CA2270574A1 - Catalyseurs d'hydrogenation selective contenant du palladium et au moins un element choisi parmi l'etain et le plomb - Google Patents

Catalyseurs d'hydrogenation selective contenant du palladium et au moins un element choisi parmi l'etain et le plomb Download PDF

Info

Publication number
CA2270574A1
CA2270574A1 CA002270574A CA2270574A CA2270574A1 CA 2270574 A1 CA2270574 A1 CA 2270574A1 CA 002270574 A CA002270574 A CA 002270574A CA 2270574 A CA2270574 A CA 2270574A CA 2270574 A1 CA2270574 A1 CA 2270574A1
Authority
CA
Canada
Prior art keywords
catalyst
palladium
catalyst according
tin
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002270574A
Other languages
English (en)
Inventor
Charles Cameron
Christophe Gautreau
Blaise Didillon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2270574A1 publication Critical patent/CA2270574A1/fr
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/32Selective hydrogenation of the diolefin or acetylene compounds
    • C10G45/34Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used
    • C10G45/40Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used containing platinum group metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J35/397

Abstract

L'invention concerne un catalyseur d'hydrogénation sélective, ce catalyseur comprenant des particules d'un support poreux constitué d'au moins un oxyde inorganique réfractaire et, à titre d'éléments actifs, du palladium réparti à la périphérie des particules et au moins un élément parmi l'étain et le plomb. L'invention concerne également un procédé d'hydrogénation sélective d'une coupe d'hydrocarbures mono et dioléphiniques utilisant ce catalyseur.

Description

CATALYSEURS D'HYDROGENATION SELECTIVE CONTENANT DU PALLADIUM ET AU MOINS UN
ELEMENT
CHOISI PARMI L'ETAIN ET LE PLOMB
La présente invention concerne un catalyseur d'hydrogénation sélectif pour la transformation des hydrocarbures insaturés dioléfiniques en hydrocarbures a-oiéfiniques, qui permet notamment l'hydrogénation des composés dioléfiniques en composés a-oléfiniques avec des vitesses au moins 1,5 fois, souvent au moins 3 fois ou méme 5 fois supérieures â la vitesse d'hydrogénation des composés a-oléfiniques en composés saturés.
Ce catalyseur contient du palladium et au moins un élément choisi parmi l'étain et le plomb.
L'invention concerne également la préparation d'un tel catalyseur, ainsi que le procédé d'hydrogénation sélective des dioléfines en a-oléfines utilisant ce catalyseur.
Les procédés de conversion des hydrocarbures se déroulant à hautes températures, tels que par exemple le vapocraquage, la viscoréduction, le craquage catalytique et la cokéfaction, permettent une large production de composés oléfiniques, tels que l'éthylène) le propylène) le n-butène-1, les n-butènes-2, l'isobutène, les pentènes et dioléfiniques) tels que le propadiène-1,2, le butadiène-1,3, et d'autres composés dont le point d'ébullition est compris dans l'intervalle de la coupe "essence" et qui peuvent être oléfiniques ou dioléfiniques. Ces procédés conduisent donc fatalement à la formation de composés fortement insaturés, tels que des dioléfines (propadiène-1,2 par exemple), et aussi des alcynes (acétylène, propyne, butyne-1 etc.). Ces composés devront être éliminés pour permettre l'utilisation des différentes coupes issues de ces procédés pour la chimie ou pour les procédés de polymérisation. Par exemple, la coupe C4 de vapocraquage contient une forte proportion de butadiène-1,3, de butène-1, de butènes-2 et d'isobutène.
De façon conventionnelle, le butadiène est séparé de la coupe oléfinique, par exemple par distillation extractive ~en présence de diméthyl-formamide ou de N-méthyl-pyrrolidone. La coupe oléfinique ainsi obtenue
2 0 r contient de l'isobutane, de l'isobutène, de butène-1, des butènes-2, du n-butane et du butadiène-1,3, ce dernier à une teneur pouvant varier entre 0) 1 et 2 % poids.
Si le butadiène n'est pas un produit valorisé, la coupe peut être directement traitée sur un catalyseur en présence d'hydrogène pour transformer le butadiène en n-butènes.
Si le butène-1 et l'isobutène sont désirés) il est nécessaire d'utiliser des procédés permettant la production importante de butène-1 et la séparation des différents composés tels que l'hydrogénation sélective du butadiène en butènes avec une faible ~ isomérisation du butène-1 en butène-2, ou la séparation de l'isobutène par éthérification avec le méthanol conduisant au méthyl-tertiobutyl-éther.
Aujourd'hui une demande forte en butène-1 est enregistrée. Ce composé est utilisé comme monomère dans l'industrie des polymères. Une telle utilisation nécessite une hydrogénation quasi totale du butadiène, dont la présence n'est tolérée qu'à des teneurs inférieures à 10 ppm poids.
Pour atteindre ces faibles teneurs en butadiène avec les catalyseurs conventionnels à base de nickel ou de palladium, une diminution de la teneur en butène-1 est observée, due à la formation de butane et à
l'isomérisation du butène-1 en butène-2. Pour inhiber l'isomérisation du butène-1 en butènes-2, un certain nombre de formules bimétalliques comprenant du palladium et un autre métal ont été proposées. On peut notamment citer l'utilisation de systèmes palladium-argent, tels que ceux décrits dans le brevet US-A-4 409 410 ou des systèmes palladium-or, palladium-zinc, palladium-cuivre, palladium-cadmium, palladium-étain, tels que ceux décrits dans la demande de brevet JP-A-87/05 4540. Pour limiter l'hydrogénation consécutive et donc la formation de butane, les solutions proposées sont plus limitées. Comme décrit dans la littérature (voir par exemple dans Proceedings of the DGMK Conference, 11-13 Novembre 1993, Kassel, Allemagne : "Selective Hydrogenation Catalysts and Processes : Bench to Industrial Scale" - Boitiaux J.P. et colt.), la sélectivité
. en hydrogénation de composés fortement insaturés (dioléfines ou composés F~1_1~i_!~~ "~r>,~r~~a~.r-r,.) ~Vfv..~c.w~3 !~L
CA 02270574 1999-04-27 ~--'Lt~;~;.,;;,
3 acétyléniques) en oléfines provient d'une forte complexation du composé
insaturé sur le palladium) empêchant l'accès des oléfines au catalyseur et prévenant ainsi leur transformation en paraffines. Ceci est clairement illustré
dans la publication citée ci-dessus où le butyne-1 est sélectivement transformé en butène-1 sur un catalyseur à base de palladium. On note cependant que la vitesse d'hydrogénation est relativement faible. Mais lorsque tout le composé acétylénique est converti, l'hydrogénation du butène-1 se déroule avec une vitesse beaucoup plus importante que celle de l'hydrogénation du composé acétylénique. Ce phénomène est aussi rencontré dans le cas de l'hydrogénation sélective du butadiène.
Ce phénomène pose un certain nombre de problèmes au niveau des unités industrielles. Tout d'abord pour atteindre les spécifications en butadiène de la coupe oléfinique, une quantité importante de butène-1 est transformée en butane, puisque, lorsque la concentration en butadiène résiduel est faible, les vitesses d'hydrogénation du butadiène et du butène-1 sont voisines. II est donc tout à fait intéressant de trouver un catalyseur qui permet l'hydrogénation du butadiène avec une vitesse beaucoup plus élevée que celle de l'hydrogénation du butène-1, que ces composés soient hydrogénés seuls ou en mélange. Ceci correspond aux propriétés d'un catalyseur permettant des hydrogénations avec des rapports de constantes de vitesse d'hydrogénation du butadiène par rapport aux butènes élevés.
L'intérêt d'un tel catalyseur ne se limite pas à une augmentation de la sélectivité en butène-1, mais il permet aussi un meilleur contrôle du procédé
d'hydrogénation. En cas de problèmes mineurs de distribution locale d'hydrogène, l'utilisation d'un tel catalyseur ne conduit pas à une conversion élevée des butènes en butane et donc minimisera les problèmes de forte exothermicité liés à ces hydrogénations mal contrôlées) qui aggravent les problèmes de distribution.
Pour apporter une solution à ce problème, il était donc intéressant de trouver un catalyseur d'hydrogénation qui permette l'hydrogénation du butadiène-1,3 en butènes tout en inhibant l'isomérisation du butène-1 en butènes-2 et qui soit peu actif pour l'hydrogénation consécutive du butène-1 en butane.
~ i r \ I! :~1 (~y ;~ l f C
a ~'J :-:.. , t!:~,~..J~!:! 7L.w CA 02270574 1999-04-27 ~-~ L:.: v:/~'. a'3 4â
Dans l'art antérieur, notamment dans les documents GB-A-2 269 116, US-A-3 844 935, EP-A-0 623 387 et DE 3 402 321, on a déjà décrit différents catalyseurs contenant au moins un métal du groupe VIII et au moins un métal du groupe IVa, tel que l'étain ou le plomb.
Cependant, le document GB-A-2 269 116 n'indique pas que le métal du groupe VIII est réparti à la périphérie des particules du support. II décrit un certain nombre de techniques d'imprégnation. Ainsi, par exemple des précurseurs des métaux du groupe VIII sont énumérés, parmi lesquels les chlorures, les nitrates et des sels d'acides organiques, mais il n'est pas indiqué lesquels et dans quelles conditions (notamment de pH pour les solutions aqueuses) il était possible d'obtenir le métal du groupe VIII à la périphérie des particules de catalyseur. De plus, les exemples n'utilisent que le rhodium et le nickel comme métaux du groupe VIII.
Le document US-A-3 844 935 décrit des catalyseurs contenant un métal ou un composé de métai du groupe Vlll) en combinaison avec un aluminate de métal du groupe II, modifié par de l'étain. L'aluminate de métal du groupe II
est plus particulièrement un aluminate de zinc de forme cristallographique spinelle. Par ailleurs, même si ce document mentionne diverses techniques de dépôt pour le métal du groupe VIII, par exemple l'imprégnation de solutions aqueuses ou non aqueuses de différents composés, il n'est nullement mentionné que le métal du groupe VIII est déposé à la périphérie des particules du catalyseur et il n'est pas indiqué, à fortiori, quelles seraient les conditions requises pour aboutir à ce résultat. Enfin, comme métal du groupe VIII, les exemples ne font usage que du platine.
Dans le document EP-A-0 623 387, le catalyseur décrit contient au moins un métal du groupe VIII qui peut être le palladium et au moins un métal additionnel qui peut être, entre autres, l'étain ou le plomb. Les méthodes d'introduction des métaux de groupe VIII par imprégnation du support au moyen de solutions de composés de ces éléments sont mentionnées, mais ne sont pas développées. De ce fait, on ne trouve dans ce document aucun enseignement montrant qu'il serait possible de fournir des catalyseurs particulaires dans lesquels le palladium serait réparti à la périphérie des particules. Dans la préparation du catalyseur de base A (Exemple 1 ), le -" !' i ' ~ "~; ll ~ c.
r ~ _ ~3, ~~~
CA 02270574 1999-04-27 (~''~~=u'tL~

4b palladium est introduit à l'aide d'une solution aqueuse de nitrate de palladium. Mais, faute de conditions plus précises, il n'est pas possible de conclure sur la répartition du palladium sur (ou dans) les grains du catalyseur.
Dans le document DE 3 402 321, il n'est pas mentionné non plus que le métal du groupe VIII (en particulier le palladium) est réparti à la périphérie des particules de support. Les différents précurseurs des métaux du groupe VIII sont indiqués page 7) lignes 14-26. On trouve cités aussi bien des sels d'acides minéraux (chlorures, nitrates) que des composés organiques (acétylacétonates, sels d'acides organiques) sans qu'il soit précisë quels composés et quelles conditions pourraient mener à un dépôt du métal du groupe VIII (notamment le palladium) à la périphérie des grains de catalyseur. On indique même comme préférés les acétylacetonates alors que notre exemple 2 ter montre que, dans le cas du palladium, l'emploi du bis-acétylacétonate donne lieu à une répartition homogène du métal dans les grains de catalyseur. Dans l'exemple 1 de ce document, on utilise une solution de nitrate de palladium, sans autre précision.
~~:,~ , . .
_ ... . . .~ I_.u ~ j"
-. ,.
j,~,~.4i - .. '~
... i e = 500Nm e La teneur en palladium du catalyseur est comprise entre 0,025 % et 1,0 % en poids) de préférence entre 0,03 et 0,5% en poids. La teneur en élément M (étain et/ou plomb) du catalyseur est généralement comprise entre 0,05 % et 4 % poids, de préférence de 0,2 à 4 % pour l'étain et de 1 à
4 % en poids pour le plomb. De façon avantageuse, le rapport atomique élément M/palladium est compris entre 0,1 et 3.
Le support du catalyseur d'hydrogénation selon l'invention peut être choisi dans la famille des composés renfermant les alumines, les silices, les silico-aluminates et les argues. On choisit de préférence les supports de faible acidité, tels que par exemple les silices, les alumines de faible surface spécifique ou les aluminosilicates échangés aux alcalins.
Le support peut être par exemple une alumine sous forme particulaire, par exemple sous la forme de billes, d'extrudés, ou encore de pastilles. II peut être par exemple sous la forme de billes de diamètre moyen généralement compris entre 2 et 4 mm.
Les caractéristiques de l'alumine utilisée sont par exemple, sans caractère limitatif, les suivantes - une surface spécifique comprise entre 5 et 200 m2/g et de préférence entre 10 et 70 m2/g ; et - un volume poreux de 0,3 à 0,95 cm3/g. (Ces caractéristiques sont déterminées par les techniques d'analyse connues de l'homme du métier.) Pour obtenir une répartition du palladium dans les particules de catalyseur conforme à la définition de l'invention, on peut mettre en oeuvre, par exemple, des techniques d'imprégnation de solution aqueuse ou organique d'un précurseur de palladium. Ce précurseur est de préférence un composé minéral, tel que le chlorure de palladium ou le nitrate de palladium.
Si l'on effectue l'introduction du palladium par imprégnation au moyen d'une solution aqueuse d'un sel de palladium, le pH de la solution est avantageusement supérieur à 0,8.
L'élément M (étain ei/ou plomb) peut également être introduit par exemple par imprégnation d'une solution aqueuse ou organique d'un précurseur de l'élément M. Les acétates, les chlorures, les complexes alkyles) les nitrates, les alcoolates peuvent par exemple être utilisés. Les complexes alkyles peuvent être le tétrabutyl-étain ou le tétrabutyl-plomb.
Les deux métaux peuvent être introduits à partir d'une solution commune des deux précurseurs ou à partir de solutions séparées. Dans ce dernier cas) des traitements de séchage) de calcination ou de réduction à
des températures comprises entre 120~C et 900~C peuvent éventuellement être réalisées entre les deux étapes d'imprégnation.
De préférence, la répartition du métal M dans les particules, par exemple billes ou extrudés, de catalyseur correspond à celle définie pour le palladium, c'est à dire que au moins 80 % de l'étain et/ou du plomb est compris dans le volume de la particule, par exemple bille ou extrudé, constituant le catalyseur défini entre la périphérie de ladite particule et une épaisseur de 500 Nm comme représenté plus haut.
Le catalyseur ainsi obtenu est généralement séché à des températures comprises entre la température ambiante et 150~C. Le catalyseur ainsi séché peut étre utilisé tel quel ; le plus souvent on le calcine afin de décomposer les précurseurs métalliques et/ou on le réduit avant son utilisation. La calcination est généralement réalisée par traitement du catalyseur sous un flux d'air à une température comprise entre 400~C et 900~C. La réduction peut ëtre réalisée par traitement du catalyseur par un gaz contenant de l'hydrogène par exemple à une température comprise entre Ia température ambiante et 500~C.

Le procédé d'hydogénation sélective utilisant les catalyseurs de l'invention peut être mis en oeuvre dans les conditions habituelles.
La charge constituée en général d'une coupe C4 provenant d'une opération de vapocraquage traverse le catalyseûr disposé en lit fixe, à une température généralement comprise entre 40 et 100~C, sous une pression de 5 à 40 bar, de préférence de 10 à 30 bar et à une vitesse volumique horaire de 1 à 20 h-1, de préférence de 4 à 10 h-1.
Les exemples suivants, non limitatifs, illustrent l'invention.
Exemple 1 (comparati f Un catalyseur A à base de palladium est préparé par imprégnation de 100 g de support d'alumine par 60 ml d'une solution de nitrate de palladium dissous dans l'acide nitrique (pH = 2) pour obtenir un catalyseur final à
0,3 % poids de palladium. Le support se présente sous la forme de billes de 2 mm de diamètre, sa surface spécifique est de 60 m2/g et le volume poreux est de 0,6 ml/g. Après imprégnation, le catalyseur est séché à 120~C, calciné à 450~C et réduit pendant 2 heures à 150~C.
Une analyse par microsonde de Castaing permet de mettre en évidence que la répartition du palladium dans les billes de catalyseurs est conforme à l'invention.
Une partie du catalyseur A (1,00g) est alors introduite dans un réacteur parfaitement agité contenant 10 g de butadiène-1,3 et 100 g de n-heptane. Le réacteur est ensuite purgé à l'azote et porté sous pression d'hydrogène (10 bar) sous agitation à 20~C. Le dispositif expérimental permet de travailler avec des billes de catalyseur sans que ces dernières subissent une attrition au cours du test (utilisation de panier de type Carbery). Le système expérimental utilisé permet de travailler à pression constante, de mesurer la consommation d'hydrogène en fonction du temps et de faire des prélèvements liquides à intervalles réguliers dont l'analyse par chromatographie permet de déterminer la composition du milieu.

A partir de ces données, on définit différents paramètres - la sélectivité en butène-1, Sg1, qui correspond au rapport (butène-1 )/(E n-butènes) à 80 % de conversion du butadiène ;
- la vitesse d'hydrogénation du butadiène) Kbd, qui correspond à la pente de la droite obtenue lors de la représentation du nombre de moles de butadiène en fonction du temps pour des conversions en butadiène inférieures à 80 % ; et - la vitesse d'hydrogénation du butène-1, Kb1, qui correspond à la pente de la droite obtenue lors de la représentation du nombre de moles de butène-1 en fonction du temps lorsque tout le butadiène est converti.
Les résultats obtenus dans ces conditions sont rapportés dans le tableau suivant Catalyseur Kbd Kb1 Sg1 (80 %) Kbd/Kb1 mol/min/ mol/min/

A 1,71.10-2 1,75.10-2 58 0,98 Ces résultats montrent que le catalyseur monométallique à base de palladium conduit à des vitesses d'hydrogénation du butadiène et du butène-1 voisines (valeur du rapport Kbd/Kb1 voisin de 1 ).
Exemiple 2~selon l'inventionl Deux catalyseurs (catalyseurs B et C) à base de palladium et d'étain sont préparés à partir de 100 g du catalyseur A. On procède alors à
l'introduction de l'étain par imprégnation de 60 ml dune solution de tétrabutyl-étain contenant la teneur désirée en cet élément. Les catalyseurs sont alors séchés à 120~C, calcinés à 450~C et réduits pendant 2 heures à
150~C.
Une analyse par microsonde de Castaing montre que le profil de concentration de Pétain de l'échantillons B ét C est parallèle à celui du palladium obtenu dans l'Exemple 1. ' L'activité des catalyseurs B et C contenant des teneurs différentes en étain est alors évaluée dans les conditions décrites dans l'Exemple 1.
Les paramètres utilisés pour comparer les différents catalyseurs sont les mêmes que ceux définis dans l'Exemple 1. Les résultats obtenus dans ces conditions sont rapportés dans le tableau suivant Catalyseurteneur Kbd Kb1 SB1 (80%)Kbd/Kb1 Sn mol/min/ mol/min/
oids B 0) 10 9,2.10-3 1,14.10-2 62 0,81 C 0,53 4,0.10-3 6,10'4 62 6,67 Le catalyseur C, qui contient 0,53 % en poids d'étain permet donc l'hydrogénation du butadiène avec une vitesse au moins cinq fois supérieure à celle dé l'hydrogénation du butène-1.
Exemple 2 bis Un catalyseur Cbis à base de palladium et d'étain est préparé selon le protocole suivant 100 g de support décrit dans l'Exemple 1 sont imprégnés par une solution aqueuse d'acétate d'étain (II). Le volume de solution utilisé
correspond au volume du support et la concentration en étain de la solution est ajusté pour obtenir une teneur final en étain de 0,53 % poids par rapport au support. L'échantillon est ensuite séché à 120~C et calciné à 450~C.
Une analyse par microsonde de Castaing montre que l'étain est réparti de façon homogène dans les grains de catalyseur.
Sur ce catalyseur, on procède alors au dépôt du palladium selon la même technique d'imprégnation que celle décrite dans l'Exemple 1. La teneur finale en palladium est de 0,3 % poids.

L'activité du catalyseur Cbis est alors évaluée dans les conditions décrites dans l'Exemple 1. Les résultats obtenus dans ces conditions sont rapportés dans le tableau suivant Catalyseurteneur Kbd Kb1 SB1 (80%) Kbd/Kb1 Sn oids mol/min/ mol/min/

Cbis 0,53 8,0.10'3 4,2.10'3 62 1,9 Le catalyseur Cbis, qui contient 0,53 % en poids d'étain permet donc l'hydrogénation du butadiène avec une vitesse au moins 1,5 fois supérieure à celle de l'hydrogénation du butène-1. Par contre, le rapport Kbd/Kb1 est inférieur à celui obtenu avec le catalyseur C.
Exemple 2 ter comparatif) Un catalyseur Cter à base de palladium et d'étain est préparé selon le protocole suivant:
100 g de support décrit dans l'Exemple 1 sont imprégnés par une solution organique de bis acétylacétonate de palladium: Le volume de solution utilisé correspond à 5 fois le volume du support et la concentration en palladium de la solution est ajustée pour obtenir une teneur finale en palladium de 0,3 % poids par rapport au support. L'échantillon est ensuite séché à 120~C et calciné à 450~C.
Une analyse par microsonde de Castaing montre que le palladium est réparti de façon homogène dans les grains de catalyseur.
Sur ce catalyseur on procède alors au dépôt de l'étain selon la même technique d'imprégnation que celledécrite dans l'Exemple 2. La teneur finale en palladium est de 0,3 % poids de palladium.
L'activité du catalyseur Cter est -alors évaluée dans les conditions décrites dans l'Exemple 1. Les résultats obtenus 'dans ces conditions sont rapportés dans le tableau suivant Catalyseurteneur Kbd Kb1 Sg1 (80%) Kbd/Kb1 Sn oids mol/min/ mol/min/

Cter 0,53 4,0.10'3 2,9.10'3 60 1.4 Exemple 3 (selon l'invention) Une série de catalyseurs (catalyseurs D à J) à base de palladium et de plomb sont préparés par imprégnation de 100 g de support d'alumine par 60 ml d'une solution aqueuse de nitrate de plomb dissous. La quantité de nitrate de plomb est ajustée pour avoir des catalyseurs à teneur variables en cet élément. Le support a les mêmes caractéristiques que celui utilisé dans l'Exemple 1. Après imprégnation, le catalyseur est séché à 120~C, puis calciné à 450~C. On procède alors à l'introduction du palladium par imprégnation des catalyseurs par 60 ml d'une solution de nitrate de palladium dissous dans l'acide nitrique pour obtenir un catalyseur final à
0,3 % poids de palladium. Les catalyseurs sont alors séchés à 120~C, calcinés à 450~C et réduits pendant 2 heures à 150~C.
Pour les catalyseurs D à J, l'analyse par microsonde de Gastaing montre que la répartition du palladium dans les billes de catalyseur est conforme à l'invention. Par contre, on ne décèle pas de différence de concentration en plomb entre la périphérie et le coeur des billes de catalyseur.
L'activité des catalyseurs D à J contenant des teneurs différentes en plomb est alors évaluée dans les conditions décrites dans l'Exemple 1.
Les paramètres utilisés pour comparer les différents catalyseurs sont les mêmes que ceux définis dans l'Exemple 1. Les résultats obtenus dans ces conditions sont rapporté dans le tableau suivant Catalyseurteneur Kbd Kb1 SB1 (80%) Kbd/Kb1 Pb mol/min/ mol/min/
nids D 0,197 1,6,10'2 0,021 61,5 0,76 .

E 0,23 1,7.10'2 1,7.10'2 61,7 1,00 F 0,5 1,4.10-2 1,3.10'2 62,4 1,08 G 0,99 9,9.10'3 7,4.10-3 63,2 1,33 H 1,47 8,4.10'3 3,4.10'3 62,9 2,59 1 2,43 5,4.10-3 7.10'4 63.3 7,71 J 4,41 1,9.10'3 2.10-4 63,2 9,5 Les catalyseurs contenant des teneurs en plomb supérieures à 2 en poids (catalyseurs I et J) permettent donc l'hydrogénation du butadiène avec une vitesse au moins cinq fois supérieure à celle de l'hydrogénation du butène-1.
Exemple ibis Selon l'inventions Un catalyseur (catalyseur Gbis) à base de palladium et de plomb est préparés à partir de 100 g du catalyseur A. Le catalyseur A est réduit à
150~C, puis on procède à ('introduction de plomb par imprégnation de 60 ml d'une solution de tétrabutyl-plomb contenant la teneur désirée en cet élément. Le catalyseur est alors séché à 120~C, et réduits pendant 2 heures à 150~C.
Une analyse par microsonde de Castaing montre que le profil de concentration du plomb dans ie support C est parallèle à celui du palladium obtenu dans l'Exemple 1 pour l'échantillon Gbis. La teneur en palladium est de 0,3 % et la teneur en plomb est de 0,99 % poids.
L'activité du catalyseur Gbis est alors évaluée dans les conditions décrites dans l'Exemple 1. Les résultats obtenus dans ces conditions sont rapportés dans le tableau suivant Catalyseurteneur Kbd Kb1 Sg1 {80%)Kbd/Kb1 Pb oids mol/min/ mol/min/

Gbis 0.99 4,0.10-3 8,0.10-4 63 5,0 Le catalyseur Gbis, qui contient 0,99 % en poids de plomb permet donc l'hydrogénation du butadiène avec une vitesse au moÉns 1,5 fois supérieure à celle de l'hydrogénation du butène-1. Par rapport au catalyseur G, ce catalyseur présente un rapport Kbd/Kb1 supérieur.
Exemple 4 comparatif Un catalyseur K à base de palladium et d'argent est préparé selon les conditions décrites dans le brevet US-A-4 409 410.
Le catalyseur K est préparé par imprégnation de 100 g de l'alumine utilisée dans l'Exemple 1 par 60 ml d'une solution d'acide nitrique, de nitrate de palladium et de nitrate d'argent) pour obtenir un catalyseur final contenant 0,3 % poids de palladium et 0,5 % poids d'argent. Le catalyseur est alors séché à 120~C, calciné à 450~C et réduit pendant 2 heures à
150~C.
L'activité du catalyseur K est alors évaluée dans les conditions décrites dans l'Exemple 1. Les résultats obtenus dans ces conditions sont rapportés dans le tableau suivant Catalyseurteneur Kbd Kb1 SB1 (80%) Kbd/Kb1 Ag oids mol/min/ mol/min/

K 0,5 1,05.10-28,6.10'3 62 1,22 Le catalyseur K permet d'obtenir une meilleure sélectivité en butène-1 par rapport au catalyseur monométallique, ce qui correspond aux propriétés annoncées dans le brevet précédemment cité, mais le rapport des constantes de vitesse Kbd/Kb1 est voisin de 1, ce qui signifie que sür ce catalyseur, la vitesse d'hydrogénation du butadiène est pratiquement équivalente à la vitesse d'hydrogénation du butène-1.

Exemple 5 comparatif Un catalyseur L à base de palladium et d'or est préparé selon les conditions décrites dans le brevet US-A-4 533 779.
Le catalyseur L est préparé par imprégnation de 100 g de l'alumine utilisée dans l'Exemple 1 par 60 ml d'une solution d'acide nitrique et de nitrate de palladium, pour obtenir un catalyseur contenant 0,3 % poids de palladium. Le catalyseur est alors séché à 120~C, calciné à 300~C et réduit pendant 2 heures à 300~C. Le catalyseur est ensuite imprégné par une solution aqueuse d'acide chloroaurique (HAuCl4), pour obtenir un catalyseur final à 0,5 % poids d'or.
L'activité du catalyseur L est alors évaluée dans les conditions décrites dans l'Exempte 1.
Les résultats obtenus dans ces conditions sont rapportés dans le tableau suivant Catalyseurteneur Kbd Kb1 Sg1 (80%)Kbd/Kbi Au oids mol/min/ mol/min!

L 0,5 1,16.10'21,20.10'2 62 0,97 Le catalyseur L permet d'obtenir une meilleure sélectivité en butène-1 par rapport au catalyseur monométallique, mais le rapport des constantes de vitesse Kbd/Kb1 est voisin de 1, ce qui signifie que sur ce catalyseur la vitesse d'hydrogénation du butadiène est pratiquement équivalente à la vitesse d'hydrogénation du butène-1.

Claims (14)

REVENDICATIONS
1. Catalyseur d'hydrogénation sélective caractérisé en ce qu'il comprend des particules d'un support poreux constitué d'au moins un oxyde inorganique réfractaire choisi parmi les alumines, les silices, les silico-aluminates et les argiles et, à titre d'éléments actifs, du palladium réparti à la périphérie des particules et au moins un élément M choisi parmi l'étain et le plomb.
2. Catalyseur selon la revendication 1, caractérisé en ce que, sur le support, au moins 80 % du palladium est compris dans le volume des particules défini entre la périphérie desdites particules et une épaisseur de 500 µm.
3. Catalyseur selon l'une des revendications 1 et 2; caractérisé en ce que la teneur en palladium est comprise entre 0,025 % et 1,0 % en poids.
4. Catalyseur selon l'une des revendications 1 à 3, caractérisé en ce que sa teneur en palladium est comprise entre 0,03 et 0,5 % en poids.
5. Catalyseur selon l'une des revendications 1 à 4, caractérisé en ce que sa teneur en élément M choisi parmi l'étain et le plomb est comprise entre 0,05 % et 4 % en poids.
6. Catalyseur selon l'une des revendications 1 à 5, caractérisé en ce que le métal M est l'étain et sa teneur dans le catalyseur est de 0,2 % à 4%
en poids.
7. Catalyseur selon l'une des revendications 1 à 5, caractérisé en ce que le métal M est le plomb et sa teneur dans le catalyseur est de 1 % à 4%
en poids.
8. Catalyseur selon l'une des revendications 1 à 7, caractérisé en ce que le rapport atomique élément M/palladium est compris entre 0,1 et 3.
9. Catalyseur selon l'une des revendications 1 à 8 caractérisé en ce que, sur le support, le métal M est réparti à la périphérie des particules.
10. Catalyseur selon la revendication 9, caractérisé en ce que, sur le support, au moins 80 % du métal du groupe IVA est compris dans le volume des particules défini entre la périphérie desdites particules et une épaisseur de 500 µm.
11. Catalyseur selon l'une des revendications 1 à 10, caractérisé en ce que ledit support consiste en une alumine présentant une surface spécifique comprise entre 5 et 200 m2/g et un volume poreux de 0,3 à 0,95 cm3/g.
12. Procédé d'hydrogénation sélective d'une coupe d'hydrocarbures comprenant principalement des hydrocarbures mono et dioléfiniques caractérisé
en ce que l'on fait passer ladite coupe d'hydrocarbures au contact d'un catalyseur selon l'une des revendications 1 à 11.
13. Procédé selon la revendication 12, caractérisé en ce que ladite coupe comprend principalement des hydrocarbures de 4 atomes de carbone.
14. Procédé selon la revendication 13, caractérisé en ce que ladite coupe provient d'une opération de vapocraquage.
CA002270574A 1996-11-07 1997-10-28 Catalyseurs d'hydrogenation selective contenant du palladium et au moins un element choisi parmi l'etain et le plomb Abandoned CA2270574A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9613576A FR2755378B1 (fr) 1996-11-07 1996-11-07 Catalyseurs d'hydrogenation selective contenant du palladium et au moins un metal du groupe iva
FR96/13576 1996-11-07
PCT/FR1997/001929 WO1998019793A1 (fr) 1996-11-07 1997-10-28 Catalyseurs d'hydrogenation selective contenant du palladium et au moins un element choisi parmi l'etain et le plomb

Publications (1)

Publication Number Publication Date
CA2270574A1 true CA2270574A1 (fr) 1998-05-14

Family

ID=9497410

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002270574A Abandoned CA2270574A1 (fr) 1996-11-07 1997-10-28 Catalyseurs d'hydrogenation selective contenant du palladium et au moins un element choisi parmi l'etain et le plomb

Country Status (11)

Country Link
US (2) US5955397A (fr)
EP (1) EP0946299A1 (fr)
JP (1) JP2001503324A (fr)
KR (1) KR100485239B1 (fr)
CN (1) CN1107547C (fr)
AU (1) AU731009B2 (fr)
BR (1) BR9712929A (fr)
CA (1) CA2270574A1 (fr)
FR (1) FR2755378B1 (fr)
RU (1) RU2192306C2 (fr)
WO (1) WO1998019793A1 (fr)

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6239322B1 (en) 1996-11-07 2001-05-29 Institut Francais Du Petrole Selective hydrogenation catalysts containing palladium, also tin and/or lead, and the preparation and use thereof
TW377306B (en) * 1996-12-16 1999-12-21 Asahi Chemical Ind Noble metal support
DE19840373A1 (de) * 1998-09-04 2000-03-09 Basf Ag Katalysator und Verfahren zur Selektivhydrierung ungesättigter Verbindungen in Kohlenwasserstoffströmen
GB0119327D0 (en) * 2001-08-08 2001-10-03 Johnson Matthey Plc Catalyst
GB0223300D0 (en) * 2002-10-08 2002-11-13 Bp Chem Int Ltd Process
US20040192994A1 (en) * 2003-03-26 2004-09-30 Bridges Robert S. Propylene production
US6872862B2 (en) * 2003-06-25 2005-03-29 Equistar Chemicals, Lp Propylene production
US7074976B2 (en) * 2003-08-19 2006-07-11 Equistar Chemicals, Lp Propylene production
CN1313205C (zh) * 2004-04-02 2007-05-02 中国石油天然气股份有限公司 一种选择加氢、单烯烃异构催化剂、制备方法及应用
US7453016B1 (en) 2005-12-20 2008-11-18 Uop Llc Selective hydrogenation process using layered catalyst composition and preparation of said catalyst
US7749375B2 (en) 2007-09-07 2010-07-06 Uop Llc Hydrodesulfurization process
DE102008000290A1 (de) * 2008-02-13 2009-08-20 Evonik Degussa Gmbh Lagerstabile Produktsyteme für Prämixformulierungen
CN101628843B (zh) * 2008-07-18 2013-11-27 环球油品公司 利用层状催化剂组合物的选择性加氢方法和所述催化剂的制备
US8680317B2 (en) 2008-07-31 2014-03-25 Celanese International Corporation Processes for making ethyl acetate from acetic acid
US8546622B2 (en) 2008-07-31 2013-10-01 Celanese International Corporation Process for making ethanol from acetic acid using acidic catalysts
US8501652B2 (en) 2008-07-31 2013-08-06 Celanese International Corporation Catalysts for making ethanol from acetic acid
US8309772B2 (en) 2008-07-31 2012-11-13 Celanese International Corporation Tunable catalyst gas phase hydrogenation of carboxylic acids
US8338650B2 (en) 2008-07-31 2012-12-25 Celanese International Corporation Palladium catalysts for making ethanol from acetic acid
US8471075B2 (en) * 2008-07-31 2013-06-25 Celanese International Corporation Processes for making ethanol from acetic acid
US8304586B2 (en) 2010-02-02 2012-11-06 Celanese International Corporation Process for purifying ethanol
US8637714B2 (en) 2008-07-31 2014-01-28 Celanese International Corporation Process for producing ethanol over catalysts containing platinum and palladium
US8309773B2 (en) 2010-02-02 2012-11-13 Calanese International Corporation Process for recovering ethanol
US8772561B2 (en) * 2008-11-19 2014-07-08 Uop Llc Methods for selective hydrogenation performance using a layered sphere catalyst with new formulations
US8026194B2 (en) * 2008-11-19 2011-09-27 Uop Llc Layered sphere catalyst formulations for selective hydrogenation performance
US20100152026A1 (en) * 2008-12-16 2010-06-17 Gajda Gregory J Layered Sphere Catalysts with High Accessibility Indexes
EP2376224A1 (fr) 2008-12-18 2011-10-19 Saudi Basic Industries Corporation Hydrogénation catalytique sélective d'alcynes à des alcènes correspondants
US20100331171A1 (en) * 2009-06-29 2010-12-30 Gajda Gregory J Layered Sphere Catalysts with High Accessibility Indexes
US8450535B2 (en) 2009-07-20 2013-05-28 Celanese International Corporation Ethanol production from acetic acid utilizing a cobalt catalyst
US8680321B2 (en) 2009-10-26 2014-03-25 Celanese International Corporation Processes for making ethanol from acetic acid using bimetallic catalysts
US8710277B2 (en) * 2009-10-26 2014-04-29 Celanese International Corporation Process for making diethyl ether from acetic acid
US8211821B2 (en) * 2010-02-01 2012-07-03 Celanese International Corporation Processes for making tin-containing catalysts
EP2531291A1 (fr) 2010-02-02 2012-12-12 Celanese International Corporation Préparation et utilisation d'un catalyseur pour produire de l'éthanol, comprenant un modificateur de support cristallin
US8460405B2 (en) 2010-02-02 2013-06-11 Celanese International Corporation Ethanol compositions
US8728179B2 (en) 2010-02-02 2014-05-20 Celanese International Corporation Ethanol compositions
US8668750B2 (en) 2010-02-02 2014-03-11 Celanese International Corporation Denatured fuel ethanol compositions for blending with gasoline or diesel fuel for use as motor fuels
US8344186B2 (en) 2010-02-02 2013-01-01 Celanese International Corporation Processes for producing ethanol from acetaldehyde
US8575403B2 (en) 2010-05-07 2013-11-05 Celanese International Corporation Hydrolysis of ethyl acetate in ethanol separation process
US8932372B2 (en) 2010-02-02 2015-01-13 Celanese International Corporation Integrated process for producing alcohols from a mixed acid feed
US8858659B2 (en) 2010-02-02 2014-10-14 Celanese International Corporation Processes for producing denatured ethanol
US8541633B2 (en) 2010-02-02 2013-09-24 Celanese International Corporation Processes for producing anhydrous ethanol compositions
US8747492B2 (en) 2010-02-02 2014-06-10 Celanese International Corporation Ethanol/fuel blends for use as motor fuels
US8680343B2 (en) 2010-02-02 2014-03-25 Celanese International Corporation Process for purifying ethanol
US8222466B2 (en) 2010-02-02 2012-07-17 Celanese International Corporation Process for producing a water stream from ethanol production
US8314272B2 (en) 2010-02-02 2012-11-20 Celanese International Corporation Process for recovering ethanol with vapor separation
US8648225B2 (en) 2010-04-12 2014-02-11 Chevron Phillips Chemical Company Lp Process for hydrogenating highly unsaturated hydrocarbons and catalyst therefor
US8754267B2 (en) 2010-05-07 2014-06-17 Celanese International Corporation Process for separating acetaldehyde from ethanol-containing mixtures
US8350098B2 (en) 2011-04-04 2013-01-08 Celanese International Corporation Ethanol production from acetic acid utilizing a molybdenum carbide catalyst
US9073816B2 (en) 2011-04-26 2015-07-07 Celanese International Corporation Reducing ethyl acetate concentration in recycle streams for ethanol production processes
CN102794173A (zh) * 2011-05-27 2012-11-28 中国石油化工股份有限公司 选择加氢除炔催化剂及其制备方法
US8895786B2 (en) 2011-08-03 2014-11-25 Celanese International Corporation Processes for increasing alcohol production
US8658843B2 (en) 2011-10-06 2014-02-25 Celanese International Corporation Hydrogenation catalysts prepared from polyoxometalate precursors and process for using same to produce ethanol while minimizing diethyl ether formation
US8536382B2 (en) 2011-10-06 2013-09-17 Celanese International Corporation Processes for hydrogenating alkanoic acids using catalyst comprising tungsten
US9233899B2 (en) 2011-12-22 2016-01-12 Celanese International Corporation Hydrogenation catalysts having an amorphous support
US9000234B2 (en) 2011-12-22 2015-04-07 Celanese International Corporation Calcination of modified support to prepare hydrogenation catalysts
US8981164B2 (en) 2012-01-06 2015-03-17 Celanese International Corporation Cobalt and tin hydrogenation catalysts
US9024086B2 (en) 2012-01-06 2015-05-05 Celanese International Corporation Hydrogenation catalysts with acidic sites
CN104039448B (zh) 2012-01-06 2016-11-16 国际人造丝公司 具有钴改性载体的加氢催化剂
US9051235B2 (en) 2012-02-07 2015-06-09 Celanese International Corporation Process for producing ethanol using a molar excess of hydrogen
US9050585B2 (en) 2012-02-10 2015-06-09 Celanese International Corporation Chemisorption of ethyl acetate during hydrogenation of acetic acid to ethanol
US8975452B2 (en) 2012-03-28 2015-03-10 Celanese International Corporation Process for producing ethanol by hydrocarbon oxidation and hydrogenation or hydration
US8772553B2 (en) 2012-10-26 2014-07-08 Celanese International Corporation Hydrogenation reaction conditions for producing ethanol

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3691102A (en) * 1970-05-11 1972-09-12 Gulf Research Development Co Group viii metal-tin catalyst and method of making same
US3844935A (en) * 1973-01-02 1974-10-29 Phillips Petroleum Co Process for producing lead free motor fuel
US3900386A (en) * 1973-05-31 1975-08-19 Universal Oil Prod Co Hydroprocessing of hydrocarbons
US4169815A (en) * 1973-11-15 1979-10-02 Phillips Petroleum Company Catalyst for dehydrogenation process
US4051073A (en) * 1976-02-13 1977-09-27 General Motors Corporation Pellet-type oxidation catalyst
US4221738A (en) * 1979-03-05 1980-09-09 Uop Inc. Production of acrylonitrile
US4459372A (en) * 1982-08-25 1984-07-10 Uop Inc. Surface-metallated refractory inorganic oxides, method of their preparation and catalyst supported on the oxides
FR2539647B1 (fr) * 1983-01-24 1985-06-07 Inst Francais Du Petrole Procede de preparation de catalyseurs bimetalliques ou plurimetalliques supportes a base d'un ou plusieurs metaux du groupe viii et d'au moins un metal du groupe iv catalyseurs obtenus et leurs utilisations
CN85102710A (zh) * 1985-04-01 1986-09-17 中国科学院大连化学物理研究所 铂、钯/氧化钛脱氧催化剂
GB8620982D0 (en) * 1986-08-29 1986-10-08 Shell Int Research Catalyst preparation
FR2694286B1 (fr) * 1992-07-28 1994-10-14 Inst Francais Du Petrole Procédé de production d'alcool aromatique par hydrogénation sélective de cétone aromatique.
FR2704865B1 (fr) * 1993-05-06 1995-07-21 Inst Francais Du Petrole Procédé d'hydrogénation catalytique.
US5858908A (en) * 1997-04-17 1999-01-12 Uop Llc Selective multimetallic-multigradient reforming catalyst

Also Published As

Publication number Publication date
KR100485239B1 (ko) 2005-04-27
FR2755378A1 (fr) 1998-05-07
CN1236333A (zh) 1999-11-24
US6245220B1 (en) 2001-06-12
AU731009B2 (en) 2001-03-22
US5955397A (en) 1999-09-21
CN1107547C (zh) 2003-05-07
FR2755378B1 (fr) 1999-01-08
AU4952497A (en) 1998-05-29
EP0946299A1 (fr) 1999-10-06
BR9712929A (pt) 2000-03-28
KR20000053085A (ko) 2000-08-25
RU2192306C2 (ru) 2002-11-10
WO1998019793A1 (fr) 1998-05-14
JP2001503324A (ja) 2001-03-13

Similar Documents

Publication Publication Date Title
CA2270574A1 (fr) Catalyseurs d'hydrogenation selective contenant du palladium et au moins un element choisi parmi l'etain et le plomb
CA2093272C (fr) Catalyseur contenant un metal du groupe viii et un metal du groupe iiia deposes sur un support
JP3831821B2 (ja) 接触水素化方法およびこの方法において使用可能な触媒
US8460937B2 (en) Catalyst formulation for hydrogenation
EP0564328B1 (fr) Procédé d'hydrogénation sélective des hydrocarbures
TW213898B (fr)
CA1306235C (fr) Procede de reduction d'un catalyseur de raffinage avant sa mise en oeuvre
EP2287275B1 (fr) Procédé de préparation d'un catalyseur supporte à base de Ni et d'un metal du groupe IB pour l'hydrogénation sélective d'hydrocarbures polyinsaturés
FR2482953A1 (fr) Procede d'hydrogenation selective d'une di-olefine dans un melange d'hydrocarbures renfermant au moins 4 atomes de carbone et contenant une olefine -a
WO2015055380A1 (fr) Procede d'hydrogenation selective mettant en œuvre un catalyseur contenant du cuivre et au moins un metal choisi parmi le nickel ou le cobalt
FR2505205A1 (fr) Nouveaux catalyseurs de metaux nobles du groupe viii supportes a haute dispersion et grande activite leur fabrication et leur utilisation notamment dans les reactions d'hydrogenation
EP2271730A1 (fr) Elimination des composes chlores dans les coupes hydrocarbonees
FR2742679A1 (fr) Catalyseur d'hydrogenation selective et procede utilisant ce catalyseur
FR2536410A1 (fr) Procede d'hydrogenation selective des hydrocarbures acetyleniques d'une coupe d'hydrocarbures c4 renfermant du butadiene
CA1334980C (fr) Procede d'isomerisation du butene-1 en butenes-2 dans une coupe d'hydrocarbures en c _ contenant du butadiene et des composes sulfures
US6239322B1 (en) Selective hydrogenation catalysts containing palladium, also tin and/or lead, and the preparation and use thereof
KR101478398B1 (ko) 1,3-부타디엔 중의 아세틸렌류 화합물의 선택적 수소화용 촉매 및 그의 제조방법 및 그의 사용방법
TWI835968B (zh) 由烴類流中移除硫醇類的催化劑及方法
FR3022802A1 (fr) Catalyseur oxyde de fer sur support alumine alpha et sa mise en œuvre dans un procede de deshydrogenation d'hydrocarbures monoinsatures comprenant de 4 a 5 atomes de carbone
FR2674770A1 (fr) Procede de reduction en milieu organique d'un catalyseur de raffinage avant sa mise en óoeuvre.
MXPA99004141A (en) Selective hydrogenation catalysts containing palladium and at least one element selected among tin and lead
FR3011843A1 (fr) Procede d'hydrogenation selective mettant en œuvre un catalyseur contenant du fer et au moins un metal choisi parmi le zinc ou le cuivre.
FR3011846A1 (fr) Procede d'hydrogenation selective mettant en œuvre un catalyseur contenant de l'etain et au moins un metal choisi parmi le fer, molybdene et/ou le cobalt

Legal Events

Date Code Title Description
FZDE Discontinued