CA2245332A1 - Production of polyurethane foams - Google Patents

Production of polyurethane foams Download PDF

Info

Publication number
CA2245332A1
CA2245332A1 CA002245332A CA2245332A CA2245332A1 CA 2245332 A1 CA2245332 A1 CA 2245332A1 CA 002245332 A CA002245332 A CA 002245332A CA 2245332 A CA2245332 A CA 2245332A CA 2245332 A1 CA2245332 A1 CA 2245332A1
Authority
CA
Canada
Prior art keywords
weight
hydrogen atoms
reactive hydrogen
ethylene oxide
crosslinkers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002245332A
Other languages
French (fr)
Inventor
Peter Falke
Inge Rotermund
Marita Schuster
Steffen Klippert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of CA2245332A1 publication Critical patent/CA2245332A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/6552Compounds of group C08G18/63
    • C08G18/6558Compounds of group C08G18/63 with compounds of group C08G18/32 or polyamines of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4072Mixtures of compounds of group C08G18/63 with other macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0008Foam properties flexible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/005< 50kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent

Abstract

Polyurethane foams are produced by reacting a) organic and/or modified organic diisocyanates and/or polyisocyanates with b) at least one relatively high molecular weight compound containing at least two reactive hydrogen atoms, c) at least one compound containing from three to eight, preferably from three to six, reactive hydrogen atoms and d) low molecular weight chain extenders and/or crosslinkers containing at least two reactive hydrogen atoms in the presence of e) blowing agents f) catalysts and, if desired, g) further auxiliaries and additives, wherein (c) are ethylene oxide-rich adducts having an ethylene oxide content of more than 50% by weight and an OH number of from 200 to 800 mg KOH/g and (d) are polyfunctional chain extenders and/or crosslinkers having an OH number of more than 700 mg KOH/g.

The polyurethane foam produced by this process can be used as upholstery material.

Description

BASF Aktiengesellschaft 970546 O.Z. 0050/48359 Production of polyurethane foams 5 The present invention relates to a process for producing polyurethane foams by reacting a) organic and/or modified organic diisocyanates and/or polyisocyanates with b) at least one relatively high molecular weight compound cont~;n;ng at least two reactive hydrogen atoms plus a combination of 15 c) at least one compound containing from three to eight, preferably from three to six, reactive hydrogen atoms and d) low molecular weight chain extenders and/or crosslinkers cont~;n;ng at least two reactive hydrogen atoms in the presence of e) blowing agents f) catalysts and, if desired, g) further ~xil;~ries and additives.

This process produces, in particular, flexible polyurethane foams having improved hardness and increased resistance to humid heat aging.

35 The production of polyurethanes by reacting organic diisocyanates --and/or polyisocyanates with compounds cont~in;ng at least two reactive hydrogen atoms, for example polyoxyalkylenepolyamines and/or preferably organic polyhydroxyl compounds, in particular polyetherols having molecular weights of, for example, from 300 40 to 6000, and, if desired, chain extenders and/or crosslinkers having molecular weights up to about 400 in the presence of catalysts, blowing agents, flame retardants, auxiliaries and/or additives is known and has been described many times. A sl ~ry overview of the production of polyurethane foams is given, for 45 example, in Kunststoff-Handbuch, Volume VII, ~Polyurethane~, 1st edition 1966, edited by Dr. R. Vieweg and Dr. A. Hochtlen, and CA 0224~332 1998-09-18 BASF Aktiengesellschaft 970546 o.Z. 0050/48359 2nd edition, 1983, and also 3rd edition, 1993, edited by Dr. G. Oertel (Carl Hanser Verlag, Munich).

There have been numerous publications on the subject of flexible 5 foams having sufficient hardness which are additionally resistant toward humid heat aging.

Thus, EP-A-449609 describes a highly elastic flexible foam in 10 which an improvement in properties, particularly in respect of the compressive set, is said to be achieved by increased proportions of 2,4-TDI. This makes it possible to reduce the proportions of polymer polyol.

15 In EP-A-346670, flexible block foams having a very low density at - a low index are produced. Here, a six-functional short-chain crosslinker polyol is mixed in to achieve the necessary foam stabilization.

20 EP-A-496420 describes flame-resistant flexible foams. Here, a combination of nitrogen-contA;n;ng, short-chain crosslinker polyols and a trifunctional polyol contAin;ng at least two secondary OH groups is claimed.

25 wo 95/15990 describes the use of high-functionality, in particular six-functional, polyols for highly elastic flexible foams. Diethanolamine as chain extender/crosslinker in proportions of up to 5 parts by weight is mentioned as an example.

In EP-A-704468, high-functionality polymer polyols are used for flexible foams. The formulations employed are directed, in particular, at the use according to the invention of relatively 35 high proportions of diols as chain extenders.

EP-A-350868 claims a high-functionality, relatively high molecular weight polymer polyol. As assistant polyol, use is made of a polyetherol having a molecular weight of from 450 to 3000 40 and an ethylene oxide content of > 30%. EthanolAm;ne species and sugar are mentioned as crosslinkers.

EP-A-406702 mentions ethylene oxide adducts of glycerol as crosslinker polyols, with crosslinkers having a functionality of 45 2 - 8 being claimed. Combinations with diethanolamine are claimed here. As a result of the cell-opener polyols used, a very CA 0224~332 1998-09-18 BASF Aktiengesellschaft 970546 O.Z. 0050/48359 closed-celled foam is said to be obtained in the index range 105 - 120.

EP-A-731120 mentions foams having improved humid heat aging which 5 are obtained using a polyol mixture comprising at least one polyol having a functionality of 3.5 - 8 and an ethylene oxide content of 10 - 30% and at least one polyetherol having a functionality of 2 - 8 and an ethylene oxide content of 50 - 95%.
Alkanolamine derivatives are mentioned as crosslinkers.
lO Concomitant use of fillers is possible to increase the hardness.

It is an object of the present invention to provide polyurethane foams having improved hardness and increased humid heat 15 resistance, without the other properties of the foam being ;mpAired.

We have found that this object is achieved by using, in addition to the customary component (b) comprising at least one relatively 20 high molecular weight compound contAining at least two reactive hydrogen atoms, a specific combination of at least one compound containing from 3 to 8, preferably 3 to 6, reactive hydrogen atoms (c) and low molecular weight chain extenders and/or crosslinkers contAin;ng at least two reactive hydrogen atoms (d), Z5 wherein the component (c) comprises ethylene oxide-rich adducts having an ethylene oxide content of more than 50% by weight and an OH number of from 200 to 800 mg KOH/g and (d) are polyfunctional chain extenders and/or crosslinkers having an OH
number of more than 700 mg KOH/g.

The present invention accordingly provides a process for producing polyurethane foams by reacting a) organic and/or modified organic diisocyanates and/or polyisocyanates with ~~

b) at least one relatively high molecular weight compound contAining at least two reactive hydrogen atoms, c) at least one compound contA;n;ng from three to eight, preferably from three to six, reactive hydrogen atoms and d) low molecular weight chain extenders and/or crosslinkers contA;n;ng at least two reactive hydrogen atoms CA 0224~332 1998-09-18 BASF Aktiengesellschaft 970546 o.Z. 0050/48359 in the presence of e) blowing agents f) catalysts and, if desired, g) further auxiliaries and additives, 10 wherein (c) are ethylene oxide-rich adducts having an ethylene oxide content of more than 50% by weight and an OH number of from 200 to 800 mg XOH/g and (d~ are polyfunctional chain extenders and/or crosslinkers having an OH number of more than 700 mg ROH/g.

The invention also provides the polyurethane foam produced by this process and provides for its use as upholstery material.

20 According to the present invention, the process for producing the polyurethane foams is carried out using, apart from customary components, a specific combination of at least one compound cont~in;ng from three to eight, preferably from three to six, reactive hydrogen atoms tc) and low molecular weight chain 25 extenders and/or crosslinkers cont~i~;ng at least two reactive hydrogen atoms ~d).

As component (c), use is made of ethylene oxide-rich adducts, preferably ethylene oxide adducts of glycerol, 30 trimethylolpropane, pentaerythritol or any mixtures thereof.
Suitable initiators for the ethylene oxide adducts are, besides or as a mixture with the abovementioned compounds, further relatively high-functionality initiators, for example sorbitol, ditrimethylolpropane, triethanolamine, diethanolamine and 35 mixtures thereof. It is likewise possible to use further initiators having a functionality of from 3 to 8.

The ethylene oxide is reacted in a customary manner with the initiator or initiator mixture.

The OHN of such ethylene oxide adducts is in the range from 200 to 800 mg KOH/g, preferably from 400 to 700 and in particular from 500 to 700 mg KOHtg.

CA 0224~332 1998-09-18 BASF Aktiengesellschaft 970546 O.Z. 0050/48359 The ethylene oxide content of the component c) is at least 50% by weight, preferably more than 90% by weight.

The relatively high-functionality compounds (c) are preferably 5 used in proportions of from 0.5 to 10% by weight, in particular in proportions of from 1 to 8% by weight, based on the weight of the components (b) to (g).

10 As component (d), use is made of polyfunctional chain extenders and/or crosslinkers having an OH number of more than 700 mg KOH/g, preferably glycerol. It is also possible to use trimethylolpropane, pentaerythritol or mixtures of said compounds. Apart from these compounds used according to the 15 present invention, small amounts of the customary chain extenders and/or crosslinkers mentioned below can also be added.

The component (d) is preferably used in proportions of from 0.5 to 6% by weight, particularly preferably in proportions of from 20 0-5 to 4% by weight, based on the weight of the components (b) to (g)-The molar ratio of (c) to (d) is preferably in the range from 10 to 0.3, in particular from 3.0 to 0.3.

In a particularly preferred embodiment, the component (c) used is a trifunctional polyol based on ethylene oxide and having an OH
number of 530 mg KOH/g (Lupranol~ VP 9209) in an amount of from 5 to 6% by weight and the component (d) used is glycerol in an 30 amount of 3% by weight.

In addition to the above-described combination of the components (c) and (d), it is possible to use the starting materials 35 customary in polyurethane chemistry for producing the polyurethane foams of the present invention. The following may be said by way of example about these other, customary starting materials:

40 a) suitable organic and/or modified organic diisocyanates and/or polyisocyanates are the aliphatic, cycloaliphatic, araliphatic and preferably aromatic polyfunctional isocyanates known per se.

Specific examples are: alkylene diisocyanates having from 4 to 45 12 carbon atoms in the alkylene radical, for example dodecane 1,12-diisocyanate, 2-ethyltetramethylene 1,4-diisocyanate, 2-methylpentamethylene 1,5-diisocyanate, tetramethylene CA 0224~332 1998-09-18 BASF Aktiengesellschaft 970546 o.Z. 0050/48359 1,4-diisocyanate and preferably hexamethylene 1,6-diisocyanate;
cycloaliphatic diisocyanates such as cyclohexane 1,3- and 1,4-diisocyanate and also any mixtures of these isomers, 1-isocyanato-3,3,5-trimethyl-5-isocyanatomethylcyclohexane 5 (IPDI), hexahydrotolylene 2,4- and 2,6-diisocyanate and also the corresponding isomer mixtures, dicyclohexylmethane 4,4'-, 2,2r-and 2,4'-diisocyanate and also the corresponding isomer mixtures, and preferably aromatic~diisocyanates and polyisocyanates such as tolylene 2,4- and 2,6-diisocyanate (-TDI) and the corresponding lO isomer mixtures, diphenylmethane 4,4'-, 2,4'- and 2,2'-diisocyanate (-MDI) and the corresponding isomer mixtures, mixtures of 4,4'- and 2,2'-MDI, polyphenylpolymethylene polyisocyanates, mixtures of 4,4'-, 2,4'- and 2,2'-MDI and polyphenylpolymethylene polyisocyanates (crude MDI) and mixtures 15 of crude MDI and TDI. The organic diisocyanates and polyisocyanates can be used individually or in the form of their mixtures.

Also suitable are modified polyfunctional isocyanates, ie.
20 products which are obtained by chemical reaction of organic diisocyanates and/or polyisocyanates. Examples which may be mentioned are diisocyanates and/or polyisocyanates containing ester, urea, biuret, allophanate, isocyanurate and preferably carbodiimide, ureton;m;ne and/or urethane groups. Specific 25 examples of suitable modified polyfunctional isocyanates are:
prepolymers cont~;n;ng urethane groups and having an NCO content of from 14 to 2.8% by weight, preferably from 12 to 3.5% by weight, or pseudoprepolymers having an NCO content of from 35 to 14% by weight, preferably from 34 to 22% by weight, where 30 urethane-modified polyisocyanates derived from TDI have, in particular, an NCO content of from 43 to 28% by weight and those derived from 4,4'-MDI, 4,4~- and 2,4 '-MDI isomer mixtures or crude MDI have, in particular, an NCO content of from 28 to 14%
by weight, particularly preferably from 28 to 22% by weight, 35 based on the total weight, and are prepared by reacting diols, oxyalkylene glycols and/or polyoxyalkylene glycols having molecular weights of from 62 to 6000, preferably from 134 to 4200, with TDI, 4,4'-MDI, MDI isomer mixtures and/or crude MDI, for example at from 20 to 110~C, preferably from 50 to 90~C, with 40 examples of oxyalkylene and polyoxyalkylene glycols which can be used individually or as mixtures being diethylene glycol, dipropylene glycol, polyoxyethylene glycol, polyoxypropylene glycol and polyoxypropylene polyoxyethylene glycol;
polyisocyanates cont~;n;ng carbodiimide groups and/or ureton;m;ne 45 groups, eg. those based on MDI isomers and/or TDI.

CA 0224~332 1998-09-18 BASF Aktiengesellschaft 970546 O.Z. 0050/48359 The modified polyisocyanates can, if desired, be mixed with one another or with unmodified organic polyisocyanates such as 2, 4'-and/or 4,4'-MDI, crude MDI, 2, 4- and/or 2,6-TDI.

5 Organic polyisocyanates which have been found to be particularly useful and are therefore preferably employed are: mixtures of TDI
and crude MDI or mixtures of modified organic polyisocyanates containing urethane groups and having an NCO content of from 44 to 15% by weight, in particular those based on TDI, 4,4'-MDI, MDI
10 isomer mixtures or crude MDI and in particular crude MDI having an MDI isomer content of from 30 to 80% by weight, preferably from 30 to 55~ by weight.

15 b) As relatively high molecular weight compounds containing at least two reactive hydrogen atoms, use is advantageously made of those having a functionality of from 2 to 4, preferably from 2 to 3, and a molecular weight of from 300 to 8000, preferably from 300 to 5000.

Examples of compounds which have been found to be useful are polyetherpolyamines and/or preferably polyols selected from the group consisting of polyether polyols, polyester polyols, polythioether polyols, polyesteramides, hydroxyl-cont~;ning 25 polyacetals and hydroxyl-contAining aliphatic polycarbonates or mixtures of at least two of the polyols mentioned. Preference is given to using polyester polyols and/or polyether polyols. The hydroxyl number of these polyhydroxyl compounds is generally from 20 to 80 and preferably from 28 to 56.

Suitable polyester polyols can be prepared, for example, from organic dicarboxylic acids having from 2 to 12 carbon atoms, preferably aliphatic dicarboxylic acids having from 4 to 6 carbon atoms, and polyhydric alcohols, preferably diols, having from 2 35 to 12 carbon atoms, preferably from 2 to 6 carbon atoms. Examples of suitable dicarboxylic acids are: succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid and terephthalic acid. The dicarboxylic 40 acids can be used either individually or in admixture with one another. In place of the free dicarboxylic acids, it is also possible to use the corresponding dicarboxylic acid derivatives such as dicarboxylic esters of alcohols having from 1 to 4 carbon atoms or dicarboxylic anhydrides. Preference is given to using 45 dicarboxylic acid mixtures of succinic, glutaric and adipic acids in weight ratios of, for example, 20 - 35 : 35 - 50 : 20 - 32, and in particular adipic acid. Examples of dihydric and CA 0224~332 1998-09-18 BASF Aktiengesellschaft 970546 O.Z. 0050/48359 polyhydric alcohols, in particular diols, are: ethanediol, diethylene glycol, 1,2- or 1,3-propanediol, dipropylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,10-decanediol, glycerol and trimethylolpropane. Preference is given to using 5 eth~ne~;ol, diethylene glycol, 1,4-butanediol, 1,S-pentanediol and 1,6-hexanediol. It is also possible to use polyester polyols derived from lactones, eg. ~-caprolactone, or hydroxycarboxylic acids, eg. ~-hydroxycaproic acid.

lO To prepare the polyester polyols, the organic, eg. aromatic and preferably aliphatic, polycarboxylic acids and/or derivatives and polyhydric alcohols can be polycondensed in the absence of catalysts or preferably in the presence of esterification catalysts, advantageously in an atmosphere of inert gas, eg.
15 nitrogen, carbon monoxide, helium, argon, etc., in the melt at from 150 to 250~C, preferably from 180 to 220~C, under atmospheric pressure or reduced pressure to the desired acid number which is advantageously less than 10, preferably less than 2. According to a preferred embodiment, the esterification mixture is 20 polycondensed at the abo~ ~ntioned temperatures to an acid number of from 80 to 30, preferably from 40 to 30, under atmospheric pressure and subsequently under a pressure of less than 500 mbar, preferably from 50 to 150 mbar. Examples of suitable esterification catalysts are iron, cadmium, cobalt, 25 lead, zinc, antimony, magnesium, titanium and tin catalysts in the form of metals, metal oxides or metal salts. However, the polycondensation can also be carried out in the liquid phase in the presence of diluents and/or entrainers such as benzene, toluene, xylene or chlorobenzene to azeotropically distill off 30 the water of condensation.

To prepare the polyester polyols, the organic polycarboxylic acids and/or derivatives and polyhydric alcohols are 35 advantageously polycondensed in a molar ratio of 1:1 - 1.8, preferably 1:1.05 - 1.2. The polyester polyols obtained preferably have a functionality of from 2 to 4, in particular from 2 to 3, and a molecular weight of from 480 to 3000, in particular from 600 to 2000.

- However, polyols which are particularly preferably used are polyether polyols which are prepared by known methods, for example from one or more alkylene oxides having from 2 to 4 carbon atoms in the alkylene radical by anionic polymerization 45 using alkali metal hydroxides such as sodium or potassium hydroxide or alkali metal alkoxides such as sodium methoxide, sodium or potassium ethoxide or potassium isopropoxide as CA 0224~332 1998-09-18 BASF Aktiengesellschaft 970546 0.Z. 0050/48359 catalysts with addition of at least one initiator molecule contA i n ing from 2 to 4, preferably 2 or 3, reactive hydrogen atoms in bound form, or by cationic polymerization using Lewis acids such as antimony pentachloride, boron fluoride etherate, 5 etc., or bleaching earth as catalysts.

For specific applications, monofunctional initiators can also be incorporated into the polyether structure. Suitable alkylene oxides are, for example, tetrahydrofuran, 1,3-propylene oxide, 10 1,2- or 2,3-butylene oxide, styrene oxide and preferably ethylene oxide and 1,2-propylene oxide. The alkylene oxides can be used individually, alternately 'in succession or as mixtures. Examples of suitable initiator molecules are: water, organic dicarboxylic acids such as succinic acid, adipic acid, phthalic acid and 15 terephthalic acid, aliphatic and aromatic, unalkylated, N-monoalkylated, N,N-dialkylated and N,N~-dialkylated diamines having from 1 to 4 carbon atoms in the alkyl radical, for example unalkylated, monoalkylated and dialkylated ethylene~l; ine~
diethylenetriamine, triethylenetetramine, 1,3-propylenediamine, 20 1,3- or 1,4-butylene~;Am;ne, 1,2-, 1,3-, 1,4-, 1,5- and 1,6-he~A -thylenediamine, phenylene~l;Am;ne, 2,3-, 2,4- and 2,6-tolylenediamine and 4,4'-, 2,4'- and 2,2'--l;Am;no~;phenylmethane. Further suitable initiator molecules are: AlkAnolamines such as ethanolamine, N-methylethanolamine and 25 N-ethylethanolamine, c1;~1kAnolamines such as diethanolamine, N-methyldiethanolamine and N-ethyldiethanolamine, and trialkanolamines such as triethanolamine, and ammonia. Preference is given to using polyhydric, in particular dihydric and/or trihydric, alcohols such as ethanediol, 1,2- and 2,3-propanediol, 30 diethylene glycol, dipropylene glycol, 1,4-butanediol, 1,6-hexanediol, glycerol, trimethylolpropane and pentaerythritol.

The polyether polyols, preferably polyoxypropylene polyols and 35 polyoxypropylene polyoxyethylene polyols, have a functionality of preferably from 2 to 4 and in particular from 2 to 3 and molecular weights of from 300 to 8000, preferably from 300 to 6000 and in particular from 1000 to 5000, and suitable polyoxytetramethylene glycols have a molecular weight up to about 3500.

Also suitable as polyether polyols are polymer-modified polyether polyols, preferably graft polyether polyols, in particular those based on styrene and/or acrylonitrile which are prepared by in 45 situ polymerization of acrylonitrile, styrene or preferably mixtures of styrene and acrylonitrile, eg. in a weight ratio of from 90:10 to 10:90, preferably from 70:30 to 30:70, CA 0224~332 1998-09-18 BASF Aktiengesellschaft 970546 O.Z. OO50/48359 advantageously in the abovementioned polyether polyols as described in the German Patents 1111394, 1222669 (US-A-3304273, 3383351, 3523093), 1152536 (GB 1040452) and 1152537 ~GB 987618), and also polyether polyol dispersions which contain as disperse 5 phase, customarily in an amount of from 1 to 50% by weight, preferably from 2 to 25~ by weight, eg. polyureas, polyhydrazides, polyurethanes containing bound tertiary amino groups and/or melamine, and are described, for example, in EP-B-011752 (US-A-4304708), US-A-4374209 and DE-A-3231497.

Like the polyester polyols, the polyether polyols can be used individually or in the form of mixtures. Furthermore, they can be mixed with the graft polyether polyols or polyester polyols or with the hydroxyl-contAining polyester amides, polyacetals, 15 polycarbonates and/or polyetherpolyamines.

Suitable hydroxyl-contAining polyacetals are, for example, the compounds which can be prepared from glycols such as diethylene 20 glycol, triethylene glycol, 4,4~-dihydroxyethoxydiphenyldimethylmethane, hexanediol and formaldehyde. Suitable polyacetals can also be prepared by polymerization of cyclic acetals.

25 Suitable hydroxyl-contA;n;ng polycarbonates are those of the type known per se, which can be prepared, for example, by reacting diols such as 1,3-propanediol, 1,4-butanediol and/or 1,6-h~ne~iol, diethylene glycol, triethylene glycol or tetraethylene glycol with diaryl carbonates, eg. diphenyl 30 carbonate, or phosgene.

The polyester amides include, for example, the pre~omin~ntly linear condensates obtained from polybasic, saturated and/or unsaturated carboxylic acids or their anhydrides and 35 polyfunctional saturated and/or unsaturated aminoalcohols or mixtures of polyfunctional alcohols and amino alcohols and/or polyamines.

Suitable polyetherpolyamines can be prepared from the 40 abovementioned polyether polyols by known methods. Examples which may be mentioned are the cyanoalkylation of polyoxyalkylene polyols and subsequent hydrogenation of the nitrile formed (US-A-3267050) or the partial or complete amination of polyoxyalkylene polyols with A~; nes or ammonia in the presence of 45 hydrogen and catalysts (DE-A-1215373).

CA 0224~332 1998-09-18 BASF Aktiengesellschaft 970546 O.Z. 0050/48359 c) According to the present invention, the production of the polyurethane foams is carried out using ethylene oxide-rich adducts, as are described above, as compounds contA;n;ng from three to eight, preferably from three to six, reactive hydrogen 5 atoms.

d) The above-described chain extenders and/or crosslinkers are used for producing the polyurethane foams of the present invention. However, the addition of further chain extenders, 10 crosslinkers or, if desired, mixtures thereof may prove to be advantageous for modifying the mechanical properties. As further chain extenders and/or crosslinkers, use is made of diols and/or triols having molecular weights of less than 400, preferably from 60 to 300. Examples of suitable chain extenders/crosslinkers are 15 aliphatic, cycloaliphatic and/or araliphatic diols having from 2 to 14, preferably from 4 to 10, carbon atoms, eg. ethylene glycol, 1,3-propanediol, 1,10-decanediol, o-, m-, p-dihydroxycyclohexAne, diethylene glycol, dipropylene glycol and preferably 1,4-butAneA;ol, 1,6-he~AneA;ol and 20 bis(2-hydroxyethyl)hydroquinone, triols such as 1,2,4- and 1,3,5-trihydroxycyclohexane, and low molecular weight hydroxyl-contA;n;ng polyalkylene oxides based on ethylene oxide and/or 1,2-propylene oxide and the abovementioned diols and/or triols as initiator molecules.

If further chain extenders, crosslinkers or mixtures thereof are employed for producing the polyurethane foams, these are present in an amount of from 0 to 20% by weight.

e) As blowing agents, it is possible to use the chlorofluorocarbons ( CFCS ) and highly fluorinated and/or perfluorinated hydrocarbons generally known from polyurethane chemistry. However, for ecological reasons, the use of these 35 materials is being greatly restricted or completely stopped.
Alternative blowing agents are, apart from HCFCS and HFCS, in particular aliphatic and/or cycloaliphatic hydrocarbons, in particular pentane and cyclopentane, or acetals such as methylal.
These physical blowing agents are usually added to the polyol 40 component of the system. However, they can also be added to the isocyanate component or to both the polyol component and the isocyanate component. They can also be used together with highly fluorinated and/or perfluorinated hydrocarbons in the form of an emulsion of the polyol component. If emulsifiers are employed, 45 use is usually made of oligomeric acrylates which contain bound polyoxyalkylene and fluoroAlkAne radicals as side groups and have a fluorine content of from about S to 30% by weight. Such CA 0224~332 1998-09-18 BASF Aktiengesellschaft 970546 O.Z. 0050/48359 products are sufficiently well known from plastics chemistry, eg.
EP-A 351614.

The amount of blowing agent or blowing agent mixture used is from 5 1 to 25% by weight, preferably from 1 to 15% by weight, in each case based on the components (b) to (g).

Furthermore, it is possible and customary to add water as blowing 10 agent in the formative component (b) in an amount of from 0.5 to 15% by weight, preferably from 1 to 5% by weight, based on the formative components (b~ to (g). The addition of water can be carried out in combination with the use of the other blowing agents described.

f) Catalysts used for producing polyurethane foams are, in particular, compounds which strongly accelerate the reaction of the compounds cont~;n;ng reactive hydrogen atoms, in particular hydroxyl groups, of the components (b), (c) and (d) with the 20 organic, modified or unmodified polyisocyanates (a). Suitable catalysts are organic metal compounds, preferably organic tin compounds such as tin(II) salts of organic carboxylic acids, eg.
tin(II) acetate, tin(II) octoate, tin(II) ethylhexanoate and tin(II) laurate, and the dialkyltin(IV) salts of organic 25 carboxylic acids, eg. dibutyltin diacetate, dibutyltin dilaurate, dibutyltin maleate and dioctyltin diacetate. The organic metal compounds are used alone or preferably in combination with strongly basic amines. Examples which may be mentioned are amidines such as 2,3-dimethyl-3,4,5,6-tetrahydropyrimidine, 30 tertiary amines such as triethylamine, tributylamine, dimethylbenzylamine, N-methylmorpholine, N-ethylmorpholine, N-cyclohexylmorpholine, N,N,N',N'-tetramethylethylenediamine, N,N,N',N'-tetramethylbutanediamine, N,N,N',N'-tetramethylhe~Ane-1,6-~;~m;ne, 35 pentamethyldiethylenetriamine, bis(dimethylaminoethyl)ether, bis(dimethylaminopropyl)urea, dimethylpiperazine, 1,2-dimethylimidazole, 1-azabicyclo[3.3.0]octane and preferably 1,4-~;~ Z~hicyc lo[2.2.2]octane, and alkanolamine compounds such as triethanolamine, triisopropanolamine, N-methyldiethanolamine and 40 N-ethyldiethanolamine and dimethylethanolamine.

Further suitable catalysts are:
tris(dialkylaminoalkyl)-s-hexahydrotriazines, in particular tris(N,N-dimethylaminopropyl)-s-hexahydrotriazine, 45 tetraalkylammonium hydroxides such as tetramethylammonium hydroxide, alkali metal hydroxides such as sodium hydroxide and alkali metal alkoxides such as sodium methoxide and potassium CA 0224~332 1998-09-18 BASF Aktiengesellschaft 970546 0.Z. 0050/48359 isopropoxide, and also alkali metal salts of long-chain fatty acids having from 10 to 20 carbon atoms and possibly lateral OH
groups. Preference is given to using from 0.001 to 5% by weight, in particular from 0.05 to 2% by weight, of catalyst or catalyst 5 combination, based on the weight of the formative components (b) to (g).

g) If desired, further auxiliaries and/or additives can be incorporated into the reaction mixture for producing the 10 polyurethane foams. Examples which may be mentioned are flame retardants, surface-active substances, foam stabilizers, cell regulators, fillers, dyes, pigments, hydrolysis inhibitors, fungistatic and bacteriostatic substances.

Suitable flame retardants are, for example, tricresyl phosphate, tris(2-chloroethyl) phosphate, tris(2-chloropropyl) phosphate, tetrakis(2-chloroethyl)ethylene diphosphate, dimethyl methanephosphonate, diethyldiethanol ~m; nom~thylphosphonate and 20 also commercial halogen-cont~in;ng flame-retardant polyols. Apart from the abovementioned halogen-substituted phosphates, it is also possible to use inorganic or organic flame retardants such as red phosphorus, hydrated aluminum oxide, antimony trioxide, arsenic oxide, ammonium polyphosphate and calcium sulfate, 25 expandable graphite or cyanuric acid derivatives such as melamine, or mixtures of at least two flame retardants such as ammonium polyphosphate and melamine and also, if desired, maize starch or ammonium polyphosphate, melamine and expandable graphite and/or aromatic or aliphatic polyesters for making the 30 polyisocyanate polyaddition products flame resistant. Additions of melamine are found to be particularly effective. In general, if has been found to be advantageous to use from 5 to 50 parts by weight, preferably from 5 to 25 parts by weight, of the flame retardants mentioned per 100 parts by weight of the formative 35 componentS (b) to (g).

Suitable surface-active substances are, for example, compounds which serve to aid the homogenization of the starting materials and may also be suitable for regulating the cell structure of the 40 plastics. Examples which may be mentioned are emulsifiers such as the sodium salts of castor oil sulfates or of fatty acids and also amine salts of fatty acids, eg. diethylamine oleate, diethanolamine stearate, diethanolamine ricinoleate, salts of sulfonic acids, eg. alkali metal or ammonium salts of 45 dodecylbenzene- or dinaphthylmethanedisulfonic acid and ricinoleic acid; foam stabilizers such as siloxane-oxyalkylene copolymers and other organopolysiloxanes, ethoxylated CA 0224~332 1998-09-18 BASF Aktiengesellschaft 970546 o.z. 0050/48359 alkylphenols, ethoxylated fatty alcohols, paraffin oils, castor oil or ricinoleic esters, Turkey red oil and peanut oil, and cell regulators such as paraffins, fatty alcohols and dimethylpolysiloxanes. The above-described oligomeric acrylates 5 having polyoxyalkylene and fluoroalkane radicals as side groups are also suitable for improving the emulsifying action, the cell structure and/or stabilizing the foam. The surface-active substances are usually employed in amounts of from 0.01 to 5 parts by weight, based on 100 parts by weight of the formative 10 components (b) to (g~.

For the purpose of the present invention, fillers, in particular reinforcing fillers, are the customary organic and inorganic fillers, reinforcing materials, weighting agents, agents for 15 improving the abrasion behavior in paints, coatings, etc., known per se. Specific examples are: inorganic fillers such as siliceous minerals, for example sheet silicates such as antigorite, serpentine, hornblends, amphiboles, chrysotile, talc;
metal oxides such as kaolin, aluminum oxides, titanium oxides and 20 iron oxides, metal salts such as chalk, barite and inorganic pigments such as cadmium sulfide, zinc sulfide, and also glass, etc. Preference is given to using kaolin (China Clay), aluminum silicate and coprecipitates of barium sulfate and aluminum silicate and also natural and synthetic fibrous minerals such as 25 wollastonite, metal and in particular glass fibers of various lengths which may be coated with a size. Suitable organic fillers are, for example: carbon, rosin, cyclopentadienyl resins and graft polymers and also cellulose fibers, polyamide fibers, polyacrylonitrile fibers, polyurethane fibers, polyester fibers 30 based on aromatic and/or aliphatic dicarboxylic esters and, in particular, carbon fibers. The inorganic and organic fillers can be used individually or as mixtures and are advantageously incorporated into the reaction mixture in amounts of from 0.5 to 50% by weight, preferably from 1 to 40% by weight, based on the 35 weight of the components (a) to (g), but the content of mats, nonwovens and woven fabrics of natural and synthetic fibers can reach values of up to 80% by weight.

40 Further details regarding the abovementioned other customary auxiliaries and additives may be found in the specialist literature, for example the monograph by J.H. Saunders and K.C.
Frisch ~High Polymers" Volume XVI, Polyurethanes, Parts 1 and 2, Interscience Publishers 1962 and 1964, or the Runststoffhandbuch, 45 Polyurethane, Volume VII, Hanser-Verlag Munich, Vienna, 1st, 2nd and 3rd editions, 1966, 1983 and 1993.

CA 0224~332 1998-09-18 BASF AXtiengesellschaft 970546 O.Z. 0050/48359 To produce the polyurethane foams, the components (a) to (g) are reacted in such amounts that the equivalence ratio of the NCO
groups of the component (a) to the sum of the reactive hydrogen atoms of the components (b) to (g) is 0.60-1.25:1, preferably 5 0.90-1.15:1.

Polyurethane foams produced by the process of the present invention are advantageously produced by the one-shot method, for example by means of the high-pressure or low-pressure technique, lO in open or closed molds, for example metal molds. The continuous application of the reaction mixture to suitable conveyor belts for producing foam blocks is also customary.

15 It has been found to be particularly advantageous to employ the two-component method and to combine the formative components (b), (c), (d), (e), (f) and, if used, (g) to form a polyol component, often also designated as component A, and to use the formative component (a) and, if desired, blowing agents (e) as isocyanate 20 component, often also designated as component B. The starting components are mixed at from 15 to 90~C, preferably from 20 to 60~C and in particular from 20 to 35~C, and introduced into the open mold or under atmospheric pressure or superatmospheric pressure into the closed mold or, in the case of a continuous 25 workstation, applied to a belt which accommodates the reaction mixture. Mixing can be carried out mechanically by means of a stirrer, by means of a stirring spoon or by means of high-pressure mixing in a nozzle. The mold temperature is advantageously from 20 to 110~C, preferably from 30 to 65~C and in 30 particular from 35 to 65~C.

The polyurethane foams produced by the process of the present invention have a density of from 10 to 800 kg/m3, preferably from 35 to 70 kg/m3 and in particular from 25 to 50 kg/m3 . They are 35 particularly suitable as upholstery material in the furniture and automobile seat sectors, but also, with correspondingly higher foam densities, as integral foam components in automobile safety applications.

40 They are particularly suitable for use in climatic regions having a high atmospheric humidity, where corresponding resistance is absolutely necessary. They are also suitable, in the case of relatively low densities, for producing foams which, despite the lower density, have sufficiently good mechanical properties and 45 maintain them over a prolonged period of time.

CA 0224~332 1998-09-18 BASF Aktiengesellschaft 970546 O.Z. 0050/48359 The present invention is illustrated by the examples below without being restricted thereby.

Examples 1 - 4 (Comparative Examples) Example 1 Example 2 Example 3 Example 4 Lupranol~ 2042 60.05 57.95 56.90 63.10 Lupranol~ 4100 30.00 30.00 30.00 30.00 lOGlycerol 1.00 3.00 4.00 Diethylene 2.00 2.00 2.00 glycol Triethanolamine 3.20 Lupranol~ 2047 3.00 3.00 3.00 15Lupragen~ N2010.40 0.50 0.55 0.15 Lupragen~ N206 0.25 0.25 0.25 0.25 B 8680 0.30 0.30 0.30 0.30 Water 3-00 3-00 3.00 3-00 FD (core) 37.00 36.70 * 36.60 CS,70~C 84.70 33.40 * 70.30 20CS, 40~C,98~RH-91.50 70.10 * 83.90 CStr, 50% 4.20 5.40 * 4.20 Index 100; *unsatisfactory foam Lupranol~ 2042 OH number 28 mg KOH/g, polyetherol based on propylene oxide and ethylene oxide (BASF), Lupranol~ 2047 OH number 42 mg KOH/g, polyetherol based on propylene oxide and ethylene oxide (BASF) Lupranol~ 4100 OHN 24 mg KOH/g, polymer polyol based on acrylonitrile/styrene (BASF), Lupragen~ N201 Amine catalyst (BASF), Lupragen~ N206 Amine catalyst (BASF), B 8680 Silicone stabilizer (Goldschmldt), FD (core) Foam density of core in kg/m3, 45 CS Compressive set at the temperature indicated, measured by Methode D'Essai 1046, CA 0224~332 1998-09-18 BASF Aktiengesellschaft 970546 o.z. O050/48359 RH Relative atmospheric humidity, CStr 50% Compressive strength - Methode D'Essai 1003 Examples 5 - 8 (according to the present invention) Example 5 Example 6* Example 7 Example 8 Lupranol~ 2042 53.30 53.30 77.05 55.05 lOLupranol~ 410030.00 30.00 10.00 30.00 Glycerol 0.60 0.60 3.00 3.00 Lupranol~ 2047 4.00 4.00 Lupranol~ VP 8.50 8.50 15Lupranol~ VP 5 00 7 00 Lupragen~ N201 0.15 0.15 0.30 0.40 Lupragen~ N206 0.15 0.15 0.25 0.25 XFH 2584 - 0.30 B 8680 0.30 0.30 0.40 20Water 3.00 3.00 4.00 3-00 FD 40.00 40.00 37.00 36.00 CS,70~C 18.20 25.40 17.50 16.00 CS, 40~C,98%RH. 30.60 36.40 21.80 23.90 CStr, 50% 8.00 11.20 4.70 5.70 * Index l10 Lupranol~ VP 9209 OHN 530 mg KOH/g, trifunctional polyol based on ethylene oxide (BASF), Lupranol~ VP 9236 OHN 605 mg KOH/g, trifunctional polyol based on ethylene oxide (BASF), XFH 2584 Dabco XFH 2584 - silicone stabilizer (Air Products) CA 0224~332 1998-09-18

Claims (11)

1. A process for producing polyurethane foams by reacting a) organic and/or modified organic diisocyanates and/or polyisocyanates with b) at least one relatively high molecular weight compound containing at least two reactive hydrogen atoms, c) at least one compound containing from three to eight, preferably from three to six, reactive hydrogen atoms and d) low molecular weight chain extenders and/or crosslinkers containing at least two reactive hydrogen atoms in the presence of e) blowing agents f) catalysts and, if desired, g) further auxiliaries and additives, wherein (c) are ethylene oxide-rich adducts having an ethylene oxide content of more than 50% by weight and an OH
number of from 200 to 800 mg KOH/g and (d) are polyfunctional chain extenders and/or crosslinkers having an OH number of more than 700 mg KOH/g.
2. A process as claimed in claim 1, wherein the relatively high functionality compounds (c) are used in proportions of from 0.5 to 10% by weight, based on the weight of the components (b) to (g).
3. A process as claimed in claim 1, wherein the relatively high functionality compounds (c) are used in proportions of from 1 to 8% by weight, based on the weight of the components (b) to (g).
4. A process as claimed in claim 1, wherein the polyfunctional chain extenders and/or crosslinkers (d) are used in proportions of from 0.5 to 6% by weight, based on the weight of the components (b) to (g).
5. A process as claimed in claim 1, wherein the polyfunctional chain extenders and/or crosslinkers (d) are used in proportions of from 0.5 to 4% by weight, based on the weight of the components (b) to (g).
6. A process as claimed in claim 1, wherein the molar ratio of (c) to (d) is in the range from 10 to 0.3, preferably from 3.0 to 0.3.
7. A process as claimed in claim 1, wherein the component (c) used preferably comprises ethylene oxide adducts of glycerol, trimethylolpropane, pentaerythritol or mixtures thereof.
8. A process as claimed in claim 1, wherein the component (d) used is glycerol.
9. A polyurethane foam comprising at least one relatively high molecular weight compound containing at least two reactive hydrogen atoms (b) and at least one combination of at least one compound containing from three to eight, preferably from three to six, reactive hydrogen atoms (c) and at least one low molecular weight chain extender and/or crosslinker containing at least two reactive hydrogen atoms (d), wherein the component (c) used comprises ethylene oxide-rich adducts having an ethylene oxide content of more than 50% by weight and an OH number of from 200 to 800 mg KOH/g in proportions of from 0.5 to 10% by weight, based on the weight of the components (b) to (g), and the component (d) used comprises polyfunctional chain extenders and/or crosslinkers having an OH number of more than 700 mg KOH/g in proportions of from 0.5 to 6% by weight, based on the weight of the components (b) to (g).
10. A polyurethane foam as claimed in claim 9, wherein the components (c) and (d) are used in a molar ratio of from 10 to 0.3, preferably from 3.0 to 0.3.
11. The use of a polyurethane foam as claimed in claim 9 as upholstery material in the furniture or automobile sector.
CA002245332A 1997-09-19 1998-09-18 Production of polyurethane foams Abandoned CA2245332A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19741257.2 1997-09-19
DE19741257A DE19741257A1 (en) 1997-09-19 1997-09-19 Process for the production of polyurethane foams

Publications (1)

Publication Number Publication Date
CA2245332A1 true CA2245332A1 (en) 1999-03-19

Family

ID=7842867

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002245332A Abandoned CA2245332A1 (en) 1997-09-19 1998-09-18 Production of polyurethane foams

Country Status (4)

Country Link
US (1) US6087410A (en)
EP (1) EP0903362A1 (en)
CA (1) CA2245332A1 (en)
DE (1) DE19741257A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6171516B1 (en) * 1997-03-13 2001-01-09 Takemoto Oil & Fat Co., Ltd. Treatment agent for elastic polyurethane fibers, and elastic polyurethane fibers treated therewith
DE60019975T2 (en) 2000-01-17 2006-04-27 Huntsman International Llc, Salt Lake City METHOD FOR PRODUCING A FREE-LOADING OR BLOCK flexible polyurethane foam
JP2003533565A (en) * 2000-05-15 2003-11-11 ダウ グローバル テクノロジーズ インコーポレイティド Polyurethane containing dispersed crystalline polyester
WO2002006368A2 (en) 2000-07-14 2002-01-24 Metabolix, Inc. Polyurethanes obtained from hydroxyalkanoates and isocyanates
DE10035400A1 (en) * 2000-07-19 2002-01-31 Basf Ag Process for the production of polyurethane foams
US20020077269A1 (en) * 2000-10-27 2002-06-20 Whitehouse Robert S. Alkanoic acid ester monomer compositions and methods of making same
US7094840B2 (en) 2000-10-27 2006-08-22 Metabolix, Inc. Compositions comprising low molecular weight polyhydroxyalkanoates and methods employing same
WO2002088211A1 (en) * 2001-04-27 2002-11-07 Huntsman International Llc Process for making visco-elastic foam
DE10129062A1 (en) 2001-06-15 2002-12-19 Basf Ag Process for the production of highly elastic polyurethane foams
DE10162344A1 (en) * 2001-12-18 2003-07-10 Henkel Kgaa Flammable polyurethane adhesives
US20070112086A1 (en) * 2003-10-28 2007-05-17 Mitsui Chemicals Polyurethanes, Inc. Flexible polyurethane foam and use thereof
US20070225393A1 (en) * 2006-03-27 2007-09-27 Arnold Allen R Jr Crosslinkers for minimizing deterioration of polyurethane foams
US8552078B2 (en) * 2006-10-17 2013-10-08 Air Products And Chemicals, Inc. Crosslinkers for improving stability of polyurethane foams
EP2172501A1 (en) 2008-09-24 2010-04-07 Recticel Process for the preparation of flexible, resilient polyurethane foam and the resulting foam
CN107057016B (en) * 2017-04-10 2019-11-08 龙岩学院 Mining water shutoff material and preparation facilities
AU2020342491A1 (en) 2019-09-05 2022-03-24 Basf Se A flexible polyurethane foam, process for preparing the same and use thereof
US11655328B2 (en) 2020-09-02 2023-05-23 Ventrex Systems, LLC Dimensionally stable closed-cell and rigid foams produced with methylal blowing agent

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4866102A (en) * 1987-11-20 1989-09-12 Pray Edward R Moldable energy absorbing rigid polyurethane foams
DE3819940A1 (en) * 1988-06-11 1989-12-14 Bayer Ag METHOD FOR PRODUCING POLYURETHANE SOFT BLOCK FOAMS
DK173325B1 (en) * 1988-07-12 2000-07-24 Union Carbide Chem Plastic Polymer polyol and its use in the production of flexible polyurethane foams and thus produced flexible p
US5011908A (en) * 1988-07-12 1991-04-30 Arco Chemical Technology, Inc. Polymer polyol compositions and their use in the preparation of polyurethane foams
US5171759A (en) * 1988-07-12 1992-12-15 Arco Chemical Technology, L.P. Polymer polyol compositions and their use in the preparation of polyurethane foams
US4950694A (en) * 1989-06-29 1990-08-21 Union Carbide Chemicals And Plastics Company Inc. Preparation of polyurethane foams without using inert blowing agents
GB9007063D0 (en) * 1990-03-29 1990-05-30 Arco Chem Tech High resilience flexible polyurethane foams
DE4028211A1 (en) * 1990-09-06 1992-03-12 Basf Ag METHOD FOR PRODUCING URETHANE GROUPS OR HARD FOAM MATERIALS CONTAINING URETHANE AND ISOCYANURATE GROUPS
US5618854A (en) * 1991-01-25 1997-04-08 The Dow Chemical Company Combustion-modified flexible polyurethane foams
JPH04311715A (en) * 1991-01-25 1992-11-04 Dow Chem Co:The Composition containing active hydrogen atom, for manufacturing flexible polyurethane
DE4119459A1 (en) * 1991-06-13 1992-12-17 Basf Ag METHOD FOR THE PRODUCTION OF CELL-CONTAINING PLASTICS BY THE POLYISOCYANATE POLYADDITION METHOD AND LOW-SEEDING, FLUORINATED AND / OR PERFLUORATED, TERTIARY ALKYLAMINE AS EMBODIMENTS CONTAINING DRIVING AGENTS
GB9325043D0 (en) * 1993-12-07 1994-02-02 Polyol Int Bv Polyol compositions and their use in the preparation of high resilience polyurethane foams
JP2597300B2 (en) * 1993-12-15 1997-04-02 三洋化成工業株式会社 Method for producing flexible polyurethane foam
GB9419562D0 (en) * 1994-09-27 1994-11-16 Arco Chem Tech High resilience polyurethane foam
DE19508079A1 (en) * 1995-03-08 1996-09-12 Bayer Ag Process for the preparation of highly elastic polyurethane foams

Also Published As

Publication number Publication date
US6087410A (en) 2000-07-11
DE19741257A1 (en) 1999-03-25
EP0903362A1 (en) 1999-03-24

Similar Documents

Publication Publication Date Title
US6316514B1 (en) Production of sound-damping and energy-absorbing polyurethane foams
US5981612A (en) Production of flameproofed, rigid, isocyanate-based foams
US6087410A (en) Production of polyurethane foams
DK0832909T4 (en) A process for the preparation of hard polyurethane foams
US20030065045A1 (en) Preparation of rigid polyurethane foams having retarded reactivity
US6046247A (en) Production of rigid polyurethane foams having a low thermal conductivity
US6337356B1 (en) Production of sound-absorbing polyurethane foams having an adhesive surface
US6100308A (en) Preparation of polyurethanes having improved curing
US6638986B2 (en) Preparation of in situ-reticulated flexible polyurethane foams
AU708633B2 (en) Production of compact or cellular polyurethane elastomers based on polyisocyanate mixtures containing 3,3&#39; -dimethylbiphenyl 4,4&#39;-diisocyanate and isocyanate prepolymers suitable for this purpose
US6583192B2 (en) Preparation of flexible polyurethane foams
SG192583A1 (en) Polyester polyols based on aromatic dicarboxylic acids and rigid polyurethane foams produced therefrom
US6586486B2 (en) Preparation of low-density hydrophilic flexible polyurethane foams
US6059990A (en) Preparation of a stable dispersion of melamine in polyol components
MXPA97005773A (en) Preparation of polyurethans that have better healing
US5208271A (en) Flexible polyurethane foams with reduced tendency for shrinkage
US6031013A (en) Production of polyurethane foams
US6495652B1 (en) Prepolymers containing isocyanate groups and a method for the production thereof
JPH11322891A (en) Production of polyurethane foam
US6093342A (en) Preparation of a homogeneous, demixing-stable polyol component
CA2213161A1 (en) Storage-stable, flame retardant-containing polyol component
US20020151613A1 (en) Preparation of low-odor flexible polyurethane foams
US5760099A (en) Production of rigid or semirigid polyurethane foams and composite elements comprising such polyurethane foams
GB2369825A (en) Preparation of melamine flame-proofed flexible polyurethane foams
CA2272812A1 (en) Preparation of prepolymers containing isocyanate groups

Legal Events

Date Code Title Description
FZDE Dead