CA2258363A1 - Method and cement-drilling fluid cement composition for cementing a wellbore - Google Patents

Method and cement-drilling fluid cement composition for cementing a wellbore Download PDF

Info

Publication number
CA2258363A1
CA2258363A1 CA002258363A CA2258363A CA2258363A1 CA 2258363 A1 CA2258363 A1 CA 2258363A1 CA 002258363 A CA002258363 A CA 002258363A CA 2258363 A CA2258363 A CA 2258363A CA 2258363 A1 CA2258363 A1 CA 2258363A1
Authority
CA
Canada
Prior art keywords
composition
wellbore
drilling fluid
cement
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002258363A
Other languages
French (fr)
Inventor
Robert Carpenter
David Johnson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atlantic Richfield Co
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2258363A1 publication Critical patent/CA2258363A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/16Sulfur-containing compounds
    • C04B24/161Macromolecular compounds comprising sulfonate or sulfate groups
    • C04B24/163Macromolecular compounds comprising sulfonate or sulfate groups obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/243Phosphorus-containing polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/04Aqueous well-drilling compositions
    • C09K8/14Clay-containing compositions
    • C09K8/16Clay-containing compositions characterised by the inorganic compounds other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0045Polymers chosen for their physico-chemical characteristics
    • C04B2103/0053Water-soluble polymers

Abstract

A method and a drilling fluid/cement slurry composition for cementing a wellbore. The drilling fluid/cement slurry composition comprises a cement slurry composition comprising: a) a cementitious material; b) a drilling fluid; and c) a dispersant selected from the group consisting of water soluble polymers comprising allyloxybenzene sulfonate or allyloxybenzene phosphonate polymerized with at least one of acrylic acid, acrylamides, alkyl acrylamides, maleic anhydride, itaconic acid, sulfonated or phosphonated styrene sulfonated or phosphonated vinyl toluene, sulfonated or phosphonated isobutylene, acrylamidopropane sulfonate, acrylamidopropanephosphonate, vinyl alcohol, sulfonated or phosphonated propene and alkali, alkaline earth and ammonium salts thereof.

Description

CA 022~8363 1998-12-1~

METHOD AND CEMENT-DRILLING FLUID CEMENT COMPOSITION FOR
CEMENTING A WELLBORE

BACKGROUND O~ THE INV~NTION

1. Field of the Invention This invention relates to a method and a drilling fluid/cement slurry composition for cementing a wellbore. More specifically the present invention relates to a method and composition for displacing drilling fluid from an annular space in a wellbore and sealingly occupying the space with the drilling fluid/cement composition.
2. Description of the Prior Art Techniques and methods are well known for drilling and completing wells, particularly oil and gas wells which are drilled from the surface of the earth into subterranean formations cont~ining oil and gas. Typically a bore holeis drilled from the earth's surface to the fluid-containing geologic formation to permit recovery of the fluid material contained therein.
Such wells are typically drilled by positioning a conductor tube or casing from the earth's surface a short distance into the earth and thereafter initiating drilling operations through the conductor tube. Drilling operations are conducted by maintaining a weight on a drill bit which is rotated by a drill string which is a length of pipe extending from the surface to the drill bit. Drilling fluids (frequently referred to as drilling muds) are passed through the drill string and the drill bit into the wellbore where they perform a variety of functions such as removing drill cuttings upwardly around the outside of the drill string to the surface.
Drilling fluids used during drilling of the wellbore are generally classified on the basis of their principal component. When the principal component is a liquid (water or oil) the term "mud" is applied to a suspension of solids in theliquid. The most common drilling fluids contain water as the principal component and are referred to as water based drilling fluids or water muds.

S~ 1 UTE SHEET (RULE 26 ~ .. . ... . . ..

CA 022~8363 1998-12-1~

Water based drilling ~1uids vary widely in composition and properties and many have been classified based upon their principal ingredients. Some common classifications of water-based drilling fluids are fresh water muds, low solid muds, spud muds, salt water muds, lime muds, gyp muds and CL-CLS muds.
In addition to water. drilling fluids often contain several known additives which perform various functions in the drilling fluid system. Among the most common additives are materials which increase density such as barite and hematite and viscosifiers or thickening agents such as clays (usually bentonite).
~ ~rm drilling fluid a~ u~ed her~in includcs ~p~ccr fluids ~hich t~pically comprisc a drillin~, fluid cont~ining no vi~co6ifiers or dcnsifici~
Many water-based drilling fluids are also formulated to contain one or more polymeric additives which serve to reduce the rate of filtrate loss, stabilize clays, flocculate drilled solids, increase carrying capacity, emulsify, lubricate and the like. Arnong the most commonly employed polymeric additives are starches, guar gum, xanthan gum, sodium carboxyl-methylcellulose (CMC), hydro.Yyethylcellulose (HEC), carboxyl methyl hydroxyethyl cellulose (CMHEC) and synthetic water dispersable polymers such as acrylics and alkylene-oxide polymers.
Such drilling fluids also frequently contain materials referred to broadly as "dispersants". Materials conventionally used as dispersants are classified asplant tannins, polyphosphates, lignitic materials, synthetic water dispersable polymers and lignosulfonates. Such drilling fluids are described in considerabledetail in U.S. Patents 5,030,366, "Spacer Fluids", issued July 9, 1991 to Wilsonet al; 5,113,943, "Spacer Fluids", issued May 19, 1992 to Wilson et al; and 5,292,367, "Dispersant Compositions for Subterranean Well Drilling and Completion", issued March 8, 1994 to Bloys et al; all of which are hereby incorporated in their entirety by reference.
After the wellbore has been drilled, the casing is secured in position in the wellbore to ensure permanence of the wellbore and to control the entry of fluids into the casing from formations penetrated by the wellbore. The well casing is typically cemented in place by pumping a cement slurry downwardly ~NDED SHEFr CA 022~8363 l998- l2- l~

Wo 97/48655 pcTlGs97lol5s3 through the casing, out through the open lower end of the casing at the well ~ bottom and then upwardly around the casing in the annular space between the outer wall of the casing and the inner wall of the wellbore. Frequently a spacerfluid is pumped downwardly through the casing ahead of the cement slurry to form a buffer between and prevent the contact of the drilling fluid and the cement slurry which are typically incompatible fluids.
The drilling process which produces the wellbore will usually leave behind on the wall of the wellbore a drilling fluid filter cake of mud-like material. This material is detrimental to the formation of proper bonding between the cement composition and the walls of the wellbore.
Desirably the drilling fluid filter cake is removed from the wellbore wall and replaced by the cement slurry to permit the formation of a solid layer of hardened, cured and bonded cement between the casing and the walls of the wellbore. It is well known that the removal of the drilling fluid filter cake isgreatly enhanced by injecting the cement slurry, spacer fluid or the like into the wellbore under turbulent flow conditions.
Suitable spacers for this purpose have been disclosed in U.S. Patents 5,030,366; 5,113,943 and 5,292,367 previously incorporated by reference. In cementing oil and gas wells, rather than displacing and removing the drilling fluid during cement slurry placement, it has been proposed to convert the drilling fluid into a cementious slurry for cementing casing or tubing in place or otherwise stabilizing or protecting the casing by sealing the formation in the vicinity of the wellbore using a dispersant such as sulfonated styrene maleic anhydride (SSMA). Such a method is disclosed in U.S. Patent 4,883,125, "Cementing Oil and Gas Wells Using Converted Drilling Fluid, " issued November 28, 1989 to Wilson et al; which is hereby incorporated in its entirety by reference.
Drilling mud constitutes a waste stream or a waste material when the drilling operation is concluded unless it can be used in another well drilling operation or the like. Further, the disposal of drilling muds is subject to increasingly severe environmental restrictions. Accordingly, it is desirable that CA 022~8363 1998- 12- l~

WO 97/48655 pcTlGss7lol593 the amount of surplus drilling fluid remaining for disposal at the end of the well completion be minimi7ed As a result there has been considerable interest in using the drilling fluid in combination with cementious materials to produce a cementitious slurry-drilling fluid mixture for use in cementing the casing in the well.
The conversion of drilling fluid or "mud" to a cement slurry is subject to several operational problems and undesirable compositional changes. For instance, the addition of cementitious materials such as mixtures of lime, silica and alumina, lime and magnesia, silica, alumina and iron oxide, cement materialssuch as calcium sulphate and Portland cements, pozzolanic materials such as ground sla(J, fly ash and the like to drilling fluids can substantially increase the viscosity of the fluid mixture and result in severe flocculation. Efforts to circulate such mixtures through a wellbore can result in highly unsatisfactory circulation rates. plugging of the wellbore annulus, breakdown of the earth formation in the vicinity of the wellbore, failure of the cement slurry to properly mix and the like.
These problems can be overcome by the addition of a dispersant composition which disperses both the drilling fluid and the cement slurry mixture. However, conventional drilling fluid dispersants do not necessarily disperse cement slurries and conventional cement slurry dispersants do not necessarily disperse drilling fluids. In addition, conventional dispersants which disperse both drilling fluids and cement slurries do not necessarily disperse mixtures of drilling fluids and cement slurries.
It is known in the art that hydroxypropyl acrylate-acrylic acid copolymer, sulfonated vinyl toluene-maleic anhydride copolymer, sulfonated vinyl toluene-maleic anhydride copolymer (SVT-MA), sulfonated methyl, ethyl, or phenyl polyacrylamide, and copolymers of ethylenic acids, acrylamides and ethylenic esters of phosphoric acid, and the sodium salts thereof act as dispersants or deflocculants in drilling fluids.
As further disclosed in U.S. Patent 5,292,367, polymers including hydroxypropyl acrylate-acrylic acid copolymer, sulfonated vinyl toluene-maleic CA 022=,8363 1998-12-1=, anhydride copolymer, sulfonated vinyl toluene-maleic acid copolymer, sulfonated methyl, ethyl or phenyl polyacrylamide, copolymers of ethylenic acids, acrylamides and ethylenic esters of phosphoric acid, acrylic acid polvmers, acrylamide polymers, and sulfonated and/or phosphonated copolymers of acrylic acid and acrylamide are effective to disperse mixtures of drilling fluids and cement slurries. Unfortunately, the preferred polymers (SSMA and SVT-MA) are in short supply and are not readily available commercially in the quantitiesnecessary for drilling operations.
Accordingly, continuing efforts have been directed to the development of alternate methods and other dispersants for use to disperse mixtures of drillingfluids and cement slurries to produce drilling fluid/cement slurry compositions for use in cementing oil wells.

SUMMARY OF THE INVENTION
According to the present invention, a wellbore space occupied by drilling fluid may be sealingly occupied by a cement slurry composition by displacing thedrilling fluid with the cement slurry composition wherein the cement slurry composition comprises a cementitious material, al~drilling fluid an~ a dispersant selected from the group consisting of water soluble polymers comprising allyloxybenzene sulfonate or allyloxybenzene phosphonate polymerized with at least one of acrylic acid, acrylamides, alkyl acrylamides, maleic anhydride, itaconic acid, sulfonated or phosphonated styrene, sulfonated or phosphonated vinyl toluene, sulfonated or phosphonated isobutylene, acrylamidopropane sulfonate or acrylamidopropanephosphonate, vinyl alcohol, sulfonated or phosphonated propene and alkali metal, alkaline earth metal and ammonium salts thereof.
In some instances a spacer may be circulated ahead of the cement slurry composition through at least a portion of the space occupied by drilling fluid to remove at least a portion of the drilling fluid from at least a portion of the annular space prior to introduction of the cement slurry composition into the space.

~NDED SHEET

CA 022~8363 1998-12-1~ ' The present invention further com~Les a cement slurry composition comprising a cementitious material, aldrilling fluid and a dispersant selected from the group consisting of water soluble polymers comprising allyloxybenzene sulfonate or allyloxybenzene phosphonate polymerized with at least one of acrylic acid, acrylamides, alkyl acrylamides, maleic anhydride, itaconic acid, sulfonated or phosphonated styrene, sulfonated or phosphonated vinyl toluene, sulfonated or phosphonated isobutylene, acrylamidopropane sulfonate or acrylamidopropanephosphonate, vinyl alcohol, sulfonated or phosphonated propene and alkali metal, alkaline earth metal and ammonium salts thereof.

BRIEF DESCRIPTION OF THE DRAWlNGS

The drawing is a schematic diagram of a wellbore including a casing positioned in the earth.

DESCRIPTION OF THE PREFERRED EMBODIMENTS
A wellbore 10 shown in the Fig. is positioned from a surface 14 into the earth 12 and may be an oil well or the like. Wellbore 10 includes a first casing16 which may be a conductor or the like positioned from a well head at the surface 14 which supports a second casing 18 which extends to near a bottom 26 of the wellbore 10. An annular space 20 is defined by the outer diameter of the casing 18 and the inner diameter of the wellbore 10. In typical cementing operations a cement slurry composition is introduced through a line 22 and passed downwardly through the casing 18, outwardly through the bottom 26 of the casing 18 and upwardly through the annular space 20 to displace drilling fluid positioned in annulus 20 upwardly through the annular space and out of the wellbore 10 through a line 24. The cement injection may be continued until cement is recovered through the line 24 or until the cement has been positioned in annulus 20 to a desired level. Such operations are considered to be well known to those skilled in the art.

CA 022~8363 1998-12- lS

Wo 97/48655 pcTlGBs7lol593 Dispersants used in the cement slurry composition of the present invention are selected from water soluble polymers comprising allyloxybenzene sulfonate or allyloxybenzene phosphonate polymerized with at least one of acrylic acid, acrylamides, alkyl acrylamides, maleic anhydride, itaconic acid, sulfonated or phosphonated styrene, sulfonated or phosphonated vinyl toluene, sulfonated or phosphonated isobutylene, acrylamido?ropane sulfonate or acrylamidopropanephosphonate~ vinyl alcohol, sulfonated or phosphonated propene and alkali metal, alkaline earth metal and ammonium salts thereof.
These materials are not new per se and may be produced by well-known processes. The production of dispersants of this type is described in U.S. Patent 4,892,898, "Water Soluble Polymers Containing Allyloxybenzene Sulfonate Monomers", issued January 9, 1990 to Leighton et al, which is hereby incorporated in its entirety by reference. Such dispersants are available from ALCO Chemical, a division of National Starch and Chemical Company, 909 Mueller Drive, P.O. Box 5401, Chattanooga, Tennessee 37406 under the trademarks AQUATREATAR-540 (liquid), AQUATREATAR-540D (powder), AQUATREAT MPS (liquid), EXP 2289 (liquid) and Nacryl 90 (liquid). The dispersants marketed as liquids under the trademarks AQUATREAT MPS, EXP
2289 and Nacryl 90 can be spray dried to form powders. The dispersants marketed under the trademarks AQUATREATAR-540 and AQUATREATAR-540D comprise interpolvmers of acrylic acid, allyloxybenzene sulfonate, allyl sulfonate and a non-ionic monomer. These interpolymers are preferred dispersants.
These dispersants are readily available and have been found to be surprisingly effective as dispersants in mixtures of drilling fluids and cementitious materials to form cement slurries. AS previously mentioned, cementitious materials are typically selected from materials such as mixtures of lime, silicaand alumina, lime and magnesia, silica and alumina and iron oxide, calcium sulphate, Portland cement, pozzolanic materials, such as ground slag and fly ashand the like. The dispersant is desirably mixed with the cementitious material and the drilling fluid in quantities from about 1.43kg/m3 to about 42.8kg/m3 CA 02258363 1998-12-1~

(about 0.5 to about 1~ pounds per 4~ gallon barrel) of the resulting cement slurry. Pret'erably, the dispersant is used in quantities from about ~.86 ro about 14.3kg/m3 (about 1 to about 5 pounds per barrel) of cement slurrv. The cementitious material is typically present in an amount from about 100 to about 400 pounds per ~ gallon barrel of the cement slurry (0.~9 to 1.1~kg/l).
The cement slurry composition of the present invention produced using drilling ~1uids with cementitious materials to form the cement slurry composition with effective amounts of the dispersants have desirable rheological properties.including desirable plastic viscosities and yield points.
The rheological parameters shown in Table 1 were determined with a Chan model 35 viscometer using a #1 bob and sleeve and a #1 spring. The viscometer uses a rotor and a bob which is attached to a spring to measure the shear stress factor in a fluid. The bob and rotor are immersed in the tluid which is contained in a stationary test cup. The rotor, arranged in concentric alignment with the bob, causes the fluid to move at various shear rates, while the bob by means of the attached spring, measures the torque exerted on the bob.
As shown below in Table 1, the dispersants of the present invention are surprisingly effective in providing desirable yield points and plastic viscosities in mixtures of drilling tluid and cementitious materials.
Desirably, the drilling fluid/cement slurry compositions have a plastic viscosity from about 10-' to about O.~Pa.s (about 10 to about 400 centipoises), and preferably from about 2 x 10-' to about O.~Pa.s (about ~0 to about ~00 centipoises) at ~7~C (8()~F) and yield points from about 0 to 4.8Pa (about 0 to about 100 Ibs. per hundred feet squared) and preferably from about 0.~4 to about.4Pa (about S to about 50 lbs per hundred feet squared) at ~7~C (80~F).

Example 1 In this example a lignite mud having a density of 31.5 Kg/mi (11 Ibs. per gallon) and a pH of 10.5 was prepared by mixing ~94 grams of water, 15 grams of bentonite, 1~.5 grams of sea salt, 0.3 grams of biocide, 6 grams ot lignite, 0.5 grams of low-viscosity carboxymethylcellulose, 45 grams of calcined calcium C ~ ~ S~ ' " ''' ' ' ' CA 022~8363 1998- 12- 1~

montmorillonite, 10 grams of bentonite and 79.5 grams of barite for a total of 462 grams which results in the production of 350 cc's (cubic centimeters) of lignite mud (drilling fluid). This volume of mud is considered to be equivalent to one laboratory barrel of lignite mud. This lignite mud was mixed with 300 grams of ground Blue Circle slag (300 pounds per 42 gallon barrel of lignite mud), the resulting mixture was mixed and the plastic viscosity and yield points determined with the dispersants shown below in Table 1. The yield points were determined by linear regression using 300 through 30 RPM stress values.

TABL~ 1 Dispersant Addition Plastic Plastic Yield Point Yield Point Rate (Ib/bbl) Viscosity Viscosity at 80~F (27~C) at 190~F
k~m3 (80~F) 27~C 88~C (190~F) Pa (Ib per (88~C) Pa.s xlO I Pa.s x10-3 100 feet Pa (Ib per (cP) (cP) squared) 100 feet squared) None Will not mix Will not mix Will not mix Will not mix Will not mix SVT-MA (3) 8.56 90 41 (77) 3.67 (10) 0.48 AQUATREAT~ (3) 8.56 102 43 (73) 3.50 (2) 0.10 Nacryl 90~ (3) 8.56 90 36 (73) 3.50 (7) 0.34 EXP 2289~ (3) 8.56 104 43 (75) 3.59 (3) 0.1 AQUATREAT~ (3) 8.56 102 39 (66) 3.16 (6) 0.29 MPS
Cement (3) 8.56 Will not mix Will not mix Will not mix Will not mix Dispersant A
Cement (6) 17.1 Will not mix Will not mix Will not mix Will not mix Dia~ladl~ A
Drilling Fluid (3) 8.56 Will not mix Will not mix Will not mix Will not mix Dis~,~,aan~ B
Drilling Fluid (10) 28.5 Will not mix Will not mix Will not mix Wiil not mix Dispersant B

*Trademarks of ALCO Chemical, a division of National Starch and Chemical Company, 909 Mueller Drive, P.O. Box 5401, Chattanooga, Tennessee 37406.

SUBSTITUTE SHEET (RULE 26) CA 022~8363 l998- l2- l~

wo 97l48655 PCT/Gs97/0l593 It will be noted in Table 1 that with no dispersant the ingredients will not mix. Similarly, with cement dispersant A (sulfonated acetone condensed with formaldehyde) which is a commercially available dispersant for use with cement slurries the ingredients will not mix. The ingredients also will not mix using chrome lignosulfonate which is a drilling fluid dispersant (Drilling Fluid Dispersant B). With the quantities of the other dispersants shown desirable mixing and desirable plastic viscosity and yield points are achieved both at 27~C
(80~F) and 88~C (190~F) in all cases. The results achieved with the dispersants of the present invention are comparable to those achieved with SVT-MA. In some instances lesser amounts of the dispersants of the present invention could be used since the yield points at 88~C (190~F) with the dispersants of the present invention are lower than required. Accordingly, the dispersants of the present invention could be used in lesser quantities than SVT-MA to achieve the same desirable results. The tests shown in Table 1 clearly demonstrate that the dispersants of the present invention are effective to disperse mixtures of drilling fluid and cement. The test results in Table 1 are considered to demonstrate thatthe dispersants are effective to produce drilling fluid/cement slurry compositions having desirable rheological properties for use in cementing wellbores from drilling fluids and poz~olanic cementitious materials.

Example 2 The same test procedures as in Example 1 were used. The drilling fluid was mixed with 300 grams (300 pounds per 42 gallon barrel of lignite mud) of class H portland cement and the resulting mixture was mixed and the plastic viscosity and yield points determined with the dispersants shown in Table 2 below.

CA 022~8363 1998 - 12 - I ~

Dispersant Addihon Plast~c Plastic Yield Point Yield Point Rate (Ib/bbl) Viscosi~ Viscosity at (80~F) 27~C (190~F) kg/m3 (80~F) 27~C 88~C (190~F) Pa (Ib per 88~C
Pa.s x10-3 Pa.s x103 100 feet Pa (Ib per (cP~ (cP) squared) 100 feet squared) None Will not mix Will not mix Will not mix Will not mix Will not mix SVT-MA (3) 8.56 67 24 (28) 1.34 (6) 0.29 AQUATREAT~ (3) 8.56 71 28 (9) 0-43 (-l)-o~os Nacryl 90~ (3) 8.56 73 26 (10) 0.48 (1) o 05 EXP 2289~ (3) 8.56 73 27 (8) 0.38 (-1) -0.05 AQUATREAT'! (3) 8.56 64 26 (10) 0.48 (1) 0.05 MPS
Cement (3) 8.56 Will not mix Will not mix Will not mix Will not mix Dispersant A
Cement (6) 17.1 Will not mix Will not mix Will not mix Will not mix Dispersant A
Drilling Fluid (3) 8.56 Will not mix Will not mix Will not mix Will not mix Dispersant B
Drilling Fluid (10) 28.5 Will not mix Will not mix Will not mix Will not mix Dis~ alll B
*Trademarks of ALCO Ch~ l, a division of National Starch and Chemical Company, 909 Mueller Drive, P.O. Box 5401, Chattanooga, Tennessee 37406.

The ingredients will not mix where no dispersant is used. Commercial cement dispersant A (sulfonated acetone condensed with formaldehyde) and drilling fluiddispersant B (chrome lignosulfonate) are also ineffective as dispersants. The other dispersants shown provide yield points and plastic viscosities comparable to or better than SVT-MA. To an even greater extent than shown in Table l, the lower values for the yield points indicate that lesser quantities of the dispersants of the present invention than SVT-MA could be used to achieve comparable results. This example demonstrates the effectiveness of the dispersants of the present invention in the production of cement slurry compositions from drilling fluid and Portland cementwhich is considered representative of cementitious materials generally.

SIJ~ 111 UTE SHEET (RULE 26) CA 022~8363 l998- l2- l~

Wo 97/48655 pcTlGss7lols93 In the use of such cement slurry compositions to cement wellbores, the cement slurry composition may be used alone to displace the drilling fluid and position the cement slurry composition in the annular space around the casing.
Alternatively, a spacer fluid such as those disclosed in U.S. Patents 5,030,366;5,113,943 and 5,292,367 previously incorporated by reference can be used ahead of the cement slurry composition to serve as a buffer between the composition and the drilling fluid in either or both of the wellbore and in the annulus. Such spacer fluids separate the drilling fluid and the cement slurry composition and are designed to more effectively remove drilling muds and the like which may be caked on the face of the wellbore.
The cement slurry composition as discussed previously may be used by pumping it downwardly through a cased wellbore through the casing" out the bottom of the casing and upwardly through an annular wellbore space between the outer diameter of the casing and the inside of the wellbore. The cement composition may be used alone and in such instances will displace drilling fluids and other wellbore fluids from the annular space unless the fluids are incompatible with the cement slurry composition. In such cases of incompatibility a variety of problems may be encountered. As discussed above spacer fluids are frequently used between the cement slurry composition and the wellbore fluids.
The cement slurry composition may also be used to fill wellbore spaces to plug the wellbore space. Such a plug may be positioned anywhere in the wellbore by injecting the cement slurry composition through a pipe positioned toextend to near the bottom of the wellbore space to be plugged, out the bottom ofthe pipe and upwardly through the annular space defined by the outer diameter of the pipe and the inside of the wellbore. The injection is continued until a desired quantity of the cement slurry composition has been injected. The cement slurry composition may be subjected to pressure as known to those skilled in theart to fill spaces in fluid communication with the wellbore space. The pipe is typically removed before the cement slurry composition solidifies Similarly portions of a cased wellbore may be plugged. The use and positioning of CA 022~8363 l998- 12- l~

WO 97/48655 pcTlGs97lol593 previously known cement slurry compositions for such purposes is well known to those skilled in the art.
The cement slurry composition may also be formed by adding cement and the dispersant to circulate drilling fluid circulated in the wellbore. In this instance the cement and the dispersant are added to the drilling fluid as it is circulated through the casing and annulus to form a cement slurry composition having the desired consistency and rheological properties. One advantage of thismethod is that the drilling fluid/cement slurry can be recirculated through the well one or more times to improve the contact between the cement slurry composition and the wellbore. Such may be desirable, notwithstanding the added expense, where it is necessary to recirculate the cement slurry composition to ensure adequate cement bonding or where it is known that cement bonding will be difficult because of certain formation or drilling fluid properties.
While the present invention has been described by reference to certain of its preferred embodiments, it is respectfu]ly pointed out that the embodiments described are illustrative rather than limiting in nature and that many variations and modifications are possible within the scope of the present invention. Many such variations and modifications may be considered obvious and desirable by those skilled in the art based upon a review of the foregoing description of preferred embodiments.

Claims (18)

CLAIMS:
1. A cement slurry composition comprising:
a) a cementitious material;
b) a water-base drilling fluid; and c) a dispersant selected from water soluble polymers comprising allyloxybenzene sulfonate or allyloxybenzene phosphonate polymerized with at least one of acrylic acid, acrylamides, alkyl acrylamides, maleic anhydride. itaconic acid, sulfonated or phosphonated styrene. sulfonated or phosphonated vinyl toluene, sulfonated or phosphonated isobutylene, acrylamidopropane sulfonate, acrylamidopropanephosphonate, vinyl alcohol, sulfonated or phosphonated propene and alkali, alkaline earth and ammonium salts thereof.
2. A composition as claimed in Claim 1 characterised in that the water-base drilling fluid comprises fluid recovered from a well.
3. A composition as claimed in Claim 1 or Claim 2 characterised in that said cementitious material comprises at least one cementitious material selected from mixtures of lime, silica and alumina, lime and magnesia, silica.
alumina and iron oxide, calcium sulphate. Portland cement, ground slag and fly ash.
4. A composition as claimed in Claim 1, Claim 2 or Claim 3 characterised in that the water-base drilling fluid comprises water, density modifying additives and viscosifiers.
5. A composition as claimed in any of the preceeding claims characterised in that the dispersant is present in an amount equal to from 1.43 to 42.8kg/m3 (0.5 to 15 pounds per 42 gallon barrel) of the composition.
6. A composition as claimed in Claim 5 characterised in that the dispersant is present in an amount equal to from 2.86 kg/m3 to 14.3kg/m3 (1 to 5 pounds per 42 gallon barrel) of the composition.
7. A composition as claimed in any of the preceeding claims characterised in that the composition has a plastic viscosity at 27°C (80°F) equal to from 10-2 to 0.4Pa.s (10 to 400 centipoises).
8. A composition as claimed in any of the preceeding claims characterised in that the composition has a yield point at 27°C (80°F) equal to from 0.24 to 4.8Pa (5 to 100 pounds per 100 feet squared).
9. A composition as claimed in any one of Claims 1 to 8 characterised in that the dispersant is an interpolymer of acrylic acid.
allyloxybenzene sulfonate, allylsulfonate and a non-ionic monomer.
10. A method for cementing a wellbore space occupied by a drilling fluid to sealingly fill the space, the method comprising displacing the drillingtluid with a cement slurry composition as claimed in any one of Claims 1 to 9.
11. A method as claimed in Claim 10 characterised in that the space is an annular space between the outside of a wellbore casing positioned in the wellbore and the inside of the wellbore and wherein the composition is circulated downwardly through the wellbore casing, into the annular space and upwardly through the annular space.
12. A method as claimed in Claim 11 characterised in that a spacer fluid is circulated ahead of the composition through at least a portion of the annular space.
13. A method as claimed in any of Claims 10 to 12 characterised in that the composition is produced by adding the cement and the dispersant to the water-base drilling fluid and mixing the composition by circulating the composition through a wellbore casing positioned in the wellbore and an annular space between the outside of the wellbore casing and the inside of the wellbore.
14. A method as claimed in Claim 13 characterised in that at least a portion of the composition is recirculated.
15. A method for cementing a wellbore space by filling the wellbore space with a cement slurry composition as claimed in any one of Claims 1 to 9.
16. A method as claimed in Claim 15 characterised in that the wellbore space is an uncased portion of a wellbore.
17. A method as claimed in Claim 15 characterised in that the wellbore space is a cased portion of a cased wellbore.
18. A method as claimed in Claim 15, Claim 16 and Claim 17 characterised in that the slurry composition is subjected to pressure in the wellbore space to at least partially fill any openings in fluid communication with the wellbore space.
CA002258363A 1996-06-19 1997-06-12 Method and cement-drilling fluid cement composition for cementing a wellbore Abandoned CA2258363A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/666,783 1996-06-19
US08/666,783 US5874387A (en) 1996-06-19 1996-06-19 Method and cement-drilling fluid cement composition for cementing a wellbore

Publications (1)

Publication Number Publication Date
CA2258363A1 true CA2258363A1 (en) 1997-12-24

Family

ID=24675455

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002258363A Abandoned CA2258363A1 (en) 1996-06-19 1997-06-12 Method and cement-drilling fluid cement composition for cementing a wellbore

Country Status (5)

Country Link
US (1) US5874387A (en)
EP (1) EP0958256A1 (en)
CA (1) CA2258363A1 (en)
NO (1) NO985913L (en)
WO (1) WO1997048655A1 (en)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5890840A (en) * 1995-12-08 1999-04-06 Carter, Jr.; Ernest E. In situ construction of containment vault under a radioactive or hazardous waste site
US6076997A (en) * 1997-12-03 2000-06-20 Mbt Holding Ag Deep mix soil stabilization method
US5996692A (en) 1998-02-13 1999-12-07 Atlantic Richfield Company Surfactant composition and method for cleaning wellbore and oil field surfaces using the surfactant composition
EP1074293B1 (en) * 1999-08-02 2005-10-12 Rohm And Haas Company Aqueous dispersions
AU782284B2 (en) * 1999-08-02 2005-07-14 Rohm And Haas Company Aqueous dispersions
US6283213B1 (en) 1999-08-12 2001-09-04 Atlantic Richfield Company Tandem spacer fluid system and method for positioning a cement slurry in a wellbore annulus
US6697738B2 (en) * 2002-02-22 2004-02-24 Halliburton Energy Services, Inc. Method for selection of cementing composition
US6591910B1 (en) * 2003-01-29 2003-07-15 Halliburton Energy Services, Inc. Methods and compositions for cementing subterranean zones
FR2850647B1 (en) * 2003-01-30 2007-03-02 Rhodia Chimie Sa COMPOSITION COMPRISING A HYDRAULIC BINDER AND A LATEX HAVING A SULFONATE, SULFONIC OR SULFOBETAN FUNCTIONAL GROUP
US7607482B2 (en) * 2005-09-09 2009-10-27 Halliburton Energy Services, Inc. Settable compositions comprising cement kiln dust and swellable particles
US9512346B2 (en) 2004-02-10 2016-12-06 Halliburton Energy Services, Inc. Cement compositions and methods utilizing nano-hydraulic cement
US7445669B2 (en) * 2005-09-09 2008-11-04 Halliburton Energy Services, Inc. Settable compositions comprising cement kiln dust and additive(s)
GB2427630B (en) * 2005-06-30 2007-11-07 Schlumberger Holdings Methods and materials for zonal isolation
US7077203B1 (en) 2005-09-09 2006-07-18 Halliburton Energy Services, Inc. Methods of using settable compositions comprising cement kiln dust
US8555967B2 (en) 2005-09-09 2013-10-15 Halliburton Energy Services, Inc. Methods and systems for evaluating a boundary between a consolidating spacer fluid and a cement composition
US8505630B2 (en) 2005-09-09 2013-08-13 Halliburton Energy Services, Inc. Consolidating spacer fluids and methods of use
US8522873B2 (en) * 2005-09-09 2013-09-03 Halliburton Energy Services, Inc. Spacer fluids containing cement kiln dust and methods of use
US8505629B2 (en) 2005-09-09 2013-08-13 Halliburton Energy Services, Inc. Foamed spacer fluids containing cement kiln dust and methods of use
US9006155B2 (en) 2005-09-09 2015-04-14 Halliburton Energy Services, Inc. Placing a fluid comprising kiln dust in a wellbore through a bottom hole assembly
US9150773B2 (en) 2005-09-09 2015-10-06 Halliburton Energy Services, Inc. Compositions comprising kiln dust and wollastonite and methods of use in subterranean formations
US8403045B2 (en) 2005-09-09 2013-03-26 Halliburton Energy Services, Inc. Settable compositions comprising unexpanded perlite and methods of cementing in subterranean formations
US8307899B2 (en) 2005-09-09 2012-11-13 Halliburton Energy Services, Inc. Methods of plugging and abandoning a well using compositions comprising cement kiln dust and pumicite
US7743828B2 (en) * 2005-09-09 2010-06-29 Halliburton Energy Services, Inc. Methods of cementing in subterranean formations using cement kiln cement kiln dust in compositions having reduced Portland cement content
US8672028B2 (en) 2010-12-21 2014-03-18 Halliburton Energy Services, Inc. Settable compositions comprising interground perlite and hydraulic cement
US8333240B2 (en) * 2005-09-09 2012-12-18 Halliburton Energy Services, Inc. Reduced carbon footprint settable compositions for use in subterranean formations
US8609595B2 (en) 2005-09-09 2013-12-17 Halliburton Energy Services, Inc. Methods for determining reactive index for cement kiln dust, associated compositions, and methods of use
US9051505B2 (en) 2005-09-09 2015-06-09 Halliburton Energy Services, Inc. Placing a fluid comprising kiln dust in a wellbore through a bottom hole assembly
US9809737B2 (en) 2005-09-09 2017-11-07 Halliburton Energy Services, Inc. Compositions containing kiln dust and/or biowaste ash and methods of use
US7213646B2 (en) * 2005-09-09 2007-05-08 Halliburton Energy Services, Inc. Cementing compositions comprising cement kiln dust, vitrified shale, zeolite, and/or amorphous silica utilizing a packing volume fraction, and associated methods
US7478675B2 (en) * 2005-09-09 2009-01-20 Halliburton Energy Services, Inc. Extended settable compositions comprising cement kiln dust and associated methods
US8950486B2 (en) 2005-09-09 2015-02-10 Halliburton Energy Services, Inc. Acid-soluble cement compositions comprising cement kiln dust and methods of use
US7395860B2 (en) * 2005-09-09 2008-07-08 Halliburton Energy Services, Inc. Methods of using foamed settable compositions comprising cement kiln dust
US9676989B2 (en) 2005-09-09 2017-06-13 Halliburton Energy Services, Inc. Sealant compositions comprising cement kiln dust and tire-rubber particles and method of use
US8327939B2 (en) 2005-09-09 2012-12-11 Halliburton Energy Services, Inc. Settable compositions comprising cement kiln dust and rice husk ash and methods of use
US8281859B2 (en) 2005-09-09 2012-10-09 Halliburton Energy Services Inc. Methods and compositions comprising cement kiln dust having an altered particle size
US7353870B2 (en) * 2005-09-09 2008-04-08 Halliburton Energy Services, Inc. Methods of using settable compositions comprising cement kiln dust and additive(s)
US7631692B2 (en) * 2005-09-09 2009-12-15 Halliburton Energy Services, Inc. Settable compositions comprising a natural pozzolan and associated methods
US7607484B2 (en) * 2005-09-09 2009-10-27 Halliburton Energy Services, Inc. Foamed cement compositions comprising oil-swellable particles and methods of use
US8297357B2 (en) 2005-09-09 2012-10-30 Halliburton Energy Services Inc. Acid-soluble cement compositions comprising cement kiln dust and/or a natural pozzolan and methods of use
US7789150B2 (en) * 2005-09-09 2010-09-07 Halliburton Energy Services Inc. Latex compositions comprising pozzolan and/or cement kiln dust and methods of use
US9023150B2 (en) 2005-09-09 2015-05-05 Halliburton Energy Services, Inc. Acid-soluble cement compositions comprising cement kiln dust and/or a natural pozzolan and methods of use
US7174962B1 (en) 2005-09-09 2007-02-13 Halliburton Energy Services, Inc. Methods of using lightweight settable compositions comprising cement kiln dust
US7335252B2 (en) * 2005-09-09 2008-02-26 Halliburton Energy Services, Inc. Lightweight settable compositions comprising cement kiln dust
US7381263B2 (en) 2005-10-24 2008-06-03 Halliburton Energy Services, Inc. Cement compositions comprising high alumina cement and cement kiln dust
US7337842B2 (en) * 2005-10-24 2008-03-04 Halliburton Energy Services, Inc. Methods of using cement compositions comprising high alumina cement and cement kiln dust
US7284609B2 (en) * 2005-11-10 2007-10-23 Halliburton Energy Services, Inc. Methods of using settable spotting compositions comprising cement kiln dust
US7199086B1 (en) 2005-11-10 2007-04-03 Halliburton Energy Services, Inc. Settable spotting compositions comprising cement kiln dust
US7204310B1 (en) 2006-04-11 2007-04-17 Halliburton Energy Services, Inc. Methods of use settable drilling fluids comprising cement kiln dust
US7338923B2 (en) * 2006-04-11 2008-03-04 Halliburton Energy Services, Inc. Settable drilling fluids comprising cement kiln dust
US9512351B2 (en) 2007-05-10 2016-12-06 Halliburton Energy Services, Inc. Well treatment fluids and methods utilizing nano-particles
US9199879B2 (en) 2007-05-10 2015-12-01 Halliburton Energy Serives, Inc. Well treatment compositions and methods utilizing nano-particles
US8586512B2 (en) 2007-05-10 2013-11-19 Halliburton Energy Services, Inc. Cement compositions and methods utilizing nano-clay
US9206344B2 (en) 2007-05-10 2015-12-08 Halliburton Energy Services, Inc. Sealant compositions and methods utilizing nano-particles
US8685903B2 (en) 2007-05-10 2014-04-01 Halliburton Energy Services, Inc. Lost circulation compositions and associated methods
US8476203B2 (en) * 2007-05-10 2013-07-02 Halliburton Energy Services, Inc. Cement compositions comprising sub-micron alumina and associated methods
US8869895B2 (en) * 2009-12-08 2014-10-28 Halliburton Energy Services, Inc. Biodegradable set retarder for a cement composition
AU2013258157B2 (en) * 2012-05-08 2016-02-25 Shell Internationale Research Maatschappij B.V. Method and system for sealing an annulus enclosing a tubular element
WO2015016874A1 (en) * 2013-07-31 2015-02-05 Halliburton Energy Services, Inc. Phospho-friction reducing agents for use in oleaginous-based drilling fluids
WO2015053750A1 (en) * 2013-10-08 2015-04-16 Halliburton Energy Services, Inc. Cement compatible water-based drilling mud compositions
US10472280B1 (en) 2014-05-21 2019-11-12 D-Trace Investments, Llc Drill cuttings with a drying agent
US10428259B2 (en) 2015-04-10 2019-10-01 Halliburton Energy Services, Inc. Downhole fluids and methods of use thereof
MX2019000654A (en) 2016-07-20 2019-04-01 Hexion Inc Materials and methods of use as additives for oilwell cementing.
US11643588B2 (en) 2017-12-04 2023-05-09 Hexion Inc. Multiple functional wellbore fluid additive

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4276182A (en) * 1978-05-19 1981-06-30 The Western Company Of North America High temperature cement mud spacer
US4176720A (en) * 1978-07-27 1979-12-04 Atlantic Richfield Company Well cementing in permafrost
US4216022A (en) * 1979-05-18 1980-08-05 Atlantic Richfield Company Well cementing in permafrost
US4342866A (en) * 1979-09-07 1982-08-03 Merck & Co., Inc. Heteropolysaccharide S-130
US4423781A (en) * 1980-04-01 1984-01-03 Standard Oil Company Method of using a spacer system in brine completion of wellbores
US4374738A (en) * 1980-06-09 1983-02-22 Georgia-Pacific Corporation Drilling fluid composition
US4322301A (en) * 1980-06-10 1982-03-30 Georgia-Pacific Corporation Drilling fluid composition
FR2582664B1 (en) * 1985-05-31 1988-06-10 Schlumberger Cie Dowell AQUEOUS SPACER COMPOSITION, COMPATIBLE WITH DRILLING SLUDGE AND SALTED OR UNSALKED CEMENT, AND ITS USE IN THE OIL DRILLING SECTOR
US4717488A (en) * 1986-04-23 1988-01-05 Merck Co., Inc. Spacer fluid
DE3631764A1 (en) * 1986-09-18 1988-03-24 Henkel Kgaa USE OF SWELLABLE, SYNTHETIC LAYERED SILICATES IN AQUEOUS DRILL RING AND HOLE TREATMENT AGENTS
EP0271784B1 (en) * 1986-12-19 1993-05-26 National Starch and Chemical Investment Holding Corporation Water soluble polymers containing allyloxybenzenesulfonate monomers
US4892898A (en) * 1986-12-19 1990-01-09 National Starch And Chemical Corporation Water soluble polymers containing allyloxybenzenesulfonate monomers
US4883125A (en) * 1987-12-11 1989-11-28 Atlantic Richfield Company Cementing oil and gas wells using converted drilling fluid
US4953620A (en) * 1989-08-14 1990-09-04 Atlantic Richfield Company Accelerating set of retarded cement
JPH0393660A (en) * 1989-09-02 1991-04-18 Takemoto Oil & Fat Co Ltd High-strength concrete composition
US5113943A (en) * 1989-11-27 1992-05-19 Atlantic Richfield Company Spacer fluids
US5030366A (en) * 1989-11-27 1991-07-09 Atlantic Richfield Company Spacer fluids
US4976316A (en) * 1990-02-20 1990-12-11 Atlantic Richfield Company Method of accelerating set of cement by washover fluid containing alkanolamine
US5027900A (en) * 1990-02-26 1991-07-02 Atlantic Richfield Company Incremental density cementing spacers
US5292367A (en) * 1990-04-18 1994-03-08 Atlantic Richfield Company Dispersant compositions for subterranean well drilling and completion
WO1991016522A1 (en) * 1990-04-18 1991-10-31 Atlantic Richfield Company Dispersant compositions for subterranean well drilling and completion
US5360787A (en) * 1990-05-15 1994-11-01 Atlantic Richfield Company Dispersant compositions comprising sulfonated isobutylene maleic anhydride copolymer for subterranean well drilling and completion
US5038863A (en) * 1990-07-20 1991-08-13 Altantic Richfield Company Cementing oil and gas wells
JP2628486B2 (en) * 1992-09-30 1997-07-09 竹本油脂株式会社 Dispersant for cement
US5316083A (en) * 1992-12-31 1994-05-31 Shell Oil Company Blast furnace slag spacer

Also Published As

Publication number Publication date
EP0958256A1 (en) 1999-11-24
WO1997048655A1 (en) 1997-12-24
NO985913L (en) 1999-02-16
US5874387A (en) 1999-02-23
NO985913D0 (en) 1998-12-16

Similar Documents

Publication Publication Date Title
US5874387A (en) Method and cement-drilling fluid cement composition for cementing a wellbore
US5866517A (en) Method and spacer fluid composition for displacing drilling fluid from a wellbore
US3168139A (en) Converting drilling muds to slurries suitable for cementing oil and gas wells
US5358049A (en) Conversion of emulsion mud to cement
US9957434B2 (en) Cementitious compositions comprising a non-aqueous fluid and an alkali-activated material
CA1228721A (en) Fluid spacer composition for use in well cementing
CA2202728C (en) Cementitious well drilling fluids and methods
US3557876A (en) Method and composition for drilling and cementing of wells
US5585333A (en) Hydrocarbon base cementitious drilling fluids and methods
US5398758A (en) Utilizing drilling fluid in well cementing operations
US5305831A (en) Blast furnace slag transition fluid
US4953620A (en) Accelerating set of retarded cement
US5355954A (en) Utilizing drilling fluid in well cementing operations
US5343951A (en) Drilling and cementing slim hole wells
EP0430644A1 (en) Spacer fluids
US5292367A (en) Dispersant compositions for subterranean well drilling and completion
US5287929A (en) Method of using dispersant compositions for subterranean well drilling and completion
AU2020457518A1 (en) Methods of making and using a wellbore servicing fluid for controlling losses in permeable zones
EP0525037B1 (en) Dispersant compositions for subterranean well drilling and completion
US5332040A (en) Process to cement a casing in a wellbore
EP2004569B1 (en) Settable drilling fluids comprising cement kiln dust and methods of using them
EP0530204B1 (en) Dispersant compositions for subterranean well drilling and completion
Johnson et al. Cementing Practices-1972
NO311613B1 (en) Method of drilling a borehole using a circulating drilling fluid

Legal Events

Date Code Title Description
FZDE Dead