (en) 2002-08-16 2004-12-07 Rosemount Inc. Pressure measurement device including a capacitive sensor in an amplifier feedback path
US6843139B2 (en) * 2003-03-12 2005-01-18 Rosemount Inc. Flow instrument with multisensors
US6722927B1 (en) * 2003-05-28 2004-04-20 Rosemount Inc. Electrical connector for a pressure sensor stem
US7047813B2 (en) * 2003-08-05 2006-05-23 Honeywell International Inc. Sensor slip fit apparatus and method
US6962084B2 (en) * 2003-08-06 2005-11-08 Honeywell International Inc. Sensor with molded sensor diaphragm cover
US6931934B2 (en) * 2003-09-10 2005-08-23 Honeywell International Inc. Sensor top hat cover apparatus and method
US6873277B1 (en) * 2003-09-19 2005-03-29 Rosemount, Inc. Multi-phase measurement system with synchronized sigma delta converters
US6901803B2 (en) * 2003-10-02 2005-06-07 Rosemount Inc. Pressure module
US6909975B2 (en) * 2003-11-24 2005-06-21 Mks Instruments, Inc. Integrated absolute and differential pressure transducer
CN100511058C (en) * 2004-02-05 2009-07-08 罗斯蒙德公司 Emergency shutdown valve diagnostics using a pressure transmitter
US6964198B2 (en) * 2004-02-25 2005-11-15 Honeywell International Inc. Sensor testing system and method
CN1954138B (en) * 2004-03-02 2011-02-16 罗斯蒙德公司 Process device with improved power generation
US7070086B2 (en) 2004-03-03 2006-07-04 Honeywell International Inc. Sensor pre-load and weld fixture apparatus and method
US7059511B2 (en) * 2004-03-15 2006-06-13 Honeywell International Inc. Adjustable force and position pre-load welding fixture
US7000461B2 (en) * 2004-03-23 2006-02-21 Honeywell International Inc. Patch wireless test fixture
US7136683B2 (en) * 2004-03-23 2006-11-14 Honeywell International Inc. Surface acoustic wave sensor and radio frequency identification interrogator fixture
US7000298B2 (en) * 2004-04-20 2006-02-21 Honeywell International Inc. Method a quartz sensor
US8538560B2 (en) * 2004-04-29 2013-09-17 Rosemount Inc. Wireless power and communication unit for process field devices
US8145180B2 (en) 2004-05-21 2012-03-27 Rosemount Inc. Power generation for process devices
US7373831B2 (en) * 2004-06-25 2008-05-20 Rosemount Inc. High temperature pressure transmitter assembly
US7262693B2 (en) * 2004-06-28 2007-08-28 Rosemount Inc. Process field device with radio frequency communication
US8160535B2 (en) * 2004-06-28 2012-04-17 Rosemount Inc. RF adapter for field device
US7347099B2 (en) * 2004-07-16 2008-03-25 Rosemount Inc. Pressure transducer with external heater
US7129828B2 (en) * 2004-07-20 2006-10-31 Honeywell International Inc. Encapsulated surface acoustic wave sensor
US7252009B2 (en) * 2004-08-27 2007-08-07 Ashcroft-Nagano, Inc. System and method for pressure measurement
US7205701B2 (en) * 2004-09-03 2007-04-17 Honeywell International Inc. Passive wireless acoustic wave chemical sensor
US7190053B2 (en) * 2004-09-16 2007-03-13 Rosemount Inc. Field device incorporating circuit card assembly as environmental and EMI/RFI shield
EP1794565B1 (en) * 2004-09-29 2015-08-05 Rosemount, Inc. Pressure transducer with improved process adapter
US7165455B2 (en) * 2004-12-18 2007-01-23 Honeywell International Inc. Surface acoustic wave sensor methods and systems
US7680460B2 (en) * 2005-01-03 2010-03-16 Rosemount Inc. Wireless process field device diagnostics
US9184364B2 (en) * 2005-03-02 2015-11-10 Rosemount Inc. Pipeline thermoelectric generator assembly
US7334484B2 (en) * 2005-05-27 2008-02-26 Rosemount Inc. Line pressure measurement using differential pressure sensor
US8112565B2 (en) 2005-06-08 2012-02-07 Fisher-Rosemount Systems, Inc. Multi-protocol field device interface with automatic bus detection
US8452255B2 (en) 2005-06-27 2013-05-28 Rosemount Inc. Field device with dynamically adjustable power consumption radio frequency communication
US7835295B2 (en) * 2005-07-19 2010-11-16 Rosemount Inc. Interface module with power over Ethernet function
US7679033B2 (en) * 2005-09-29 2010-03-16 Rosemount Inc. Process field device temperature control
US7379792B2 (en) 2005-09-29 2008-05-27 Rosemount Inc. Pressure transmitter with acoustic pressure sensor
US20070068225A1 (en) 2005-09-29 2007-03-29 Brown Gregory C Leak detector for process valve
US7287432B2 (en) * 2005-11-17 2007-10-30 Rosemount Inc. Process transmitter with overpressure vent
US7415886B2 (en) * 2005-12-20 2008-08-26 Rosemount Inc. Pressure sensor with deflectable diaphragm
US7236113B1 (en) 2006-01-26 2007-06-26 Emerson Process Management Capacitance-to-digital modulator with sensor failure-mode detection
US7319421B2 (en) 2006-01-26 2008-01-15 Emerson Process Management Foldback free capacitance-to-digital modulator
US7308830B2 (en) * 2006-01-26 2007-12-18 Rosemount Inc. Pressure sensor fault detection
US7913566B2 (en) * 2006-05-23 2011-03-29 Rosemount Inc. Industrial process device utilizing magnetic induction
US7467555B2 (en) 2006-07-10 2008-12-23 Rosemount Inc. Pressure transmitter with multiple reference pressure sensors
US7282928B1 (en) * 2006-07-13 2007-10-16 Pepperl & Fuchs, Inc. Corrosion measurement field device with improved LPF, HDA, and ECN capability
US7265559B1 (en) * 2006-07-13 2007-09-04 Pepperl + Fuchs Self-calibrating corrosion measurement field device with improved signal measurement and excitation circuitry
US7953501B2 (en) 2006-09-25 2011-05-31 Fisher-Rosemount Systems, Inc. Industrial process control loop monitor
US8788070B2 (en) 2006-09-26 2014-07-22 Rosemount Inc. Automatic field device service adviser
US8188359B2 (en) * 2006-09-28 2012-05-29 Rosemount Inc. Thermoelectric generator assembly for field process devices
JP2010505121A (en) 2006-09-29 2010-02-18 ローズマウント インコーポレイテッド Magnetic flow meter with verification
US8243043B2 (en) * 2007-03-29 2012-08-14 Cirque Corporation Driven shield for capacitive touchpads
US8898036B2 (en) 2007-08-06 2014-11-25 Rosemount Inc. Process variable transmitter with acceleration sensor
US7448275B1 (en) 2007-09-12 2008-11-11 Rosemount Inc. Bi-planar process fluid pressure measurement system
US7484416B1 (en) 2007-10-15 2009-02-03 Rosemount Inc. Process control transmitter with vibration sensor
US7779698B2 (en) * 2007-11-08 2010-08-24 Rosemount Inc. Pressure sensor
US7497123B1 (en) 2007-12-18 2009-03-03 Rosemount Inc. Direct mount for pressure transmitter with thermal management
WO2009154748A2 (en) 2008-06-17 2009-12-23 Rosemount Inc. Rf adapter for field device with low voltage intrinsic safety clamping
US8250924B2 (en) 2008-04-22 2012-08-28 Rosemount Inc. Industrial process device utilizing piezoelectric transducer
US8694060B2 (en) 2008-06-17 2014-04-08 Rosemount Inc. Form factor and electromagnetic interference protection for process device wireless adapters
CN102084626B (en) * 2008-06-17 2013-09-18 罗斯蒙德公司 RF adapter for field device with loop current bypass
US8929948B2 (en) 2008-06-17 2015-01-06 Rosemount Inc. Wireless communication adapter for field devices
JP5255698B2 (en) 2008-06-17 2013-08-07 ローズマウント インコーポレイテッド Wireless adapter for field devices with variable voltage drop
US7681456B2 (en) * 2008-06-20 2010-03-23 Rosemount Inc. Field device including a capillary tube having a non-cylindrical lumen
CN102132162A (en) * 2008-07-02 2011-07-20 倍加福公司 Electrochemical noise as a localized corrosion indicator
US7977924B2 (en) 2008-11-03 2011-07-12 Rosemount Inc. Industrial process power scavenging device and method of deriving process device power from an industrial process
US7954383B2 (en) * 2008-12-03 2011-06-07 Rosemount Inc. Method and apparatus for pressure measurement using fill tube
US7870791B2 (en) * 2008-12-03 2011-01-18 Rosemount Inc. Method and apparatus for pressure measurement using quartz crystal
US8327713B2 (en) 2008-12-03 2012-12-11 Rosemount Inc. Method and apparatus for pressure measurement using magnetic property
WO2010114465A1 (en) * 2009-03-30 2010-10-07 Ge Healthcare Bio-Sciences Ab Pressure sensor
US7921734B2 (en) 2009-05-12 2011-04-12 Rosemount Inc. System to detect poor process ground connections
US9674976B2 (en) * 2009-06-16 2017-06-06 Rosemount Inc. Wireless process communication adapter with improved encapsulation
US8626087B2 (en) 2009-06-16 2014-01-07 Rosemount Inc. Wire harness for field devices used in a hazardous locations
FR2948997B1 (en) * 2009-08-07 2012-04-20 Nanotec Solution CAPACITIVE PRESSURE SENSOR INCLUDING TEMPERATURE MEASUREMENT COMPATIBLE WITH HOT ENVIRONMENTS.
DE102009051613A1 (en) * 2009-11-02 2011-05-05 Vega Grieshaber Kg cell
US8429978B2 (en) 2010-03-30 2013-04-30 Rosemount Inc. Resonant frequency based pressure sensor
US8234927B2 (en) 2010-06-08 2012-08-07 Rosemount Inc. Differential pressure sensor with line pressure measurement
US8132464B2 (en) * 2010-07-12 2012-03-13 Rosemount Inc. Differential pressure transmitter with complimentary dual absolute pressure sensors
US8141429B2 (en) * 2010-07-30 2012-03-27 Rosemount Aerospace Inc. High temperature capacitive static/dynamic pressure sensors and methods of making the same
US10761524B2 (en) 2010-08-12 2020-09-01 Rosemount Inc. Wireless adapter with process diagnostics
US9207670B2 (en) 2011-03-21 2015-12-08 Rosemount Inc. Degrading sensor detection implemented within a transmitter
US9310794B2 (en) 2011-10-27 2016-04-12 Rosemount Inc. Power supply for industrial process field device
US9010191B2 (en) 2011-12-22 2015-04-21 Rosemount Inc. Pressure sensor module for sub-sea applications
JP5940181B2 (en) 2012-03-06 2016-06-29 ローズマウント インコーポレイテッド Underwater remote seal pressure measurement system
US9200932B2 (en) 2012-05-29 2015-12-01 Rosemount Inc. Differential pressure transmitter with redundant sensors
US8752433B2 (en) * 2012-06-19 2014-06-17 Rosemount Inc. Differential pressure transmitter with pressure sensor
US9052240B2 (en) 2012-06-29 2015-06-09 Rosemount Inc. Industrial process temperature transmitter with sensor stress diagnostics
US9568387B2 (en) 2012-08-08 2017-02-14 Rosemount Inc. Thermal diagnostic for single-crystal process fluid pressure sensor
US9207129B2 (en) 2012-09-27 2015-12-08 Rosemount Inc. Process variable transmitter with EMF detection and correction
US9602122B2 (en) 2012-09-28 2017-03-21 Rosemount Inc. Process variable measurement noise diagnostic
US9778074B2 (en) 2013-03-14 2017-10-03 Rosemount Inc. Process measurement system with variable amplitude sensor excitation
US9157775B2 (en) * 2013-03-15 2015-10-13 Rosemount Inc. Flowmeter for measuring flow of a process fluid through a conduit including process variable sensors mounted on a pitot tube
US9048901B2 (en) 2013-03-15 2015-06-02 Rosemount Inc. Wireless interface within transmitter
JP5983493B2 (en) * 2013-03-26 2016-08-31 株式会社デンソー Pressure sensor
US9442031B2 (en) * 2013-06-28 2016-09-13 Rosemount Inc. High integrity process fluid pressure probe
US9689769B2 (en) * 2013-07-19 2017-06-27 Rosemount Inc. Pressure transmitter having an isolation assembly with a two-piece isolator plug
US9459170B2 (en) * 2013-09-26 2016-10-04 Rosemount Inc. Process fluid pressure sensing assembly for pressure transmitters subjected to high working pressure
US9234776B2 (en) 2013-09-26 2016-01-12 Rosemount Inc. Multivariable process fluid transmitter for high pressure applications
US9250108B2 (en) 2013-09-27 2016-02-02 Rosemount Inc. Differential pressure based flow measurement device having improved pitot tube configuration
US10260980B2 (en) 2013-09-27 2019-04-16 Rosemount Inc. Pressure sensor with mineral insulated cable
US9222815B2 (en) 2013-12-30 2015-12-29 Rosemount Inc. Wafer style insertable magnetic flowmeter with collapsible petals
CA2941012C (en) * 2014-03-14 2019-05-21 Rosemount Inc. Corrosion rate measurement
US10107700B2 (en) 2014-03-24 2018-10-23 Rosemount Inc. Process variable transmitter with process variable sensor carried by process gasket
US9638600B2 (en) 2014-09-30 2017-05-02 Rosemount Inc. Electrical interconnect for pressure sensor in a process variable transmitter
US10830689B2 (en) 2014-09-30 2020-11-10 Rosemount Inc. Corrosion rate measurement using sacrificial probe
DE102015107306A1 (en) * 2015-05-11 2016-11-17 Endress + Hauser Gmbh + Co. Kg Field device for use in process automation
US10190968B2 (en) 2015-06-26 2019-01-29 Rosemount Inc. Corrosion rate measurement with multivariable sensor
CN104990651A (en) * 2015-08-16 2015-10-21 昆山泰莱宏成传感技术有限公司 Silicon-sapphire differential capacitance type pressure sensor and manufacturing method
CN105527070B (en) * 2015-12-02 2018-01-16 中国航空工业集团公司沈阳空气动力研究所 The device and stable gas pressure means of the stable atmospheric pressure of wind-tunnel gauge pressure transducer
EP3526554A4 (en) * 2016-10-11 2020-06-03 Scully Signal Company Fluid detection flange for a product transfer verification system
CN107014438B (en) * 2017-04-24 2019-05-10 西北工业大学 High temperature high pressure liquid pressure based on ceramic package, sensor for measuring temperature
US10598559B2 (en) 2017-06-29 2020-03-24 Rosemount Inc. Pressure sensor assembly
CN107505081A (en) * 2017-08-21 2017-12-22 北京精密机电控制设备研究所 A kind of small-sized silicon on sapphire differential pressure pickup
NL2021137B1 (en) * 2018-06-15 2019-12-20 Boschman Tech Bv Sintering Process Product Carrier
KR102392599B1 (en) * 2018-07-09 2022-04-29 가부시키가이샤 후지킨 fluid control device

Family Cites Families (165)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US28798A (en) * 1860-06-19 Shiwg-le-machine
DE1648764U (en) 1952-10-06 1952-12-31 Agnes Speer FAST INFEEDER FOR SEWING MACHINE, SEWING AND DAMPING NEEDLES.
US3239827A (en) * 1960-01-12 1966-03-08 Rosemount Eng Co Ltd High precision pressure standard
US3079576A (en) * 1961-02-01 1963-02-26 Rosemount Eng Co Ltd Integral strain transducer
US3147085A (en) * 1961-09-14 1964-09-01 Gen Electric Apparatus for growing whiskers
BE635328A (en) * 1962-07-25
GB1069435A (en) * 1963-05-21 1967-05-17 G V Planer Ltd Electromechanical transducer device
NL6411121A (en) * 1964-09-24 1966-03-25
US3356963A (en) * 1966-06-23 1967-12-05 Willard E Buck Fused quartz motion sensitive transducer
US3405559A (en) * 1966-11-07 1968-10-15 United Aircraft Corp Pressure transducer
US3440873A (en) 1967-05-23 1969-04-29 Corning Glass Works Miniature pressure transducer
US3750476A (en) * 1967-09-25 1973-08-07 Bissett Berman Corp Pressure transducer
US3589965A (en) * 1968-11-27 1971-06-29 Mallory & Co Inc P R Bonding an insulator to an insulator
USRE28798E (en) 1969-12-31 1976-05-04 Western Electric Co., Inc. Methods of and apparatus for aligning and bonding workpieces
US3696985A (en) * 1969-12-31 1972-10-10 Western Electric Co Methods of and apparatus for aligning and bonding workpieces
US3743552A (en) * 1970-01-30 1973-07-03 North American Rockwell Process for coplanar semiconductor structure
US3645137A (en) 1970-04-16 1972-02-29 Bendix Corp Quartz pressure sensor
DE2021479A1 (en) 1970-05-02 1971-11-11 Kleinwaechter Hans Pressure gauge with double quartz glass diaphragm
IL38468A (en) * 1971-02-02 1974-11-29 Hughes Aircraft Co Electrical resistance device and its production
CS153132B1 (en) 1971-02-12 1974-02-25
US3715638A (en) 1971-05-10 1973-02-06 Bendix Corp Temperature compensator for capacitive pressure transducers
US3962921A (en) * 1972-02-04 1976-06-15 The Garrett Corporation Compensated pressure transducer
US3744120A (en) * 1972-04-20 1973-07-10 Gen Electric Direct bonding of metals with a metal-gas eutectic
US3766634A (en) * 1972-04-20 1973-10-23 Gen Electric Method of direct bonding metals to non-metallic substrates
US3854892A (en) * 1972-04-20 1974-12-17 Gen Electric Direct bonding of metals with a metal-gas eutectic
US3939559A (en) * 1972-10-03 1976-02-24 Western Electric Company, Inc. Methods of solid-phase bonding mating members through an interposed pre-shaped compliant medium
US3834604A (en) * 1972-10-03 1974-09-10 Western Electric Co Apparatus for solid-phase bonding mating members through an interposed pre-shaped compliant medium
SU463643A1 (en) 1973-01-03 1975-03-15 Ордена Ленина Предприятие П/Я А-1705 The method of manufacturing products
FR2246506A1 (en) 1973-10-09 1975-05-02 Podvigalkina Galina Joining of silicate glass lenses - by formation of silicate film on lens surface(s) then sintering together by IR radiation
US3858097A (en) 1973-12-26 1974-12-31 Bendix Corp Pressure-sensing capacitor
US3994430A (en) * 1975-07-30 1976-11-30 General Electric Company Direct bonding of metals to ceramics and metals
US4084438A (en) * 1976-03-29 1978-04-18 Setra Systems, Inc. Capacitive pressure sensing device
US4018374A (en) * 1976-06-01 1977-04-19 Ford Aerospace & Communications Corporation Method for forming a bond between sapphire and glass
US4064549A (en) * 1976-08-31 1977-12-20 Metrolology General Corporation Cylindrical capacitive quartz transducer
US4158217A (en) * 1976-12-02 1979-06-12 Kaylico Corporation Capacitive pressure transducer with improved electrode
US4128006A (en) * 1976-12-13 1978-12-05 Bunker Ramo Corporation Packaging of pressure sensor cells
US4127840A (en) * 1977-02-22 1978-11-28 Conrac Corporation Solid state force transducer
US4078711A (en) * 1977-04-14 1978-03-14 Rockwell International Corporation Metallurgical method for die attaching silicon on sapphire devices to obtain heat resistant bond
US4208782A (en) * 1977-12-12 1980-06-24 Kulite Semiconductor Products, Inc. Methods of fabricating transducers employing flat bondable surfaces with buried contact areas
US4202217A (en) * 1977-12-12 1980-05-13 Kulite Semiconductor Products, Inc. Semiconductor transducers employing flat bondable surfaces with buried contact areas
SU736216A1 (en) 1978-02-22 1980-05-25 Предприятие П/Я А-3695 Gas discharge tube manufacturing method
JPS5516228A (en) * 1978-07-21 1980-02-04 Hitachi Ltd Capacity type sensor
US4196632A (en) * 1978-08-14 1980-04-08 The Boeing Company Dual capacitance type bonded pressure transducer
US4278195A (en) * 1978-12-01 1981-07-14 Honeywell Inc. Method for low temperature bonding of silicon and silicon on sapphire and spinel to nickel and nickel steel and apparatus using such _a bonding technique
US4274125A (en) * 1979-01-23 1981-06-16 The Bendix Corporation Temperature compensated capacitance pressure transducer
JPS5937716Y2 (en) * 1979-01-31 1984-10-19 日産自動車株式会社 semiconductor differential pressure sensor
JPS5817421B2 (en) * 1979-02-02 1983-04-07 日産自動車株式会社 semiconductor pressure sensor
US4236137A (en) * 1979-03-19 1980-11-25 Kulite Semiconductor Products, Inc. Semiconductor transducers employing flexure frames
US4216404A (en) * 1979-04-12 1980-08-05 Kulite Semiconductor Products Inc. Housing and lead arrangements for electromechanical transducers
FR2455733A1 (en) 1979-04-19 1980-11-28 Motorola Inc IC engine depressurisation effect measurement - having pressure sensor using change of capacitance effect caused by moving diaphragm
US4222277A (en) * 1979-08-13 1980-09-16 Kulite Semiconductor Products, Inc. Media compatible pressure transducer
US4301492A (en) * 1980-01-28 1981-11-17 Paquin Maurice J Pressure-sensing transducer
US4382247A (en) 1980-03-06 1983-05-03 Robert Bosch Gmbh Pressure sensor
JPS56129831A (en) * 1980-03-17 1981-10-12 Yokogawa Hokushin Electric Corp Pressure converter
DE3015356A1 (en) * 1980-04-22 1981-10-29 Robert Bosch Gmbh, 7000 Stuttgart SUPPORTING LAYERS AND METHOD FOR PRODUCING SUPPORTING LAYERS, ESPECIALLY FOR SENSORS FOR INTERNAL COMBUSTION ENGINES
DE3030765C2 (en) * 1980-08-14 1985-09-26 Friedrich Grohe Armaturenfabrik Gmbh & Co, 5870 Hemer Electronically controlled mixing valve
US4419142A (en) * 1980-10-24 1983-12-06 Tokyo Shibaura Denki Kabushiki Kaisha Method of forming dielectric isolation of device regions
SE436936B (en) * 1981-01-29 1985-01-28 Asea Ab INTEGRATED CAPACITY SENSOR
US4422335A (en) * 1981-03-25 1983-12-27 The Bendix Corporation Pressure transducer
US4359498A (en) * 1981-04-20 1982-11-16 Kulite Semiconductor Products, Inc. Transducer structure employing vertically walled diaphragms with quasi rectangular active areas
US4443293A (en) * 1981-04-20 1984-04-17 Kulite Semiconductor Products, Inc. Method of fabricating transducer structure employing vertically walled diaphragms with quasi rectangular active areas
US4598996A (en) * 1981-05-07 1986-07-08 Matsushita Electric Industrial Co., Ltd. Temperature detector
US4389895A (en) * 1981-07-27 1983-06-28 Rosemount Inc. Capacitance pressure sensor
US4456901A (en) * 1981-08-31 1984-06-26 Kulite Semiconductor Products, Inc. Dielectrically isolated transducer employing single crystal strain gages
US4412203A (en) * 1981-09-10 1983-10-25 Kulite Semiconductor Products, Inc. Housing and interconnection assembly for a pressure transducer
JPS5855732A (en) * 1981-09-30 1983-04-02 Hitachi Ltd Electrostatic capacity type pressure sensor
US4454765A (en) * 1981-11-03 1984-06-19 Lodge Arthur S Extended range pressure transducers
GB2109099B (en) * 1981-11-05 1985-07-24 Glaverbel Composite refractory articles and method of manufacturing them
NL8201222A (en) * 1982-03-24 1983-10-17 Philips Nv TUNABLE FABRY-PEROT INTERFEROMETER AND ROENTGEN IMAGE DEVICE EQUIPPED WITH SUCH AN INTERFEROMETER.
US4422125A (en) * 1982-05-21 1983-12-20 The Bendix Corporation Pressure transducer with an invariable reference capacitor
US4424713A (en) * 1982-06-11 1984-01-10 General Signal Corporation Silicon diaphragm capacitive pressure transducer
US4535219A (en) * 1982-10-12 1985-08-13 Xerox Corporation Interfacial blister bonding for microinterconnections
DE3404262A1 (en) * 1983-03-09 1984-09-13 Fuji Electric Co., Ltd., Kawasaki Capacitive sensor
US4479070A (en) * 1983-06-10 1984-10-23 Sperry Corporation Vibrating quartz diaphragm pressure sensor
DE3324661A1 (en) * 1983-07-08 1985-01-17 Brown, Boveri & Cie Ag, 6800 Mannheim METHOD FOR DIRECTLY CONNECTING METAL TO CERAMIC
US4517622A (en) * 1983-08-29 1985-05-14 United Technologies Corporation Capacitive pressure transducer signal conditioning circuit
US4507973A (en) * 1983-08-31 1985-04-02 Borg-Warner Corporation Housing for capacitive pressure sensor
US4539061A (en) * 1983-09-07 1985-09-03 Yeda Research And Development Co., Ltd. Process for the production of built-up films by the stepwise adsorption of individual monolayers
NL8303109A (en) * 1983-09-08 1985-04-01 Philips Nv METHOD FOR ATTACHING TWO PARTS TOGETHER
US4572000A (en) * 1983-12-09 1986-02-25 Rosemount Inc. Pressure sensor with a substantially flat overpressure stop for the measuring diaphragm
GB8401848D0 (en) * 1984-01-24 1984-02-29 Carter R E Pressure transducer
US4525766A (en) * 1984-01-25 1985-06-25 Transensory Devices, Inc. Method and apparatus for forming hermetically sealed electrical feedthrough conductors
US4542436A (en) * 1984-04-10 1985-09-17 Johnson Service Company Linearized capacitive pressure transducer
FI75426C (en) * 1984-10-11 1988-06-09 Vaisala Oy ABSOLUTTRYCKGIVARE.
US4625561A (en) 1984-12-06 1986-12-02 Ford Motor Company Silicon capacitive pressure sensor and method of making
JPS61142759A (en) * 1984-12-14 1986-06-30 Ngk Spark Plug Co Ltd Substrate for ic package
US4780572A (en) * 1985-03-04 1988-10-25 Ngk Spark Plug Co., Ltd. Device for mounting semiconductors
US4586109A (en) * 1985-04-01 1986-04-29 Bourns Instruments, Inc. Batch-process silicon capacitive pressure sensor
US4764747A (en) * 1985-06-19 1988-08-16 Kulite Semiconductor Products, Inc. Glass header structure for a semiconductor pressure transducer
NL8501773A (en) * 1985-06-20 1987-01-16 Philips Nv METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICES
US4689999A (en) * 1985-07-26 1987-09-01 The Garrett Corporation Temperature compensated pressure transducer
NL8600216A (en) * 1986-01-30 1987-08-17 Philips Nv METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE
JPH0628318B2 (en) * 1986-05-02 1994-04-13 株式会社豊田中央研究所 Semiconductor pressure transducer and manufacturing method thereof
DE3616308C2 (en) * 1986-05-14 1995-09-21 Bosch Gmbh Robert sensor
US4703658A (en) * 1986-06-18 1987-11-03 Motorola, Inc. Pressure sensor assembly
US4800758A (en) * 1986-06-23 1989-01-31 Rosemount Inc. Pressure transducer with stress isolation for hard mounting
US4773269A (en) * 1986-07-28 1988-09-27 Rosemount Inc. Media isolated differential pressure sensors
US4773972A (en) * 1986-10-30 1988-09-27 Ford Motor Company Method of making silicon capacitive pressure sensor with glass layer between silicon wafers
NL8700033A (en) * 1987-01-09 1988-08-01 Philips Nv METHOD FOR MANUFACTURING A SEMICONDUCTOR SEMICONDUCTOR TYPE ON ISOLATOR
JPS63285195A (en) * 1987-05-19 1988-11-22 Yokogawa Electric Corp Bonding of quartz single crystal
US5113868A (en) 1987-06-01 1992-05-19 The Regents Of The University Of Michigan Ultraminiature pressure sensor with addressable read-out circuit
US4754365A (en) * 1987-06-15 1988-06-28 Fischer & Porter Company Differential pressure transducer
GB8718639D0 (en) * 1987-08-06 1987-09-09 Spectrol Reliance Ltd Capacitive pressure sensors
GB8718637D0 (en) * 1987-08-06 1987-09-09 Spectrol Reliance Ltd Sealing electrical feedthrough
US4774196A (en) * 1987-08-25 1988-09-27 Siliconix Incorporated Method of bonding semiconductor wafers
US4852408A (en) * 1987-09-03 1989-08-01 Scott Fetzer Company Stop for integrated circuit diaphragm
US4875368A (en) * 1987-09-08 1989-10-24 Panex Corporation Pressure sensor system
US4929893A (en) * 1987-10-06 1990-05-29 Canon Kabushiki Kaisha Wafer prober
US4857130A (en) * 1987-12-03 1989-08-15 Hughes Aircraft Company Temperature stable optical bonding method and apparatus obtained thereby
US4806783A (en) * 1988-02-25 1989-02-21 Transducer Technologies Inc. Transducer circuit
US5068712A (en) 1988-09-20 1991-11-26 Hitachi, Ltd. Semiconductor device
DE3811047A1 (en) * 1988-03-31 1989-10-12 Draegerwerk Ag PROBE FOR CAPACITIVE MEASUREMENT OF PRESSURE IN GASES
DE3811311C1 (en) 1988-04-02 1989-03-09 Robert Bosch Gmbh, 7000 Stuttgart, De
US5174926A (en) 1988-04-07 1992-12-29 Sahagen Armen N Compositions for piezoresistive and superconductive application
US4994781A (en) * 1988-04-07 1991-02-19 Sahagen Armen N Pressure sensing transducer employing piezoresistive elements on sapphire
NL8800953A (en) 1988-04-13 1989-11-01 Philips Nv METHOD FOR MANUFACTURING A SEMICONDUCTOR BODY
JPH02124800A (en) 1988-07-04 1990-05-14 Hiroaki Aoshima Production of single crystal structural body of integrally assimilated synthetic corundum
DE3822966C2 (en) * 1988-07-07 1993-09-30 Degussa Use of a silver alloy as solder for the direct connection of ceramic parts
DE3901492A1 (en) * 1988-07-22 1990-01-25 Endress Hauser Gmbh Co PRESSURE SENSOR AND METHOD FOR THE PRODUCTION THEREOF
US4879903A (en) * 1988-09-02 1989-11-14 Nova Sensor Three part low cost sensor housing
FR2638524B1 (en) 1988-10-27 1994-10-28 Schlumberger Prospection PRESSURE SENSOR FOR USE IN OIL WELLS
US4883215A (en) * 1988-12-19 1989-11-28 Duke University Method for bubble-free bonding of silicon wafers
US4954925A (en) * 1988-12-30 1990-09-04 United Technologies Corporation Capacitive sensor with minimized dielectric drift
DE3909185A1 (en) 1989-03-21 1990-09-27 Endress Hauser Gmbh Co CAPACITIVE PRESSURE SENSOR AND METHOD FOR THE PRODUCTION THEREOF
US5087124A (en) 1989-05-09 1992-02-11 Smith Rosemary L Interferometric pressure sensor capable of high temperature operation and method of fabrication
US5201977A (en) 1989-08-09 1993-04-13 Hiroaki Aoshima Process for producing structures from synthetic single-crystal pieces
US4972717A (en) * 1989-09-18 1990-11-27 Texas Instruments Incorporated Pressure transducer apparatus and method for making same
US4970898A (en) * 1989-09-20 1990-11-20 Rosemount Inc. Pressure transmitter with flame isolating plug
US5001934A (en) * 1990-01-02 1991-03-26 Walbro Corporation Solid state pressure sensor
US5050034A (en) * 1990-01-22 1991-09-17 Endress U. Hauser Gmbh U. Co. Pressure sensor and method of manufacturing same
EP0444943B1 (en) 1990-02-28 1997-05-21 Shin-Etsu Handotai Company Limited A method of manufacturing a bonded wafer
US5084123A (en) 1990-07-02 1992-01-28 Hughes Aircraft Company Temperature stable optical bonding method and apparatus
US5326726A (en) * 1990-08-17 1994-07-05 Analog Devices, Inc. Method for fabricating monolithic chip containing integrated circuitry and suspended microstructure
US5189916A (en) 1990-08-24 1993-03-02 Ngk Spark Plug Co., Ltd. Pressure sensor
JP2718563B2 (en) 1990-08-28 1998-02-25 日本特殊陶業株式会社 Pressure detector
JP2724419B2 (en) * 1990-08-28 1998-03-09 日本特殊陶業株式会社 Pressure sensor
US5094109A (en) 1990-12-06 1992-03-10 Rosemount Inc. Pressure transmitter with stress isolation depression
EP0504772A3 (en) * 1991-03-18 1993-01-27 Paradigm Biotechnologies Partnership Analytical apparatus
US5261999A (en) 1991-05-08 1993-11-16 North American Philips Corporation Process for making strain-compensated bonded silicon-on-insulator material free of dislocations
US5155061A (en) * 1991-06-03 1992-10-13 Allied-Signal Inc. Method for fabricating a silicon pressure sensor incorporating silicon-on-insulator structures
US5133215A (en) 1991-06-19 1992-07-28 Honeywell Inc. Pressure transmitter assembly having sensor isolation mounting
US5178015A (en) * 1991-07-22 1993-01-12 Monolithic Sensors Inc. Silicon-on-silicon differential input sensors
US5231301A (en) 1991-10-02 1993-07-27 Lucas Novasensor Semiconductor sensor with piezoresistors and improved electrostatic structures
US5319324A (en) 1991-10-02 1994-06-07 Matsushita Electric Industrial Co., Ltd. Method of direct bonding of crystals and crystal devices
US5227068A (en) * 1991-10-25 1993-07-13 Eco-Soil Systems, Inc. Closed apparatus system for improving irrigation and method for its use
KR940010492B1 (en) * 1991-11-21 1994-10-24 한국과학기술연구원 Silicon structure for sensor and manufacturing method thereof
US5271277A (en) 1991-12-23 1993-12-21 The Boc Group, Inc. Capacitance pressure transducer
JP2896725B2 (en) * 1991-12-26 1999-05-31 株式会社山武 Capacitive pressure sensor
FR2687777B1 (en) * 1992-02-20 1994-05-20 Sextant Avionique CAPACITIVE MICRO SENSOR WITH LOW PARASITIC CAPACITY AND MANUFACTURING METHOD.
JPH05231975A (en) * 1992-02-21 1993-09-07 Yamatake Honeywell Co Ltd Electrostatic capacitive pressure sensor
US5287746A (en) * 1992-04-14 1994-02-22 Rosemount Inc. Modular transmitter with flame arresting header
US5236118A (en) 1992-05-12 1993-08-17 The Regents Of The University Of California Aligned wafer bonding
US5189591A (en) 1992-06-12 1993-02-23 Allied-Signal Inc. Aluminosilicate glass pressure transducer
US5294760A (en) 1992-06-23 1994-03-15 The Regents Of The University Of California Digital pressure switch and method of fabrication
IL106790A (en) * 1992-09-01 1996-08-04 Rosemount Inc Pedestal mount capacitive pressure sensor and a process of manufacturing same
US5332469A (en) * 1992-11-12 1994-07-26 Ford Motor Company Capacitive surface micromachined differential pressure sensor
US5314107A (en) 1992-12-31 1994-05-24 Motorola, Inc. Automated method for joining wafers
JP2852593B2 (en) * 1993-03-11 1999-02-03 株式会社山武 Capacitive pressure sensor
US5483834A (en) * 1993-09-20 1996-01-16 Rosemount Inc. Suspended diaphragm pressure sensor
JP3415846B2 (en) * 1993-09-24 2003-06-09 ローズマウント インコーポレイテッド Pressure transmitting device isolation diaphragm
US5424650A (en) * 1993-09-24 1995-06-13 Rosemont Inc. Capacitive pressure sensor having circuitry for eliminating stray capacitance
JP3111816B2 (en) 1993-10-08 2000-11-27 株式会社日立製作所 Process state detector
US5437189A (en) * 1994-05-03 1995-08-01 Motorola, Inc. Dual absolute pressure sensor and method thereof
US5471884A (en) * 1994-07-05 1995-12-05 Motorola, Inc. Gain-adjusting circuitry for combining two sensors to form a media isolated differential pressure sensor
US5637802A (en) 1995-02-28 1997-06-10 Rosemount Inc. Capacitive pressure sensor for a pressure transmitted where electric field emanates substantially from back sides of plates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014066978A1 (en) * 2012-10-29 2014-05-08 MEMS-Vision International Inc. Methods and systems for humidity and pressure sensor overlay integration with electronics

Also Published As

Publication number Publication date
US5637802A (en) 1997-06-10
US6089097A (en) 2000-07-18
JPH11501123A (en) 1999-01-26
EP0812413A1 (en) 1997-12-17
BR9607134A (en) 1997-11-25
WO1996027123A1 (en) 1996-09-06
US6079276A (en) 2000-06-27
US6082199A (en) 2000-07-04
JP3723217B2 (en) 2005-12-07
CN1176693A (en) 1998-03-18

Similar Documents

Publication Publication Date Title
CA2212384A1 (en) Pressure sensors and pressure transmitters
US6484585B1 (en) Pressure sensor for a pressure transmitter
US5344523A (en) Overpressure-protected, polysilicon, capacitive differential pressure sensor and method of making the same
CA1225255A (en) Pressure transducer
EP0616688B1 (en) Piezoresistive silicon pressure sensor design
EP0720731B1 (en) Suspended diaphragm pressure sensor
EP1311818B1 (en) Sensor usable in ultra pure and highly corrosive environments
US7057247B2 (en) Combined absolute differential transducer
EP0577720B1 (en) Pressure sensor with high modulus support
US5186055A (en) Hermetic mounting system for a pressure transducer
US6516671B2 (en) Grain growth of electrical interconnection for microelectromechanical systems (MEMS)
US6505516B1 (en) Capacitive pressure sensing with moving dielectric
US7911316B2 (en) Sensor array for a high temperature pressure transducer employing a metal diaphragm
EP0911623A2 (en) High pressure sensor and method of forming
US4603371A (en) Capacitive sensing cell made of brittle material
EP0165302A1 (en) Pressure sensor with a substantially flat overpressure stop for the measuring diaphragm
US7882744B2 (en) Flat planner pressure transducer
Frick et al. Pressure sensor cavity etched with hot POCL 3 gas

Legal Events

Date Code Title Description
FZDE Discontinued