CA2229809C - Twisting-cylinder display - Google Patents

Twisting-cylinder display Download PDF

Info

Publication number
CA2229809C
CA2229809C CA002229809A CA2229809A CA2229809C CA 2229809 C CA2229809 C CA 2229809C CA 002229809 A CA002229809 A CA 002229809A CA 2229809 A CA2229809 A CA 2229809A CA 2229809 C CA2229809 C CA 2229809C
Authority
CA
Canada
Prior art keywords
particles
particle
substrate
disposed
cylinders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002229809A
Other languages
French (fr)
Other versions
CA2229809A1 (en
Inventor
Nicholas K. Sheridon
Joseph M. Crowley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xerox Corp
Original Assignee
Xerox Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xerox Corp filed Critical Xerox Corp
Publication of CA2229809A1 publication Critical patent/CA2229809A1/en
Application granted granted Critical
Publication of CA2229809C publication Critical patent/CA2229809C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • G02B26/026Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light based on the rotation of particles under the influence of an external field, e.g. gyricons, twisting ball displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/37Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being movable elements
    • G09F9/372Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being movable elements the positions of the elements being controlled by the application of an electric field

Abstract

A gyricon or twisting-particle display based on nonspheroidal (e.g., substantially cylindrical) optically anisotropic particles disposed in a substrate. The particles can be bichromal cylinders, preferably aligned parallel to one another and packed close together in a monolayer. A rotatable disposition of each particle is achievable while the particle is thus disposed in the substrate; for example, the particles can already be rotatable in the substrate, or can be rendered rotatable in the substrate by a nondestructive operation performed on the-substrate. In particular, the substrate can be made up of an elastomer that is expanded by application of a fluid thereto so as to render the particles rotatable therein. A particle, when in its rotatable disposition, is not attached to the substrate. The close-packed monolayer configuration of particles provides excellent brightness characteristics and relative ease of manufacture as compared with certain other high-brightness gyricon displays. The substrate containing the cylinders can be fabricated with the swelled-elastomer techniques known from spherical-particle gyricon displays, with a simple agitation process step being used to align the cylinders within the sheeting material. Techniques for fabricating the cylinders are also disclosed.

Description

Twisting-Cylinder Display Background of the Invention The invention pertains to visual displays and more particularly to twisting-ball displays, such as gyricon displays and the like.
Gyricon displays, also known by other names such as electrical twisting-ball displays or rotary ball displays, were first developed over twenty years ago. See U.S. Patents No. 4,126,854 and No. 4,143,103.
An exemplary gyricon display 10 is shown in side view in FIG.
1A (PRIOR ART). Bichromal balls 1 are disposed in an elastomer substrate 2 that is swelled by a dielectric fluid creating cavities 3 in which the balls 1 are free to rotate. The balls 1 are electrically dipolar in the presence of the fluid and so are subject to rotation upon application of an electric field, as by matrix-addressable electrodes 4a, 4b. The electrode 4a closest to upper surface 5 is preferably transparent. An observer at I sees an image formed by the black and white pattern of the balls 1 as rotated to expose their black or white faces (hemispheres) to the upper surface 5 of substrate 2.
A single one of bichromal balls 1, with black and white hemispheres 1 a and 1 b, is shown in FIG. 1 B (PRIOR ART).
Gyricon displays have numerous advantages over conventional electrically addressable visual displays, such as LCD and CRT displays. In particular, they are suitable for viewing in ambient light, retain an image indefinitely in the absence of an applied electric field, and can be made lightweight, flexible, foldable, and with many other familiar and useful characteristics of ordinary writing paper. Thus, at least in principle, they are suitable both for display applications and for so-called electric paper or interactive paper applications, in which they serve as an electrically addressable, reuseable (and thus environmentally friendly) substitute for ordinary paper. For further advantages of the gyricon, see U.S. Pat. No.
5,389,945.
Known gyricon displays employ spherical particles (e.g., bichromal balls) as their fundamental display elements. There are good reasons for using spherical particles. In particular:
~ Spherical bichromal balls can be readily manufactured by a number of techniques. See the '098 and '594 patents, incorporated by reference hereinabove, in this regard.
~ Spheres are symmetrical in three dimensions. This means that fabrication of a gyncon display sheet from spherical particles is straightforward. It is only necessary to disperse the balls throughout an elastomer substrate, which is then swelled with dielectric fluid to form spherical cavities around the balls.
The spherical balls can be placed anywhere within the substrate, and at any orientation with respect to each other and with respect to the substrate surface. There is no need to align the balls with one another or with the substrate surface. Once in place, a ball is free to rotate about any axis within its cavity.
Indeed, there would seem to be no reason to consider using anything other than spherical particles as the rotational elements of gyricon displays.
And so, nobody has-until now.
Summary of the Invention The invention provides a gyricon display having cylindrical, rather than spherical, rotating elements. The elements can be bichromal cylinders, preferably aligned parallel to one another and packed close together in a monolayer. The close-packed monolayer configuration provides excellent brightness characteristics and relative ease of manufacture as compared with certain other high-brightness gyricon displays. The bichromal cylinders can be fabricated by techniques that will be disclosed. The substrate containing the cylinders can be fabricated with the swelled-elastomer techniques known from spherical-particle gyricon displays, with a simple agitation process step being used to align the cylinders within the sheeting material.
Further, the invention is well-suited to providing a gyricon display having superior reflectance characteristics comparing favorably with those of white paper. A gyricon display is made with a close-packed monolayer of cylinders, wherein cylinders are placed, preferably in a rectangular packing arrangement, so that the surfaces of adjacent cylinders are as close to one another as possible. The light reflected from the inventive gyricon display is reflected substantially entirely from the monolayer of cylinders, so that lower layers are not needed. The areal coverage fraction obtainable with cylinders is greater than that obtainable with a single monolayer of uniform-diameter spheres.
In accordance with an aspect of the present invention, there is provided a material comprising:
a substrate; and a plurality of substantially cylindrical optically anisotropic particles disposed in the substrate, a rotatable disposition of each particle being achievable while said particle is thus disposed in the substrate, said particle, when in said rotatable disposition, being free from attachment to the substrate.
In accordance with another aspect of the present invention, there is provided apparatus comprising:
a member having an optically transmissive viewing surface;
a plurality of substantially cylindrical optically anisotropic particles rotatably disposed behind the viewing surface with respect to an observer situated favorably to observe the viewing surface, at least some of the particles thus being observable by the observer through the viewing surface, each particle having an anisotropy for providing an electrical dipole moment, the electrical dipole moment rendering the particle electrically responsive such that when the particle is rotatably disposed in an electric field while the electrical dipole moment of the particle is provided, the particle tends to rotate to an orientation in which the electrical dipole moment aligns with the field;
means for keeping in place with respect to the viewing surface the particles thus disposed; and means for facilitating a rotation of at least one of the particles thus disposed by selectively applying an electric field to a particle for which the electrical dipole moment is provided.
In accordance with another aspect of the present invention, there is provided a material comprising:
a substrate having a surface, the surface having an area; and a plurality of substantially cylindrical optically anisotropic particles disposed in the substrate substantially in a single layer, the particles being of a substantially uniform size characterized by a linear dimension d, each particle having a center point, each pair of nearest neighboring particles in the layer being characterized by an average distance D therebetween, said distance D being measured between particle center points, a rotatable disposition of each particle being achievable while said particle is thus disposed in the substrate, said particle, when in said rotatable disposition, being free from attachment to the substrate, the particles being sufficiently closely packed with respect to one another in the layer such that the ratio of the union of the projected areas of the particles to the area of the substrate surface exceeds the a real coverage fraction that would be obtained from a comparably situated layer of spheres of diameter d disposed in a hexagonal packing arrangement with an average distance D therebetween as measured between sphere centers.

-WO 97/50071 , 5 - PCT/iJS97/10123 The invention will be better understood with reference to the following description and accompanying drawings, in which like reference numerals denote like elements.
Brief Description of the Drawings FIG. 1A is an exemplary gyricon display of the PRIOR ART, incorporating bichromal balls;
FIG. 1 B illustrates a spherical bichromal ball of the PRIOR ART;
FiG. 2 illustrates a bichromal cylinder, showing in particular the diameter and height thereof;
l0 FIG. 3 illustrates bichromal cylinders in cavities in an elastomer substrate;
FlG. 4 illustrates bichromal cylinders arrayed in an ideal close-packed monolayer;
FIGS. 5A-5B are, respectively, side and top views of a gyricon display of the present invention in an embodiment wherein bichromal cylinders of unit (1:1 ) aspect ratio are arrayed in a monolayer configuration;
FIG. 6 is a side view of a gyricon display of the present invention in an alternative embodiment wherein the bichromal cylinders are arrayed in a multilayer configuration, with relatively large cavity size;
2 o FIGS. 7-8 illustrate tap views of gyricon displays of the present invention in alternative embodiments in which the cylinders are, respectively, staggered in their alignment or randomly oriented;
F1G. 9 illustrates a top views of gyricon display of the present invention in an alternative embodiment in which the cylinder aspect ratio is 2 5 greater than 1:1;
FIG. 10 illustrates a side view of a spinning-disk mechanism for fabrication of bichromal balls in the PRIOR ART;
FIG. 11 illustrates a top view of a spinning-disk mechanism for fabrication of bichromal cylinders of the invention; and 30 F1G. 12 illustrates an alternative embodiment of the gyricon display of the invention wherein there is no elastomer or other cavity-containing substrate to retain the monolayer of cylinders in place.

Detailed Description In a preferred embodiment of the invention, bichromal cylinders are arranged in a close-packed planar monolayer, as close to one another as possible, so as to cover the plane of the monolayer. The advantages of a close-packed monolayer display are discussed at length in U.S. Patent No.
5,754,332, issued May 19, 1998, entitled "Monolayer Gyricon Displays";
suffice it to say here that close-packed monolayer displays exhibit superior reflectance and brightness characteristics as compared with conventional gyricon displays, and that the more of the monolayer plane that is covered by the gyricon elements, the better the reflectance and the brighter the display.
To quote briefly from U.S. Patent No. 5,754,332 "In the 'white' state, the inventive display reflects entirely from the topmost layer of bichromal balls and, more particularly, from the white hemispherical upper surfaces of the topmost layer of balls. In a preferred embodiment, the inventive display is constructed with a single close-packed monolayer of bichromal balls".
Ideally, a close-packing arrangement according to U.S. Patent No. 5,754,332 would entirely cover the plane with the monolayer of gyricon elements. However, the displays disclosed in U.S. Patent No. 5,754,332 are all based on spherical balls of the prior art. Inasmuch as a planar array of spheres cannot fully cover the plane, but must necessarily contain interstices, the best that can be achieved with a single population of uniform-diameter spherical elements is about 90.7 percent areal coverage, which is obtained with a hexagonal packing geometry. A second population of smaller balls can be added to fill in the gaps somewhat, but this complicates display fabrication and results in a tradeoff between light losses due to unfilled interstices and light losses due to absorption by the black hemispheres of the smaller interstitial balls.
The present invention provides a close-packed monolayer gyricon display in which areal coverage can approach 100 percent, without any need for interstitial particles. It does so by using cylindrical rather than spherical bichromal elements. For example, a rectangular planar monolayer array of cylinders can be constructed that entirely or almost entirely covers the plane.

-WO 97/50071 _ ~ - PCT/US97/10123 With the white faces of the cylinders exposed to an observer, little if any light can get through the layer.
FIG. 2 illustrates a bichromal cylinder 20 suitable for use as a . rotating element of the inventive gyricon display. Cylinder 20 has white face 21 and black face 22. Cylinder 20 is of height (or length) h and has diameter ° d. The aspect rafio of cylinder 20 is defined herein as the ratio h/d. In the presence of a dielectric fluid, cylinder 20 is electrically Bipolar, with the dipole moment preferably oriented perpendicular to the plane separating the white and black portions of the cylinder and passing perpendicularly through the 1 o longitudinal axis of the cylinder.
F1G. 3 illustrates how bichromal cylinders can be arranged in an elastomer substrate for use in the inventive display. A portion of a gyricon display 30 is shown. In display 30, bichromal cylinders 31 are disposed in an elastomer substrate 32 that is swelled by a dielectric fluid (not shown) creating cavities 33 in which the cylinders 31 are free to rotate about their respective longitudinal axes. Cavities 33 are preferably not much larger in diameter than cylinders 31, so that cylinders 31 are constrained from rotating about their medial axes. Cylinders 31 are electrically Bipolar in the presence of the dielectric fluid, and so are subject to rotation upon application of an 2 o electric field. As shown, cylinders 31 can be rotated so as to expose either their white or black faces to an observer at 1.
FIG. 4 illustrates bichromal cylinders arrayed in a close-packed monolayer. A portion of a gyricon display 40 includes rows of bichromal cylinders 41a and 41b of uniform diameter. Cylinders 41a, 41b are disposed in a monolayer between the upper and lower surfaces 44a, 44b of display 40.
Preferably there is exactly one cylinder between any given point on upper surface 44a and the corresponding point directly beneath it an lower surface ' 44b.
The white faces of cylinders 41a, 41b are shown turned towards transparent viewing surface 44a. In this configuration, light from a light source L incident on upper surface 44a is scattered by the white faces of cylinders 41a, 41b and is reflected so as to be visible to an observer at !.
.. Thus display 40 appears white to the observer.

i~VO 97/50071 - 8 - PCT/IJS97I10123 As shown, the cylinders are aligned end-to-end within the monolayer, the circular ends of cylinders 41a being aligned with the circular ends of cylinders 41 b so that the longitudinal axis of each cylinder 41 a is colinear with the longitudinal axis of its respective neigboring cylinder 41 b.
Further as shown, the cylinders are aligned side-to-side within the monolayer, so that the circumferences of neighboring cylinders 41a touch each other, and ' the circumferences of neighboring cylinders 41 b likewise touch each other.
Thus aligned end-to-end and side-to-side, the cylinders form a rectangular array, whose structure is observable from above (as by an observer at I) through surface 44a.
Preferably, there are no gaps between adjacent cylinders in the rectangular array. That is, the cylinders 41a, 41b touch each other end-to-end and side-to-side, or come as close as possible to touching each other as is consistent with proper cylinder rotation. Accordingly, there is preferably little or no opportunity for incident light from source L to be scattered from the white faces of the cylinders down to the black faces, where it would be absorbed. Likewise, there is little or no opportunity for incident light to pass between adjacent cylinders, where it would be absorbed in or below lower surface 44b.
2 0 FIGS. 3-4. depict their respective gyricon displays in simplified form, with details not pertinent to the discussion omitted for clarity. FIGS.

and 5B provide, respectively, more detailed side and top views of a gyricon display 50 of the invention in a specific embodiment.
In display 50, bichromal cylinders 51 of unit (that is, 1:1) aspect ratio are arrayed in a monolayer array having a rectangular packing geometry. Preferably, bichromal cylinders 51 are placed as close to one another as possible in the monolayer. Cylinders 51 are situated in elastomer substrate 52, which is swelled by a dielectric fluid {not shown) creating cavities 53 in which the cylinders 51 are free to rotate. The cavities 53 are 3o made as small as possible with respect to cylinders 51, so that the cylinders nearly frll the cavities. Also, cavities 53 are placed as close to one another as possible, so that the cavity walls are as thin as possible. Preferably, cylinders 51 are of uniform diameter and situated at a uniform distance from upper CVO 97/50071 _ 9 - PC~'/US97/10123 surface 55. It will be appreciated that the arrangement of cylinders 51 and cavities 53 in display 50 minimizes both the center-to-center spacing and the surface-to-surFace spacing between neighboring bichromal cylinders.
CyEinders 51 are electrically Bipolar in the presence of the dielectric fluid and so are subject to rotation upon application of an electric field, as by matrix-addressable electrodes 54a, 54b. The electrode 54a closest to upper surface 55 is preferably transparent. An observer at 1 sees an image formed by the black and white pattern of the cylinders 51 as rotated to expose their black or white faces to the upper surface 55 of substrate 52. For example, the observer sees the white faces of cylinders such as cylinder 51a and the black faces of cylinders such as cylinder 51 b.
The side view FIG. 5A reveals the monolayer construction of display 50. The top view of FIG. 5B illustrates the rectangular packing geometry of cylinders 51 in the monolayer. The cylinders 51 appear as squares visible through transparent upper surtace 55. The centers of cylinders 51 form a square pattern, as shown by exemplary square S.
The projected areas of cylinders 51 in the plane of surface 55 preferably cover as much of the total area of the plane of surface 55 as possible. To this end, cavities 53 preferably are made as small as possible, 2 o ideally no larger than the cylinders themselves (or as close to this ideal as is consistent with proper cylinder rotation). The greater the ratio between the sum of the projected areas of the cylinders in the plane of viewing surface 55 and the total area of viewing surface 55, the greater the display reflectance and the brighter the display. It will be appreciated that, whereas the maximum areal coverage theoretically possible with spherical bichromal balls (of a single uniform diameter, without interstitial smaller balls) is about 90.7 percent, the maximum for bichromal cylinders is 100 percent. Thus a gyricon display made from a close-packed monoiayer of cylinders according to the invention can be made brighter than a gyricon display made from a close 3 o packed monolayer of spherical balls.
FIG. 6 shows a side view of a gyricon display 60 of the invention in an alternative embodiment. in display 60, bichromal cylinders 61 are in a top layer 67 and additional lower layers (here represented by second layer 68).

-WO 97/50071 _ 1 Q - PCT/IJS97/10I23 Elastomer substrate 62 is swelled by a dielectric fluid {not shown) creating cavities 63 in which the cylinders 61 are free to rotate. Cylinders 61 are electrically dipolar in the presence of the dielectric fluid and so are subject to rotation upon application of an electric field, as by matrix-addressable electrodes 64a, 64b. The electrode 64a closest to upper surface 65 is preferably transparent. An observer at I sees an image formed by the black ' and white pattern of the cylinders 61 as rotated to expose their black or white faces to the upper surface 65 of substrate 62.
To improve the brightness of display 60 so that it is comparable to l0 the brightness of display 50 (of FIGS. 5A-5B), the top layer 67 can be made close-packed, with packing geometry and reflectance characteristics similar to those of the close-packed monolayer of cylinders 51 in display 50. In this case, cavities 63 are made as small as possible with respect to cylinders fit, and particularly with respect to cylinders in top layer 67, so that these cylinders nearly fill the cavities. Also, cavities 63 are placed as close to one another as possible, so that the cavity walls are as thin as possible.
Preferably, cylinders in top layer 67 are of uniform diameter and are situated at a uniform distance from upper surface 65. it will be appreciated that if top layer 67 is close-packed, almost all the light reflected from display 60 so as to 2 o be observable to an observer at I is reflected from the white faces of cylinders in top layer 67. At least for top layer 67, the arrangement of cylinders 61 and cavities 63 in display 60 minimizes both the center-to-center spacing and the surface-to-surface spacing between neighboring bichromal cylinders.
Cylinders in the lower layers (such as layer 68} can also be close-packed in order to reduce overall display thickness.
In general, a monolayer display, such as display 50 of FIGS. 5A-5B, is preferable to a thicker display, such as display 60 of FIG. fi. This is because a thinner display can operate with a lower drive voltage, which affords concomittant advantages such as reduced power consumption, 3 o improved user safety, and the possibility of less expensive drive electronics.
Further, a thinner display can offer better resolution than a thicker one, due to reduced fringing fields between adjacent black and white pixels. A thicker display offers fringing fields a greater volume in which to develop, and WO 9?/50071 _ 11 - PCT/US97/10123 bichromal cylinders caught in the fringing fields are partially but not fully rotated so that they present a mix of black and white to the observer.
Consequently, the display appears gray in the fringing field regions. The thin . display has minimal fringing fields, and so provides a sharp demarcation between adjacent black and white pixels. (A more detailed discussion of fringing fields in thick and thin gyricon displays, and the effects of these fields on display resolution, is given in Serial No. 081713,935 with reference to FIG.
14 and the accompanying text therein.) Although it is preferred to align the cylinders end-to-end and side-to to-side within the monolayer (or top layer) of the display, so as to form a rectangular array, in alternative embodiments other arrangements of cylinders within the layer can be used. Some examples are seen in FIGS. 7-8.
FIG. 7 illustrates a top view of gyricon display 70 of the present invention in an alternative embodiment in which neighboring rows a, b of cylinders 71 are staggered with respect to one another. That is, the cylinders in rows a are aligned end-to-end with each other, as are the cylinders in alternate rows b, but the cylinders in rows a are not aligned side-to-side with those in rows b. The arrangement of FIG. 7 covers the plane as completely as the arrangement of FIG. 5B; however, the arrangement of FIG. 5B can be 2o preferable, because this arrangement produces a well-defined rectangular array of pixels for pixels as small as a single cylinder.
FiG. 8 illustrates a top view of gyricon display 80 of the present invention in an alternative embodiments in which cylinders 81 are in random orientations with respect to one another. That is, the longitudinal axes of cylinders 81 are not parallel to one another. This arrangement of cylinders covers the plane less completely than the arrangements shown in FIG. 5B
and FIG. 7, and so is less preferable from the standpoint of maximizing . display reflectance.
FiG. 9 illustrates a top views of gyricon display 90 of the present invention in an alternative embodiment in which the aspect ratio of the cylinders 91 is greater than 1:1. This alternative embodiment covers the plane comparably with the arrangements of FIG. 5B and FIG. 7. It can be useful, for example, in situations where different display resolutions are WO 97/50071 _ 12 PCT/US97/10123 desired in the x- and y- dimensions (e.g., a display having a resolution of 1200 by 300 dots per inch).
Cylinder Fabrication Techniques FIG. 10 (PRIOR ART) illustrates a side view of a spinning-disk mechanism 100 for fabrication of bichromal spherical balls. Mechanism 100 is equivalent to the "spinning disc configuration 50" disclosed in the '098 ' patent incorporated by reference hereinabove; see FIG. 4 therein and the accompanying description at col. 4, line 25 to col. 5, line 7.
In the prior art, the spinning disk mechanism was used in l0 conjunction with law-viscosity hardenable liquids. Low viscosity was considered necessary to ensure the formation of good-quality bichromal spheres; if viscosity was too high, the ligaments streaming off the disk would freeze in place instead of fragmenting into balls as desired. For example, as stated in the '098 patent (col. 5, line 64 - col. 6 Line 2), "the black and white pigmented liquids are delivered...in a heated, molten state...so that they flow freely and do not harden prematurely, i.e., long enough to prevent the ligaments from freezing."
According to the invention, the spinning disk mechansm is used in conjunction with high-viscosity hardenable liquids. These Liquids do, indeed, 2 0 "freeze" (harden) in place, the very result not desired in the prior art.
However, according to the invention the frozen ligaments that are considered undesirable for making bichromal spheres can be used to make bichromal cylinders. FIG. 11 illustrates this. 'A spinning disk 110, shown here in a top view, is used according to the technique of the '098 patent to form bichromal ligaments, but with high-viscosity hardenable white and black liquids being used in place of the low-viscosity liquids of the prior art. The resulting ligaments 115 harden into fine bichromal filaments (roughly analogous to the way in which molten sugar hardens into filaments when spun in a cotton-candy machine). The filaments can be combed or otherwise aligned and then 3 o cut into even lengths, as with a tungsten carbide knife or a laser, to produce the desired bichromal cylinders. End-to-end and side-to-side alignment of the cut cylinders can be achieved by precise alignment of the filament ends on the working surface where the cutting takes place; for example, if the i~VO 97/50071 _ 13 PCT/LTS97/10123 cylinders are to have aspect ratio 1:1 and diameter 100 microns, then the filament ends can be aligned with one another to within a tolerance on the order of 5 to 10 microns.
Alternative techniques can also be used to produce the bichromal cylinders. For example, injection molding can be used, albeit perhaps with some inconvenience. As another example, the bichromal jet technique disclosed in the '594 patent can be used, again substituting high-viscosity hardenable liquids for the usual low-viscosity liquids.
No-Cavities Cylinder Display 1 o In a gyricon display made with swelled elastomer, each bichromal cylinder is situated in a cavity. To achieve the closest possible packing of bichromal cylinders in such a display, the cavities are preferably made as small and as close together as possible.
To achieve still higher packing density, a gyricon display can be constructed without elastomer and without cavities. In such a display, the bichromal cylinders are placed directly in the dielectric fluid. The cylinders and the dielectric fluid are then sandwiched between two retaining members (e.g., between the addressing electrodes). There is no elastomer substrate.
In this case, the packing geometry can closely approach, or even achieve, the 2 o ideal close-packed monolayer geometry shown in FIG. 4.
FIG. 12 illustrates a side view of a no-cavities gyricon display. In display 1200, a monolayer of bichromal cylinders 1201 of uniform diameter is situated in dielectric fluid 1209 between matrix-addressable electrodes 1204a, 1204b. Preferably cylinders 1201 of unit aspect ratio are arranged in a rectangular array, aligned end-to-end and side-to-side within the monolayer and packed as close together as is possible consistent with proper cylinder rotation. Cylinders 1201 are electrically dipolar in the presence of dielectric fluid 1209 and so are subject to rotation upon application of an electric field, as by electrodes 1204a, 1204b. The electrode 1204a closest to upper - 30 surface 1205 is preferably transparent. An observer at 1 sees an image formed by the black and white pattern of the cylinders 1201 as rotated to expose their black or white faces to the upper surface 1205 of display 1200.

i~VO 97/50071 _ 14 - PCT/US97/10123 Electrodes 1204a, 1204b serve both to address cylinders 1201 and to retain cylinders 1201 and fluid 1209 in place. Preferably the spacing between electrodes 1204a, 1204b is as close to the diameter of cylinders 1201 as is possible consistent with proper cylinder rotation. Cylinders 1201 and fluid 1209 can be seated in display 1200, for example by seals at either end of the display (not shown). The close packing of cylinders 1201 in the ' monolayer, together with the close spacing of the electrodes 1204a, 1204b, ensures that cylinders 1201 do not settle, migrate, or otherwise escape from their respective positions in the monolayer.
1 o Conclusion A new gyricon display based on cylindrical elements instead of spherical elements has been described. This new display makes possible a close-packed monolayer providing nearly 100 percent areal coverage. Such a display provides superior reflectance and brightness, and requires no interstitial particles.
The foregoing specific embodiments represent just some of the possibilities for practicing the present invention. Many other embodiments are possible within the spirit of the invention. For example:
~ The electrical anisotropy of a gyricon cylinder need not be 2 o based on zeta potential. It is sufFcient that there is an electrical dipole moment associated with the cylinder, the dipole moment being oriented with respect to the long axis of the cylinder in such a way as to facilitate a useful rotation of the cylinder in the presence of an applied external etectric field. (Typically, the dipole moment is oriented along a medial axis of the cylinder.) Further, it should be noted that a gyricon cylinder can have an electrical monopole moment in addition to its electrical dipole moment, as for example when the dipole moment arises from a separation of two positive charges of different magnitudes, the resulting charge 3 0 distribution being equivalent to a positive electrical monopole superposed with a electrical dipole.
~ The optical anisotropy of a gyricon cylinder need not be based on black and white. For example, bichromal cylinders having hemispheres of two different colors, e.g. red and blue, can be used. As another example, cylinders that are black in one hemisphere and mirrored in the other might be used for some applications. In general, various optical properties can vary as 5 different aspects of a gyricon cylinder are presented to an observer, including (but not limited to) light scattering and light reflection in one or more regions of the spectrum. Thus the gyricon cylinders can be used to modulate light in a wide variety of ways.
1 o ~ The incident light that encounters a gyricon display need not be restricted to visible light. Given suitable materials for the gyricon cylinders, the incident "light" can be, for example, infrared light or ultraviolet light, and such light can be modulated by the gyricon display.
15 ~ On several occasions the foregoing description refers to a planar monolayer of bichromal cylinders. However, persons of skill in the art wilt appreciate that a gyricon display (or a sheet of bichromal cylinders for use in such a display) made of a flexible material can be temporarily or permanently deformed (for example, flexed, folded, or rolled) so as not to be strictly planar overall. In such cases, the plane of a monolayer can be defined, for example, in a locally planar neighborhood that includes the gyricon cylinder or cylinders of interest. Also, it will further be apprecated that in practice the monolayer can vary somewhat from what has been described, for example, due to manufacturing tolerances or slight imperfections of particular gyricon sheets.
Accordingly, the scope of the invention is not limited to the foregoing specification.

Claims (21)

What is claimed is:
1. A material comprising:
a substrate; and a plurality of substantially cylindrical optically anisotropic particles disposed in the substrate, a rotatable disposition of each particle being achievable while said particle is thus disposed in the substrate, said particle, when in said rotatable disposition, being free from attachment to the substrate.
2. The material of claim 1 wherein each particle has a plurality of component regions giving rise to said particle's optical anisotropy, the regions including a first region having a first optical modulation characteristic and a second region having a second optical modulation characteristic.
3. The material of claim 2 wherein:
each of the substantially cylindrical particles has a longitudinal axis;
the first and second regions of each particle are substantially hemicylindrical regions joined by a substantially planar interface therebetween, the substantially planar interface substantially including the longitudinal axis of the particle; and the rotatable disposition achievable for each particle is a rotatable disposition that facilitates rotation about the longitudinal axis of the particle.
4. The material of claim 2 wherein the first component region of each particle is optically reflective and the second component region of each particle is optically absorptive.
5. The material of claim 1 wherein:
the substrate has a surface, the surface having an area;
each of the substantially cylindrical particles has a longitudinal axis; and the plurality of particles includes a set of particles situated closest to the substrate surface, the particles of the set forming substantially a single layer wherein the particles are disposed with their longitudinal axes substantially parallel to the layer, each particle in the layer having a center point, substantially no particle in the layer being disposed entirely behind the center point of any nearest neighboring particle in the layer with respect to the substrate surface, each particle in the layer having a projected area with respect to the substrate surface, the particles of the set being sufficiently closely packed with respect to one another in the layer that the union of their projected areas exceeds two-thirds of the area of the substrate surface.
6. The material of claim 1 wherein the particles each of the substantially cylindrical particles has a longitudinal axis; and the plurality of particles are disposed in a closely packed monolayer wherein the particles are disposed with their longitudinal axes substantially parallel to the monolayer and substantially parallel to one another.
7. The material of claim 6 wherein:
the substrate has a surface having an area;
each particle has a projected area with respect to the substrate surface; and the particles are sufficiently closely packed that the sum of their projected areas exceeds two-thirds of the area of the substrate surface.
8. The material of claim 1 wherein each particle has an anisotropy for providing an electrical dipole moment, the electrical dipole moment renderig the particle electrically responsive such that when the particle is rotatably disposed in an electric field while the electrical dipole moment is provided, the particle tends to rotate to an orientation in which the electrical dipole moment aligns with the electrical field.
9. Apparatus comprising:
a piece of the material recited in claim 8; and means for producing an electric field to facilitate a rotation of at least one particle rotatably disposed in the substrate of the piece of material.
10. The material of claim 1 wherein the particles are disposed in a monolayer.
11. The material of claim 10 wherein the particles are arranged in a single layer such that the longitudinal axes of the particles are substantially parallel to the layer and substantially parallel to one another.
12. The material of claim 11 wherein the particles are disposed in a closely packed monolayer.
13 The material of claim 11 wherein:
each particle has first and second ends; and the particles of the layer are disposed in a rectangularly packed array of particles, the first ends of adjacent particles of the array being substantially aligned with one another, the second ends of adjacent particles of the array being substantially aligned with one another.
14. The material of claim 1 wherein the particles are disposed in a closely packed arrangement.
15. The material of claim 14 wherein the particles are sufficiently closely packed that each particle comes as close as possible to touching said particle's nearest neighboring particles.
16. The material of claim 1 wherein the substrate comprises an elastomer expandable by application of a fluid thereto so as to render the particles rotatable therein.
17. Apparatus comprising:
a piece of the material recited in claim 1 and means for facilitating a rotation of at least one particle rotatably disposed in the substrate of the piece of material.
18. Apparatus comprising:
a member having an optically transmissive viewing surface;
a plurality of substantially cylindrical optically anisotropic particles rotatably disposed behind the viewing surface with respect to an observer situated favorably to observe the viewing surface, at least some of the particles thus being observable by the observer through the viewing surface, each particle having an anisotropy for providing an electrical dipole moment, the electrical dipole moment rendering the particle electrically responsive such that when the particle is rotatably disposed in an electric field while the electrical dipole moment of the particle is provided, the particle tends to rotate to an orientation in which the electrical dipole moment aligns with the field;
means for keeping in place with respect to the viewing surface the particles thus disposed; and means for facilitating a rotation of at least one of the particles thus disposed by selectively applying an electric field to a particle for which the electrical dipole moment is provided.
19. The apparatus of claim 18 wherein the means for keeping the particles in place comprises a substrate in which the particles are rotatably disposed.
20. A material comprising:
a substrate having a surface, the surface having an area; and a plurality of substantially cylindrical optically anisotropic particles disposed in the substrate substantially in a single layer, the particles being of a substantially uniform size characterized by a linear dimension d, each particle having a center point, each pair of nearest neighboring particles in the layer being characterized by an average distance D therebetween, said distance D being measured between particle center points, a rotatable disposition of each particle being achievable while said particle is thus disposed in the substrate, said particle, when in said rotatable disposition, being free from attachment to the substrate, the particles being sufficiently closely packed with respect to one another in the layer such that the ratio of the union of the projected areas of the particles to the area of the substrate surface exceeds the a real coverage fraction that would be obtained from a comparably situated layer of spheres of diameter d disposed in a hexagonal packing arrangement with an average distance D therebetween as measured between sphere centers.
21. The material of claim 20 wherein the ratio D/d is made as close to 1.0 as practicable, whereby the ratio of the union of the projected areas of the particles to the area of the substrate surface exceeds the maximum theoretically possible a real coverage fraction for a maximally close-packed hexagonal packing geometry of a layer of spheres of diameter d, said maximum theoretically possible a real coverage fraction being approximately equal to 90.7 percent.
CA002229809A 1996-06-27 1997-06-25 Twisting-cylinder display Expired - Fee Related CA2229809C (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US2065196P 1996-06-27 1996-06-27
US2052296P 1996-06-27 1996-06-27
US60/020,651 1996-06-27
US60/020,522 1996-06-27
US08/716,672 US6055091A (en) 1996-06-27 1996-09-13 Twisting-cylinder display
US08/716,672 1996-09-13
PCT/US1997/010123 WO1997050071A1 (en) 1996-06-27 1997-06-25 Twisting-cylinder display

Publications (2)

Publication Number Publication Date
CA2229809A1 CA2229809A1 (en) 1997-12-31
CA2229809C true CA2229809C (en) 2005-10-18

Family

ID=27361457

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002229809A Expired - Fee Related CA2229809C (en) 1996-06-27 1997-06-25 Twisting-cylinder display

Country Status (10)

Country Link
US (1) US6055091A (en)
EP (1) EP0846314B1 (en)
JP (1) JPH11514104A (en)
CN (1) CN1147830C (en)
AU (1) AU3387597A (en)
BR (1) BR9702327A (en)
CA (1) CA2229809C (en)
DE (1) DE69708029T2 (en)
MX (1) MX9801551A (en)
WO (1) WO1997050071A1 (en)

Families Citing this family (302)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7109968B2 (en) * 1995-07-20 2006-09-19 E Ink Corporation Non-spherical cavity electrophoretic displays and methods and materials for making the same
US7848006B2 (en) * 1995-07-20 2010-12-07 E Ink Corporation Electrophoretic displays with controlled amounts of pigment
US8089453B2 (en) * 1995-07-20 2012-01-03 E Ink Corporation Stylus-based addressing structures for displays
US7327511B2 (en) * 2004-03-23 2008-02-05 E Ink Corporation Light modulators
US7956841B2 (en) 1995-07-20 2011-06-07 E Ink Corporation Stylus-based addressing structures for displays
US7411719B2 (en) 1995-07-20 2008-08-12 E Ink Corporation Electrophoretic medium and process for the production thereof
US7071913B2 (en) * 1995-07-20 2006-07-04 E Ink Corporation Retroreflective electrophoretic displays and materials for making the same
US7999787B2 (en) 1995-07-20 2011-08-16 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US7079305B2 (en) * 2001-03-19 2006-07-18 E Ink Corporation Electrophoretic medium and process for the production thereof
US7193625B2 (en) * 1999-04-30 2007-03-20 E Ink Corporation Methods for driving electro-optic displays, and apparatus for use therein
US7583251B2 (en) 1995-07-20 2009-09-01 E Ink Corporation Dielectrophoretic displays
US8139050B2 (en) * 1995-07-20 2012-03-20 E Ink Corporation Addressing schemes for electronic displays
US7259744B2 (en) * 1995-07-20 2007-08-21 E Ink Corporation Dielectrophoretic displays
US6428868B1 (en) 1996-06-27 2002-08-06 Xerox Corporation Twisting-cylinder display
US5894367A (en) * 1996-09-13 1999-04-13 Xerox Corporation Twisting cylinder display using multiple chromatic values
US6459200B1 (en) 1997-02-27 2002-10-01 Chad Byron Moore Reflective electro-optic fiber-based displays
US6825829B1 (en) * 1997-08-28 2004-11-30 E Ink Corporation Adhesive backed displays
US6067185A (en) * 1997-08-28 2000-05-23 E Ink Corporation Process for creating an encapsulated electrophoretic display
US8213076B2 (en) * 1997-08-28 2012-07-03 E Ink Corporation Multi-color electrophoretic displays and materials for making the same
US8040594B2 (en) 1997-08-28 2011-10-18 E Ink Corporation Multi-color electrophoretic displays
WO1999039234A1 (en) * 1998-01-30 1999-08-05 Minnesota Mining And Manufacturing Company Reflective particle display film and method of manufacture
US6222513B1 (en) 1998-03-10 2001-04-24 Xerox Corporation Charge retention islands for electric paper and applications thereof
US6704133B2 (en) 1998-03-18 2004-03-09 E-Ink Corporation Electro-optic display overlays and systems for addressing such displays
US7075502B1 (en) 1998-04-10 2006-07-11 E Ink Corporation Full color reflective display with multichromatic sub-pixels
DE69934618T2 (en) 1998-07-08 2007-05-03 E-Ink Corp., Cambridge Improved colored microencapsulated electrophoretic display
US7256766B2 (en) * 1998-08-27 2007-08-14 E Ink Corporation Electrophoretic display comprising optical biasing element
US6924781B1 (en) * 1998-09-11 2005-08-02 Visible Tech-Knowledgy, Inc. Smart electronic label employing electronic ink
US20020167500A1 (en) * 1998-09-11 2002-11-14 Visible Techknowledgy, Llc Smart electronic label employing electronic ink
US6211998B1 (en) * 1998-11-25 2001-04-03 Xerox Corporation Magnetic unlatching and addressing of a gyricon display
US7119772B2 (en) * 1999-04-30 2006-10-10 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US7012600B2 (en) 1999-04-30 2006-03-14 E Ink Corporation Methods for driving bistable electro-optic displays, and apparatus for use therein
US8009348B2 (en) * 1999-05-03 2011-08-30 E Ink Corporation Machine-readable displays
US8115729B2 (en) 1999-05-03 2012-02-14 E Ink Corporation Electrophoretic display element with filler particles
US7119759B2 (en) * 1999-05-03 2006-10-10 E Ink Corporation Machine-readable displays
US6222519B1 (en) * 1999-06-21 2001-04-24 Ellis D. Harris Roller optical gate display device
EP1196814A1 (en) * 1999-07-21 2002-04-17 E Ink Corporation Use of a storage capacitor to enhance the performance of an active matrix driven electronic display
US6485280B1 (en) * 1999-07-23 2002-11-26 Xerox Corporation Methods and apparatus for fabricating bichromal elements
US6440252B1 (en) * 1999-12-17 2002-08-27 Xerox Corporation Method for rotatable element assembly
US6545671B1 (en) 2000-03-02 2003-04-08 Xerox Corporation Rotating element sheet material with reversible highlighting
US6498674B1 (en) 2000-04-14 2002-12-24 Xerox Corporation Rotating element sheet material with generalized containment structure
WO2001080287A2 (en) * 2000-04-18 2001-10-25 E Ink Corporation Process for fabricating thin film transistors
US7893435B2 (en) 2000-04-18 2011-02-22 E Ink Corporation Flexible electronic circuits and displays including a backplane comprising a patterned metal foil having a plurality of apertures extending therethrough
US6504525B1 (en) 2000-05-03 2003-01-07 Xerox Corporation Rotating element sheet material with microstructured substrate and method of use
US20020057440A1 (en) * 2000-05-19 2002-05-16 Michael Weiner Document with embedded information
US9990030B2 (en) 2000-05-19 2018-06-05 Edged Display Management Llc Apparatus for the display of embedded information
US6847347B1 (en) * 2000-08-17 2005-01-25 Xerox Corporation Electromagnetophoretic display system and method
US6816147B2 (en) * 2000-08-17 2004-11-09 E Ink Corporation Bistable electro-optic display, and method for addressing same
US6822781B1 (en) * 2000-10-24 2004-11-23 Cabot Corporation Gyricon displays containing modified particles
EP1204086B1 (en) * 2000-11-01 2006-04-05 Oji Paper Co., Ltd. Display unit
US6864865B2 (en) * 2000-11-01 2005-03-08 Oji Paper Co., Ltd. Display unit, display device, and method for manufacturing the display device
US6690350B2 (en) 2001-01-11 2004-02-10 Xerox Corporation Rotating element sheet material with dual vector field addressing
FR2819617B1 (en) * 2001-01-17 2004-06-18 Gall Didier Le PIXEL-TYPE ELEMENT FOR A REFLECTIVE IMAGE-MODIFIED DISPLAY DEVICE, DISPLAY DEVICE AND SYSTEM USING THE SAME
US7190707B2 (en) * 2001-01-29 2007-03-13 Cymer, Inc. Gas discharge laser light source beam delivery unit
WO2002073572A2 (en) 2001-03-13 2002-09-19 E Ink Corporation Apparatus for displaying drawings
US6570700B2 (en) 2001-03-14 2003-05-27 3M Innovative Properties Company Microstructures with assisting optical elements to enhance an optical effect
US6480322B2 (en) 2001-03-14 2002-11-12 3M Innovative Properties Company Method of improving the respondability of moveable structures in a display
US7057599B2 (en) * 2001-03-14 2006-06-06 3M Innovative Properties Company Microstructures with assisting optical lenses
US6577432B2 (en) 2001-03-14 2003-06-10 3M Innovative Properties Company Post and pocket microstructures containing moveable particles having optical effects
US6700695B2 (en) 2001-03-14 2004-03-02 3M Innovative Properties Company Microstructured segmented electrode film for electronic displays
US20020140133A1 (en) * 2001-03-29 2002-10-03 Moore Chad Byron Bichromal sphere fabrication
US8390918B2 (en) * 2001-04-02 2013-03-05 E Ink Corporation Electrophoretic displays with controlled amounts of pigment
US7679814B2 (en) 2001-04-02 2010-03-16 E Ink Corporation Materials for use in electrophoretic displays
US20050156340A1 (en) 2004-01-20 2005-07-21 E Ink Corporation Preparation of capsules
WO2002093246A1 (en) * 2001-05-15 2002-11-21 E Ink Corporation Electrophoretic particles
WO2002093245A1 (en) * 2001-05-15 2002-11-21 E Ink Corporation Electrophoretic displays containing magnetic particles
US20100148385A1 (en) * 2001-05-15 2010-06-17 E Ink Corporation Electrophoretic media and processes for the production thereof
US6549327B2 (en) 2001-05-24 2003-04-15 Xerox Corporation Photochromic gyricon display
US6487002B1 (en) 2001-06-11 2002-11-26 Xerox Corporation Large area micro-structure template for creation of closely packed arrays
US6982178B2 (en) * 2002-06-10 2006-01-03 E Ink Corporation Components and methods for use in electro-optic displays
US7110163B2 (en) * 2001-07-09 2006-09-19 E Ink Corporation Electro-optic display and lamination adhesive for use therein
US7535624B2 (en) * 2001-07-09 2009-05-19 E Ink Corporation Electro-optic display and materials for use therein
US6967640B2 (en) * 2001-07-27 2005-11-22 E Ink Corporation Microencapsulated electrophoretic display with integrated driver
US6825970B2 (en) * 2001-09-14 2004-11-30 E Ink Corporation Methods for addressing electro-optic materials
US8125501B2 (en) 2001-11-20 2012-02-28 E Ink Corporation Voltage modulated driver circuits for electro-optic displays
US7952557B2 (en) * 2001-11-20 2011-05-31 E Ink Corporation Methods and apparatus for driving electro-optic displays
US7528822B2 (en) * 2001-11-20 2009-05-05 E Ink Corporation Methods for driving electro-optic displays
AU2002366174A1 (en) 2001-11-20 2003-06-10 E Ink Corporation Methods for driving bistable electro-optic displays
US8558783B2 (en) 2001-11-20 2013-10-15 E Ink Corporation Electro-optic displays with reduced remnant voltage
US8593396B2 (en) 2001-11-20 2013-11-26 E Ink Corporation Methods and apparatus for driving electro-optic displays
US9412314B2 (en) 2001-11-20 2016-08-09 E Ink Corporation Methods for driving electro-optic displays
US9530363B2 (en) 2001-11-20 2016-12-27 E Ink Corporation Methods and apparatus for driving electro-optic displays
US6950220B2 (en) * 2002-03-18 2005-09-27 E Ink Corporation Electro-optic displays, and methods for driving same
US7223672B2 (en) * 2002-04-24 2007-05-29 E Ink Corporation Processes for forming backplanes for electro-optic displays
US7190008B2 (en) 2002-04-24 2007-03-13 E Ink Corporation Electro-optic displays, and components for use therein
KR100867286B1 (en) 2002-04-24 2008-11-06 이 잉크 코포레이션 Electronic displays
US6958848B2 (en) * 2002-05-23 2005-10-25 E Ink Corporation Capsules, materials for use therein and electrophoretic media and displays containing such capsules
US9470950B2 (en) 2002-06-10 2016-10-18 E Ink Corporation Electro-optic displays, and processes for the production thereof
US7649674B2 (en) 2002-06-10 2010-01-19 E Ink Corporation Electro-optic display with edge seal
US8363299B2 (en) 2002-06-10 2013-01-29 E Ink Corporation Electro-optic displays, and processes for the production thereof
US7110164B2 (en) 2002-06-10 2006-09-19 E Ink Corporation Electro-optic displays, and processes for the production thereof
US8049947B2 (en) * 2002-06-10 2011-11-01 E Ink Corporation Components and methods for use in electro-optic displays
US7583427B2 (en) * 2002-06-10 2009-09-01 E Ink Corporation Components and methods for use in electro-optic displays
US7843621B2 (en) * 2002-06-10 2010-11-30 E Ink Corporation Components and testing methods for use in the production of electro-optic displays
US20080024482A1 (en) 2002-06-13 2008-01-31 E Ink Corporation Methods for driving electro-optic displays
JP4651383B2 (en) 2002-06-13 2011-03-16 イー インク コーポレイション Method for driving electro-optic display device
FR2841162B1 (en) * 2002-06-25 2005-01-14 Silfax REGULATORY SUPPORT FOR TUBE BENDING MACHINE
US20040105036A1 (en) * 2002-08-06 2004-06-03 E Ink Corporation Protection of electro-optic displays against thermal effects
JP4564355B2 (en) * 2002-09-03 2010-10-20 イー インク コーポレイション Electrophoretic medium with gaseous suspension fluid
EP3056941B1 (en) 2002-09-03 2019-01-09 E Ink Corporation Electro-phoretic medium
US7839564B2 (en) * 2002-09-03 2010-11-23 E Ink Corporation Components and methods for use in electro-optic displays
US20130063333A1 (en) 2002-10-16 2013-03-14 E Ink Corporation Electrophoretic displays
KR20050086917A (en) * 2002-12-16 2005-08-30 이 잉크 코포레이션 Backplanes for electro-optic displays
US6922276B2 (en) * 2002-12-23 2005-07-26 E Ink Corporation Flexible electro-optic displays
US6987603B2 (en) * 2003-01-31 2006-01-17 E Ink Corporation Construction of electrophoretic displays
US7339715B2 (en) * 2003-03-25 2008-03-04 E Ink Corporation Processes for the production of electrophoretic displays
US7910175B2 (en) * 2003-03-25 2011-03-22 E Ink Corporation Processes for the production of electrophoretic displays
ATE485535T1 (en) 2003-03-27 2010-11-15 E Ink Corp ELECTRO-OPTICAL ASSEMBLY
US10726798B2 (en) 2003-03-31 2020-07-28 E Ink Corporation Methods for operating electro-optic displays
US9672766B2 (en) 2003-03-31 2017-06-06 E Ink Corporation Methods for driving electro-optic displays
JP4776532B2 (en) * 2003-05-02 2011-09-21 イー インク コーポレイション Electrophoresis display
JP5904690B2 (en) 2003-06-30 2016-04-20 イー インク コーポレイション Method for driving an electro-optic display
US8174490B2 (en) * 2003-06-30 2012-05-08 E Ink Corporation Methods for driving electrophoretic displays
JP4492050B2 (en) * 2003-07-02 2010-06-30 富士ゼロックス株式会社 Image display medium
US20050122563A1 (en) * 2003-07-24 2005-06-09 E Ink Corporation Electro-optic displays
JP4806634B2 (en) 2003-08-19 2011-11-02 イー インク コーポレイション Electro-optic display and method for operating an electro-optic display
US20050134461A1 (en) * 2003-09-03 2005-06-23 Alexander Gelbman Electronically updateable label and display
JP5506137B2 (en) * 2003-09-19 2014-05-28 イー インク コーポレイション Method for reducing edge effects in electro-optic displays
US8319759B2 (en) 2003-10-08 2012-11-27 E Ink Corporation Electrowetting displays
ATE405916T1 (en) * 2003-10-08 2008-09-15 E Ink Corp ELECTRICAL WETTING DISPLAYS
AT413461B (en) * 2003-10-31 2006-03-15 Grasmann Josef ADJUSTING
US7672040B2 (en) * 2003-11-05 2010-03-02 E Ink Corporation Electro-optic displays, and materials for use therein
US8177942B2 (en) * 2003-11-05 2012-05-15 E Ink Corporation Electro-optic displays, and materials for use therein
US20110164301A1 (en) 2003-11-05 2011-07-07 E Ink Corporation Electro-optic displays, and materials for use therein
US7551346B2 (en) * 2003-11-05 2009-06-23 E Ink Corporation Electro-optic displays, and materials for use therein
EP2487674B1 (en) 2003-11-05 2018-02-21 E Ink Corporation Electro-optic displays
US8928562B2 (en) * 2003-11-25 2015-01-06 E Ink Corporation Electro-optic displays, and methods for driving same
US7265894B2 (en) 2003-12-18 2007-09-04 Xerox Corporation Bi-directional printer wiper for printing on bichromal or multi-colored electronic paper
US7355783B2 (en) * 2003-12-18 2008-04-08 Xerox Corporation Printer wiper for printing on bichromal or multi-colored electronic paper
US7206119B2 (en) * 2003-12-31 2007-04-17 E Ink Corporation Electro-optic displays, and method for driving same
US7075703B2 (en) * 2004-01-16 2006-07-11 E Ink Corporation Process for sealing electro-optic displays
JP4565257B2 (en) * 2004-02-26 2010-10-20 学校法人東海大学 Display unit group, manufacturing method thereof, and display device
US7388572B2 (en) * 2004-02-27 2008-06-17 E Ink Corporation Backplanes for electro-optic displays
US7492339B2 (en) * 2004-03-26 2009-02-17 E Ink Corporation Methods for driving bistable electro-optic displays
US8289250B2 (en) * 2004-03-31 2012-10-16 E Ink Corporation Methods for driving electro-optic displays
US20050253777A1 (en) * 2004-05-12 2005-11-17 E Ink Corporation Tiled displays and methods for driving same
US7414775B2 (en) * 2004-07-07 2008-08-19 Xerox Corporation Contrast enhancement in multichromal display by incorporating a highly absorptive layer
JP4633793B2 (en) 2004-07-27 2011-02-16 イー インク コーポレイション Electro-optic display
US11250794B2 (en) 2004-07-27 2022-02-15 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces
US7453445B2 (en) 2004-08-13 2008-11-18 E Ink Corproation Methods for driving electro-optic displays
US7230751B2 (en) * 2005-01-26 2007-06-12 E Ink Corporation Electrophoretic displays using gaseous fluids
US7630029B2 (en) * 2005-02-16 2009-12-08 Industrial Technology Research Institute Conductive absorption layer for flexible displays
US7557875B2 (en) * 2005-03-22 2009-07-07 Industrial Technology Research Institute High performance flexible display with improved mechanical properties having electrically modulated material mixed with binder material in a ratio between 6:1 and 0.5:1
US7564528B2 (en) * 2005-05-20 2009-07-21 Industrial Technology Research Institute Conductive layer to reduce drive voltage in displays
WO2007002452A2 (en) * 2005-06-23 2007-01-04 E Ink Corporation Edge seals and processes for electro-optic displays
US20070001927A1 (en) * 2005-07-01 2007-01-04 Eastman Kodak Company Tiled display for electronic signage
US7392948B2 (en) * 2005-07-28 2008-07-01 Industrial Technology Research Institute Electronic product identifier system
US7699226B2 (en) * 2005-07-28 2010-04-20 Industrial Technology Research Institute Automatic plan-o-gram system
DE102005039524B4 (en) * 2005-08-18 2023-01-19 Bundesdruckerei Gmbh Document with display device with movable display elements
US20070085838A1 (en) * 2005-10-17 2007-04-19 Ricks Theodore K Method for making a display with integrated touchscreen
US20070085837A1 (en) * 2005-10-17 2007-04-19 Eastman Kodak Company Touch input device with display front
US20080043318A1 (en) * 2005-10-18 2008-02-21 E Ink Corporation Color electro-optic displays, and processes for the production thereof
EP1938299A4 (en) 2005-10-18 2010-11-24 E Ink Corp Components for electro-optic displays
US20070091417A1 (en) * 2005-10-25 2007-04-26 E Ink Corporation Electrophoretic media and displays with improved binder
US7843624B2 (en) * 2006-03-08 2010-11-30 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US8390301B2 (en) * 2006-03-08 2013-03-05 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US7733554B2 (en) 2006-03-08 2010-06-08 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US8610988B2 (en) 2006-03-09 2013-12-17 E Ink Corporation Electro-optic display with edge seal
US7952790B2 (en) * 2006-03-22 2011-05-31 E Ink Corporation Electro-optic media produced using ink jet printing
US7507449B2 (en) 2006-05-30 2009-03-24 Industrial Technology Research Institute Displays with low driving voltage and anisotropic particles
US8830072B2 (en) * 2006-06-12 2014-09-09 Intelleflex Corporation RF systems and methods for providing visual, tactile, and electronic indicators of an alarm condition
US7796038B2 (en) * 2006-06-12 2010-09-14 Intelleflex Corporation RFID sensor tag with manual modes and functions
US7754295B2 (en) 2006-06-29 2010-07-13 Industrial Technology Research Institute Single substrate guest-host polymer dispersed liquid crystal displays
US7903319B2 (en) * 2006-07-11 2011-03-08 E Ink Corporation Electrophoretic medium and display with improved image stability
US8018640B2 (en) * 2006-07-13 2011-09-13 E Ink Corporation Particles for use in electrophoretic displays
US20080024429A1 (en) * 2006-07-25 2008-01-31 E Ink Corporation Electrophoretic displays using gaseous fluids
US7492497B2 (en) * 2006-08-02 2009-02-17 E Ink Corporation Multi-layer light modulator
WO2008036519A2 (en) 2006-09-18 2008-03-27 E Ink Corporation Color electro-optic displays
US7986450B2 (en) 2006-09-22 2011-07-26 E Ink Corporation Electro-optic display and materials for use therein
US7477444B2 (en) * 2006-09-22 2009-01-13 E Ink Corporation & Air Products And Chemical, Inc. Electro-optic display and materials for use therein
US8077142B2 (en) * 2006-09-27 2011-12-13 Tred Displays Corporation Reflective, bi-stable magneto optical display architectures
TW200835995A (en) * 2006-10-10 2008-09-01 Cbrite Inc Electro-optic display
US7649666B2 (en) * 2006-12-07 2010-01-19 E Ink Corporation Components and methods for use in electro-optic displays
US20100035377A1 (en) * 2006-12-22 2010-02-11 Cbrite Inc. Transfer Coating Method
TW200842401A (en) 2006-12-22 2008-11-01 Cbrite Inc Hemispherical coating method for micro-elements
CN101836167B (en) * 2007-01-22 2013-11-06 伊英克公司 Multi-layer sheet for use in electro-optic displays
US7688497B2 (en) * 2007-01-22 2010-03-30 E Ink Corporation Multi-layer sheet for use in electro-optic displays
US7902490B2 (en) * 2007-01-30 2011-03-08 Xtreme Energetics, Inc. Solid-state sun tracker
US7826129B2 (en) * 2007-03-06 2010-11-02 E Ink Corporation Materials for use in electrophoretic displays
WO2008144715A1 (en) * 2007-05-21 2008-11-27 E Ink Corporation Methods for driving video electro-optic displays
US9199441B2 (en) 2007-06-28 2015-12-01 E Ink Corporation Processes for the production of electro-optic displays, and color filters for use therein
WO2009006248A1 (en) 2007-06-29 2009-01-08 E Ink Corporation Electro-optic displays, and materials and methods for production thereof
US8902153B2 (en) 2007-08-03 2014-12-02 E Ink Corporation Electro-optic displays, and processes for their production
US20090122389A1 (en) * 2007-11-14 2009-05-14 E Ink Corporation Electro-optic assemblies, and adhesives and binders for use therein
WO2009117730A1 (en) * 2008-03-21 2009-09-24 E Ink Corporation Electro-optic displays and color filters
US8373649B2 (en) * 2008-04-11 2013-02-12 Seiko Epson Corporation Time-overlapping partial-panel updating of a bistable electro-optic display
WO2009126957A1 (en) 2008-04-11 2009-10-15 E Ink Corporation Methods for driving electro-optic displays
US8068271B2 (en) * 2008-10-22 2011-11-29 Cospheric Llc Rotating element transmissive displays
US8457013B2 (en) 2009-01-13 2013-06-04 Metrologic Instruments, Inc. Wireless dual-function network device dynamically switching and reconfiguring from a wireless network router state of operation into a wireless network coordinator state of operation in a wireless communication network
US8234507B2 (en) 2009-01-13 2012-07-31 Metrologic Instruments, Inc. Electronic-ink display device employing a power switching mechanism automatically responsive to predefined states of device configuration
TWI484273B (en) * 2009-02-09 2015-05-11 E Ink Corp Electrophoretic particles
US8098418B2 (en) 2009-03-03 2012-01-17 E. Ink Corporation Electro-optic displays, and color filters for use therein
KR101026025B1 (en) * 2009-04-28 2011-03-30 삼성전기주식회사 Display element and electronic paper
US8049954B2 (en) * 2009-06-05 2011-11-01 Cospheric Llc Color rotating element displays
EP2494428A4 (en) 2009-10-28 2015-07-22 E Ink Corp Electro-optic displays with touch sensors
US8654436B1 (en) 2009-10-30 2014-02-18 E Ink Corporation Particles for use in electrophoretic displays
WO2011097228A2 (en) 2010-02-02 2011-08-11 E Ink Corporation Method for driving electro-optic displays
EP2534522A1 (en) * 2010-02-09 2012-12-19 Visitret Displays Oü Twisting ball displays comprised of thixotropic liquid and bichromal balls charged with electret dipoles
JP5449617B2 (en) 2010-04-02 2014-03-19 イー インク コーポレイション Electrophoresis medium
CN105654889B (en) 2010-04-09 2022-01-11 伊英克公司 Method for driving electro-optic display
TWI484275B (en) 2010-05-21 2015-05-11 E Ink Corp Electro-optic display, method for driving the same and microcavity electrophoretic display
KR101495414B1 (en) 2010-06-02 2015-02-24 이 잉크 코포레이션 Color electro-optic displays
WO2012054841A2 (en) * 2010-10-22 2012-04-26 The Regents Of The University Of Michigan Optical devices with switchable particles
US8873129B2 (en) 2011-04-07 2014-10-28 E Ink Corporation Tetrachromatic color filter array for reflective display
WO2012162095A2 (en) 2011-05-21 2012-11-29 E Ink Corporation Electro-optic displays
US11030936B2 (en) 2012-02-01 2021-06-08 E Ink Corporation Methods and apparatus for operating an electro-optic display in white mode
US10672350B2 (en) 2012-02-01 2020-06-02 E Ink Corporation Methods for driving electro-optic displays
JP2013213953A (en) * 2012-04-03 2013-10-17 Hitachi Chemical Co Ltd Dimmer device
US11467466B2 (en) 2012-04-20 2022-10-11 E Ink Corporation Illumination systems for reflective displays
US10190743B2 (en) 2012-04-20 2019-01-29 E Ink Corporation Illumination systems for reflective displays
US9513743B2 (en) 2012-06-01 2016-12-06 E Ink Corporation Methods for driving electro-optic displays
US10282033B2 (en) 2012-06-01 2019-05-07 E Ink Corporation Methods for updating electro-optic displays when drawing or writing on the display
WO2014018745A1 (en) 2012-07-27 2014-01-30 E Ink Corporation Processes for the production of electro-optic displays
US10037735B2 (en) 2012-11-16 2018-07-31 E Ink Corporation Active matrix display with dual driving modes
US9715155B1 (en) 2013-01-10 2017-07-25 E Ink Corporation Electrode structures for electro-optic displays
US9726957B2 (en) 2013-01-10 2017-08-08 E Ink Corporation Electro-optic display with controlled electrochemical reactions
US9436056B2 (en) 2013-02-06 2016-09-06 E Ink Corporation Color electro-optic displays
US9195111B2 (en) 2013-02-11 2015-11-24 E Ink Corporation Patterned electro-optic displays and processes for the production thereof
US9721495B2 (en) 2013-02-27 2017-08-01 E Ink Corporation Methods for driving electro-optic displays
WO2014134504A1 (en) 2013-03-01 2014-09-04 E Ink Corporation Methods for driving electro-optic displays
US9620048B2 (en) 2013-07-30 2017-04-11 E Ink Corporation Methods for driving electro-optic displays
KR101797412B1 (en) 2013-07-31 2017-11-13 이 잉크 코포레이션 Methods for driving electro-optic displays
KR102023860B1 (en) 2014-01-17 2019-09-20 이 잉크 코포레이션 Electro-optic display with a two-phase electrode layer
EP3103113A4 (en) 2014-02-07 2017-07-19 E Ink Corporation Electro-optic display backplane structures
US10317767B2 (en) 2014-02-07 2019-06-11 E Ink Corporation Electro-optic display backplane structure with drive components and pixel electrodes on opposed surfaces
US10446585B2 (en) 2014-03-17 2019-10-15 E Ink Corporation Multi-layer expanding electrode structures for backplane assemblies
CN105318282A (en) * 2014-06-06 2016-02-10 林威廉 Reflective display part, display module, display screen and display board
US10353266B2 (en) 2014-09-26 2019-07-16 E Ink Corporation Color sets for low resolution dithering in reflective color displays
CN113341627A (en) 2014-11-07 2021-09-03 伊英克公司 Use of electro-optic displays
CN112631035A (en) 2015-01-05 2021-04-09 伊英克公司 Electro-optic display and method for driving an electro-optic display
US10197883B2 (en) 2015-01-05 2019-02-05 E Ink Corporation Electro-optic displays, and methods for driving same
US9835925B1 (en) 2015-01-08 2017-12-05 E Ink Corporation Electro-optic displays, and processes for the production thereof
JP6570643B2 (en) 2015-01-30 2019-09-04 イー インク コーポレイション Font control for electro-optic display and associated apparatus and method
WO2016126963A1 (en) 2015-02-04 2016-08-11 E Ink Corporation Electro-optic displays displaying in dark mode and light mode, and related apparatus and methods
EP3254276A4 (en) 2015-02-04 2018-07-11 E Ink Corporation Electro-optic displays with reduced remnant voltage, and related apparatus and methods
CN107231812B (en) 2015-02-17 2020-11-10 伊英克公司 Electromagnetic writing device for electro-optic displays
WO2016133980A1 (en) 2015-02-18 2016-08-25 E Ink Corporation Addressable electro-optic display
JP6524271B2 (en) 2015-06-29 2019-06-05 イー インク コーポレイション Method for mechanical and electrical connection to display electrodes
US9777201B2 (en) 2015-07-23 2017-10-03 E Ink Corporation Polymer formulations for use with electro-optic media
US11287718B2 (en) 2015-08-04 2022-03-29 E Ink Corporation Reusable display addressable with incident light
JP6571276B2 (en) 2015-08-31 2019-09-04 イー インク コーポレイション Erasing drawing devices electronically
US10803813B2 (en) 2015-09-16 2020-10-13 E Ink Corporation Apparatus and methods for driving displays
CN113241041B (en) 2015-09-16 2024-01-05 伊英克公司 Apparatus and method for driving display
US11657774B2 (en) 2015-09-16 2023-05-23 E Ink Corporation Apparatus and methods for driving displays
CN108138023B (en) 2015-09-30 2021-04-09 伊英克公司 Polyurethane adhesive layer for electro-optical assemblies
EP3361312A4 (en) * 2015-10-08 2019-07-24 Dai Nippon Printing Co., Ltd. Particles, optical sheet, screen, display device, particle inspection device, particle manufacturing device, particle inspection method, particle manufacturing method, screen inspection method, and screen manufacturing method
TWI715933B (en) 2016-02-08 2021-01-11 美商電子墨水股份有限公司 Method for updating an image on a display having a plurality of pixels
US10254620B1 (en) 2016-03-08 2019-04-09 E Ink Corporation Encapsulated photoelectrophoretic display
WO2017184816A1 (en) 2016-04-22 2017-10-26 E Ink Corporation Foldable electro-optic display apparatus
US10146261B2 (en) 2016-08-08 2018-12-04 E Ink Corporation Wearable apparatus having a flexible electrophoretic display
US10503041B2 (en) 2016-11-30 2019-12-10 E Ink Corporation Laminated electro-optic displays and methods of making same
US10509294B2 (en) 2017-01-25 2019-12-17 E Ink Corporation Dual sided electrophoretic display
WO2018160546A1 (en) 2017-02-28 2018-09-07 E Ink Corporation Writeable electrophoretic displays including sensing circuits and styli configured to interact with sensing circuits
CN110383370B (en) 2017-03-03 2022-07-12 伊英克公司 Electro-optic display and driving method
CA3200340A1 (en) 2017-03-06 2018-09-13 E Ink Corporation Method and apparatus for rendering color images
US10444592B2 (en) 2017-03-09 2019-10-15 E Ink Corporation Methods and systems for transforming RGB image data to a reduced color set for electro-optic displays
EP3602193A4 (en) 2017-03-28 2021-01-06 E Ink Corporation Porous backplane for electro-optic display
CN110462723B (en) 2017-04-04 2022-09-09 伊英克公司 Method for driving electro-optic display
CN112860018A (en) 2017-05-19 2021-05-28 伊英克公司 Foldable electro-optic display including digitization and touch sensing
US11404013B2 (en) 2017-05-30 2022-08-02 E Ink Corporation Electro-optic displays with resistors for discharging remnant charges
CN110709766B (en) 2017-05-30 2023-03-10 伊英克公司 Electro-optic display
US10962816B2 (en) 2017-06-16 2021-03-30 E Ink Corporation Flexible color-changing fibers and fabrics
CN111133501A (en) 2017-09-12 2020-05-08 伊英克公司 Method for driving electro-optic display
US11721295B2 (en) 2017-09-12 2023-08-08 E Ink Corporation Electro-optic displays, and methods for driving same
US10824042B1 (en) 2017-10-27 2020-11-03 E Ink Corporation Electro-optic display and composite materials having low thermal sensitivity for use therein
EP4137884A3 (en) 2017-11-03 2023-04-19 E Ink Corporation Processes for producing electro-optic displays
US11079651B2 (en) 2017-12-15 2021-08-03 E Ink Corporation Multi-color electro-optic media
CN111492307A (en) 2017-12-19 2020-08-04 伊英克公司 Use of electro-optic displays
JP2021511542A (en) 2018-01-22 2021-05-06 イー インク コーポレイション Electro-optic displays and how to drive them
TWI670555B (en) 2018-01-22 2019-09-01 元太科技工業股份有限公司 Reflective color electrophoresis display device
US11081066B2 (en) 2018-02-15 2021-08-03 E Ink Corporation Via placement for slim border electro-optic display backplanes with decreased capacitive coupling between t-wires and pixel electrodes
US11143929B2 (en) 2018-03-09 2021-10-12 E Ink Corporation Reflective electrophoretic displays including photo-luminescent material and color filter arrays
KR20230146114A (en) 2018-05-17 2023-10-18 이 잉크 캘리포니아 엘엘씨 Piezo electrophoretic display
KR102609672B1 (en) 2018-07-17 2023-12-05 이 잉크 코포레이션 Electro-optical displays and driving methods
EP3834038B1 (en) 2018-08-07 2023-10-18 E Ink Corporation Flexible encapsulated electro-optic media
EP3837582A4 (en) 2018-08-14 2022-05-11 E Ink California, LLC Piezo electrophoretic display
US11656525B2 (en) 2018-10-01 2023-05-23 E Ink Corporation Electro-optic fiber and methods of making the same
US11635640B2 (en) 2018-10-01 2023-04-25 E Ink Corporation Switching fibers for textiles
US11754903B1 (en) 2018-11-16 2023-09-12 E Ink Corporation Electro-optic assemblies and materials for use therein
US11062663B2 (en) 2018-11-30 2021-07-13 E Ink California, Llc Electro-optic displays and driving methods
JP2022514540A (en) 2018-12-17 2022-02-14 イー インク コーポレイション Anisotropy moisture barrier film and electro-optic assembly containing it
US11456397B2 (en) 2019-03-12 2022-09-27 E Ink Corporation Energy harvesting electro-optic displays
WO2020205206A1 (en) 2019-03-29 2020-10-08 E Ink Corporation Electro-optic displays and methods of driving the same
WO2020223041A1 (en) 2019-04-30 2020-11-05 E Ink Corporation Connectors for electro-optic displays
US11761123B2 (en) 2019-08-07 2023-09-19 E Ink Corporation Switching ribbons for textiles
KR20220031714A (en) 2019-08-26 2022-03-11 이 잉크 코포레이션 Electro-optical device comprising an identification marker
KR20220044791A (en) 2019-10-07 2022-04-11 이 잉크 코포레이션 Adhesive composition comprising polyurethane and cationic dopant
WO2021097179A1 (en) 2019-11-14 2021-05-20 E Ink Corporation Methods for driving electro-optic displays
EP4062396A4 (en) 2019-11-18 2023-12-06 E Ink Corporation Methods for driving electro-optic displays
EP4081860A4 (en) 2019-12-23 2024-02-07 E Ink Corp Transferable light-transmissive electrode films for electro-optic devices
EP4158614A1 (en) 2020-05-31 2023-04-05 E Ink Corporation Electro-optic displays, and methods for driving same
CN116529666A (en) 2020-06-03 2023-08-01 伊英克公司 Foldable electrophoretic display module comprising non-conductive support plates
CN115699151A (en) 2020-06-11 2023-02-03 伊英克公司 Electro-optic display and method for driving an electro-optic display
WO2022072596A1 (en) 2020-10-01 2022-04-07 E Ink Corporation Electro-optic displays, and methods for driving same
JP2023546718A (en) 2020-11-02 2023-11-07 イー インク コーポレイション How to reduce image artifacts during partial updates of electrophoretic displays
EP4260312A1 (en) 2020-12-08 2023-10-18 E Ink Corporation Methods for driving electro-optic displays
US11935495B2 (en) 2021-08-18 2024-03-19 E Ink Corporation Methods for driving electro-optic displays
US11830448B2 (en) 2021-11-04 2023-11-28 E Ink Corporation Methods for driving electro-optic displays
WO2023122142A1 (en) 2021-12-22 2023-06-29 E Ink Corporation Methods for driving electro-optic displays
US11854448B2 (en) 2021-12-27 2023-12-26 E Ink Corporation Methods for measuring electrical properties of electro-optic displays
TW202341123A (en) 2021-12-30 2023-10-16 美商伊英克加利福尼亞有限責任公司 Methods for driving electro-optic displays
WO2023164078A1 (en) 2022-02-25 2023-08-31 E Ink Corporation Electro-optic displays with edge seal components and methods of making the same
WO2023200859A1 (en) 2022-04-13 2023-10-19 E Ink Corporation Display material including patterned areas of encapsulated electrophoretic media

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US29742A (en) * 1860-08-21 Appabatus for regulating the flow of water from cisterns
US2354048A (en) * 1940-08-03 1944-07-18 Minnesota Mining & Mfg Flexible lenticular optical sheet
US2354018A (en) * 1940-08-03 1944-07-18 Minnesota Mining & Mfg Light reflector sheet
US2326634A (en) * 1941-12-26 1943-08-10 Minnesota Mining & Mfg Reflex light reflector
US2354049A (en) * 1944-01-19 1944-07-18 Minnesota Mining & Mfg Backless reflex light reflector
US2407680A (en) * 1945-03-02 1946-09-17 Minnesota Mining & Mfg Reflex light reflector
US2600963A (en) * 1948-04-08 1952-06-17 Charles C Bland Method and apparatus for forming glass beads
US2684788A (en) * 1950-02-09 1954-07-27 Flex O Lite Mfg Corp Bead dispenser
US2794301A (en) * 1953-01-29 1957-06-04 Flex O Lite Mfg Corp Production of free-flowing glass beads
US2950985A (en) * 1957-04-11 1960-08-30 Flex O Lite Mfg Corp Starch treated free flowing glass beads
US2980547A (en) * 1957-05-03 1961-04-18 Flex O Lite Mfg Corp High refractive index glass beads
US3243273A (en) * 1957-08-12 1966-03-29 Flex O Lite Mfg Corp Method and apparatus for production of glass beads by dispersion of molten glass
US2965921A (en) * 1957-08-23 1960-12-27 Flex O Lite Mfg Corp Method and apparatus for producing glass beads from a free falling molten glass stream
US3222204A (en) * 1960-04-20 1965-12-07 Minnesota Mining & Mfg Process of making beaded coatings and films from glass beads treated with oleophobic sizing agent
US3150947A (en) * 1961-07-13 1964-09-29 Flex O Lite Mfg Corp Method for production of glass beads by dispersion of molten glass
US3310391A (en) * 1962-08-31 1967-03-21 Flex O Lite Mfg Corp Method of and apparatus for production of glass beads by use of a rotating wheel
AT307280B (en) * 1969-05-09 1973-05-10 Swarovski & Co Reflective film and process for its manufacture
US3617333A (en) * 1968-10-30 1971-11-02 Gen Steel Ind Inc Process for flotation treatment of glass beads
US3648281A (en) * 1969-12-30 1972-03-07 Ibm Electrostatic display panel
FR2161301A5 (en) * 1971-11-19 1973-07-06 Sobiepanek Janusz
US4117194A (en) * 1972-05-04 1978-09-26 Rhone-Poulenc-Textile Bicomponent filaments with a special cross-section
US3915771A (en) * 1974-03-04 1975-10-28 Minnesota Mining & Mfg Pavement-marking tape
US4002022A (en) * 1974-10-01 1977-01-11 Lopez C Guillermo Electro-mechanical sign structure with alternating faces formed by several adjacent dihedral angles
US4117192A (en) * 1976-02-17 1978-09-26 Minnesota Mining And Manufacturing Company Deformable retroreflective pavement-marking sheet material
US4143103A (en) * 1976-05-04 1979-03-06 Xerox Corporation Method of making a twisting ball panel display
US4126854A (en) * 1976-05-05 1978-11-21 Xerox Corporation Twisting ball panel display
US4082426A (en) * 1976-11-26 1978-04-04 Minnesota Mining And Manufacturing Company Retroreflective sheeting with retroreflective markings
US4261653A (en) * 1978-05-26 1981-04-14 The Bendix Corporation Light valve including dipolar particle construction and method of manufacture
US4229732A (en) * 1978-12-11 1980-10-21 International Business Machines Corporation Micromechanical display logic and array
US4367920A (en) * 1979-10-01 1983-01-11 Minnesota Mining And Manufacturing Company Retroflective sheeting
US4569857A (en) * 1979-10-01 1986-02-11 Minnesota Mining And Manufacturing Company Retroreflective sheeting
US4267946A (en) * 1979-10-01 1981-05-19 Thatcher Gary G Particulate matter dispensing device
US4511210A (en) * 1979-10-01 1985-04-16 Minnesota Mining And Manufacturing Company Retroreflective sheeting
US4288788A (en) * 1980-05-19 1981-09-08 General Motors Corporation Electrostatic alpha-numeric display
US4441791A (en) * 1980-09-02 1984-04-10 Texas Instruments Incorporated Deformable mirror light modulator
US4592628A (en) * 1981-07-01 1986-06-03 International Business Machines Mirror array light valve
US4381616A (en) * 1981-09-11 1983-05-03 Saxer Norman K Internally illuminated rotatable pictorial menu display
CA1190362A (en) * 1982-01-18 1985-07-16 Reiji Ishikawa Method of making a rotary ball display device
US4492435A (en) * 1982-07-02 1985-01-08 Xerox Corporation Multiple array full width electro mechanical modulator
US4725494A (en) * 1982-09-02 1988-02-16 Minnesota Mining And Manufacturing Co. Retroreflective sheeting
NO157596C (en) * 1983-12-16 1988-09-27 Alf Lange DEVICE FOR PRESENTATION OF INFORMATION.
US4710732A (en) * 1984-07-31 1987-12-01 Texas Instruments Incorporated Spatial light modulator and method
GB8508093D0 (en) * 1985-03-28 1985-05-01 Glaverbel Modifying wettability of glass beads
US4721649A (en) * 1985-05-08 1988-01-26 Minnesota Mining And Manufacturing Company Retroreflective sheeting
US4678695A (en) * 1985-12-23 1987-07-07 Minnesota Mining And Manufacturing Company Encapsulated flattop retroreflective sheeting and method for producing the same
US4956619A (en) * 1988-02-19 1990-09-11 Texas Instruments Incorporated Spatial light modulator
LU87138A1 (en) * 1988-02-19 1989-09-20 Glaverbel SURFACE-TREATED GLASS BEADS, METHOD FOR TREATING THE SURFACE OF GLASS BEADS, AND SYNTHETIC POLYMER MATRIX INCORPORATING SUCH GLASS BEADS
DE4008825A1 (en) * 1989-09-08 1991-03-14 Rose Walter Gmbh & Co Kg Graphic information display using masks - has slotted outer cover with rotational elements comprising sectors with varying optical properties
US5039557A (en) * 1989-10-26 1991-08-13 White Terrence H Method for embedding reflective beads in thermoplastic pavement marking lines
CA2027440C (en) * 1989-11-08 1995-07-04 Nicholas K. Sheridon Paper-like computer output display and scanning system therefor
JPH063528B2 (en) * 1990-03-16 1994-01-12 富士ゼロックス株式会社 Light modulation display element and display method
US5331454A (en) * 1990-11-13 1994-07-19 Texas Instruments Incorporated Low reset voltage process for DMD
US5226099A (en) * 1991-04-26 1993-07-06 Texas Instruments Incorporated Digital micromirror shutter device
JPH0833710B2 (en) * 1991-06-28 1996-03-29 株式会社テイ・アイ・シイ・シチズン Color display element and color display unit
JP3164919B2 (en) * 1991-10-29 2001-05-14 ゼロックス コーポレーション Method of forming dichroic balls
US5315776A (en) * 1992-10-07 1994-05-31 Everbrite, Inc. Multiple-display sign device
US5262098A (en) * 1992-12-23 1993-11-16 Xerox Corporation Method and apparatus for fabricating bichromal balls for a twisting ball display
US5416996A (en) * 1993-03-16 1995-05-23 Clemens; Richard Display apparatus
US5459602A (en) * 1993-10-29 1995-10-17 Texas Instruments Micro-mechanical optical shutter
US5535047A (en) * 1995-04-18 1996-07-09 Texas Instruments Incorporated Active yoke hidden hinge digital micromirror device
US5894367A (en) * 1996-09-13 1999-04-13 Xerox Corporation Twisting cylinder display using multiple chromatic values

Also Published As

Publication number Publication date
WO1997050071A1 (en) 1997-12-31
JPH11514104A (en) 1999-11-30
CN1196812A (en) 1998-10-21
DE69708029D1 (en) 2001-12-13
CN1147830C (en) 2004-04-28
CA2229809A1 (en) 1997-12-31
EP0846314B1 (en) 2001-11-07
EP0846314A1 (en) 1998-06-10
AU3387597A (en) 1998-01-14
US6055091A (en) 2000-04-25
MX9801551A (en) 1998-05-31
BR9702327A (en) 1999-12-28
DE69708029T2 (en) 2002-04-11

Similar Documents

Publication Publication Date Title
CA2229809C (en) Twisting-cylinder display
EP0913803B1 (en) Twisting-cylinder display
US5754332A (en) Monolayer gyricon display
US5914805A (en) Gyricon display with interstitially packed particles
US5825529A (en) Gyricon display with no elastomer substrate
US5808783A (en) High reflectance gyricon display
US8233212B2 (en) Electro-optic display
US6700695B2 (en) Microstructured segmented electrode film for electronic displays
JP4564355B2 (en) Electrophoretic medium with gaseous suspension fluid
US20070061214A1 (en) Conductive islands for printable electronic paper
US7139114B2 (en) Bisymmetrical electric paper and a system therefor
US8217869B2 (en) Flexible display system
US8018410B2 (en) Flexible and transparent ground plane for electric paper
US6396205B1 (en) Nonspecular visual display and method
EP0862773B1 (en) Twisting ball display
US7336874B2 (en) Display element and display device
US7477443B2 (en) Disordered three-dimensional percolation technique for forming electric paper
JPH11202803A (en) Display device and its manufacture
JP2001356282A (en) Display medium
Sheridon Gyricon materials for flexible displays

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed