CA2264632C - Wellbores utilizing fiber optic-based sensors and operating devices - Google Patents

Wellbores utilizing fiber optic-based sensors and operating devices Download PDF

Info

Publication number
CA2264632C
CA2264632C CA002264632A CA2264632A CA2264632C CA 2264632 C CA2264632 C CA 2264632C CA 002264632 A CA002264632 A CA 002264632A CA 2264632 A CA2264632 A CA 2264632A CA 2264632 C CA2264632 C CA 2264632C
Authority
CA
Canada
Prior art keywords
well
downhole
sensors
acoustic
fiber optic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002264632A
Other languages
French (fr)
Other versions
CA2264632A1 (en
Inventor
Michael H. Johnson
John W. Harrell
Jeffrey J. Lembecke
Kurt A. Hickey
Paulo S. Tubel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Holdings LLC
Original Assignee
Baker Hughes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Inc filed Critical Baker Hughes Inc
Priority to CA002409277A priority Critical patent/CA2409277C/en
Publication of CA2264632A1 publication Critical patent/CA2264632A1/en
Application granted granted Critical
Publication of CA2264632C publication Critical patent/CA2264632C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
    • G01V11/002Details, e.g. power supply systems for logging instruments, transmitting or recording data, specially adapted for well logging, also if the prospecting method is irrelevant
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/127Packers; Plugs with inflatable sleeve
    • E21B33/1275Packers; Plugs with inflatable sleeve inflated by down-hole pumping means operated by a down-hole drive
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B37/00Methods or apparatus for cleaning boreholes or wells
    • E21B37/06Methods or apparatus for cleaning boreholes or wells using chemical means for preventing, limiting or eliminating the deposition of paraffins or like substances
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/0035Apparatus or methods for multilateral well technology, e.g. for the completion of or workover on wells with one or more lateral branches
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/02Equipment or details not covered by groups E21B15/00 - E21B40/00 in situ inhibition of corrosion in boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/20Displacing by water
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/01Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
    • E21B47/017Protecting measuring instruments
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • E21B47/07Temperature
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/107Locating fluid leaks, intrusions or movements using acoustic means
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/11Locating fluid leaks, intrusions or movements using tracers; using radioactivity
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/113Locating fluid leaks, intrusions or movements using electrical indications; using light radiations
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/13Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency
    • E21B47/135Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency using light waves, e.g. infrared or ultraviolet waves
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/006Measuring wall stresses in the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/008Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by injection test; by analysing pressure variations in an injection or production test, e.g. for estimating the skin factor
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/08Obtaining fluid samples or testing fluids, in boreholes or wells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/268Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/42Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators in one well and receivers elsewhere or vice versa
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/44Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging using generators and receivers in the same well
    • G01V1/46Data acquisition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • G01V1/52Structural details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V7/00Measuring gravitational fields or waves; Gravimetric prospecting or detecting
    • G01V7/08Measuring gravitational fields or waves; Gravimetric prospecting or detecting using balances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V7/00Measuring gravitational fields or waves; Gravimetric prospecting or detecting
    • G01V7/16Measuring gravitational fields or waves; Gravimetric prospecting or detecting specially adapted for use on moving platforms, e.g. ship, aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/02Prospecting
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/61Analysis by combining or comparing a seismic data set with other data
    • G01V2210/616Data from specific type of measurement
    • G01V2210/6163Electromagnetic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/61Analysis by combining or comparing a seismic data set with other data
    • G01V2210/616Data from specific type of measurement
    • G01V2210/6167Nuclear

Abstract

This invention provides a method for controlling production operations using fiber optic devices. An optical fiber carrying fiber-optic sensor is deployed downhole to provide information about downhole condi-tions. Parameters related to the chemicals be-ing used for surface treatments are measured in real time and on-line, and these measured parameters are used to control the dosage of chemicals into the surface treatment system. The information is also used to control down-hole devices that may be a packer, choke, slid-ing sleeve, perforating device, flow control valve, completion device, an anchor or any other device. Provision is also made for con-trol of secondary recovery operations on-line using the downhole sensors to monitor the reservoir conditions. The present invention also provides a method of generating motive power in a wellbore utilizing optical energy. This can be done directly or indirectly, e.g., by first producing electrical energy that is then converted to another form of energy.

Description

D‘!10152025W0 98/50681CA 02264632 l999-02- 19PCT/US98/08823WELLBORES UTILIZING FIBER OPTIC-BASED SENSORSAND OPERATING DEVICESCROSS REFERENCE TO RELATED APPLICATIONSThis application claims priority from Provisional United States PatentApplications Ser. Nos. 60/045,354 filed on May 2, 1997; 60/048,989 filed onJune 9, 1997; 60/052,042 filed on July 9, 1997; 60/062,953 filed on October 10,1997; 67/073425 filed on February 2, 1998; and 60/079,446 filed on March 26,1998. Reference is ‘also made to a United States Patent Application entitled“Monitoring of Downhole Parameters and Tools Utilizing Fiber Optics ” filed onthe same date as the present application under Attorney Docket No. 414-9450US, the contents of which are incorporated here by reference.BACKGROUND OF THE INVENTIONL Field of the InventionThis invention relates generally to oilfield operations and moreparticularly to the downhole apparatus utilizing fiber optic sensors and use ofsame in monitoring the condition of downhole equipment, monitoring certaingeological conditions, reservoir monitoring and remedial operations.L Background of the ArtA variety of techniques have been utilized for monitoring wellboresduring completion and production of wellbores, reservoir conditions, estimatingO110152025CA 02264632 l999-02- 19WO 98/50681 PCT/US98/08823quantities of hydrocarbons (oil and gas), operating downhole devices in thewellbores, and determining the physical condition of the wellbore and downholedevices.Reservoir monitoring typically involves determining certain downholeparameters in producing wellbores at various locations in one or more producingwellbores in a field, typically over extended time periods. Wireline tools aremost commonly utilized to obtain such measurements, which involvestransporting the wireline tools to the wellsite, conveying the tools into thewellbores, shutting down the production and making measurements overextended periods of time and processing the resultant data at the surface.Seismic methods wherein a plurality of sensors are placed on the earth’s surfaceand a source placed at the surface or downhole are utilized to provide maps ofsubsurface structure. Such information is used to update prior seismic maps tomonitor the reservoir or field conditions. Updating existing 3-D seismic mapsover time is referred to in industry as “4-D Seismic”. The above describedmethods are very expensive. The wireline methods are utilized at relativelylarge time intervals, thereby not providing continuous information about thewellbore condition or that of the surrounding formations.Placement of permanent sensors in the wellbore, such as temperaturesensors, pressure sensors, accelerometers and hydrophones has been proposed toobtain continuous wellbore and formation information. A separate sensor isutilized for each type of parameter to be determined. To obtain suchmeasurements from the entire useful segments of each wellbore, which may10152025W0 98/50681CA 02264632 l999-02- 19PCT/US98/08823have multi-lateral wellbores, requires using a large number of sensors, whichrequires a large amount of power, data acquisition equipment and relatively largespace in the wellbore: this may be impractical or prohibitively expensive.Once the infonnation has been obtained, it is desirable to manipulatedownhole devices such as completion and production strings. Prior art methodsfor perfonning such functions rely on the use of electrically operated deviceswith signals for their operation communicated through electrical cables.Because of the harsh operating conditions downhole, electrical cables are subjectto degradation. In addition, due to long electrical path lengths for downholedevices, cable resistance becomes significant unless large cables are used. Thisis difficult to do within the limited space available in production strings. Inaddition, due to the high resistance, power requirements also become large.One particular arrangement in which operation of numerous downholedevices becomes necessary is in secondary recovery. Injection wells have, ofcourse, been employed for many years in order to flush residual oil in aformation toward a production well and increase yield from the area. A commoninjection scenario is to pump steam down an injection well and into theformation which functions both to heat the oil in the formation and force itsmovement through the practice of steam flooding. In some cases, heating is notnecessary as the residual oil is in a flowable form, however in some situationsthe oil is in such a viscous form that it requires heating in order to flow. Thus,by using steam one accomplishes both objectives of the injection well: 1) toforce residual oil toward the production well and 2) to heat any highly viscous10152025W0 98/50681CA 02264632 l999-02- 19PCT/US98/08823oil deposits in order mobilize such oil to flow ahead of the flood front toward theproduction well.As is well known to the art, one of the most common drawbacks of employingthe method above noted with respect to injection wells is an occurrencecommonly identified as “breakthrough”. Breakthrough occurs when a portion ofthe flood front reaches the production well. As happens the flood waterremaining in the reservoir will generally tend to travel the path of least resistanceand will follow the breakthrough channel to the production well. At this point,movement of the viscous oil ends. Precisely when and where the breakthroughwill occur depends upon water/oil mobility ratio, the lithology, the porosity andpermeability of the formation as well as the depth thereof. Moreover, othergeologic conditions such as faults and unconformities also affect the in—situsweep efficiency.While careful examination of the formation by skilled geologists canyield a reasonable understanding of the characteristics thereof and thereforededuce a plausible scenario of the way the flood front will move, it has notheretofore been known to monitor precisely the location of the flood front as awhole or as individual sections thereof. By so monitoring the flood front, it ispossible to direct greater or lesser flow to different areas in the reservoir, asdesired, by adjustment of the volume and location of both injection andproduction, hence controlling overall sweep efficiency.. By careful control ofthe flood front, it can be maintained in a controlled, non fingered profile. Byavoiding premature breakthrough the flooding operation is effective for more ofthe total formation volume, and thus efficiency in the production of oil isimproved.10152025WO 98/50681CA 02264632 l999-02- 19PCT/US98/08823In production wells, chemicals are often injected downhole to treat theproducing fluids. However, it can be difficult to monitor and control suchchemical injection in real time. Similarly, chemicals are typically used at thesurface to treat the produced hydrocarbons (i.e., to break down emulsions) and toinhibit corrosion. However, it can be difficult to monitor and control suchtreatment in real time.The present invention addresses the above-described deficiencies of theprior art and provides apparatus and methods which utilize sensors (such as fiberoptic sensors), wherein each sensor can provide information about more thanone parameter to perform a variety of functions. The sensors are used tomeasure parameters related to the chemical introduction in real time so that thechemical treatment system can be accurately monitored and controlled.The present invention addresses the above-described deficiencies of priorart and provides apparatus and methods which utilize fiber optic sensors,wherein each sensor can provide information about more than one parameter toperform a variety of functions. The sensors may be placed along any length ofthe wellbore. Sensor segments, each containing one or more sensors, may becoupled to form an active section that may be disposed in the casing forcontinuous monitoring of the wellbore. Sensors may be distributed in a wellboreor multiple wellbores for determining parameters of interest. Henneticallysealed optical fibers coated with high temperature resistant materials arecommercially available. Single or multi-mode sensors can be fabricated along10152025W0 98/50681CA 02264632 l999-02- 19PCT/US98/08823the length of such optical fibers. Such sensors include temperature, pressure andvibration sensors. Such sensors can withstand high temperatures in excess of250 degrees Celsius for extended time periods and thus have been found to beuseful in wellbore applications. An optical fiber is a special case of an opticalwaveguide and in most applications, other types of optical waveguides,including those containing a fluid, can usually be substituted for optical fiber.The present invention provides certain completion and production stringsthat utilize fiber optical waveguide based sensors and devices. The inventionalso provides a method of generating electrical power downhole, utilizing light- cells installed in the wellbore.SUMMARY OF THE INVENTIONThis invention uses fiber optic sensors to make measurements ofdownhole conditions in a producing borehole. The measurements includetemperature and pressure measurements; flow measurements related to thepresence of solids and of corrosion, scale and paraffin buildup; measurements offluid levels; displacement; vibration; rotation; acceleration; velocity; chemicalspecies; radiation; pH values; humidity; density; and of electromagnetic andacoustic wavefields. These measurements are used for activating ahydraulically-operated device downhole and deploying a fiber optic sensor lineutilizing a common fluid conduit. A return hydraulic conduit is placed along thelength of a completion string. The hydraulic conduit is coupled to thehydrau1ica1ly—operated device in a manner such that when fluid under pressure isC7!10152025W0 98/50681CA 02264632 l999-02- 19PCT/US98/08823supplied to the conduit, it would actuate the device. The string is placed orconveyed in the wellbore. Fiber optic cable carrying a number of sensors isforced into one end of the conduit until it returns at the surface at the other end.Light source and signal processing equipment is installed at the surface. Thefluid is supplied under sufficient pressure to activate the device when desired.The hydraulically—operated device may be a packer, choke, sliding sleeve,perforating device, flow control valve, completion device, an anchor or any otherdevice. The fiber optic sensors carried by the cable may include pressuresensors, temperature sensors, vibration sensors, and flow measurement sensors.This invention also provides a method of controlling production from awellbore. A production string carrying an electrical submersible pump ispreferably made at the surface. An optical fiber carrying a plurality of fiber opticsensors is placed along a high voltage line that supplies power to the pump fortaking measurements along the wellbore length. In one configuration, a portionof the fiber carrying selected sensors is deployed below the pump. Such sensorsmay include a temperature sensor, a pressure sensor and a flow ratemeasurement sensor. These sensors effectively replace the instrumentationpackage usually installed for the pump.In an application to control of injection wells, the invention providessignificantly more information to well operators thus enhancing oil recovery to adegree not heretofore known. This is accomplished by providing real timeinformation about the formation itself and the flood front by providingpermanent downhole sensors capable of sensing changes in the swept andQ7110152025WO 98/50681CA 02264632 l999-02- 19PCT/US98/08823unswept formation and/or the progression of the flood front. Preferably aplurality of sensors would be employed to provide information about discreteportions of strata surrounding the injection well. This provides a more detaileddata set regarding the well(s) and surrounding conditions. The sensors are,preferably, comiected to a processor either downhole or at the surface forprocessing of information. Moreover, in a preferred embodiment the sensors areconnected to computer processors which are also connected to sensors in aproduction well (which are similar to those disclosed in U.S. Patent No.5,597,042 which is fully incorporated herein by reference) to allow theproduction well to “talk” directly to the related injection well(s) to provide anextremely efficient real time operation. Sensors employed will be to sensetemperature, pressure, flow rate, electrical and acoustic conductivity, density andto detect various light transmission and reflection phenomena. All of thesesensor types are available commercially in various ranges and sensitivities whichare selectable by one of ordinary skill in the art depending upon particularconditions known to exist in a particular well operation. Specific pressuremeasurements will also include pressure(s) at the exit valve(s) down theinjection well and at the pump which may be located downhole or at the surface.Measuring said pressure at key locations such as at the outlet, upstream of thevalve(s) near the pump will provide information about the speed, volume,direction, etc. at/in which the waterflood front (or other fluid) is moving. Largedifferences in the pressure from higher to lower over a short period of time couldindicate a breakthrough. Conversely, pressure from lower to higher over shortperiods of time could indicate that the flood front had hit a barrier. Theseconditions are, of course, familiar to one of skill in the art but heretofore far lessCI10152025CA 02264632 l999-02- 19W0 98/50531 PCT/US98/08823would have been known since no workable system for measuring the parametersexisted. Therefore the present invention since it increases knowledge, increasesproductivity.Referring now to the measurement of density as noted above, the presentinvention uses fluid densities to monitor the flood front from the trailing end. Aswill be appreciated from the detailed discussion herein, the interface between theflood front and the hydrocarbon fluid provides an acoustic barrier from which asignal can be reflected. Thus by generating acoustic signals and mapping thereflection, the profile of the front is generated in 4D i.e., three dimensions overtime.The distributed sensors of this invention find particular utility in themonitoring and control of various chemicals which are injected into the well.Such chemicals are needed downhole to address a large number of knownproblems such as for scale inhibition and various pretreatments of the fluid beingproduced. In accordance with the present invention, a chemical injectionmonitoring and control system includes the placement of one or more sensorsdownhole in the producing zone for measuring the chemical properties of theproduced fluid as well as for measuring other downhole parameters of interest.These sensors are preferably fiber optic based and are formed from a sol gelmatrix and provide a high temperature, reliable and relatively inexpensiveindicator of the desired chemical parameter. The downhole chemical sensorsmay be associated with a network of distributed fiber optic sensors positionedalong the wellbore for measuring pressure, temperature and/or flow. Surface10152025W0 98/50681CA 02264632 l999-02- 19PCT/US98/08823and/or downhole controllers receive input from the several downhole sensors,and in response thereto, control the injection of chemicals into the borehole.In still another feature of this invention, parameters related to thechemical being used for surface treatments are measured in real time and on-line,and these measured parameters are used to control the dosage of chemicals intothe surface treatment system.' Another aspect of the present invention provides a fiber optic device(light actuated transducer) for generating mechanical energy and methods ofusing such energy at the well site. The device contains a fluid that rapidlyexpands in an enclosure upon the application of optical energy. The expansionof the fluid moves a piston in the enclosure. The fluid contracts and the piston ispushed back to its original position by a force device such as spring. Theprocess is then repeated to generate reciprocating motion of a member attachedto the piston. The device is like an internal combustion engine wherein the fuelis a fluid in a sealed chamber that expands rapidly when high energy light suchas laser energy is applied to the fluid. The energy generated by the opticaldevice is utilized to operate a device in the wellbore. The downhole device maybe any suitable device, including a valve, fluid control device, packer, slidingsleeve, safety valve, and an anchor. The motion energy generated by the fiberoptic devices may be used to operate a generator to generate electrical powerdownhole which power is then utilized to charge batteries downhole or todirectly operate a downhole device and/or to provide power to sensors in thewellbore. A plurality of such fiber optic devices may be utilized to increase the10CA 02264632 l999-02- 19wo 98/5068] pcr/us9s/03323energy generated. The devices may also be used as a pump to control the supplyof fluids and chemicals in the wellbore.Examples of the more important features of the invention have been5 summarized rather broadly in order that the detailed description thereof thatfollows may be better understood, and in order that the contributions to the artmay be appreciated. There are, of course, additional features of the inventionthat will be described hereinafter and which will form the subject of the claimsappended hereto.10BRIEF DESCRIPTION OF THE DRAWINGSFor a detailed understanding of the present invention, reference shouldbe made to the following detailed description of the preferred embodiment,15 taken in conjunction with the accompanying drawings, in which like elementshave been given like numerals, wherein:FIG. 1 shows a schematic illustration of an elevational view of a multi-lateral wellbore and placement of fiber optic sensors therein.20FIG. 1A shows the use of a robotic device for deployment of the fiberoptic sensors.FIG. 2 is a schematic illustration of a wellbore system wherein afluid conduit along a string placed in the wellbore is utilized for activating a25 hydraulically-operated device and for deploying a fiber optic cable having all1015W0 98/50681CA 02264632 l999-02- 19PCT/US98/08823number of sensors along its length according to one preferred embodiment of thepresent invention.FIG. 3 shows a schematic diagram of a producing well wherein a fiberoptic cable with sensors is utilized to determine the health of downhole devicesand to make measurements downhole relating to such devices and otherdownhole parameters.FIG. 4 is a schematic illustration of a wellbore system wherein apermanently installed electrically-operated device is operated by a fiber opticbased system.FIG. 5 is a schematic representation of an injection well illustrating aplurality of sensors mounted therein.FIG. 6 is a schematic representation illustrating both an injection welland a production well having sensors and a flood front running between thewells.12CA 02264632 l999-02- 19W0 93/5053‘ PCT/US98/08823FIG. 7 is a schematic representation similar to FIG. 6 but illustratingfluid loss through unintended fracturing.Cf!FIG. 8 is a schematic representation of an injection production wellsystem where the wells are located on either side of a fault.FIG. 9 is a schematic illustration of a chemical injection monitoring andcontrol system utilizing a distributed sensor arrangement and downhole chemical10 monitoring sensor system in accordance with the present invention.FIG. 10 is a schematic illustration of a fiber optic sensor system formonitoring chemical properties of produced fluids.15 FIG. 11 is a schematic illustration of a fiber optic sol gel indicator probefor use with the sensor system of FIG. 10.FIG. 12 is a schematic illustration of a surface treatment system inaccordance with the present invention.20FIG. 13 is a schematic of a control and monitoring system for the surfacetreatment system of FIG. 12.CA 02264632 l999-02- 19W0 98/50681 PCT/US98/08823FIG. 14 is a schematic illustration of a wellbore system wherein electricpower is generated downhole utilizing a light cell for use in operating sensorsand devices downhole.5 FIGS. 15A-15C show the power section of fiber optic devicesfor use in the system of FIG. 1.'FIG. 16 is a schematic illustration of a Wellbore with a10 completion string having a fiber optic energy generation device foroperating a series of devices downhole.FIGS. 17A - 17C show certain configurations for utilizing thefiber optic devices to produce the desired energy.15DETAILED DESCRIPTION OF PREFERRED EMBODIMENTSThe various concepts of the present invention will be described in20 reference to Figures 1-17, which show a schematic illustrations of wellboresutilizing fiber optic—based sensors and operating devices.FIG. 1 shows an exemplary main or primary wellbore 12 formed fromthe earth surface 14 and lateral wellbores 16 and 18 formed from the main14C71101520CA 02264632 1999-02- 19WO 98/50681PCT/US98/08823wellbore 18. For the purpose of explanation, and not as any limitation, the mainwellbore 18 is partially formed in a producing formation or pay zone I andpartially in a non-producing formation or dry formation 11. The lateral wellbore16 extends from the main wellbore at a juncture 22 into the producing formation1, while the lateral wellbore 16 extends from the main wellbore 12 at juncture 24into a second producing fonnation III. For the purposes of this illustration only,the wellbores herein are shown as being drilled on land; however, this inventionis equally applicable to offshore wellbores. It should be noted that all wellboreconfigurations shown and described herein are to illustrate the present inventionand are not be construed to limit the inventions claimed herein.In one application, a number of fiber optic sensors 40 are placed in thewellbore 12. A single or a plurality of fiber optic strings or segments, each suchsegment containing a plurality of spaced apart fiber optic sensors 40 may be usedto install the desired number of fiber optic sensors 40 in the wellbore 12. As anexample, FIG. 1 shows two serially coupled segments 41a and 41b, eachcontaining a plurality of spaced apart fiber optic sensors 40. A light source anddetector (LS/D) 46a coupled to an end 49 segment 41a is disposed in thewellbore 12 to transmit light energy to sensors 40 and to receiver signals fromthe sensors 40. A data acquisition unit (DA) 48a is disposed downhole tocontrol the operation of the sensors 40, process downhole sensor signals anddata, and to communicate with other equipment and devices, including devicesin the wellbores or at the surface shown below in FIGS 2 - 17.15CI!10152025CA 02264632 1999-02- 19W0 98/50631 PCT/US98/08823Alternatively, a light source 46b and the data acquisition and processingunit 48b may be placed on the surface 14. Similarly, fiber optic sensor strings45 may be disposed in other wellbores in the system, such as wellbores 16 andwellbore 18. A single light source, such as light source 46a or 46b may be usedfor all fiber optic sensors int he various wellbores, such as shown by the dottedline 70. Alternatively, multiple sources and data acquisition units may be useddownhole, at the surface, or in combination. Since the same sensor may makedifferent types of measurements, the data acquisition unit 4821 or 48b isprogrammed to multiplex the measurements. Multiplexing techniques are wellknown in the art and are thus not described in detail herein. The data acquisitionunit 46a may be programmed to control the downhole sensors autonomously orupon receiving command signals from the surface or a combination of thesemethods.The sensors 40 may be installed in the wellbores 12, 16 and 18 before orafter installing casings in the wellbores, such as casings 52 shown installed in thewellbore 12. This may be accomplished by connecting the strings 41a and 41balong the inside casings 52. In such a method, the strings 41a and 41b arepreferably connected end-to-end at the surface to ensure proper connections ofthe couplings 42. The fiber optic sensors 40 and/or strings 41a and 41b may bedeployed or installed by conveying on coil tubing or pipes or other knownmethods. Alternatively, the fiber optic sensors may be conveyed and installed byrobotics devices. This is illustrated in FIG. 1A where a robotic device 62 isshown with a string of sensors 64 attached to it. The robotic device proceedsdown the wellbore 12 having a casing 52 therein to the position indicated by16C110152025CA 02264632 l999-02- 19W0 93/5063‘ PCT/US98/0882362‘, deploying the string of sensors in the position indicated by 64'. In additionto installing sensors, the robotic device 64 may also perform other functions,such as monitoring the performance of the sensors, and communicating withother devices such as the DA, the LS/D and other downhole devices describedbelow. The robotic devices may also be utilized to replace a sensor, conductrepairs and to retrieve the sensors or strings to the surface. Alternatively, thefiber optic sensors 40 may be placed in the casing 52 at the surface whileindividual casing sections (which are typically about forty feet long) are joinedprior to conveying the casing sections into the borehole. Stabbing techniques forjoining casing or tubing sections are known in the art and are preferred overrotational joints because stabbing generally provides better alignment of the endcouplings 42 and also because it allows operators to test and inspect opticalconnections between segments for proper two—way transmission of light energythrough the entire string 41.In the system shown in FIG. 1, a plurality of fiber optic sensors 40 areinstalled spaced apart in one or more wellbores, such as wellbores 12, 16 and 18.If desired, each fiber optic sensor can operate in more than one mode to providea number of different measurements. The light source 46a, and dat detectionand acquisition system 48a are preferably placed downhole. Although each fiberoptic sensor 40 provides measurements for multiple parameters, it is relativelysmall compared to individual commonly used single measurement sensors, suchas pressure sensors, strain gauges, temperature sensors, flow measurementdevices and acoustic sensors. This makes it possible to make a large number of17C7110152025CA 02264632 l999-02- 19W0 98/50681PCT/US98/08823different types of measurements utilizing relatively little space downhole.Installing data acquisition and processing devices or units 48a downhole allowsmaking a large number of data computations and processing downhole, avoidingthe need for transmitting large amounts of data to the surface. Installing the lightsource 4621 downhole allows locating the source 4621 close to the sensors 40,which avoids transmission of light over great distances from the surface. Thedata from the downhole acquisition system 4821 may be transmitted to the surfaceby any suitable method including wireline connectors, electromagnetictelemetry, and acoustic methods. Still, in some applications, it may be desirableto locate the light source 46b and/or the data acquisition and processing system46b at the surface. Also, in some cases, it may be more advantageous topartially process the data downhole and partially at the surface.Still referring to FIG. 1, any number of other sensors, generally denotedherein by numeral 60 may be disposed in any of the wellbores 12, 16 and 18.Such sensors may include sensors for determining the resistivity of fluids andfonnations, gamma ray sensors, and hydrophones. The measurements from thefiber optic sensors 40 and sensors 60 are combined to determine the variousconditions downhole. For example, flow measurements from production zonesand the resistivity measurements may be combined to determine water saturationor to determine oil, gas and water content.In one mode, the fiber optic sensors are permanently installed in thewellbores at selected locations. In a producing wellbore, the sensors 40continuously or periodically (as programmed) provide the pressure and/or18C7110152025CA 02264632 l999-02- 19W0 98/5058‘ PCT/US98/08823temperature and/or fluid flow measurements. Such measurements are preferablymade for each producing zone in each of the wellbores. To perform certaintypes of reservoir analyses, it is required to know the temperature and pressurebuild rates in the wellbores. This requires measuring temperature and pressureat selected locations downhole over extended time periods after shutting downthe well at the surface. In prior art methods, the well is shut down, a wirelinetool is conveyed into the wellbore and positioned at one location in the wellbore.The tool continuously measures temperature and pressure and may provide othermeasurements, such as flow rates. These measurements are then utilized toperform reservoir analysis, which may included determining the extent of thehydrocarbon reserves remaining in a field, flow characteristics of the fluid fromthe producing formation, water content, etc. The above described prior artmethods do not provide continuous measurements while the well is producingand require special wireline tools to be conveyed into the borehole. The presentinvention, on the other hand, provides, in-situ measurements while the well isproducing. The fluid flow information from each zone is used to determine theeffectiveness of each producing zone. Decreasing flow rates over time indicateproblems with the flow control devices, such as screens and sliding sleeves, orclogging of the perforations and rock matrix near the wellbore. This informationis used to determine the course of action, which may include further opening orclosing sliding sleeves to increase or decrease production rates, remedial work,such as cleaning or reaming operations, shutting down a particular zone, etc.This is discussed below in reference to FIGS 2 - 13. The temperature andpressure measurements are used to continually monitor each production zoneand to update reservoir models. To make measurements determining the19Cl101520CA 02264632 l999-02- 19W0 98/50681 PCT/US98/08823temperature and pressure buildup rates, the wellbores are shut down and theprocess of making measurements continues. This does not require transportingwireline tools to the location, something that can be very expensive at offshorelocations and wellbores drilled in remote locations. Furthermore, in-situmeasurements and computed data can be communicated to a central office or theoffices of the logging and reservoir engineers via satellite. This continuousmonitoring of wellbores allows taking relatively quick action, which cansignificantly improve the hydrocarbon production and the life of the wellbore.The above described methods may also be taken for non-producing zones, suchas zone 11, to aid in reservoir modeling, to determine the effect of productionfrom various wellbores on the field in which the wellbores are being drilled.FIG. 2 is a schematic diagram of a wellbore system 100 according to oneembodiment of the present invention. System 100 includes a wellbore 102having a surface casing 101 installed a short distance from the surface 104.After the wellbore 102 has been drilled to a desired depth. A completion orproduction string 106 is conveyed into the wellbore 102. The string 106includes at least one downhill hydraulically operable device 114 carried by atubing 108 which tubing may be a drill pipe, coiled tubing or production tubing.A fluid conduit 110 having a desired inner diameter 111 is placed or attachedeither on the outside of the string 106 (as shown in FIG. 2) or in the inside of thestring (not shown). The conduit 110 is routed at a desired location on the string106 via a u-joint 112 so as to provide a smooth transition for returning theconduit 110 to the surface 104. A hydraulic connection 124 is provided from the20101520CA 02264632 l999-02- 19WO 98/50681PCT/US98/08823conduit 110 to the device 114 so that a fluid under pressure can pass from theconduit 110 to the device 114.After the string 106 has been placed or installed at a desired depth in thewellbore 102, an optical fiber 112 is pumped inlet 130a under pressure by asource of fluid 130.The optical fiber 122 passes through the entire length of the conduit 110and returns to the surface 104 via outlet 130b. The fiber 122 is then opticallycoupled to alight source and recorder (or detector) (LS/REC) 140. A dataacquisition/signal processor (DA/SP) 142 processes data/signal received via theoptical fiber 122 and also controls the operation of the light source and recorder140.The optical fiber 122 includes a plurality of sensors 120 distributed alongits length. Sensors 120 may include temperature sensors, pressure sensors,vibration sensors or any other fiber optic sensor that can be placed on the fiberoptic cable 122. Sensors 120 are formed into the cable during the manufacturingof the cable 122. The downhole device 114 may be any downhole fluid-activated device and may be a valve, a sliding sleeve, a perforating device, apacker or any other hydraulically—activated device. The downhill device isactivated by supplying fluid under pressure through the conduit 110. Details ofthe sensor arrangement were described above with reference to FIGS 1 - 1A.21CA 02264632 l999-02- 19W0 98/50681 PCT/US98/08823Thus, the system 100 includes a hydraulic—control line in conduit 110. carried on a string 106. The control line 110 receives fiber optic cable 122throughout its length and is connected to surface instrumentation 140 and 142for distributed measurements of downhole parameters along its length, such as5 temperature, pressure, etc. The conduit 106 also carries fluid under pressurefrom a source of fluid under pressure 130 for operating a fluid—actuated device114 such as a sliding sleeve, connected to the line 110. The line 110 may bearranged downhole along the string 106 in a V or other convenient shape. Thefluid-actuated device 114 may also be a choke, fluid flow regulation device,10 packer, perforating gun or other completion and or production device.During the completion of the wellbore 102, the sensors 120 provideuseful measurements relating to their associated downhole parameters and theline 106 is used to actuate a downhole device. The sensors 120 continue to15 provide information about the downhole parameters over time, as discussedabove with reference to FIGS 1 - 1A.Another part of the invention is related to the control of downholedevices using optical fibers. FIG. 2 shows a schematic diagram of a producing20 well 202 that preferably with two electric submersible pumps (“ESP”) 214 onefor pumping the oil/ gas 206 the surface 203 and the other to pump any separatedwater back into a formation. The formation fluid 206 flows from a producingzone 208 into the wellbore 202 via perforations 207. Packers 210a and 210binstalled below and above the ESP 214 force the fluid 206 to flow to the surface22101520CA 02264632 1999-02- 19W0 98/50681PCT/US98/08823203 via pumps ESP 214. An oil water separator 250 separates the oil and waterand provide them to their respective pumps 214a- 214b. A choke 252 providesdesired back pressure. An instrument package 260 and pressure sensor isinstalled in the pump string 218 to measure related parameters duringproduction. The present invention utilizes optical fiber with embedded sensorsto provide measurements of selected parameters, such as temperature, pressure,vibration, flow rate as described below. ESPS 214 run at very high voltagewhich is supplied from a high voltage source 230 at the surface via a highvoltage cable 224. Due to the high power carried by the cable 224, electricalsensors are generally not placed on or along side the cable 224.In one embodiment of the present invention as shown in FIG. 4, a fiberoptic cable 222 carrying sensors 220 is placed along the power cable 224. Thefiber optic cable 222 is extended to below the ESPs 214 to the sensors in theinstrumentation package 260 and to provide control to the devices, if desired. Inone application, the sensors 220 measure vibration and temperature of the ESP214. It is desirable to operate the ESP at a low temperature and withoutexcessive vibration. The ESP 214 speed is adjusted so as to maintain one orboth such parameters below their predetermined maximum value or within theirrespective predetermined ranges. The fiber optic sensors are used in thisapplication to continuously or periodically determine the physical condition(health) of the ESP. The fiber optic cable 222 may be extended or deployedbelow the ESP at the time of installing the production string 218 in the mannerdescribed with respect to FIG. 2. Such a configuration may be utilized to23101520CA 02264632 1999-02- 19W0 93/50631 PCT/US98/08823continuously measure downhill parameters, monitor the health of downhilldevices and control downhill devices.FIG. 4 shows a schematic of a wellbore system 400 wherein apermanently installed electrically-operated device is operated by a fiber opticbased system. The system 400 includes a wellbore 402 and an electrically-operated device 404 installed at a desired depth, which may be a sliding sleeve, achoke, a fluid flow control device etc. An electric control unit 406 controls theoperation of the device 404. A production tubing 410 installed above the device404 allows formation fluid to flow to the surface 401. During the manufacture‘ of the string 411 that includes the device 404 and the tubing 410, a conduit 422is clamped along the length of the tubing 410 with clamps 421. An opticalcoupler 407 is provided at the electrical control unit 406 which can mate with acoupler fed through the conduit 422.Either prior to or after placing the string 410 in the wellbore 402, a fiberoptic cable 421 is deployed in the conduit 422 so that a coupler 422a at the cable421 end would couple with the coupler 407 of the control unit 406. A lightsource 440 provides the light energy to the fiber 422. A plurality of sensors 420may be deployed along the fiber 422 as described before. A sensor preferablyprovided on the fiber 422 determines the flow rate of formation fluid 414flowing through the device 404. Command signals are sent by DA/SP 442 toactivate the device 404 via the fiber 422. These signals are detected by thecontrol unit 406, which in turn operate the device 404. This, in the configuration2410152025CA 02264632 l999-02- 19W0 98/S0681PCT/US98/08823of FIG. 4, fiber optics is used to provide two way communication betweendownhole devices and sensors and a surface unit and to operate downholedevices.A particular application of the invention is in the control of downholedevices in secondary recovery operations. Referring to FIG. 5, one of ordinaryskill in the art will appreciate a schematic representation of an injection well510. Also recognizable will be the representation of a flood front 520 whichemanates from the injection well and is intended to progress toward a productionwell. This is also well represented in FIG. 6 of the present application. In thepresent invention at least one and, preferably, a plurality of sensors 512 arelocated permanently installed in the injection well and which are connected viathe electrical wire cabling or fiber optic cabling to a processor which may eitherbe a permanent downhole processor or a surface processor. The system providesimmediate real time infomiation regarding the condition of the fluid from havingbeen injected into the formation by the injection well. By carefully monitoringparameters such as conductivity, fluid density, pressure at the injection ports 514or at the pump 516 (which while represented at the surface can be positioneddownhole as well), acoustics and fluorescence for biological activity, one canascertain significant information about the progress of the flood front such aswhether the front has hit a barrier or whether the front may have “fingered”resulting in a likely premature breakthrough. This infonnation is extremelyvaluable to the operator in order to allow remedial measures to preventoccurrences that would be detrimental to the efficiency of the flooding operation.25O110152025CA 02264632 l999-02- 19w0 985068‘ PCT/US98/08823Remedial actions include the opening or closing of chokes or other valves in» increments or completely in order to slow down particular areas of injection orincrease the speed of particular areas of injection in order to provide the mostuniform flood front based upon the sensed parameters. These remedial measurescan be taken either by personnel at the surface directing such activity orautomatically upon command by the surface controller/processor on downholeprocessing unit 518. The sensors contemplated herein may be in the injectionwell or in both the injection well and the production well. They are employed inseveral different methods to obtain information such as that indicated above.Control is further heightened in an alternate embodiment by providing alink between downhole sensors in the production well to the downhole sensorsin the injection well as well as a connection to the flow control tools in bothwells. By providing the operable connections to all of these parts of the systemthe well can actually run itself and provide the most efficient oil recovery basedupon the creation and maintenance of a uniform flood front. It will beunderstandable at this point to one of ordinary skill in the art that the flood frontcan be regulated from both sides of FIG. 2 i.e., the injection well and theproduction well by opening production well valves in areas where the flood frontis lagging while closing valves in areas where the flood front is advancing.Complementary to this, the fluid injection valves e.g., sliding or rotatingsleeves, etc. would be choked or closed where the flood front is advancingquickly and opened more where the flood front is advancing slowly. Thisseemingly complex set of circumstances is easily controlled by the system of the26101520CA 02264632 l999-02- 19W0 98/50681PCT/US98/08823invention and rapidly remedies any abnormalities in the intended flood profile.Sweep efficiency of the steam or other fluid front is greatly enhanced by thesystem of the invention. All of the sensors contemplated in the production welland the injection well are, preferably, permanently installed downhole sensorswhich are connected to processors and/to one another by electrical cabling orfiber optic cabling.In another embodiment of the invention, illustrated schematically inFIG. 7, downhole sensors measure strain induced in the formation by theinjected fluid. Strain is an impoitant parameter for avoiding exceeding theformation parting pressure or fracture pressure of the formation with the injectedfluid. By avoiding the opening of or widening of natural pre-existing fractureslarge unswept areas of the reservoir can be avoided. The reason this informationis important in the regulation of pressure of the fluid to avoid such activity is thatwhen pressure opens fractures or new fractures are created there is a path ofmuch less resistance for the fluid to run through. Thus as stated earlier, since theinjection fluid will follow the path of least resistance it would generally run inthe fractures and around areas of the reservoir that need to be swept. Clearly thissubstantially reduces its efficiency. The situation is generally referred to in theart as an “artificially high permeability channel.” Another detriment to such acondition is the uncontrolled loss of injected fluids. This is clearly a loss of oildue to the reduced efficiency of the sweep and additionally may function as aneconomic drain due to the loss of expensive fluids.27101520CA 02264632 1999-02-19WO 98/50681PCT/US98/08823FIG. 7 schematically illustrates the embodiment and the condition setforth above by illustrating an injection well 550 and a production well 560.Fluid 552 is illustrated escaping via the unintended fracture from the formation554 into the overlying gas cap level 556 and the underlying water table 561 andit is evident to one of ordinary skill in the art that the fluid is being lost in thislocation. The condition is avoided by the invention by using pressure sensors tolimit the injection fluid pressure as described above. The rest of the fluid 552 isprogressing as it is intended to through the formation 554. In order to easily andreliably determine what the stress is in the formation 554, acoustic sensors 556are located in the injection well 550 at various points therein. Acoustic sensors‘which are well suited to the task to which they will be put in the presentinvention are commercially available from Systems Innovations, Inc., SpectrisCorporation and Falmouth Scientific, Inc. The acoustic sensors pick up soundsgenerated by stress in the formation which propagate through the reservoir fluidsor reservoir matrix to the injection well. In general, higher sound levels wouldindicate severe stress in the formation and should generate a reduction inpressure of the injected fluid whether by automatic control or by techniciancontrol. A data acquisition system 558 is preferable to render the systemextremely reliable and system 558 may be at the surface where it is illustrated inthe schematic drawing or may be downhole. Based upon acoustic signalsreceived the system of the invention, preferably automatically, althoughmanually is workable, reduces pressure of the injected fluid by reducing pumppressure. Maximum sweep efficiency is thus obtained.2810152025CA 02264632 l999-02- 19W0 98/50681PCT/US98/08823In yet another embodiment of the invention, as schematically illustratedin FIG. 8, acoustic generators and receivers are employed to determine whethera formation which is bifurcated by a fault is sealed along the fault or ispemieable along the fault. It is known by one of ordinary skill in the art thatdifferent strata within a formation bifurcated by a fault may have some zonesthat flow and some zones that are sealed; this is the illustration of FIG. 8.Referring directly to FIG. 8, injection well 570 employs a plurality of sensors572 and acoustic generators 574 which, most preferably, alternate withincreasing depth in the wellbore. In production well 580, a similar arrangementof sensors 572 and acoustic generators 574 are positioned. The sensors andgenerators are preferably connected to processors which are either downhole oron the surface and preferably also connect to the associated production orinjection well. The sensors 572 can receive acoustic signals that are naturallygenerated in the formation, generated by virtue of the fluid flowing through theformation from the injection well and to the production well and also can receivesignals which are generated by signal generators 574. Where signal generators574 generate signals, the reflected signals that are received by sensors 572 over aperiod of time can indicate the distance and acoustic volume through which theacoustic signals have traveled. This is illustrated in area A of FIG. 8 in that thefault line 575 is sealed between area A and area B on the figure. This isillustrated for purposes of clarity only by providing circles 576 along fault line575. Incidentally, the areas of fault line 575 which are permeable are indicatedby hash marks 577 through fault line 575. Since the acoustic signal representedby arrows and semi—curves and indicated by numeral 578 carmot propagatethrough the area C of the drawing which bifurcates area A from area B on the2910152025CA 02264632 1999-02-19W0 98/50681PCT/US98/08823left side of the drawing, that signal will bounce and it then can be picked up by. sensor 572. The time delay, number and intensity of reflections andmathematical interpretation which is common in the art provides an indication ofthe lack of pressure transmissivity between those two zones. Additionally thispressure transmissivity can be confirmed by the detection by said acousticsignals by sensors 572 in the production well 580. In the drawing the areadirectly beneath area A is indicated as area E is permeable to area B throughfault 575 because the region D in that area is permeable and will allow flow ofthe flood front from the injection well 570 through fault line 575 to theproduction well 580. Acoustic sensors and generators can be employed here aswell since the acoustic signal will travel through the area D and, therefore,reflection intensity to the receivers 572 will decrease. Time delay will increase.Since the sensors and generators are connected to a central processing unit and toone another it is a simple operation to determine that the signal, in fact, traveledfrom one well to the other and indicates permeability throughout a particularzone. By processing the information that the acoustic generators and sensors canprovide the injection and production wells can run automatically by determiningwhere fluids can flow and thus opening and closing valves at relevant locationson the injection well and production well in order to flush production fluid in adirection advantageous to run through a zone of permeability along the fault.Other information can also be generated by this alternate system of theinvention since the sensors 572 are clearly capable of receiving not only thegenerated acoustic signals but naturally occurring acoustic waveforms arisingfrom both the flow of the injected fluids as the injection well and from those3010152025CA 02264632 l999-02- 19W0 98/50681 PCT/US98/08823arising within the reservoirs in result of both fluid injection operations andsimultaneous drainage of the reservoir in resulting production operations. Thepreferred permanent deployment status of the sensors and generators of theinvention permit and see to the measurements simultaneously with ongoinginjection flooding and production operations. Advancements in both acousticmeasurement capabilities and signal processing while operating the flooding ofthe reservoir represents a significant, technological advance in that the prior artrequires cessation of the injection/ production operations in order to monitoracoustic parameters downhole. As one of ordinary skill in the art will recognizethe cessation of injection results in natural redistribution of the active floodprofile due primarily to gravity segregation of fluids and entropic phenomenathat are not present during active flooding operations. This clearly also enhancesthe possibility of premature breakthrough, as oil migrates to the relative top ofthe formation and the injected fluid, usually water, migrates to the relativebottom of the formation, there is a significant possibility that the water willactually reach the production well and thus fiirther pumping of steam or waterwill merely run underneath the layer of oil at the top of the formation and thesweep of that region would be extremely difficult thereafier.In yet another embodiment of the invention fiber optics are employed(similar to those disclosed in the U.S. application Serial No. 60/048,989 filed onJune 9, l997(which is fully incorporated herein by reference) to determine theamount of and/or presence of biofouling within the reservoir by providing aculture chamber within the injection or production well, wherein light of apredetermined wavelength may be injected by a fiber optical cable, irradiating a31.,,..., ,.................._............CI!10152025CA 02264632 1999-02-19WO 98/50681PCT/U S98/ 08823sample determining the degree to which biofouling may have occurred. As oneof ordinary skill in the art will recognize, various biofouling organisms will havethe ability to fluoresce at a given wavelength, that wavelength once determined,is useful for the purpose above stated.In another embodiment of the invention, the flood front is monitoredfrom the “back” employing sensors installed in the injection well. The sensorswhich are adequately illustrated in FIGS. 5 and 6 provide acoustic signals whichreflect from the water/oil interface thus providing an accurate picture in amoment in time of the three—dimensional flood front. Taking pictures in 4-D i.e.,. three dimensions over real time provides an accurate format of the densityprofile of the formation due to the advancing flood front. Thus, a particularprofile and the relative advancement of the front can be accurately determined bythe density profile changes. It is certainly possible to limit the sensors andacoustic generators to the injection well for such a system, however it is evenmore preferable to also introduce sensors and acoustic generators in theproduction well toward which the front is moving thus allowing an immediatedouble check of the fluid front profile. That is, acoustic generators on theproduction well will reflect a signal off the oil/water interface and will providean equally accurate three—dimensional fluid front indicator. The indicators fromboth sides of the front should agree and thus provides an extremely reliableindication of location and profile.Referring now to FIG. 9, the distributed fiber optic sensors of the typedescribed above are also well suitedfor use in a production well where32101520CA 02264632 l999-02- 19W0 98/50681PCT/US98/08823chemicals are being injected therein and there is a resultant need for themonitoring of such a chemical injection process so as to optimize the use andeffect of the injected chemicals. Chemicals often need to be pumped down aproduction well for inhibiting scale, paraffms and the like as well as for otherknown processing applications and pretreatment of the fluids being produced.Often, as shown in FIG. 9, chemicals are introduced in an armulus 600 betweenthe production tubing 602 and the casing 604 of a well 606. The chemicalinjection (shown schematically at 608) can be accomplished in a variety ofknown methods such as in connection with a submersible pump (as shown forexample in U.S. Patent 4,582,131, assigned to the assignee hereof andincorporated herein by reference) or through an auxiliary line associated with acable used with an electrical submersible pump (such as shown for example inU.S. Patent 5,528,824, assigned to the assignee hereof and incorporated hereinby reference).In accordance with an embodiment of the present invention, one or morebottornhole sensors 610 are located in the producing zone for sensing a variety ofparameters associated with the producing fluid and/or interaction of the injectedchemical and the producing fluid. Thus, the bottornhole sensors 610 will senseparameters relative to the chemical properties of the produced fluid such as thepotential ionic content, the covalent content, pH level, oxygen levels, organicprecipitates and like measurements. Sensors 610 can also measure physicalproperties associated with the producing fluid and/or the interaction of theinjected chemicals and producing fluid such as the oil/water cut, viscosity and3310152025CA 02264632 1999-02-19W0 98/50681 PCT/US98/08823percent solids. Sensors 610 can also provide information related to paraffin andscale build-up, H2S content and the like.Bottomhole sensors 610 preferably communicate with and/or areassociated with a plurality of distributed sensors 612 which are positioned alongat least a portion of the wellbore (e.g., preferably the interior of the productiontubing) for measuring pressure, temperature and/or flow rate as discussed abovein connection with FIG. 1. The present invention is also preferably associatedwith a surface control and monitoring system 614 and one or more knownsurface sensors 615 for sensing parameters related to the produced fluid; andmore particularly for sensing and monitoring the effectiveness of treatmentrendered by the injected chemicals. The sensors 615 associated with surfacesystem 614 can sense parameters related to the content and amount of, forexample, hydrogen sulfide, hydrates, paraffins, water, solids and gas.Preferably, the production well disclosed in FIG. 9 has associatedtherewith a so—called “intelligent” downhole control and monitoring systemwhich may include a downhole computerized controller 618 and/or theaforementioned surface control and monitoring system 614. This control andmonitoring system is of the type disclosed in Patent 5,597,042, which is assigned'to the assignee hereof and fully incorporated herein by reference. As disclosedin Patent 5,597,042, the sensors in the “intelligent” production wells of this typeare associated with downhole computer and/or surface controllers which receiveinformation from the sensors and based on this information, initiate some type ofcontrol for enhancing or optimizing the efficiency of production of the well or insome other way effecting the production of fluids from the formation. In the3410152025CA 02264632 1999-02- 19W0 98/50681PCT/US98/08823present invention, the surface and/or downhole computers 614, 618 will monitorthe effectiveness of the treatment of the injected chemicals and based on thesensed information, the control computer will initiate some change in themanner, amount or type of chemical being injected. In the system of the presentinvention, the sensors 610 and 612 may be connected remotely or in—situ.In a preferred embodiment of the present invention, the bottomholesensors comprise fiber optic chemical sensors. Such fiber optic chemicalsensors preferably utilize fiber optic probes which are used as a sample interfaceto allow light from the fiber optic to interact with the liquid or gas stream andretum to a spectrometer for measurement. The probes are typically composed ofsol gel indicators. Sol gel indicators allow for on-line, real time measurementand control through the use of indicator materials trapped in a porous, sol gelderived, glass matrix. Thin films of this material are coated onto opticalcomponents of various probe designs to create sensors for process andenvironmental measurements. These probes provide increased sensitivity tochemical species based upon characteristics of the specific indicator. Forexample, sol gel probes can measure with great accuracy the pH of a materialand sol gel probes can also measure for specific chemical content. The sol gelmatrix is porous, and the size of the pores is determined by how the glass isprepared. The sol gel process can be controlled so as to create a sol gel indicatorcomposite with pores small enough to trap an indicator in the matrix but largeenough to allow ions of a particular chemical of interest to pass fieely in and outand react with the indicator. An example of suitable sol gel indicator for use inthe present invention is shown in FIGS. 10 and 11.35..._.......,..............................~.................- .....C7110152025CA 02264632 1999-02-19W0 98/50681PCT/US98/08823Referring to FIGS. 10 and 11, a probe is shown at 616 connected to afiber optic cable 618 which is in turn connected both to a light source 620 and aspectrometer 622. As shown in FIG. 11, probe 616 includes a sensor housing624 comiected to a lens 626. Lens 626 has a sol gel coating 628 thereon whichis tailored to measure a specific downhole parameter such as pH or is selected todetect the presence, absence or amount of a particular chemical such as oxygen,H28 or the like. Attached to and spaced from lens 626 is a mirror 630. Duringuse, light from the fiber optic cable 618 is collimated by lens 626 whereupon thelight passes through the sol gel coating 628 and sample space 632. The light isi then reflected by mirror 630 and returned to the fiber optical cable. Lighttransmitted by the fiber optic cable is measured by the spectrometer 622.Spectrometer 622 (as well as light source 620) may be located either at thesurface or at some location downhole. Based on the spectrometermeasurements, a control computer 614, 616 will analyze the measurement andbased on this analysis, the chemical injection apparatus 608 will change theamount (dosage and concentration), rate or type of chemical being injecteddownhole into the well. Information from the chemical injection apparatusrelating to amount of chemical left in storage, chemical quality level and the likewill also be sent to the control computers. The control computer may also baseits control decision on input received from surface sensor 615 relating to theeffectiveness of the chemical treatment on the produced fluid, the presence andconcentration of any impurities or undesired by-products and the like.In addition to the bottomhole sensors 610 being comprised of the fiberoptic sol gel type sensors, in addition, the distributed sensors 612 along36101520CA 02264632 1999-02- 19W0 98/50681 PCT/US98/08823production tubing 602 may also include the fiber optic chemical sensors (sol gelindicators) of the type discussed above. In this way, the chemical content of theproduction fluid may be monitored as it travels up the production tubing if that isdesirable.The permanent placement of the sensors 610, 612 and control system617 downhole in the well leads to a significant advance in the field and allowsfor real time, remote control of chemical injections into a well without the needfor wireline device or other well interventions.In accordance with the present invention, a novel control and monitoringsystem is provided for use in connection with a treating system for handlingproduced hydrocarbons in an oilfield. Referring to FIG. 12, atypical surfacetreatment system used for treating produced fluid in oil fields is shown. As iswell known, the fluid produced from the well includes a combination ofemulsion, oil, gas and water. After these well fluids are produced to the surface,they are contained in a pipeline known as a “flow line”. The flow line can rangein length fi‘om a few feet to several thousand feet. Typically, the flow line isconnected directly into a series of tanks and treatment devices which areintended to provide separation of the water in emulsion from the oil and gas. Inaddition, it is intended that the oil and gas be separated for transport to therefinery.The produced fluids flowing in the flow line and the various separationtechniques which act on these produced fluids lead to serious corrosionproblems. Presently, measurement of the rate of corrosion on the various metal3710152025CA 02264632 l999-02- 19W0 98/50681 PCT/US98/08823components of the treatment systems such as the piping and tanks isaccomplished by a number of sensor techniques including weight loss coupons,electrical resistance probes, electrochemical - linear polarization techniques,electrochemical noise techniques and AC impedance techniques. While thesesensors are useful in measuring the corrosion rate of a metal vessel or pipework,these sensors do not provide any information relative to the chemicalsthemselves, that is the concentration, characterization or other parameters ofchemicals introduced into the treatment system. These chemicals are introducedfor a variety of reasons including corrosion inhibition and emulsion breakdown,as well as scale, wax, asphaltene, bacteria and hydrate control.In accordance with an important feature of the present invention, sensorsare used in chemical treatment systems of the type disclosed in FIG. 12 whichmonitors the chemicals themselves as opposed to the effects of the chemicals(for example, the rate of corrosion). Such sensors provide the operator of thetreatment system with a real time understanding of the amount of chemical beingintroduced, the transport of that chemical throughout the system, theconcentration of the chemical in the system and like parameters. Examples ofsuitable sensors which may be used to detect parameters relating to thechemicals traveling through the treatment system include the fiber optic sensordescribed above with reference to FIGS. 10 and 11 as well as other knownsensors such as those sensors based on a variety of technologies includingultrasonic absorption and reflection, laser-heated cavity spectroscopy (LIMS), X-ray fluorescence spectroscopy, neutron activation spectroscopy, pressuremeasurement, microwave or millimeter wave radar reflectance or absorption,38C1101520CA 02264632 l999-02- 19W0 98/50681PCT/US98/08823and other optical and acoustic (i.e., ultrasonic or sonar) methods. A suitablemicrowave sensor for sensing moisture and other constituents in the solid andliquid phase influent and effluent streams is described in U.S. Patent No.5,455,516, all of the contents of which are incorporated herein by reference. Anexample of a suitable apparatus for sensing using LIBS is disclosed in U.S.Patent No. 5,379,103 all of the contents of which are incorporated herein byreference. An example of a suitable apparatus for sensing LIMS is the LASMALaser Mass Analyzer available from Advanced Power Technologies, Inc. ofWashington, D.C. An example of a suitable ultrasonic sensor is disclosed in U.S. Patent 5,148,700 (all of the contents of which are incorporated herein byI reference). A suitable commercially available acoustic sensor is sold by EntechDesign, Inc., of Denton, Texas under the trademark MAPS®. Preferably, thesensor is operated at a multiplicity of frequencies and signal strengths. Suitablemillimeter wave radar techniques used in conjunction with the present inventionare described in chapter 15 of Principles and Applications of Millimeter WaveRadar, edited by N.C. Currie and C.E. Brown, Aitecn House, Norwood, MA1987. The ultrasonic technology referenced above can be logically extended tomillimeter wave devices.While the sensors may be utilized in a system such as shown in FIG. 12at a variety of locations, the arrows numbered 700, through 716 indicate thosepositions where infomiation relative to the chemical introduction would beespecially useful.3910152025CA 02264632 1999-02-19W0 98/ 5068 1 PCT/U S98/08823Referring now to FIG. 13, the surface treatment system of FIG. 12 isshown generally at 720. In accordance with the present invention, the chemicalsensors (i.e. 700 - 716) will sense, in real time, parameters (i.e., concentrationand classification) related to the introduced chemicals and supply that sensedinformation to a controller 722 (preferably a computer or microprocessor basedcontroller). Based on that sensed information monitored by controller 722, thecontroller will instruct a pump or other metering device 724 to maintain, vary orotherwise alter the amount of chemical and/or type of chemical being added tothe surface treatment system 720 The supplied chemical from tanks 726, 726'and 726" can, of course, comprise any suitable treatment chemical such as thosechemicals used to treat corrosion, break down emulsions, etc. Examples ofsuitable corrosion inhibitors include long chain amines or aniinidiazolines.Suitable commercially available chemicals include Cronoxf) which is acorrosion inhibitor sold by Baker Petrolite, a division of Baker-Hughes,Incorporated, of Houston, Texas.Thus, in accordance with the control and monitoring system of FIG. 13,based on information provided by the chemical sensors 700 - 716, correctivemeasures can be taken for varying the injection of the chemical (corrosioninhibitor, emulsion breakers, etc.) into the system. The injection point of thesechemicals could be anywhere upstream of the location being sensed such as thelocation where the corrosion is being sensed. Of course, this injection pointcould include injections downhole. In the context of a corrosion inhibitor, theinhibitors work by forming a protective film on the metal and thereby preventwater and corrosive gases from corroding the metal surface. Other surface40102025CA 02264632 1999-02- 19WO 98/50681PCT/US98/08823treatment chemicals include emulsion breakers which break the emulsion andfacilitate water removal. In addition to removing or breaking emulsions,chemicals are also introduced to break out and/or remove solids, wax, etc.Typically, chemicals are introduced so as to provide what is known as a basesediment and water (B.S. and W.) of less than 1%.In addition to the parameters relating to the chemical introduction beingsensed by chemical sensors 700 - 716, the monitoring and control system of thepresent invention can also utilize known corrosion measurement devices as wellincluding flow rate, temperature and pressure sensors. These other sensors areschematically shown in FIG. 13 at 728 and 730. The present invention thusprovides a means for measuring parameters related to the introduction ofchemicals into the system in real time and on line. As mentioned, theseparameters include chemical concentrations and may also include such chemicalproperties as potential ionic content, the covalent content, pH level, oxygenlevels, organic precipitates and like measurements. Similarly, oil/water cutviscosity and percent solids can be measured as well as paraffin and scale build-up, H25 content and the like.Another aspect of the invention is the ability to transmit optical energydownhole and convert it to another form of energy suitable for operation ofdownhole devices. FIG. 14 shows a wellbore 802 with a production string 804having one or more electrically-operated or optically-operated devices, generallydenoted herein by numeral 850 and one or more downhole sensors 814. Thestring 804 includes batteries 812 which provide electrical power to the devices41101520CA 02264632 l999-02- 19“'0 93’5°“‘ PCT/US98/08823850 and sensors 814. The batteries are charged by generating power downholeby turbines (not shown) or by supplying power for the surface via a cable (notshown).In the present invention a light cell 810 is provided in the string 804which is coupled to an optical fiber 822 that has one or more sensors 820associated therewith. A light source 840 at the surface provides light to the lightcell 810 which generates electricity which charges the downhill batteries 812.The light cell 810 essentially trickle charges the batteries. In many applicationsthe downhole devices, such as devices 850, are activated infrequently. Tricklecharging the batteries may be sufficient and thus may eliminate the use of otherpower generation devices. In applications requiring greater power consumption,the light cell may be used in conjunction with other power generator devices.Alternatively, if the device 850 is optically-activated the fiber 822 iscoupled to the device 850 as shown by the dotted line 822a and is activated bysupplying optical pulses from the surface unit 810. Thus in the configuration ofFIG. 14, a fiber optics device is utilized to generate electrical energy downhole,which is then used to charge a source, such as a battery, or operate a device. Thefiber 822 is also used to provide two-way communication between the DA/ SP842 and downhole sensors and devices.FIG. 15 is a schematic illustration of a wellbore system 900utilizing the fiber optic energy producing devices according one421020CA 02264632 l999-02- 19W0 98/50681PCT/US98/08823embodiment of the present invention. System 900 includes awellbore 902 having a surface casing 901 installed a relatively shortdepth 904a from the surface 904. After the wellbore 902 has beendrilled to a desired depth, a completion or production string 906 isconveyed into the wellbore 902. A fiber optic energy generationdevice 920 placed in the string 906 generates mechanical energy.The operation of the fiber optic device 920 is described in reference toFIGS 15A-15C.The fiber optic device 920A shown in Figure 15A contains asealed chamber 922a containing a gas 923 which will expand rapidlywhen optical energy such as laser energy is applied to the gas 923. Apiston 924a disposed in the device 920A moves outward when the gas923 expands. When the optical energy is not being applied to the gas923; a spring 926a or another suitable device coupled to a piston rod925a forces the piston 926a back to its original position. The gas 923is periodically charged with the optical energy conveyed to the device920a via an optical conductor or fiber 944. FIG 15B shows theoptical device 920B wherein a spring 926b is disposed within theenclosure 921 to urge the piston 924b back to its original position.Referring back to FIG. 15, the outward motion of the member925 of the device 920 causes a valve 930 to open allowing thewellbore fluid 908 at the hydrostatic pressure to enter through port43101520CA 02264632 1999-02-19wo 93/5068‘ PCT/US98/08823932. The valve 930 is coupled to hydraulically-operated device 935 ina manner that allows the fluid 908 under pressure to enter the device935 via the port 932. Thus, in the configuration of FIG. 15, fiberoptic device 920 controls the flow of the fluid 908 at the hydrostaticpressure to the hydraulically-operated device 935. The device 935may be a packer, fluid valve, safety valve, perforating device, anchor,sliding sleeve etc. The operation of the device 920 is preferablycontrolled from the surface 904, a light source LS 940 provides theoptical energy to the device 908 via the fiber 944. One or moresensors 927 may be provided to obtain feedback relating to thedownhole operations. The sensors 927 provide measurementsrelating to the fluid flow, force applied to the valve 930, downholepressures, downhole temperatures etc. The signals from sensors 927may be processed downhole or sent to the surface data acquisitionand processing unit 942 via the fiber 944.An alternate embodiment of a light actuated transducer foruse in fluid flow control is shown in FIG. 15C. The device 950includes a photovoltaic cell 960 and a bi-morph element fluid valvecell 970. Optical energy from an optical fiber 944 is connected bymeans of optical lead 946 to a photovoltaic cell 960. The photovoltaiccell 960 upon excitation by light produces an electric current that isconveyed by lead 962 to a bimetallic strip (bi-morph element) 964.Passage of current through the bimetallic strip causes it to bend to44CI!101520CA 02264632 l999-02- 19W0 98/50681PCT/US98/08823position 964' and move a ball 980 that rests in a valve seat 976.Motion of the ball 980 away from the seat to 980' enables a fluid 982to flow through the inlet port 972 in the bi-morph element fluid valvecell 970 and the outlet port 974. Other arrangements of thebimetallic strip and the valve arrangement would be familiar to thoseversed in the art. This illustrates equipment in which optical energyis converted first to electrical energy and then to mechanical motion.In yet another embodiment of the invention (not shown), theoptical energy is used to alter the physical properties of aphotosensitive ‘material, such as a gel, that is incorporated in a flowcontrol device. Screens having a gravel pack are commonly used inoil and gas production to screen out particulate matter. In oneembodiment of the invention, a photosensitive gel is used as thepacking material in the screen. Activation of the gel by opticalenergy changes the physical characteristics of the gel, partiallycrystallizing it. This makes it possible to adjust the size of particlesflowing through the screen.FIG. 16 shows a wellbore system 1000 wherein the fiber opticdevices 1020 are used to operate one or more downhole devices andwherein the pressurized fluid is supplied through a conduit whichalso carries the optical fiber to the devices 1020 from the surface 904.A valve 1030 is operated by the fiber optic device 920 in the manner45O1101520CA 02264632 l999-02- 19W0 98/50681 PCT/US98/08823described above with reference to FIG. 15. Pressurized fluid 1032from a source 1045 is supplied to the valve 1030 via a conduit 1010.The conduit 1010 the optical fiber 1044 is pumped through theconduit from an the surface. Alternatively, the conduit 1010containing the fiber 1044 may be assembled at the surface anddeployed into the wellbore with the string 1006. To operate the device1035, the fiber optic device 920 is operated and the fluid 1032 underpressure is continuously supplied to the valve 1030 via the conduit1010, which activates or sets the device 1035. Other downholedevices 1050b, 1050c etc. may be disposed in the string 1006 or inthe wellbore 1002. Each such device utilizes separate fiber opticdevices 920 and may utilize a common conduit 1010 for the opticalfiber 1044 and/or for the pressurized fluid 1032.FIG. 17A shown a configuration utilizing multiple fiber opticdevices 1120a - 1120c to generate rotary power. The devices 1120a -1120c are similar to the devices 920 described above. Light energy ispreferably provided to such devices via a common optical fiber 1144.The source 940 operates the devices 1120a - 11200 in a particularorder with a predetermined phase difference. An address system (notshown) may be utilized to address the devices by signals generatedfor such devices, The piston arms 1127a - 1127c are coupled to a camshaft 1125 at locations 1125a - 1125c respectively, which rotates inthe direction 1136 to provide rotary power. The rotary power may be46101520CA 02264632 1999-02- 19W0 98/50681 PCT/US98/08823utilized for any denied purpose, such as to operate a pump or agenerator to generate electrical power.FIG. 17B- 17C shows a configuration wherein the fiber optic devices areused to pump fluids. The fiber optic devices 118221 of FIG. 17B contains afiring cylinder 1184a and a second cylinder 1184b. The second or hydrauliccylinder contains an outlet port 1183b. Suitable fluid is supplied to the hydrauliccylinder via the inlet port 1183a. When the device 1182a is fired, the piston1186 moves downward, blocking the inlet port 1183a and simultaneouslydisplacing the fluid 1186 from the cylinder 1184b via the outlet port 1183b. Thespring 1185 forces the piston 1186 to return to its original position, uncoveringthe inlet port, until the next firing of the device 1182a. In this manner the device1182a may be utilized to pump fluid. The flow rate is controlled by the firingfrequency and the size of the fluid chamber 1184b.FIG. 17C shows two fiber optic devices 382b and 382c (similar to thedevice 382a) connected in series to pump a fluid. In this configuration, when thedevice 382b is fired, fluid 390 from the channels 391 of the device 382discharges into the chamber 391b of the device 382c via line 392. A one-waycheck valve allows the fluid to flow only in the direction of the device 382c.The firing of the device 382c discharges the fluid from the chamber 391b vialine 394 to the next stage.47CA 02264632 1999-02-19wo985053‘ PCT/US98/08823While the foregoing disclosure is directed to the preferred embodimentsof the invention, vaiious modifications will be apparent to those skilled in theart. It is intended that all variations within the scope and spirit of the appendedclaims be embraced by the foregoing disclosure.48

Claims (26)

WHAT WE CLAIM
1. A downhole injection evaluation system comprising:

(a) at least one downhole fiber optic sensor permanently disposed in a first well for sensing at least one parameter associated with injecting a fluid into a formation; and (b) at least one additional downhole fiber optic sensor in a second well, the at least one additional sensor operably connected to the at least one fiber optic sensor in the first well;

wherein said first well is one of (I) an injection well, and (II) a production well and the second well is the other of (I) an injection well, and (II) a production well.
2. A downhole injection evaluation system as claimed in claim 1 wherein said system further includes an electronic controller operably connected to at least one of the downhole fiber optic sensors.
3. A downhole injection evaluation system as claimed in claim 1 wherein said system further includes at least one downhole acoustic signal generator whereby signals generated by said at least one signal generator reflect off a flood fluid/hydrocarbon interface and are received by at least one of the downhole sensors.
4. The system of claim 2 wherein said electronic controller is at one of (i) a surface location, and (ii) a downhole location.
5. The system of claim 1 wherein said sensor in said first well is operably connected to said sensor in said second well by a fiber optic link.
6. The system of claim 1 further comprising a controller which controls a flow control device in at least one of the first well and the second well.
7. The system of claim 6 wherein said flow control device is selected from the group consisting of: (i) a valve, (ii) fluid control device, (iii) packer, (iv) sliding sleeve, (v) safety valve, (vi) an anchor, and (vii) a pump.
8. A method of producing hydrocarbons from a subterranean reservoir comprising:

a) permanently installing at least one downhole fiber optic sensor in a first well; and (b) operably connecting at least one fiber optic sensor in a second well to the at least one fiber optic sensor in the first well;

wherein the first well is one of (I) an injection well, and (II) a production well and the second well is the other of (I) an injection well, and (II) a production well.
9. The method of claim 8 further comprising using an electronic controller operably connected to at least one of the downhole fiber optic sensors.
10. The method of claim 8 further comprising (i) using at least one downhole acoustic signal generator for generating signals that interact with a flood front in said reservoir, and (ii) receiving signals resulting from said interaction with at least one of the downhole sensors.
11. The method of claim 8 further comprising positioning said electronic controller at one of (i) a surface location, and (ii) a downhole location.
12. The method of claim 8 further comprising operably connecting said at least one sensor in said first well to said at least one sensor in said second well by a fiber optic link.
13. The method of claim 8 further comprising using a controller for controlling a flow control device in at least one of the first well and the second well.
14. The method of claim 13 wherein said flow control device is selected from the group consisting of: (i) a valve, (ii) fluid control device, (iii) packer, (iv)sliding sleeve, (v) safety valve, (vi) an anchor, and (vii) a pump.
15. The method of claim 8 further comprising using an acoustic receiver in at least one of the first well and the second well for receiving acoustic signals.
16. The method of claim 8 further comprising using an acoustic transmitter in at least one of the first well and the second well for sending acoustic signals into said reservoir.
17. The method of claim 15 further comprising using said acoustic receiver for receiving acoustic signals indicative of at least one of (i) a location of a fluid front between the first well and the second well, and (ii) a fracture between the first well and the second well.
18. The method of claim 15 wherein said signals are produced by a change in said fracture.
19. The method of claim 18 further comprising an acoustic receiver in at least one of the first well and the second well.
20. The method of claim 19 wherein said acoustic receiver receives acoustic signals indicative of at least one of (i) a location of fluid front between the first well and the second well, and (ii) a fracture between the first well and the second well.
21. The method of claim 20 wherein said signals are produced by a change in a fracture in the earth formation.
22. The method of claim 14 further comprising using said acoustic receiver for receiving acoustic signals indicative of a location of fluid front between the first well and the second well.
23. The method of claim 14 further comprising using said acoustic receiver for receiving acoustic signals indicative of a location of a fracture between the first well and the second well.
24. The method of claim 8 further comprising:

(i) using an acoustic transmitter in one of said two wells for propagating acoustic signals into said reservoir, and (ii) using an acoustic receiver in the other of said two wells for receiving said signals after passing through said reservoir.
25. The method of claim 24 further comprising using a controller for processing said signals and determining from said received signals an indication of pressure transmissivity of said reservoir.
26. The method of claim 24 further comprising:

(A) using a controller for processing said received signals, and (B) using a controller for controlling the operation of a fluid control device in at least one of the first well and the second well.
CA002264632A 1997-05-02 1998-05-01 Wellbores utilizing fiber optic-based sensors and operating devices Expired - Fee Related CA2264632C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA002409277A CA2409277C (en) 1997-05-02 1998-05-01 Wellbores utilizing fiber optic-based sensors and operating devices

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
US4535497P 1997-05-02 1997-05-02
US60/045,354 1997-05-02
US4898997P 1997-06-09 1997-06-09
US60/048,989 1997-06-09
US5204297P 1997-07-09 1997-07-09
US60/052,042 1997-07-09
US6295397P 1997-10-10 1997-10-10
US60/062,953 1997-10-10
US7342598P 1998-02-02 1998-02-02
US60/073,425 1998-02-02
US60/079,446 1998-03-25
US7944698P 1998-03-26 1998-03-26
PCT/US1998/008823 WO1998050681A1 (en) 1997-05-02 1998-05-01 Wellbores utilizing fiber optic-based sensors and operating devices

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CA002409277A Division CA2409277C (en) 1997-05-02 1998-05-01 Wellbores utilizing fiber optic-based sensors and operating devices

Publications (2)

Publication Number Publication Date
CA2264632A1 CA2264632A1 (en) 1998-11-12
CA2264632C true CA2264632C (en) 2007-11-27

Family

ID=27556487

Family Applications (6)

Application Number Title Priority Date Filing Date
CA002524554A Expired - Fee Related CA2524554C (en) 1997-05-02 1998-05-01 Electrical energy from a wellbore light cell
CA002525065A Expired - Fee Related CA2525065C (en) 1997-05-02 1998-05-01 Wellbores utilizing fiber optic-based sensors and operating devices
CA002524666A Expired - Fee Related CA2524666C (en) 1997-05-02 1998-05-01 Wellbores utilizing fiber optic-based sensors and operating devices
CA002288784A Expired - Fee Related CA2288784C (en) 1997-05-02 1998-05-01 Monitoring of downhole parameters and tools utilizing fiber optics
CA002264632A Expired - Fee Related CA2264632C (en) 1997-05-02 1998-05-01 Wellbores utilizing fiber optic-based sensors and operating devices
CA002409277A Expired - Fee Related CA2409277C (en) 1997-05-02 1998-05-01 Wellbores utilizing fiber optic-based sensors and operating devices

Family Applications Before (4)

Application Number Title Priority Date Filing Date
CA002524554A Expired - Fee Related CA2524554C (en) 1997-05-02 1998-05-01 Electrical energy from a wellbore light cell
CA002525065A Expired - Fee Related CA2525065C (en) 1997-05-02 1998-05-01 Wellbores utilizing fiber optic-based sensors and operating devices
CA002524666A Expired - Fee Related CA2524666C (en) 1997-05-02 1998-05-01 Wellbores utilizing fiber optic-based sensors and operating devices
CA002288784A Expired - Fee Related CA2288784C (en) 1997-05-02 1998-05-01 Monitoring of downhole parameters and tools utilizing fiber optics

Family Applications After (1)

Application Number Title Priority Date Filing Date
CA002409277A Expired - Fee Related CA2409277C (en) 1997-05-02 1998-05-01 Wellbores utilizing fiber optic-based sensors and operating devices

Country Status (10)

Country Link
US (5) US6268911B1 (en)
EP (9) EP0910725B1 (en)
AU (2) AU7275398A (en)
CA (6) CA2524554C (en)
DE (2) DE69816743T2 (en)
DK (1) DK1355169T3 (en)
EA (3) EA200100863A1 (en)
GB (8) GB2364381B (en)
NO (6) NO991350L (en)
WO (2) WO1998050680A2 (en)

Families Citing this family (471)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6281489B1 (en) * 1997-05-02 2001-08-28 Baker Hughes Incorporated Monitoring of downhole parameters and tools utilizing fiber optics
US6787758B2 (en) * 2001-02-06 2004-09-07 Baker Hughes Incorporated Wellbores utilizing fiber optic-based sensors and operating devices
GB2364381B (en) * 1997-05-02 2002-03-06 Baker Hughes Inc Downhole injection evaluation system
WO1999000575A2 (en) * 1997-06-27 1999-01-07 Baker Hughes Incorporated Drilling system with sensors for determining properties of drilling fluid downhole
US6349766B1 (en) * 1998-05-05 2002-02-26 Baker Hughes Incorporated Chemical actuation of downhole tools
US7389787B2 (en) 1998-12-21 2008-06-24 Baker Hughes Incorporated Closed loop additive injection and monitoring system for oilfield operations
BR9916388A (en) 1998-12-21 2001-11-06 Baker Hughes Inc Chemical injection system and closed loop monitoring for oil field operations
US6347292B1 (en) 1999-02-17 2002-02-12 Den-Con Electronics, Inc. Oilfield equipment identification method and apparatus
US6429784B1 (en) * 1999-02-19 2002-08-06 Dresser Industries, Inc. Casing mounted sensors, actuators and generators
US6279660B1 (en) * 1999-08-05 2001-08-28 Cidra Corporation Apparatus for optimizing production of multi-phase fluid
US6257332B1 (en) * 1999-09-14 2001-07-10 Halliburton Energy Services, Inc. Well management system
US6467340B1 (en) * 1999-10-21 2002-10-22 Baker Hughes Incorporated Asphaltenes monitoring and control system
GB2377243B (en) * 2000-02-25 2004-07-14 Shell Int Research Hybrid well communication system
GB2360584B (en) * 2000-03-25 2004-05-19 Abb Offshore Systems Ltd Monitoring fluid flow through a filter
GB0007587D0 (en) * 2000-03-30 2000-05-17 Sensor Highway Ltd Flow-rate measurement
US8760657B2 (en) * 2001-04-11 2014-06-24 Gas Sensing Technology Corp In-situ detection and analysis of methane in coal bed methane formations with spectrometers
AU2001255282B2 (en) * 2000-04-11 2005-07-14 Welldog, Inc. In-situ detection and analysis of methane in coal bed methane formations with spectrometers
WO2001081239A2 (en) 2000-04-24 2001-11-01 Shell Internationale Research Maatschappij B.V. In situ recovery from a hydrocarbon containing formation
US6598675B2 (en) * 2000-05-30 2003-07-29 Baker Hughes Incorporated Downhole well-control valve reservoir monitoring and drawdown optimization system
US6437326B1 (en) * 2000-06-27 2002-08-20 Schlumberger Technology Corporation Permanent optical sensor downhole fluid analysis systems
US6601671B1 (en) * 2000-07-10 2003-08-05 Weatherford/Lamb, Inc. Method and apparatus for seismically surveying an earth formation in relation to a borehole
US6799637B2 (en) 2000-10-20 2004-10-05 Schlumberger Technology Corporation Expandable tubing and method
US6789621B2 (en) 2000-08-03 2004-09-14 Schlumberger Technology Corporation Intelligent well system and method
US7264050B2 (en) 2000-09-22 2007-09-04 Weatherford/Lamb, Inc. Method and apparatus for controlling wellbore equipment
US20020049575A1 (en) * 2000-09-28 2002-04-25 Younes Jalali Well planning and design
GB2367612B (en) * 2000-10-05 2003-04-16 Schlumberger Holdings Scale Monitor
US6893874B2 (en) 2000-10-17 2005-05-17 Baker Hughes Incorporated Method for storing and transporting crude oil
US7222676B2 (en) 2000-12-07 2007-05-29 Schlumberger Technology Corporation Well communication system
NO335594B1 (en) 2001-01-16 2015-01-12 Halliburton Energy Serv Inc Expandable devices and methods thereof
US6805202B2 (en) 2001-01-16 2004-10-19 Weatherford/Lamb, Inc. Well screen cover
US20020179364A1 (en) * 2001-01-19 2002-12-05 Baker Hughes Incorporated Apparatus and methods for using a surface oscillator as a downhole seismic source
AU2002257221B2 (en) 2001-04-24 2008-12-18 Shell Internationale Research Maatschappij B.V. In situ recovery from a oil shale formation
GB2414258B (en) * 2001-07-12 2006-02-08 Sensor Highway Ltd Method and apparatus to monitor, control and log subsea wells
US6557630B2 (en) * 2001-08-29 2003-05-06 Sensor Highway Limited Method and apparatus for determining the temperature of subterranean wells using fiber optic cable
US6891606B2 (en) 2001-10-11 2005-05-10 Baker Hughes Incorporated Real-time on-line sensing and control of mineral scale deposition from formation fluids
NZ532089A (en) 2001-10-24 2005-09-30 Shell Int Research Installation and use of removable heaters in a hydrocarbon containing formation
DE10161607B4 (en) * 2001-12-14 2004-03-04 Abb Patent Gmbh Method and device for determining and influencing the crude oil composition in crude oil production
US7445049B2 (en) * 2002-01-22 2008-11-04 Weatherford/Lamb, Inc. Gas operated pump for hydrocarbon wells
GB2402443B (en) * 2002-01-22 2005-10-12 Weatherford Lamb Gas operated pump for hydrocarbon wells
AU2003227025A1 (en) * 2002-03-08 2003-09-22 Shell Internationale Research Maatschappij B.V. Steerable soil penetration system
US7894297B2 (en) * 2002-03-22 2011-02-22 Schlumberger Technology Corporation Methods and apparatus for borehole sensing including downhole tension sensing
US7696901B2 (en) * 2002-03-22 2010-04-13 Schlumberger Technology Corporation Methods and apparatus for photonic power conversion downhole
US7187620B2 (en) * 2002-03-22 2007-03-06 Schlumberger Technology Corporation Method and apparatus for borehole sensing
US20030205376A1 (en) * 2002-04-19 2003-11-06 Schlumberger Technology Corporation Means and Method for Assessing the Geometry of a Subterranean Fracture During or After a Hydraulic Fracturing Treatment
GB0212015D0 (en) * 2002-05-24 2002-07-03 Schlumberger Holdings A method for monitoring fluid front movements in hydrocarbon reservoirs using different types of permanent sensors
US7084392B2 (en) * 2002-06-04 2006-08-01 Baker Hughes Incorporated Method and apparatus for a downhole fluorescence spectrometer
US20030223068A1 (en) * 2002-06-04 2003-12-04 Baker Hughes Incorporated Method and apparatus for a high resolution downhole spectrometer
CA2527498C (en) * 2002-06-10 2015-12-29 Trustees Of Tufts College Total organic carbon (toc) analyzer
US20030234921A1 (en) * 2002-06-21 2003-12-25 Tsutomu Yamate Method for measuring and calibrating measurements using optical fiber distributed sensor
AU2003261080A1 (en) * 2002-06-21 2004-01-06 Sensor Highway Limited Technique and system for measuring a characteristic in a subterranean well
US6886632B2 (en) * 2002-07-17 2005-05-03 Schlumberger Technology Corporation Estimating formation properties in inter-well regions by monitoring saturation and salinity front arrivals
CA2495342C (en) 2002-08-15 2008-08-26 Schlumberger Canada Limited Use of distributed temperature sensors during wellbore treatments
GB2409479B (en) * 2002-08-30 2006-12-06 Sensor Highway Ltd Methods and systems to activate downhole tools with light
WO2004020790A2 (en) * 2002-08-30 2004-03-11 Sensor Highway Limited Method and apparatus for logging a well using fiber optics
WO2004020789A2 (en) * 2002-08-30 2004-03-11 Sensor Highway Limited Method and apparatus for logging a well using a fiber optic line and sensors
GB2409871B (en) * 2002-08-30 2005-11-09 Schlumberger Holdings Optical fibre conveyance, telemetry, and/or actuation
US7219729B2 (en) * 2002-11-05 2007-05-22 Weatherford/Lamb, Inc. Permanent downhole deployment of optical sensors
US7255173B2 (en) * 2002-11-05 2007-08-14 Weatherford/Lamb, Inc. Instrumentation for a downhole deployment valve
US7451809B2 (en) 2002-10-11 2008-11-18 Weatherford/Lamb, Inc. Apparatus and methods for utilizing a downhole deployment valve
US7350590B2 (en) 2002-11-05 2008-04-01 Weatherford/Lamb, Inc. Instrumentation for a downhole deployment valve
US8224163B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Variable frequency temperature limited heaters
US20060031289A1 (en) * 2002-10-25 2006-02-09 Bettina Experton System and method for automatically launching and accessing netwrok addresses and applications
GB2395555B (en) * 2002-11-22 2005-10-12 Schlumberger Holdings Apparatus and method of analysing downhole water chemistry
US6997256B2 (en) 2002-12-17 2006-02-14 Sensor Highway Limited Use of fiber optics in deviated flows
US7100689B2 (en) 2002-12-23 2006-09-05 The Charles Stark Draper Laboratory Inc. Sensor apparatus and method of using same
CA2511826C (en) * 2002-12-26 2008-07-22 Baker Hughes Incorporated Alternative packer setting method
US6994162B2 (en) * 2003-01-21 2006-02-07 Weatherford/Lamb, Inc. Linear displacement measurement method and apparatus
US7028543B2 (en) * 2003-01-21 2006-04-18 Weatherford/Lamb, Inc. System and method for monitoring performance of downhole equipment using fiber optic based sensors
US6915686B2 (en) 2003-02-11 2005-07-12 Optoplan A.S. Downhole sub for instrumentation
US7040402B2 (en) 2003-02-26 2006-05-09 Schlumberger Technology Corp. Instrumented packer
GB2413871A (en) * 2003-02-27 2005-11-09 Schlumberger Holdings Estimation of formation characteristics in wells
US7159653B2 (en) 2003-02-27 2007-01-09 Weatherford/Lamb, Inc. Spacer sub
NZ567052A (en) 2003-04-24 2009-11-27 Shell Int Research Thermal process for subsurface formations
US6957574B2 (en) * 2003-05-19 2005-10-25 Weatherford/Lamb, Inc. Well integrity monitoring system
EP1629177B1 (en) * 2003-05-21 2007-04-18 Baker Hughes Incorporated Method and apparatus for determining an optimal pumping rate based on a downhole dew point pressure measurement
GB2402738B (en) * 2003-06-12 2005-08-03 Sensor Highway Ltd Scale detection
US20040252748A1 (en) * 2003-06-13 2004-12-16 Gleitman Daniel D. Fiber optic sensing systems and methods
US7252152B2 (en) 2003-06-18 2007-08-07 Weatherford/Lamb, Inc. Methods and apparatus for actuating a downhole tool
GB2403292A (en) * 2003-06-27 2004-12-29 Sensor Highway Ltd System and method for making fiber optic measurements in a wellbore using a downhole opto-electronic uint
CN100516460C (en) 2003-08-11 2009-07-22 国际壳牌研究有限公司 Method for installing a double ended distributed sensing fiber optical assembly within a guide conduit
US6950034B2 (en) * 2003-08-29 2005-09-27 Schlumberger Technology Corporation Method and apparatus for performing diagnostics on a downhole communication system
US20050088316A1 (en) * 2003-10-24 2005-04-28 Honeywell International Inc. Well control and monitoring system using high temperature electronics
GB2407595B8 (en) 2003-10-24 2017-04-12 Schlumberger Holdings System and method to control multiple tools
GB0326868D0 (en) * 2003-11-18 2003-12-24 Wood Group Logging Services In Fiber optic deployment apparatus and method
EA012141B1 (en) * 2003-11-21 2009-08-28 Бейкер Хьюз Инкорпорейтед Method and apparatus downhole fluid analysis using molecularly imprinted polymers
US7274443B2 (en) * 2003-12-10 2007-09-25 Custom Sensors And Technology Corrosion monitoring system, optical corrosion probe, and methods of use
GB0407982D0 (en) * 2004-04-08 2004-05-12 Wood Group Logging Services In "Methods of monitoring downhole conditions"
US7320364B2 (en) 2004-04-23 2008-01-22 Shell Oil Company Inhibiting reflux in a heated well of an in situ conversion system
US20050236161A1 (en) * 2004-04-23 2005-10-27 Michael Gay Optical fiber equipped tubing and methods of making and using
US7077200B1 (en) * 2004-04-23 2006-07-18 Schlumberger Technology Corp. Downhole light system and methods of use
US7777643B2 (en) * 2004-05-06 2010-08-17 Halliburton Energy Services, Inc. Optical communications with a bottom hole assembly
US7617873B2 (en) 2004-05-28 2009-11-17 Schlumberger Technology Corporation System and methods using fiber optics in coiled tubing
US7730967B2 (en) * 2004-06-22 2010-06-08 Baker Hughes Incorporated Drilling wellbores with optimal physical drill string conditions
GB2416871A (en) * 2004-07-29 2006-02-08 Schlumberger Holdings Well characterisation using distributed temperature sensor data
US7636671B2 (en) * 2004-08-30 2009-12-22 Halliburton Energy Services, Inc. Determining, pricing, and/or providing well servicing treatments and data processing systems therefor
US20060044940A1 (en) * 2004-09-01 2006-03-02 Hall David R High-speed, downhole, seismic measurement system
US7453768B2 (en) * 2004-09-01 2008-11-18 Hall David R High-speed, downhole, cross well measurement system
US7243726B2 (en) 2004-11-09 2007-07-17 Schlumberger Technology Corporation Enhancing a flow through a well pump
US7543635B2 (en) * 2004-11-12 2009-06-09 Halliburton Energy Services, Inc. Fracture characterization using reservoir monitoring devices
WO2006063094A1 (en) * 2004-12-09 2006-06-15 Caleb Brett Usa Inc. In situ optical computation fluid analysis system and method
US20060152383A1 (en) * 2004-12-28 2006-07-13 Tsutomu Yamate Methods and apparatus for electro-optical hybrid telemetry
US7428924B2 (en) * 2004-12-23 2008-09-30 Schlumberger Technology Corporation System and method for completing a subterranean well
US20070289741A1 (en) * 2005-04-15 2007-12-20 Rambow Frederick H K Method of Fracturing an Earth Formation, Earth Formation Borehole System, Method of Producing a Mineral Hydrocarbon Substance
CA2503268C (en) * 2005-04-18 2011-01-04 Core Laboratories Canada Ltd. Systems and methods for acquiring data in thermal recovery oil wells
US8224165B2 (en) 2005-04-22 2012-07-17 Shell Oil Company Temperature limited heater utilizing non-ferromagnetic conductor
WO2006119215A2 (en) * 2005-04-29 2006-11-09 Baker Hughes Incorporated Seismic analysis using electrical submersible pump as a seismic source
US9109433B2 (en) 2005-08-01 2015-08-18 Baker Hughes Incorporated Early kick detection in an oil and gas well
EP1941003B1 (en) 2005-10-24 2011-02-23 Shell Internationale Research Maatschappij B.V. Methods of filtering a liquid stream produced from an in situ heat treatment process
US7448448B2 (en) * 2005-12-15 2008-11-11 Schlumberger Technology Corporation System and method for treatment of a well
US7511813B2 (en) * 2006-01-26 2009-03-31 Schlumberger Technology Corporation Downhole spectral analysis tool
US20070183929A1 (en) * 2006-02-09 2007-08-09 OI Analytical Total organic carbon analysis
US8104338B2 (en) * 2006-02-21 2012-01-31 Baker Hughes Incorporated Method and apparatus for ion-selective discrimination of fluids downhole
US7373813B2 (en) * 2006-02-21 2008-05-20 Baker Hughes Incorporated Method and apparatus for ion-selective discrimination of fluids downhole
US7793718B2 (en) 2006-03-30 2010-09-14 Schlumberger Technology Corporation Communicating electrical energy with an electrical device in a well
US8056619B2 (en) 2006-03-30 2011-11-15 Schlumberger Technology Corporation Aligning inductive couplers in a well
US20070234789A1 (en) * 2006-04-05 2007-10-11 Gerard Glasbergen Fluid distribution determination and optimization with real time temperature measurement
US7398680B2 (en) 2006-04-05 2008-07-15 Halliburton Energy Services, Inc. Tracking fluid displacement along a wellbore using real time temperature measurements
GB2436872A (en) 2006-04-06 2007-10-10 Qinetiq Ltd Fibre-optic sensor package
CA2544457C (en) * 2006-04-21 2009-07-07 Mostar Directional Technologies Inc. System and method for downhole telemetry
US7533719B2 (en) 2006-04-21 2009-05-19 Shell Oil Company Wellhead with non-ferromagnetic materials
US7969819B2 (en) * 2006-05-09 2011-06-28 Schlumberger Technology Corporation Method for taking time-synchronized seismic measurements
US7857046B2 (en) * 2006-05-31 2010-12-28 Schlumberger Technology Corporation Methods for obtaining a wellbore schematic and using same for wellbore servicing
US20080135237A1 (en) * 2006-06-01 2008-06-12 Schlumberger Technology Corporation Monitoring injected nonhydrocarbon and nonaqueous fluids through downhole fluid analysis
NO325342B1 (en) 2006-06-19 2008-03-31 Alf Egil Stensen Control device and flow templates and methods of using the control device.
US7654318B2 (en) * 2006-06-19 2010-02-02 Schlumberger Technology Corporation Fluid diversion measurement methods and systems
US20080031578A1 (en) * 2006-08-02 2008-02-07 Joseph Varkey Packaging for encasing an optical fiber in a cable
US9201207B2 (en) * 2006-08-02 2015-12-01 Schlumberger Technology Corporation Packaging for encasing an optical fiber in a cable
GB0616330D0 (en) * 2006-08-17 2006-09-27 Schlumberger Holdings A method of deriving reservoir layer pressures and measuring gravel pack effectiveness in a flowing well using permanently installed distributed temperature
US7954560B2 (en) 2006-09-15 2011-06-07 Baker Hughes Incorporated Fiber optic sensors in MWD Applications
US8770835B2 (en) * 2006-10-06 2014-07-08 Baker Hughes Incorporated Apparatus and methods for estimating a characteristic of a fluid downhole using thermal properties of the fluid
GB2455947B (en) 2006-10-20 2011-05-11 Shell Int Research Heating hydrocarbon containing formations in a checkerboard pattern staged process
US20080143552A1 (en) * 2006-12-13 2008-06-19 Mallison Edgar R Sensor array for down-hole measurement
US8553494B2 (en) * 2007-01-11 2013-10-08 Baker Hughes Incorporated System for measuring stress in downhole tubulars
EP2111496B1 (en) 2007-02-01 2018-07-25 Cameron International Corporation Chemical-injection management system
GB2460980B (en) 2007-04-20 2011-11-02 Shell Int Research Controlling and assessing pressure conditions during treatment of tar sands formations
US7565834B2 (en) * 2007-05-21 2009-07-28 Schlumberger Technology Corporation Methods and systems for investigating downhole conditions
US20080308272A1 (en) * 2007-06-12 2008-12-18 Thomeer Hubertus V Real Time Closed Loop Interpretation of Tubing Treatment Systems and Methods
US7580797B2 (en) * 2007-07-31 2009-08-25 Schlumberger Technology Corporation Subsurface layer and reservoir parameter measurements
US7652479B2 (en) * 2007-08-06 2010-01-26 Scribner Associates, Inc. Electrolyte measurement device and measurement procedure
US7644610B2 (en) * 2007-08-24 2010-01-12 Baker Hughes Incorporated Automated formation fluid clean-up to sampling switchover
WO2014068581A2 (en) * 2007-10-08 2014-05-08 Halliburton Offshore Services, Inc A nano-robots system and methods for well logging and borehole measurements
US8146661B2 (en) 2007-10-19 2012-04-03 Shell Oil Company Cryogenic treatment of gas
US8121790B2 (en) 2007-11-27 2012-02-21 Schlumberger Technology Corporation Combining reservoir modeling with downhole sensors and inductive coupling
CN101187307B (en) * 2007-12-14 2012-07-25 北京蔚蓝仕科技有限公司 Optical fiber multi-point temperature and pressure measuring method for intelligent well and the device therefor
WO2009094630A1 (en) * 2008-01-25 2009-07-30 Schlumberger Technology Corporation In-line composition and volumetric analysis of vent gases and flooding of the annular space of flexible pipe
WO2009129143A1 (en) 2008-04-18 2009-10-22 Shell Oil Company Systems, methods, and processes utilized for treating hydrocarbon containing subsurface formations
US20090279193A1 (en) * 2008-04-21 2009-11-12 Jones Clyde B Method and apparatus for mounting sensors in frames
WO2009134158A1 (en) 2008-04-28 2009-11-05 Schlumberger Canada Limited Method for monitoring flood front movement during flooding of subsurface formations
US7784539B2 (en) * 2008-05-01 2010-08-31 Schlumberger Technology Corporation Hydrocarbon recovery testing method
US20090277629A1 (en) * 2008-05-12 2009-11-12 Mendez Luis E Acoustic and Fiber Optic Network for Use in Laterals Downhole
US8555966B2 (en) * 2008-05-13 2013-10-15 Baker Hughes Incorporated Formation testing apparatus and methods
US7852708B2 (en) * 2008-05-15 2010-12-14 Schlumberger Technology Corporation Sensing and actuating in marine deployed cable and streamer applications
US8096354B2 (en) * 2008-05-15 2012-01-17 Schlumberger Technology Corporation Sensing and monitoring of elongated structures
US7942202B2 (en) * 2008-05-15 2011-05-17 Schlumberger Technology Corporation Continuous fibers for use in well completion, intervention, and other subterranean applications
US8863833B2 (en) 2008-06-03 2014-10-21 Baker Hughes Incorporated Multi-point injection system for oilfield operations
US8413744B2 (en) * 2008-07-31 2013-04-09 Baker Hughes Incorporated System and method for controlling the integrity of a drilling system
GB0815297D0 (en) * 2008-08-21 2008-09-24 Qinetiq Ltd Conduit monitoring
WO2010045115A2 (en) 2008-10-13 2010-04-22 Shell Oil Company Treating subsurface hydrocarbon containing formations and the systems, methods, and processes utilized
US9546548B2 (en) 2008-11-06 2017-01-17 Schlumberger Technology Corporation Methods for locating a cement sheath in a cased wellbore
US8408064B2 (en) * 2008-11-06 2013-04-02 Schlumberger Technology Corporation Distributed acoustic wave detection
CA2750905C (en) 2008-12-31 2018-01-30 Shell Internationale Research Maatschappij B.V. Method for monitoring deformation of well equipment
US7969571B2 (en) * 2009-01-15 2011-06-28 Baker Hughes Incorporated Evanescent wave downhole fiber optic spectrometer
DE102009007142A1 (en) * 2009-02-02 2010-08-05 Draka Industrial Cable Gmbh Fiber optic measuring device
CA2749540C (en) 2009-02-09 2017-06-20 Shell Internationale Research Maatschappij B.V. Areal monitoring using distributed acoustic sensing
AU2010210332B2 (en) 2009-02-09 2014-02-06 Shell Internationale Research Maatschappij B.V. Method of detecting fluid in-flows downhole
US20100200743A1 (en) * 2009-02-09 2010-08-12 Larry Dale Forster Well collision avoidance using distributed acoustic sensing
US20100207019A1 (en) * 2009-02-17 2010-08-19 Schlumberger Technology Corporation Optical monitoring of fluid flow
US9091133B2 (en) 2009-02-20 2015-07-28 Halliburton Energy Services, Inc. Swellable material activation and monitoring in a subterranean well
EP2401475B1 (en) 2009-02-27 2017-05-10 Baker Hughes Incorporated System and method for wellbore monitoring
US8793110B2 (en) * 2009-03-13 2014-07-29 Exxonmobil Upstream Research Company Method for predicting fluid flow
US8141633B2 (en) * 2009-03-25 2012-03-27 Occidental Chemical Corporation Detecting fluids in a wellbore
US20100252268A1 (en) * 2009-04-03 2010-10-07 Hongren Gu Use of calibration injections with microseismic monitoring
CA2758192A1 (en) 2009-04-10 2010-10-14 Shell Internationale Research Maatschappij B.V. Treatment methodologies for subsurface hydrocarbon containing formations
BRPI1014462A2 (en) 2009-05-04 2016-04-05 Cameron Int Corp system and method for providing metered high pressure fluid injection utilizing low pressure feed lines
GB2483584B (en) * 2009-05-27 2014-12-31 Optasense Holdings Ltd Fracture monitoring
WO2010141028A1 (en) * 2009-06-06 2010-12-09 Ziebel (Us) Inc. Guide tool for guiding downhole tools through wellbore restrictions
GB0910978D0 (en) * 2009-06-25 2009-08-05 Wellmack Resources Ltd Method and apparatus for monitoring fluids
EP2452043A4 (en) * 2009-07-10 2014-04-30 Schlumberger Services Petrol Identifying types of sensors based on sensor measurement data
US20110019178A1 (en) * 2009-07-22 2011-01-27 Christos Vlatas Method for post processing fiber optic strain measurement data
US8961907B2 (en) * 2009-07-28 2015-02-24 Menixis Limited Apparatus for the detection and analysis of particles in fluids
AU2010279465B2 (en) * 2009-08-05 2014-07-31 Shell Internationale Research Maatschappij B.V. Systems and methods for monitoring a well
AU2010279466B2 (en) * 2009-08-05 2015-04-09 Shell Internationale Research Maatschappij B.V. Systems and methods for monitoring a well
US11639862B1 (en) 2009-09-15 2023-05-02 Astro Technology Group, Llc Apparatus, system and method enabling multiplexed arrangement of optical fiber for sensing of operating conditions within a structural member
GB2476449B (en) * 2009-09-18 2013-12-11 Optasense Holdings Ltd Wide area seismic detection
US8839850B2 (en) 2009-10-07 2014-09-23 Schlumberger Technology Corporation Active integrated completion installation system and method
US20110088462A1 (en) * 2009-10-21 2011-04-21 Halliburton Energy Services, Inc. Downhole monitoring with distributed acoustic/vibration, strain and/or density sensing
US20110090496A1 (en) * 2009-10-21 2011-04-21 Halliburton Energy Services, Inc. Downhole monitoring with distributed optical density, temperature and/or strain sensing
US9091151B2 (en) 2009-11-19 2015-07-28 Halliburton Energy Services, Inc. Downhole optical radiometry tool
WO2011073789A2 (en) * 2009-12-18 2011-06-23 Schlumberger Technology B.V. Immersion probe using ultraviolet and infrared radiation for multi-phase flow analysis
US20110146992A1 (en) * 2009-12-22 2011-06-23 Baker Hughes Incorporated Controllable Chemical Injection For Multiple Zone Completions
US9109944B2 (en) 2009-12-23 2015-08-18 Shell Oil Company Method and system for enhancing the spatial resolution of a fiber optical distributed acoustic sensing assembly
GB2488280B (en) 2009-12-23 2014-06-18 Shell Int Research Detecting broadside and directional acoustic signals with a fiber optical distributed acoustic sensing (DAS) assembly
US9388686B2 (en) 2010-01-13 2016-07-12 Halliburton Energy Services, Inc. Maximizing hydrocarbon production while controlling phase behavior or precipitation of reservoir impairing liquids or solids
CA2693640C (en) 2010-02-17 2013-10-01 Exxonmobil Upstream Research Company Solvent separation in a solvent-dominated recovery process
CA2789194C (en) 2010-02-17 2016-07-05 Pile Dynamics, Inc. Pile sensing device and method of using the same
EP2392917A1 (en) * 2010-02-19 2011-12-07 Services Pétroliers Schlumberger Optically stimulated luminescence radiation measurement device
US8783355B2 (en) 2010-02-22 2014-07-22 Schlumberger Technology Corporation Virtual flowmeter for a well
CA2696638C (en) 2010-03-16 2012-08-07 Exxonmobil Upstream Research Company Use of a solvent-external emulsion for in situ oil recovery
US8833453B2 (en) 2010-04-09 2014-09-16 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US9127538B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Methodologies for treatment of hydrocarbon formations using staged pyrolyzation
CA2705643C (en) 2010-05-26 2016-11-01 Imperial Oil Resources Limited Optimization of solvent-dominated recovery
CA2705680C (en) 2010-05-27 2012-11-27 Imperial Oil Resources Limited Creation of hydrate barrier during in situ hydrocarbon recovery
EP2390461A1 (en) * 2010-05-31 2011-11-30 Welltec A/S Wellbore surveillance system
CA2801549A1 (en) * 2010-06-04 2011-12-08 Dow Global Technologies Llc Method for determining scale deposition in enclosed spaces using fluorescence
US8505625B2 (en) 2010-06-16 2013-08-13 Halliburton Energy Services, Inc. Controlling well operations based on monitored parameters of cement health
WO2011163286A1 (en) 2010-06-25 2011-12-29 Shell Oil Company Signal stacking in fiber optic distributed acoustic sensing
US8662165B2 (en) * 2010-07-06 2014-03-04 Baker Hughes Incorporated Fiber support arrangement and method
US8564315B2 (en) * 2010-07-08 2013-10-22 Schlumberger Technology Corporation Downhole corrosion monitoring
US8930143B2 (en) 2010-07-14 2015-01-06 Halliburton Energy Services, Inc. Resolution enhancement for subterranean well distributed optical measurements
US8584519B2 (en) 2010-07-19 2013-11-19 Halliburton Energy Services, Inc. Communication through an enclosure of a line
US8613313B2 (en) * 2010-07-19 2013-12-24 Schlumberger Technology Corporation System and method for reservoir characterization
US8924158B2 (en) 2010-08-09 2014-12-30 Schlumberger Technology Corporation Seismic acquisition system including a distributed sensor having an optical fiber
US20120046866A1 (en) * 2010-08-23 2012-02-23 Schlumberger Technology Corporation Oilfield applications for distributed vibration sensing technology
RU2586561C2 (en) * 2010-11-22 2016-06-10 Адвансед Камбасчен Энерджи Системс, Инк. Fire heat generator, system and method for increasing reservoir recovery
US20120125596A1 (en) * 2010-11-24 2012-05-24 Baker Hughes Incorporated Ruggedized fiber optic cable and method of optical fiber transmission
GB201020358D0 (en) 2010-12-01 2011-01-12 Qinetiq Ltd Fracture characterisation
US9268773B2 (en) 2010-12-06 2016-02-23 Baker Hughes Incorporated System and methods for integrating and using information relating to a complex process
US9234999B2 (en) 2010-12-21 2016-01-12 Shell Oil Company System and method for making distributed measurements using fiber optic cable
WO2012084997A2 (en) 2010-12-21 2012-06-28 Shell Internationale Research Maatschappij B.V. Detecting the direction of acoustic signals with a fiber optical distributed acoustic sensing (das) assembly
US8636063B2 (en) 2011-02-16 2014-01-28 Halliburton Energy Services, Inc. Cement slurry monitoring
US9074462B2 (en) 2011-03-09 2015-07-07 Shell Oil Company Integrated fiber optic monitoring system for a wellsite and method of using same
US9075155B2 (en) 2011-04-08 2015-07-07 Halliburton Energy Services, Inc. Optical fiber based downhole seismic sensor systems and methods
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US9708907B2 (en) 2011-04-26 2017-07-18 Baker Hughes Incorporated Apparatus and method for estimating formation lithology using X-ray flourescence
AU2012257724B2 (en) 2011-05-18 2015-06-18 Shell Internationale Research Maatschappij B.V. Method and system for protecting a conduit in an annular space around a well casing
US8448720B2 (en) 2011-06-02 2013-05-28 Halliburton Energy Services, Inc. Optimized pressure drilling with continuous tubing drill string
AU2012271016B2 (en) 2011-06-13 2014-12-04 Shell Internationale Research Maatschappij B.V. Hydraulic fracture monitoring using active seismic sources with receivers in the treatment well
US9091589B2 (en) 2011-06-20 2015-07-28 Shell Oil Company Fiber optic cable with increased directional sensitivity
US9222350B2 (en) 2011-06-21 2015-12-29 Diamond Innovations, Inc. Cutter tool insert having sensing device
US9043154B2 (en) * 2011-06-21 2015-05-26 Baker Hughes Incorporated Computer-based method for real-time three-dimensional geological model calculation and reservoir navigation
RU2475641C1 (en) * 2011-07-07 2013-02-20 ООО НТП "Нефтегазтехника" Method of investigation of leaktightness or leakiness of packer system and cement bridge of well
US8557052B2 (en) * 2011-08-03 2013-10-15 Baker Hughes Incorporated Method and apparatus for stripping optical fibers and optical fiber assemblies
US8997860B2 (en) * 2011-08-05 2015-04-07 Halliburton Energy Services, Inc. Methods for monitoring the formation and transport of a fracturing fluid using opticoanalytical devices
US9395306B2 (en) * 2011-08-05 2016-07-19 Halliburton Energy Services, Inc. Methods for monitoring fluids within or produced from a subterranean formation during acidizing operations using opticoanalytical devices
US9464512B2 (en) 2011-08-05 2016-10-11 Halliburton Energy Services, Inc. Methods for fluid monitoring in a subterranean formation using one or more integrated computational elements
US8908165B2 (en) 2011-08-05 2014-12-09 Halliburton Energy Services, Inc. Systems and methods for monitoring oil/gas separation processes
US20130032545A1 (en) * 2011-08-05 2013-02-07 Freese Robert P Methods for monitoring and modifying a fluid stream using opticoanalytical devices
US9222348B2 (en) 2011-08-05 2015-12-29 Halliburton Energy Services, Inc. Methods for monitoring the formation and transport of an acidizing fluid using opticoanalytical devices
US9297254B2 (en) 2011-08-05 2016-03-29 Halliburton Energy Services, Inc. Methods for monitoring fluids within or produced from a subterranean formation using opticoanalytical devices
US9182355B2 (en) * 2011-08-05 2015-11-10 Halliburton Energy Services, Inc. Systems and methods for monitoring a flow path
US9261461B2 (en) 2011-08-05 2016-02-16 Halliburton Energy Services, Inc. Systems and methods for monitoring oil/gas separation processes
US9441149B2 (en) * 2011-08-05 2016-09-13 Halliburton Energy Services, Inc. Methods for monitoring the formation and transport of a treatment fluid using opticoanalytical devices
US8960294B2 (en) 2011-08-05 2015-02-24 Halliburton Energy Services, Inc. Methods for monitoring fluids within or produced from a subterranean formation during fracturing operations using opticoanalytical devices
US20130031972A1 (en) * 2011-08-05 2013-02-07 Halliburton Energy Services, Inc. Methods for monitoring a water source using opticoanalytical devices
US9222892B2 (en) 2011-08-05 2015-12-29 Halliburton Energy Services, Inc. Systems and methods for monitoring the quality of a fluid
US9206386B2 (en) 2011-08-05 2015-12-08 Halliburton Energy Services, Inc. Systems and methods for analyzing microbiological substances
US8994929B2 (en) 2011-08-09 2015-03-31 Shell Oil Company Method and apparatus for measuring seismic parameters of a seismic vibrator
US9127532B2 (en) 2011-09-07 2015-09-08 Halliburton Energy Services, Inc. Optical casing collar locator systems and methods
US9127531B2 (en) 2011-09-07 2015-09-08 Halliburton Energy Services, Inc. Optical casing collar locator systems and methods
WO2013039485A1 (en) 2011-09-13 2013-03-21 Halliburton Energy Services, Inc. Measuring an adsorbing chemical in downhole fluids
US8875807B2 (en) 2011-09-30 2014-11-04 Elwha Llc Optical power for self-propelled mineral mole
US8746369B2 (en) 2011-09-30 2014-06-10 Elwha Llc Umbilical technique for robotic mineral mole
US9249559B2 (en) 2011-10-04 2016-02-02 Schlumberger Technology Corporation Providing equipment in lateral branches of a well
US9297767B2 (en) 2011-10-05 2016-03-29 Halliburton Energy Services, Inc. Downhole species selective optical fiber sensor systems and methods
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
CA2851877C (en) 2011-10-17 2021-02-09 Schlumberger Canada Limited Dual use cable with fiber optic packaging for use in wellbore operations
CN107976709B (en) 2011-12-15 2019-07-16 国际壳牌研究有限公司 (DAS) combine detection transverse direction acoustical signal is sensed with optical fiber distributed acoustic
EP2607609A1 (en) * 2011-12-21 2013-06-26 Welltec A/S Stimulation method
CN102518426A (en) * 2011-12-31 2012-06-27 中国石油集团川庆钻探工程有限公司长庆井下技术作业公司 Hydrofracture bottom-hole pressure monitoring process
CA2858100C (en) 2011-12-31 2018-10-23 Abdel Nasser Abitrabi Real-time dynamic data validation apparatus, system, program code, computer readable medium, and methods for intelligent fields
US9429678B2 (en) * 2011-12-31 2016-08-30 Saudi Arabian Oil Company Apparatus, computer readable media, and computer programs for estimating missing real-time data for intelligent fields
US8215164B1 (en) * 2012-01-02 2012-07-10 HydroConfidence Inc. Systems and methods for monitoring groundwater, rock, and casing for production flow and leakage of hydrocarbon fluids
CA2898956A1 (en) 2012-01-23 2013-08-01 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
AU2012367347A1 (en) 2012-01-23 2014-08-28 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
US9644476B2 (en) 2012-01-23 2017-05-09 Schlumberger Technology Corporation Structures having cavities containing coupler portions
US9175560B2 (en) 2012-01-26 2015-11-03 Schlumberger Technology Corporation Providing coupler portions along a structure
AU2012368316A1 (en) * 2012-01-31 2014-09-18 Halliburton Energy Services, Inc. Sensor conditioning apparatus, systems, and methods
US9938823B2 (en) 2012-02-15 2018-04-10 Schlumberger Technology Corporation Communicating power and data to a component in a well
WO2013126388A1 (en) * 2012-02-21 2013-08-29 Baker Hughes Incorporated Early kick detection in an oil and gas well
US9366133B2 (en) 2012-02-21 2016-06-14 Baker Hughes Incorporated Acoustic standoff and mud velocity using a stepped transmitter
GB201203854D0 (en) 2012-03-05 2012-04-18 Qinetiq Ltd Monitoring flow conditions downwell
US10060250B2 (en) 2012-03-13 2018-08-28 Halliburton Energy Services, Inc. Downhole systems and methods for water source determination
US9383307B2 (en) 2012-04-26 2016-07-05 Halliburton Energy Services, Inc. Methods and devices for optically determining a characteristic of a substance
US9702811B2 (en) 2012-04-26 2017-07-11 Halliburton Energy Services, Inc. Methods and devices for optically determining a characteristic of a substance using integrated computational elements
US9658149B2 (en) 2012-04-26 2017-05-23 Halliburton Energy Services, Inc. Devices having one or more integrated computational elements and methods for determining a characteristic of a sample by computationally combining signals produced therewith
US9309761B2 (en) 2012-05-16 2016-04-12 Baker Hughes Incorporated Communication system for extended reach wells
US10036234B2 (en) 2012-06-08 2018-07-31 Schlumberger Technology Corporation Lateral wellbore completion apparatus and method
US8893785B2 (en) 2012-06-12 2014-11-25 Halliburton Energy Services, Inc. Location of downhole lines
WO2014004026A1 (en) 2012-06-28 2014-01-03 Schlumberger Canada Limited High power opto-electrical cable with multiple power and telemetry paths
US8899351B2 (en) * 2012-07-16 2014-12-02 Halliburton Energy Services, Inc. Apparatus and method for adjusting power units of downhole motors
WO2014022346A1 (en) 2012-08-01 2014-02-06 Shell Oil Company Cable comprising twisted sinusoid for use in distributed sensing
SG11201501174PA (en) * 2012-09-14 2015-05-28 Halliburton Energy Services Inc Systems and methods for monitoring a flow path
US9086383B2 (en) 2012-09-14 2015-07-21 Halliburton Energy Services, Inc. Systems and methods for monitoring chemical processes
BR112015006647B1 (en) 2012-09-26 2020-10-20 Halliburton Energy Services, Inc well sensor system and detection method in a well bore
US9598952B2 (en) 2012-09-26 2017-03-21 Halliburton Energy Services, Inc. Snorkel tube with debris barrier for electronic gauges placed on sand screens
MX356861B (en) 2012-09-26 2018-06-18 Halliburton Energy Services Inc Single trip multi-zone completion systems and methods.
US8746337B2 (en) 2012-09-26 2014-06-10 Halliburton Energy Services, Inc. Single trip multi-zone completion systems and methods
AU2012391052B2 (en) * 2012-09-26 2016-06-23 Halliburton Energy Services, Inc. Multiple zone integrated intelligent well completion
SG11201502083TA (en) 2012-09-26 2015-04-29 Halliburton Energy Services Inc Method of placing distributed pressure gauges across screens
US8857518B1 (en) 2012-09-26 2014-10-14 Halliburton Energy Services, Inc. Single trip multi-zone completion systems and methods
US9163488B2 (en) 2012-09-26 2015-10-20 Halliburton Energy Services, Inc. Multiple zone integrated intelligent well completion
SG11201501843WA (en) 2012-09-26 2015-04-29 Halliburton Energy Services Inc Snorkel tube with debris barrier for electronic gauges placed on sand screens
US8893783B2 (en) 2012-09-26 2014-11-25 Halliburton Energy Services, Inc. Tubing conveyed multiple zone integrated intelligent well completion
US9273548B2 (en) 2012-10-10 2016-03-01 Halliburton Energy Services, Inc. Fiberoptic systems and methods detecting EM signals via resistive heating
US9303499B2 (en) 2012-10-18 2016-04-05 Elwha Llc Systems and methods for enhancing recovery of hydrocarbon deposits
GB2507666B (en) * 2012-11-02 2017-08-16 Silixa Ltd Determining a profile of fluid type in a well by distributed acoustic sensing
GB201219797D0 (en) * 2012-11-02 2012-12-19 Silixa Ltd Acoustic illumination for flow-monitoring
US9523254B1 (en) 2012-11-06 2016-12-20 Sagerider, Incorporated Capillary pump down tool
US9823373B2 (en) 2012-11-08 2017-11-21 Halliburton Energy Services, Inc. Acoustic telemetry with distributed acoustic sensing system
US9188694B2 (en) 2012-11-16 2015-11-17 Halliburton Energy Services, Inc. Optical interferometric sensors for measuring electromagnetic fields
US9784862B2 (en) 2012-11-30 2017-10-10 Baker Hughes Incorporated Distributed downhole acousting sensing
US9239406B2 (en) 2012-12-18 2016-01-19 Halliburton Energy Services, Inc. Downhole treatment monitoring systems and methods using ion selective fiber sensors
US9575209B2 (en) 2012-12-22 2017-02-21 Halliburton Energy Services, Inc. Remote sensing methods and systems using nonlinear light conversion and sense signal transformation
US9091785B2 (en) 2013-01-08 2015-07-28 Halliburton Energy Services, Inc. Fiberoptic systems and methods for formation monitoring
US10247840B2 (en) 2013-01-24 2019-04-02 Halliburton Energy Services, Inc. Optical well logging
US20140202240A1 (en) * 2013-01-24 2014-07-24 Halliburton Energy Services, Inc. Flow velocity and acoustic velocity measurement with distributed acoustic sensing
US9608627B2 (en) 2013-01-24 2017-03-28 Halliburton Energy Services Well tool having optical triggering device for controlling electrical power delivery
US10241229B2 (en) * 2013-02-01 2019-03-26 Halliburton Energy Services, Inc. Distributed feedback fiber laser strain sensor systems and methods for subsurface EM field monitoring
JP6216520B2 (en) * 2013-03-05 2017-10-18 株式会社大林組 In-situ measuring device
US9279317B2 (en) * 2013-03-14 2016-03-08 Baker Hughes Incorporated Passive acoustic resonator for fiber optic cable tubing
US9057232B2 (en) * 2013-04-11 2015-06-16 Sanuwave, Inc. Apparatuses and methods for generating shock waves for use in the energy industry
US10808521B2 (en) 2013-05-31 2020-10-20 Conocophillips Company Hydraulic fracture analysis
US9201155B2 (en) * 2013-06-12 2015-12-01 Halliburton Energy Services, Inc. Systems and methods for downhole electromagnetic field measurement
GB2558448B (en) * 2013-06-20 2018-09-26 Halliburton Energy Services Inc Device and method for corrosion detection
WO2014204472A1 (en) * 2013-06-20 2014-12-24 Halliburton Energy Services Inc. Integrated computational element-based optical sensor network and related methods
WO2014204475A1 (en) * 2013-06-20 2014-12-24 Halliburton Energy Services Inc. Device and method for corrosion detection and formation evaluation using integrated computational elements
US10100594B2 (en) * 2013-06-27 2018-10-16 Ge Oil & Gas Uk Limited Control system and a method for monitoring a filter in an underwater hydrocarbon well
GB2515533A (en) * 2013-06-27 2014-12-31 Vetco Gray Controls Ltd Monitoring a hydraulic fluid filter
US9945979B2 (en) * 2013-08-02 2018-04-17 Halliburton Energy Services, Inc. Acoustic sensor metadata dubbing channel
US10329863B2 (en) 2013-08-06 2019-06-25 A&O Technologies LLC Automatic driller
US9322250B2 (en) * 2013-08-15 2016-04-26 Baker Hughes Incorporated System for gas hydrate production and method thereof
RU2551670C2 (en) * 2013-08-19 2015-05-27 Федеральное государственное бюджетное учреждение науки институт океанологии им. П.П. Ширшова Российской академии наук Hydrological-optical-chemical probe
US10036242B2 (en) 2013-08-20 2018-07-31 Halliburton Energy Services, Inc. Downhole acoustic density detection
WO2015026324A1 (en) 2013-08-20 2015-02-26 Halliburton Energy Services, Inc. Subsurface fiber optic stimulation-flow meter
US10386215B2 (en) * 2013-08-23 2019-08-20 Baker Hughes, A Ge Company, Llc Method for monitoring a flow using distributed acoustic sensing
US9702243B2 (en) 2013-10-04 2017-07-11 Baker Hughes Incorporated Systems and methods for monitoring temperature using a magnetostrictive probe
US9239396B2 (en) * 2013-10-14 2016-01-19 Hunt Energy Enterprises Llc Electroseismic surveying in exploration and production environments
WO2015057233A1 (en) * 2013-10-17 2015-04-23 Halliburton Energy Services, Inc. Distributed fiber optic sensing devices for monitoring the health of an electrical submersible pump
US20160230531A1 (en) * 2013-10-30 2016-08-11 Halliburton Energy Services Inc. Abandoned well monitoring system
GB2535640B (en) 2013-11-05 2020-08-19 Halliburton Energy Services Inc Downhole position sensor
US9513398B2 (en) 2013-11-18 2016-12-06 Halliburton Energy Services, Inc. Casing mounted EM transducers having a soft magnetic layer
GB2537494B (en) 2013-12-23 2020-09-16 Halliburton Energy Services Inc Downhole signal repeater
GB2536817B (en) 2013-12-30 2021-02-17 Halliburton Energy Services Inc Position indicator through acoustics
US10457853B2 (en) 2014-01-10 2019-10-29 Arizona Board Of Regents On Behalf Of Arizona State University System and method for facilitating subterranean hydrocarbon extraction utilizing electrochemical reactions with metals
WO2015108540A1 (en) * 2014-01-20 2015-07-23 Halliburton Energy Services, Inc. Using downhole strain measurements to determine hydraulic fracture system geometry
AU2014379654C1 (en) 2014-01-22 2018-01-18 Halliburton Energy Services, Inc. Remote tool position and tool status indication
EP3099893A4 (en) * 2014-01-31 2017-10-18 Services Pétroliers Schlumberger Monitoring of equipment associated with a borehole/conduit
US9714741B2 (en) 2014-02-20 2017-07-25 Pcs Ferguson, Inc. Method and system to volumetrically control additive pump
EP2910977B1 (en) * 2014-02-21 2020-08-05 Sercel Method for monitoring an electrical power supply line comprised in a seismic cable, corresponding system, computer program product and non-transitory computer-readable carrier medium
US9909598B1 (en) * 2014-02-24 2018-03-06 Landtec North America, Inc. Well monitoring and pressure controlled landfill pump
WO2015130298A1 (en) 2014-02-28 2015-09-03 Halliburton Energy Services, Inc. Optical electric field sensors having passivated electrodes
GB2539583B (en) * 2014-03-18 2017-08-23 Schlumberger Technology Bv Flow monitoring using distributed strain measurement
AU2014388379B2 (en) * 2014-03-24 2017-07-13 Halliburton Energy Services, Inc. Well tools with vibratory telemetry to optical line therein
US9745975B2 (en) 2014-04-07 2017-08-29 Tundra Process Solutions Ltd. Method for controlling an artificial lifting system and an artificial lifting system employing same
US9529112B2 (en) * 2014-04-11 2016-12-27 Schlumberger Technology Corporation Resistivity of chemically stimulated reservoirs
EP3129591B1 (en) 2014-05-01 2020-08-05 Halliburton Energy Services, Inc. Guided drilling methods and systems employing a casing segment with at least one transmission crossover arrangement
CA2947143C (en) 2014-05-01 2020-03-24 Halliburton Energy Services, Inc. Casing segment having at least one transmission crossover arrangement
GB2542041B (en) 2014-05-01 2020-10-14 Halliburton Energy Services Inc Multilateral production control methods and systems employing a casing segment with at least one transmission crossover arrangement
WO2015167933A1 (en) 2014-05-01 2015-11-05 Halliburton Energy Services, Inc. Interwell tomography methods and systems employing a casing segment with at least one transmission crossover arrangement
BR112016023822B8 (en) * 2014-05-16 2023-02-07 Multi Chem Group Llc CORROSION INHIBITION METHOD AND COMPOSITION
CA2947364C (en) * 2014-05-19 2018-10-23 Halliburton Energy Services, Inc. A magnetic induction sensor with an electro-optical transducer and related methods and systems
US10598810B2 (en) * 2014-05-19 2020-03-24 Halliburton Energy Services, Inc. Optical magnetic field sensor units for a downhole environment
US10364668B2 (en) 2014-06-27 2019-07-30 Halliburton Energy Services, Inc. Measuring micro stalls and stick slips in mud motors using fiber optic sensors
US10738577B2 (en) 2014-07-22 2020-08-11 Schlumberger Technology Corporation Methods and cables for use in fracturing zones in a well
US10001613B2 (en) * 2014-07-22 2018-06-19 Schlumberger Technology Corporation Methods and cables for use in fracturing zones in a well
US10247851B2 (en) 2014-08-25 2019-04-02 Halliburton Energy Services, Inc. Hybrid fiber optic cable for distributed sensing
AU2015308842A1 (en) * 2014-08-27 2017-03-16 Digital H2O, Inc Oilfield water management
WO2016037094A1 (en) 2014-09-05 2016-03-10 Switzer Elise System and method for facilitating subterranean hydrocarbon extraction utilizing electrochemical reactions with metals
US20160076932A1 (en) * 2014-09-11 2016-03-17 Trican Well Service, Ltd. Distributed acoustic sensing to optimize coil tubing milling performance
US9823223B2 (en) 2014-09-25 2017-11-21 Schlumberger Technology Corporation Measuring a dew point
FR3026773B1 (en) * 2014-10-01 2019-03-29 S.P.C.M. Sa INJECTION PRESSURE CONTROL APPARATUS IN THE ASSISTED RECOVERY OF OFFSHORE OIL
WO2016060993A1 (en) 2014-10-12 2016-04-21 Vincent Larry W Apparatus and method for assembling measuring and monitoring integrity of mechanical pipe joints
CA2961722C (en) 2014-10-17 2019-09-03 Halliburton Energy Services, Inc. Increasing borehole wall permeability to facilitate fluid sampling
GB2544022B (en) * 2014-10-17 2021-04-21 Halliburton Energy Services Inc Well monitoring with optical electromagnetic sensing system
EP3212882A1 (en) * 2014-10-28 2017-09-06 OneSubsea IP UK Limited Additive management system
WO2016081718A1 (en) * 2014-11-19 2016-05-26 Board Of Regents, The University Of Texas System Sensor system
WO2016085511A1 (en) 2014-11-26 2016-06-02 Halliburton Energy Services, Inc. Onshore electromagnetic reservoir monitoring
US10175094B2 (en) * 2014-12-04 2019-01-08 Exxonmobil Upstream Research Company Fiber optic communications with subsea sensors
GB2547598B (en) * 2014-12-31 2021-09-08 Halliburton Energy Services Inc Methods and systems employing fiber optic sensors for electromagnetic cross-well telemetry
EP3250785B1 (en) 2015-01-26 2022-09-21 Services Pétroliers Schlumberger Electrically conductive fiber optic slickline for coiled tubing operations
DE102015201340A1 (en) * 2015-01-27 2016-07-28 Siemens Aktiengesellschaft Fiber optic vibration sensor
US10030497B2 (en) 2015-02-10 2018-07-24 Statoil Gulf Services LLC Method of acquiring information of hydraulic fracture geometry for evaluating and optimizing well spacing for multi-well pad
WO2016137931A1 (en) * 2015-02-23 2016-09-01 Cody Friesen Systems and methods to monitor the characteristics of stimulated subterranean hydrocarbon resources utilizing electrochemical reactions with metals
US11530605B2 (en) * 2015-03-13 2022-12-20 The Charles Machine Works, Inc. Horizontal directional drilling crossbore detector
US10132955B2 (en) 2015-03-23 2018-11-20 Halliburton Energy Services, Inc. Fiber optic array apparatus, systems, and methods
US11371342B2 (en) 2015-04-09 2022-06-28 Saudi Arabian Oil Company Flow monitoring tool
CA2979031C (en) * 2015-04-13 2021-04-13 Halliburton Energy Services, Inc. Modulating downhole reflector
SG11201706737PA (en) 2015-04-30 2017-09-28 Halliburton Energy Services Inc Casing-based intelligent completion assembly
BR112017020887B1 (en) 2015-04-30 2022-06-14 Halliburton Energy Services, Inc BOTTOM OF WELL CONTROL METHOD AND BOTTOM COMPLETION EQUIPMENT
US10253598B2 (en) 2015-05-07 2019-04-09 Baker Hughes, A Ge Company, Llc Diagnostic lateral wellbores and methods of use
US9651706B2 (en) 2015-05-14 2017-05-16 Halliburton Energy Services, Inc. Fiberoptic tuned-induction sensors for downhole use
GB2554213B (en) * 2015-05-15 2021-02-24 Halliburton Energy Services Inc Distributed scintillation detector for downhole positioning
GB2539056A (en) * 2015-06-03 2016-12-07 Geomec Eng Ltd Improvements in or relating to injection wells
CN105181362B (en) * 2015-06-19 2016-04-13 河海大学 Hydraulic structure observed seepage behavior distribution type fiber-optic perception integrated system and method
CA2981807A1 (en) 2015-06-26 2016-12-29 Halliburton Energy Services, Inc. Systems and methods for characterizing materials external of a casing
CN104989343A (en) * 2015-06-26 2015-10-21 中国石油天然气股份有限公司 Concentric intelligent fine layering water measuring and mixing technology
US9988900B2 (en) 2015-06-30 2018-06-05 Statoil Gulf Services LLC Method of geometric evaluation of hydraulic fractures by using pressure changes
NO20150851A1 (en) 2015-07-01 2016-09-12 Techinvent As An apparatus for controlling a fluid flow
US10400580B2 (en) * 2015-07-07 2019-09-03 Schlumberger Technology Corporation Temperature sensor technique for determining a well fluid characteristic
GB2554607A (en) 2015-07-22 2018-04-04 Halliburton Energy Services Inc Electromagnetic monitoring with formation-matched resonant induction sensors
US20180202281A1 (en) * 2015-08-12 2018-07-19 Halliburton Energy Services Inc. Locating wellbore flow paths behind drill pipe
US10138715B2 (en) 2015-09-16 2018-11-27 King Fahd University Of Petroleum And Minerals Well-bore and reservoir monitoring process by logging temperature and resistivity
WO2017052499A1 (en) * 2015-09-21 2017-03-30 Halliburton Energy Services, Inc. Real-time control of diverters
BR112018005621B1 (en) * 2015-09-23 2022-12-06 Aker Solutions Inc. SUBSEA PUMP SYSTEM AND SUBSEA PRESSURE INTENSIFIER
WO2017065805A1 (en) 2015-10-16 2017-04-20 Halliburton Energy Services, Inc. Measuring lengths of resizable elements downhole
RO132820A2 (en) 2015-10-28 2018-09-28 Halliburton Energy Services, Inc. Degradable isolation devices with data recorders
GB2544799A (en) * 2015-11-27 2017-05-31 Swellfix Uk Ltd Autonomous control valve for well pressure control
EP3384324A4 (en) * 2015-12-03 2018-12-19 Halliburton Energy Services, Inc. Crosswell tomography using an array of optical fiber transducers
WO2017099751A1 (en) * 2015-12-09 2017-06-15 Halliburton Energy Services, Inc. Joint multi-physics monitoring of production wells with fiber optics
WO2017105416A1 (en) * 2015-12-16 2017-06-22 Halliburton Energy Services, Inc. Large area seismic monitoring using fiber optic sensing
GB201522713D0 (en) 2015-12-23 2016-02-03 Optasense Holdings Ltd Determing wellbore properties
US11655702B2 (en) 2016-03-02 2023-05-23 Halliburton Energy Services, Inc. Space mapping optimization to characterize multiple concentric pipes
US10890058B2 (en) 2016-03-09 2021-01-12 Conocophillips Company Low-frequency DAS SNR improvement
US10458228B2 (en) 2016-03-09 2019-10-29 Conocophillips Company Low frequency distributed acoustic sensing
WO2017188941A1 (en) * 2016-04-27 2017-11-02 Halliburton Energy Services, Inc. Digital 2d holographic spectrometer for material characterization
WO2017189000A1 (en) * 2016-04-29 2017-11-02 Halliburton Energy Services, Inc. Water front sensing for electronic inflow control device
US10049789B2 (en) 2016-06-09 2018-08-14 Schlumberger Technology Corporation Compression and stretch resistant components and cables for oilfield applications
US10215014B2 (en) * 2016-07-03 2019-02-26 Reveal Energy Services, Inc. Mapping of fracture geometries in a multi-well stimulation process
WO2018022044A1 (en) 2016-07-27 2018-02-01 Halliburton Energy Services, Inc. Real-time monitoring and control of diverter placement for multistage stimulation treatments
US11408259B2 (en) 2016-07-27 2022-08-09 Halliburton Energy Services, Inc. Real-time monitoring and control of diverter placement for multistage stimulation treatments
BR112019003196A2 (en) 2016-09-26 2019-06-18 Halliburton Energy Services Inc computer-implemented method and system and method for detecting sand in a wellbore
GB2566910B (en) 2016-10-13 2021-08-25 Halliburton Energy Services Inc Systems and methods to utilize a sensor to provide spatial resolution in downhole leak detection
WO2018106251A1 (en) * 2016-12-09 2018-06-14 Halliburton Energy Services, Inc. Detecting a flood front in a cross bed environment
US10578763B2 (en) * 2017-01-13 2020-03-03 Board Of Regents Of The University Of Texas System Modular electrode tool for improved hydraulic fracture diagnostics
US10048702B1 (en) 2017-02-16 2018-08-14 International Business Machines Corporation Controlled fluid injection to reduce potential seismic energy along fault lines
CA2997822C (en) 2017-03-08 2024-01-02 Reveal Energy Services, Inc. Determining geometries of hydraulic fractures
US10961847B2 (en) * 2017-05-02 2021-03-30 Eng+Rd, Llc Acoustic flow meter tool and related methods
EP3619560B1 (en) 2017-05-05 2022-06-29 ConocoPhillips Company Stimulated rock volume analysis
US11255997B2 (en) 2017-06-14 2022-02-22 Conocophillips Company Stimulated rock volume analysis
US10738600B2 (en) 2017-05-19 2020-08-11 Baker Hughes, A Ge Company, Llc One run reservoir evaluation and stimulation while drilling
US10920582B2 (en) 2017-05-25 2021-02-16 Halliburton Energy Services, Inc. Systems and methods to use triangulation through one sensor beamforming in downhole leak detection
CA3012209C (en) 2017-07-24 2023-07-04 Reveal Energy Services, Inc. Dynamically modeling a proppant area of a hydraulic fracture
US20190078405A1 (en) * 2017-09-12 2019-03-14 Schlumberger Technology Corporation Method and apparatus for wellbore pressure control
EP3676479A4 (en) 2017-10-17 2020-12-09 ConocoPhillips Company Low frequency distributed acoustic sensing hydraulic fracture geometry
US10851643B2 (en) 2017-11-02 2020-12-01 Reveal Energy Services, Inc. Determining geometries of hydraulic fractures
CN108222916B (en) * 2017-12-15 2021-06-18 浙江海洋大学 Fractal identification method of sand body connectivity between wells based on injection-production relation
MX2020003353A (en) 2017-12-29 2020-07-29 Halliburton Energy Services Inc Systems and methods to utilize sensors to provide spatial rosolution in downhole leak detection.
DE102018105703A1 (en) 2018-03-13 2019-09-19 Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum - GFZ Stiftung des Öffentlichen Rechts des Landes Brandenburg A method and system for monitoring a material and / or apparatus in a borehole using a fiber optic measurement cable
CA3094528A1 (en) 2018-03-28 2019-10-03 Conocophillips Company Low frequency das well interference evaluation
US11021934B2 (en) 2018-05-02 2021-06-01 Conocophillips Company Production logging inversion based on DAS/DTS
US11150370B2 (en) * 2018-06-06 2021-10-19 Baker Hughes, A Ge Company, Llc Directional near wellbore imaging visualization
JP6614285B1 (en) * 2018-07-13 2019-12-04 横河電機株式会社 Apparatus, method and program for estimating the state of natural resources to be collected
CN111197482A (en) * 2018-10-30 2020-05-26 中石化石油工程技术服务有限公司 Optical fiber-electronic composite logging sensor
WO2020102202A1 (en) 2018-11-13 2020-05-22 Motive Drilling Technologies, Inc. Apparatus and methods for determining information from a well
US11519253B2 (en) * 2018-12-14 2022-12-06 Halliburton Energy Services, Inc. System and method to optimize pumping
US10634553B1 (en) 2019-01-30 2020-04-28 Saudi Arabian Oil Company Hybrid distributed acoustic testing
AU2020247722B2 (en) 2019-03-25 2024-02-01 Conocophillips Company Machine-learning based fracture-hit detection using low-frequency DAS signal
EP3730926B1 (en) 2019-04-26 2023-03-01 Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ Stiftung des Öffentlichen Rechts des Landes Brandenburg Method and system for measuring or monitoring the viscosity of flowing materials
CN110284866B (en) * 2019-07-23 2024-02-09 中国矿业大学(北京) Shale fracturing device and method
WO2021029855A1 (en) * 2019-08-09 2021-02-18 Halliburton Energy Services, Inc. Light pipe for logging-while-drilling communications
US11118427B2 (en) 2019-09-30 2021-09-14 Saudi Arabian Oil Company Managing corrosion and scale buildup in a wellbore
CN110630209B (en) * 2019-10-20 2022-06-14 中国石油化工股份有限公司 Long-acting self-locking packer and using method thereof
US11566487B2 (en) 2020-01-31 2023-01-31 Halliburton Energy Services, Inc. Systems and methods for sealing casing to a wellbore via light activation
US11692435B2 (en) 2020-01-31 2023-07-04 Halliburton Energy Services, Inc. Tracking cementing plug position during cementing operations
US11920464B2 (en) 2020-01-31 2024-03-05 Halliburton Energy Services, Inc. Thermal analysis of temperature data collected from a distributed temperature sensor system for estimating thermal properties of a wellbore
US11512584B2 (en) 2020-01-31 2022-11-29 Halliburton Energy Services, Inc. Fiber optic distributed temperature sensing of annular cement curing using a cement plug deployment system
US11512581B2 (en) 2020-01-31 2022-11-29 Halliburton Energy Services, Inc. Fiber optic sensing of wellbore leaks during cement curing using a cement plug deployment system
US11661838B2 (en) 2020-01-31 2023-05-30 Halliburton Energy Services, Inc. Using active actuation for downhole fluid identification and cement barrier quality assessment
US11846174B2 (en) 2020-02-01 2023-12-19 Halliburton Energy Services, Inc. Loss circulation detection during cementing operations
CA3165568A1 (en) * 2020-03-13 2021-09-16 Halliburton Energy Services, Inc. Hydraulic fracture proximity detection using strain measurements
US11339636B2 (en) 2020-05-04 2022-05-24 Saudi Arabian Oil Company Determining the integrity of an isolated zone in a wellbore
US11624277B2 (en) 2020-07-20 2023-04-11 Reveal Energy Services, Inc. Determining fracture driven interactions between wellbores
US11519767B2 (en) 2020-09-08 2022-12-06 Saudi Arabian Oil Company Determining fluid parameters
US11920469B2 (en) 2020-09-08 2024-03-05 Saudi Arabian Oil Company Determining fluid parameters
CN112253069B (en) * 2020-09-29 2023-04-25 中国石油天然气股份有限公司 External optical fiber system of horizontal well cementing sliding sleeve partial pressure pipe and monitoring method thereof
US11624264B2 (en) * 2020-10-15 2023-04-11 Saudi Arabian Oil Company Controlling corrosion within wellbores
CN112392474B (en) * 2020-11-18 2023-10-17 中海石油(中国)有限公司 Well completion production string structure controlled by underground seismic wave pressure and method thereof
CN112761607B (en) * 2021-02-05 2021-11-30 西南石油大学 Interactive sand-filled fracture conductivity calculation method for intersection of hydraulic fracture and natural fracture
US11530597B2 (en) 2021-02-18 2022-12-20 Saudi Arabian Oil Company Downhole wireless communication
US11603756B2 (en) 2021-03-03 2023-03-14 Saudi Arabian Oil Company Downhole wireless communication
US11644351B2 (en) 2021-03-19 2023-05-09 Saudi Arabian Oil Company Multiphase flow and salinity meter with dual opposite handed helical resonators
US11913464B2 (en) 2021-04-15 2024-02-27 Saudi Arabian Oil Company Lubricating an electric submersible pump
US11619114B2 (en) 2021-04-15 2023-04-04 Saudi Arabian Oil Company Entering a lateral branch of a wellbore with an assembly
AU2022310512A1 (en) 2021-07-16 2024-01-25 Conocophillips Company Passive production logging instrument using heat and distributed acoustic sensing
CN113404487B (en) * 2021-07-20 2022-06-10 贾碧君 Intelligent monitoring device for stratum well wall freezing profile based on Internet of things
CN113586039A (en) * 2021-08-02 2021-11-02 西南石油大学 Method for monitoring overflow and leakage positions in real time based on distributed optical fiber
US11913295B2 (en) 2021-12-22 2024-02-27 Saudi Arabian Oil Company System and method for plugging a lost-circulation zone in a subsurface formation
US11913333B2 (en) 2022-02-08 2024-02-27 Saudi Arabian Oil Company Determination of three-phase fluid saturations from production and pressure measurements from a well
US20230383649A1 (en) * 2022-05-24 2023-11-30 Schlumberger Technology Corporation Downhole acoustic wave generation systems and methods

Family Cites Families (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR505276A (en) * 1919-10-22 1920-07-27 Alfred De Pischof Multi-connection faucet
US3653573A (en) * 1968-10-03 1972-04-04 Cicero C Brown Casing centralizer and mandrel for use in welding large diameter casing
US3593784A (en) * 1969-09-11 1971-07-20 Brown Oil Tools Anchor assembly for well tools such as packers and the like
US3722605A (en) * 1971-02-03 1973-03-27 Scient Drilling Controls Apparatus and method for determining relative orientation of two wells
US3857449A (en) 1972-07-11 1974-12-31 Co Kogane Apparatus for precisely thrusting pipes into the ground
US4162400A (en) * 1977-09-09 1979-07-24 Texaco Inc. Fiber optic well logging means and method
US4344484A (en) * 1978-08-17 1982-08-17 Occidental Oil Shale, Inc. Determining the locus of a processing zone in an in situ oil shale retort through a well in the formation adjacent the retort
JPS56501410A (en) 1979-10-17 1981-10-01
US4279299A (en) * 1979-12-07 1981-07-21 The United States Of America As Represented By The United States Department Of Energy Apparatus for installing condition-sensing means in subterranean earth formations
DE8027722U1 (en) 1980-10-17 1981-02-05 Neff - Werke, Carl Neff Gmbh, 7518 Bretten OPTIONAL ELECTRIC OR GAS HEATING COOKING POINT
US4436148A (en) * 1981-04-27 1984-03-13 Richard Maxwell Chemical treatment for oil wells
SU1055866A1 (en) 1982-01-04 1983-11-23 Московский Ордена Октябрьской Революции И Ордена Трудового Красного Знамени Институт Нефтехимической И Газовой Промышленности Им.И.М.Губкина Deep-well spectrometry device for detecting oil- and gas-bearing formations
GB2119296B (en) * 1982-03-29 1986-03-26 Ian Roland Yarnell Remote-control travelling robot for performing operations eg cutting within a pipe
US4714564A (en) * 1982-04-21 1987-12-22 The United States Of America As Represented By The Secretary Of The Air Force High performance multifunctional corrosion inhibitors especially for combining at 20 to 50 weight percent with soap or paint
US5363463A (en) * 1982-08-06 1994-11-08 Kleinerman Marcos Y Remote sensing of physical variables with fiber optic systems
US4434654A (en) 1982-08-09 1984-03-06 Sundstrand Data Control, Inc. Borehole orientation detection system employing polarized radiation
US4485563A (en) 1982-12-03 1984-12-04 Wilson Industries, Inc. Borehole survey instrument
US4488598A (en) * 1983-03-18 1984-12-18 Chevron Research Company Steam, noncondensable gas and foam for steam and distillation drive _in subsurface petroleum production
DE3490229T1 (en) * 1983-05-09 1985-05-30 Mitsubishi Denki K.K., Tokio/Tokyo Method for measuring cell count or methane producing activity of methanogens
US4635723A (en) * 1983-07-07 1987-01-13 Spivey Melvin F Continuous injection of corrosion-inhibiting liquids
GB2150780B (en) * 1983-11-30 1986-10-08 Standard Telephones Cables Ltd Optical actuator
DE3408437A1 (en) 1984-03-08 1985-09-19 Ed. Züblin AG, 7000 Stuttgart DEVICE FOR DETERMINING THE POSITION OF A PRE-PRESSED HOLLOW PROFILE STRAND
US4849753A (en) 1984-08-15 1989-07-18 Chevron Research Company Electro optic high temperature well bore modulator
EP0175298A3 (en) * 1984-09-14 1988-02-03 Develco, Incorporated Borehole sensing tool with optical rotation sensor
US4582131A (en) 1984-09-26 1986-04-15 Hughes Tool Company Submersible chemical injection pump
GB2165062B (en) * 1984-09-28 1988-10-05 Gen Electric Plc An optical sensor
US4589285A (en) * 1984-11-05 1986-05-20 Western Geophysical Co. Of America Wavelength-division-multiplexed receiver array for vertical seismic profiling
US4665981A (en) * 1985-03-05 1987-05-19 Asadollah Hayatdavoudi Method and apparatus for inhibiting corrosion of well tubing
US4697078A (en) * 1985-04-10 1987-09-29 Western Atlas International, Inc. Method for quality control of counting logs
JPS6259792A (en) * 1985-09-10 1987-03-16 日本重化学工業株式会社 Method of sampling geothermal steam utilizing ae/ma method
US4676313A (en) * 1985-10-30 1987-06-30 Rinaldi Roger E Controlled reservoir production
US4834493A (en) * 1985-12-27 1989-05-30 Mcdonnell Douglas Corporation Method of terminating an optical fiber
FR2600172B1 (en) * 1986-01-17 1988-08-26 Inst Francais Du Petrole DEVICE FOR INSTALLING SEISMIC SENSORS IN A PETROLEUM PRODUCTION WELL
FR2599423B1 (en) 1986-05-27 1989-12-29 Inst Francais Du Petrole METHOD AND DEVICE FOR GUIDING A DRILLING THROUGH GEOLOGICAL FORMATIONS.
JPS62288293A (en) * 1986-06-09 1987-12-15 財団法人電力中央研究所 Crack progress measurement method in case of pressure fluid injection by ae in single hole of base rock, etc.
US4742459A (en) * 1986-09-29 1988-05-03 Schlumber Technology Corp. Method and apparatus for determining hydraulic properties of formations surrounding a borehole
US4866632A (en) * 1987-11-16 1989-09-12 Texaco Inc. Control means and method for solvent refining unit
US4994671A (en) * 1987-12-23 1991-02-19 Schlumberger Technology Corporation Apparatus and method for analyzing the composition of formation fluids
US4949575A (en) * 1988-04-29 1990-08-21 Anadrill, Inc. Formation volumetric evaluation while drilling
GB2230091A (en) * 1989-03-23 1990-10-10 Roy Baria A two-module seismic borehole logging sonde
US5061846A (en) * 1989-05-11 1991-10-29 Conoco Inc. Detecting disturbance using optical gap sensing
US5043573A (en) * 1989-06-15 1991-08-27 Moog Inc. Electro-optic power cell
US5163321A (en) * 1989-10-17 1992-11-17 Baroid Technology, Inc. Borehole pressure and temperature measurement system
US4976789A (en) * 1989-12-26 1990-12-11 The United States Of America As Represented By The Secretary Of The Army Power transmission device
US5172717A (en) * 1989-12-27 1992-12-22 Otis Engineering Corporation Well control system
IL93134A (en) * 1990-01-23 1997-11-20 Yissum Res Dev Co Doped sol-gel glasses for obtaining chemical interactions
US5131477A (en) * 1990-05-01 1992-07-21 Bp Exploration (Alaska) Inc. Method and apparatus for preventing drilling of a new well into an existing well
US5166747A (en) * 1990-06-01 1992-11-24 Schlumberger Technology Corporation Apparatus and method for analyzing the composition of formation fluids
US5178465A (en) * 1990-07-11 1993-01-12 Fujikura Ltd. Optical fiber laying structure for electric power cable line trouble occurrence location detecting system
US5517593A (en) * 1990-10-01 1996-05-14 John Nenniger Control system for well stimulation apparatus with response time temperature rise used in determining heater control temperature setpoint
FR2674284B1 (en) * 1991-03-20 1997-12-26 Geostock PROBE FOR DETERMINING IN PARTICULAR THE INJECTIVITY OF A PETROFLOWER WELL AND MEASURING METHOD USING THE SAME.
US5214384A (en) * 1991-07-24 1993-05-25 Mobil Oil Corporation Method including electrical self potential measurements for detecting multiphase flow in a cased hole
US5144590A (en) 1991-08-08 1992-09-01 B P America, Inc. Bed continuity detection and analysis using crosswell seismic data
EP0533333A3 (en) * 1991-09-19 1993-07-28 Texaco Development Corporation Optical photometry system
DE69209466T2 (en) * 1991-12-16 1996-08-14 Inst Francais Du Petrole Active or passive monitoring arrangement for underground deposit by means of fixed stations
US5203646A (en) * 1992-02-06 1993-04-20 Cornell Research Foundation, Inc. Cable crawling underwater inspection and cleaning robot
GB9203471D0 (en) * 1992-02-19 1992-04-08 Sensor Dynamics Ltd Optical fibre pressure sensor
US5455516A (en) 1992-04-21 1995-10-03 Thermedics Inc. Meter and method for in situ measurement of the electromagnetic properties of various process materials using cutoff frequency characterization and analysis
US5353237A (en) * 1992-06-25 1994-10-04 Oryx Energy Company System for increasing efficiency of chemical treatment
CA2100020C (en) * 1992-07-17 2001-09-11 Walter Blumenfeld Methods and apparatus for detecting bacterial growth by spectrophotometric sampling of a fiber-optic array
US5285204A (en) * 1992-07-23 1994-02-08 Conoco Inc. Coil tubing string and downhole generator
US5331156A (en) * 1992-10-01 1994-07-19 Schlumberger Technology Corporation Method of analyzing oil and water fractions in a flow stream
US5351532A (en) 1992-10-08 1994-10-04 Paradigm Technologies Methods and apparatus for making chemical concentration measurements in a sub-surface exploration probe
US5379103A (en) 1993-05-06 1995-01-03 Apti, Inc. Method and apparatus for in situ detection of minute amounts of trace elements
US5384430A (en) 1993-05-18 1995-01-24 Baker Hughes Incorporated Double armor cable with auxiliary line
US5363095A (en) 1993-06-18 1994-11-08 Sandai Corporation Downhole telemetry system
US5377104A (en) * 1993-07-23 1994-12-27 Teledyne Industries, Inc. Passive seismic imaging for real time management and verification of hydraulic fracturing and of geologic containment of hazardous wastes injected into hydraulic fractures
US5361854A (en) 1993-10-05 1994-11-08 Lag Steering Systems Laser positioning system for earth boring apparatus
US5435176A (en) * 1993-11-01 1995-07-25 Terranalysis Corporation Hazardous waste characterizer and remediation method and system
GB9324334D0 (en) * 1993-11-26 1994-01-12 Sensor Dynamics Ltd Apparatus for the remote measurement of physical parameters
US5435969A (en) * 1994-03-29 1995-07-25 Nalco Chemical Company Monitoring water treatment agent in-system concentration and regulating dosage
US5439054A (en) * 1994-04-01 1995-08-08 Amoco Corporation Method for treating a mixture of gaseous fluids within a solid carbonaceous subterranean formation
US5517024A (en) * 1994-05-26 1996-05-14 Schlumberger Technology Corporation Logging-while-drilling optical apparatus
US5561516A (en) * 1994-07-29 1996-10-01 Iowa State University Research Foundation, Inc. Casingless down-hole for sealing an ablation volume and obtaining a sample for analysis
GB9418695D0 (en) * 1994-09-16 1994-11-02 Sensor Dynamics Ltd Apparatus for the remote deployment of valves
GB9419031D0 (en) * 1994-09-21 1994-11-09 Sensor Dynamics Ltd Apparatus for sensor location
GB9419006D0 (en) * 1994-09-21 1994-11-09 Sensor Dynamics Ltd Apparatus for sensor installation
US5489988A (en) * 1995-01-03 1996-02-06 Motorola Environmental sensor and method therefor
US5585555A (en) * 1995-01-24 1996-12-17 Geokon, Inc. Borehole strainmeter
US5732776A (en) * 1995-02-09 1998-03-31 Baker Hughes Incorporated Downhole production well control system and method
US5706896A (en) * 1995-02-09 1998-01-13 Baker Hughes Incorporated Method and apparatus for the remote control and monitoring of production wells
US5597042A (en) * 1995-02-09 1997-01-28 Baker Hughes Incorporated Method for controlling production wells having permanent downhole formation evaluation sensors
US5730219A (en) * 1995-02-09 1998-03-24 Baker Hughes Incorporated Production wells having permanent downhole formation evaluation sensors
NO325157B1 (en) * 1995-02-09 2008-02-11 Baker Hughes Inc Device for downhole control of well tools in a production well
JPH08248107A (en) 1995-03-08 1996-09-27 Oki Electric Ind Co Ltd Interference type optical fiber sensor
US5503225A (en) * 1995-04-21 1996-04-02 Atlantic Richfield Company System and method for monitoring the location of fractures in earth formations
US5684580A (en) * 1995-05-01 1997-11-04 Ashland Inc. Hydrocarbon analysis and control by raman spectroscopy
US5524709A (en) * 1995-05-04 1996-06-11 Atlantic Richfield Company Method for acoustically coupling sensors in a wellbore
US5596196A (en) * 1995-05-24 1997-01-21 Ashland Inc. Oxygenate analysis and control by Raman spectroscopy
RU2124256C1 (en) * 1996-01-04 1998-12-27 Акционерное общество "Ленэнерго" Unit for laying fiber-optic cable onto overhead power transmission line conductor
US5828003A (en) * 1996-01-29 1998-10-27 Dowell -- A Division of Schlumberger Technology Corporation Composite coiled tubing apparatus and methods
GB9604542D0 (en) * 1996-03-02 1996-05-01 Kodak Ltd An optical chemical sensor
US5717209A (en) * 1996-04-29 1998-02-10 Petrometrix Ltd. System for remote transmission of spectral information through communication optical fibers for real-time on-line hydrocarbons process analysis by near infra red spectroscopy
GB9614761D0 (en) * 1996-07-13 1996-09-04 Schlumberger Ltd Downhole tool and method
US5947213A (en) * 1996-12-02 1999-09-07 Intelligent Inspection Corporation Downhole tools using artificial intelligence based control
US5729013A (en) * 1996-11-04 1998-03-17 Atlantic Richfield Company Wellbore infrared detection device and method
US5822058A (en) * 1997-01-21 1998-10-13 Spectral Sciences, Inc. Systems and methods for optically measuring properties of hydrocarbon fuel gases
US5892860A (en) * 1997-01-21 1999-04-06 Cidra Corporation Multi-parameter fiber optic sensor for use in harsh environments
US6072567A (en) 1997-02-12 2000-06-06 Cidra Corporation Vertical seismic profiling system having vertical seismic profiling optical signal processing equipment and fiber Bragg grafting optical sensors
US5926437A (en) * 1997-04-08 1999-07-20 Halliburton Energy Services, Inc. Method and apparatus for seismic exploration
US5859430A (en) * 1997-04-10 1999-01-12 Schlumberger Technology Corporation Method and apparatus for the downhole compositional analysis of formation gases
GB2364381B (en) * 1997-05-02 2002-03-06 Baker Hughes Inc Downhole injection evaluation system
US5925879A (en) * 1997-05-09 1999-07-20 Cidra Corporation Oil and gas well packer having fiber optic Bragg Grating sensors for downhole insitu inflation monitoring
US6309597B1 (en) * 1997-05-12 2001-10-30 Arkion Life Sciences Method for reducing hydrogen sulfide level in water containing sulfate-reducing bacteria and hydrogen sulfide-metabolizing bacteria
US6012016A (en) * 1997-08-29 2000-01-04 Bj Services Company Method and apparatus for managing well production and treatment data
AU9575598A (en) * 1997-09-24 1999-04-12 Edward A. Corlew Multi-well computerized control of fluid pumping
US5992519A (en) * 1997-09-29 1999-11-30 Schlumberger Technology Corporation Real time monitoring and control of downhole reservoirs

Also Published As

Publication number Publication date
AU753252B2 (en) 2002-10-10
DE69816743T2 (en) 2004-06-03
GB2364384A (en) 2002-01-23
NO20023857L (en) 1999-03-19
NO20090372L (en) 1999-03-19
DE69816743D1 (en) 2003-09-04
WO1998050680A2 (en) 1998-11-12
EP1355170A2 (en) 2003-10-22
GB9925977D0 (en) 1999-12-29
GB2362462B (en) 2002-01-23
EP0910725B1 (en) 2003-07-30
EP1357401A3 (en) 2004-01-02
DK1355169T3 (en) 2010-05-25
EP1357403A2 (en) 2003-10-29
GB2339902A (en) 2000-02-09
NO327389B1 (en) 2009-06-22
GB0126785D0 (en) 2002-01-02
US20020066309A1 (en) 2002-06-06
EP1355170A3 (en) 2004-06-09
EP1355166A2 (en) 2003-10-22
NO995319D0 (en) 1999-11-01
GB0126777D0 (en) 2002-01-02
GB2364380B (en) 2002-03-06
NO20023857D0 (en) 2002-08-14
GB0126780D0 (en) 2002-01-02
US20030205083A1 (en) 2003-11-06
EP1357401A2 (en) 2003-10-29
CA2288784A1 (en) 1998-11-12
US20090188665A1 (en) 2009-07-30
NO20032268L (en) 1999-03-19
EP1355169A3 (en) 2004-09-29
EA199900074A1 (en) 1999-10-28
CA2409277C (en) 2008-09-23
EP1357402A3 (en) 2004-01-02
CA2264632A1 (en) 1998-11-12
WO1998050681A1 (en) 1998-11-12
EP1355169A2 (en) 2003-10-22
GB2364382A (en) 2002-01-23
US6268911B1 (en) 2001-07-31
GB0126775D0 (en) 2002-01-02
CA2409277A1 (en) 1998-11-12
CA2524554A1 (en) 1998-11-12
US20010023614A1 (en) 2001-09-27
NO20070507L (en) 1999-03-19
NO325643B1 (en) 2008-06-30
US8789587B2 (en) 2014-07-29
GB0120438D0 (en) 2001-10-17
AU7275398A (en) 1998-11-27
WO1998050680A3 (en) 1999-02-04
NO995319L (en) 1999-12-20
CA2524666A1 (en) 1998-11-12
GB0120433D0 (en) 2001-10-17
NO991350D0 (en) 1999-03-19
CA2524666C (en) 2008-04-22
GB2362462A (en) 2001-11-21
GB2362463B (en) 2002-01-23
EP1355168A2 (en) 2003-10-22
GB2364383A (en) 2002-01-23
DE69841500D1 (en) 2010-03-25
EP0910725A1 (en) 1999-04-28
GB0126789D0 (en) 2002-01-02
CA2525065C (en) 2008-12-23
EP1355167A2 (en) 2003-10-22
GB2364381A (en) 2002-01-23
EP1357403A3 (en) 2004-01-02
NO20032268D0 (en) 2003-05-20
GB2339902B (en) 2002-01-23
CA2524554C (en) 2007-11-27
CA2525065A1 (en) 1998-11-12
EA200100862A1 (en) 2002-08-29
EP1355168A3 (en) 2004-05-26
GB2364380A (en) 2002-01-23
NO991350L (en) 1999-03-19
EP1357402A2 (en) 2003-10-29
GB2362463A (en) 2001-11-21
CA2288784C (en) 2007-07-24
EP1355169B1 (en) 2010-02-10
US6588266B2 (en) 2003-07-08
AU7273798A (en) 1998-11-27
EP1355166A3 (en) 2004-01-21
EA200100863A1 (en) 2002-08-29
GB2364381B (en) 2002-03-06
EP1355167A3 (en) 2004-05-19

Similar Documents

Publication Publication Date Title
CA2264632C (en) Wellbores utilizing fiber optic-based sensors and operating devices
US7040390B2 (en) Wellbores utilizing fiber optic-based sensors and operating devices
US6828547B2 (en) Wellbores utilizing fiber optic-based sensors and operating devices
AU765866B2 (en) Wellbores utilizing fiber optic-based sensors and operating devices
AU2004201979B2 (en) Light-activated system and method for wellbores

Legal Events

Date Code Title Description
FZDC Discontinued application reinstated
EEER Examination request
MKLA Lapsed

Effective date: 20180501

MKLA Lapsed

Effective date: 20180501