CA2277912C - Method of water purification with oxides of chlorine - Google Patents

Method of water purification with oxides of chlorine Download PDF

Info

Publication number
CA2277912C
CA2277912C CA002277912A CA2277912A CA2277912C CA 2277912 C CA2277912 C CA 2277912C CA 002277912 A CA002277912 A CA 002277912A CA 2277912 A CA2277912 A CA 2277912A CA 2277912 C CA2277912 C CA 2277912C
Authority
CA
Canada
Prior art keywords
water
silver
chlorine
chlorite
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002277912A
Other languages
French (fr)
Other versions
CA2277912A1 (en
Inventor
John D. Rafter
Joseph W. Grenier
Raymond P. Denkewicz, Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zodiac Pool Systems LLC
Original Assignee
Fountainhead Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fountainhead Technologies Inc filed Critical Fountainhead Technologies Inc
Publication of CA2277912A1 publication Critical patent/CA2277912A1/en
Application granted granted Critical
Publication of CA2277912C publication Critical patent/CA2277912C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • C02F1/505Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides

Abstract

A method of purifying water includes contacting water containing an oxide of chlorine, such as chlorine dioxide, chlorite, or chlorate, with a water purification composition that includes a Group 11 or Group 12 metal such as silver, copper, or zinc.

Description

METHOD OF WATER PURIFICATION WITH OXIDES OF CHLORINE
Background of the Invention The invention relates to water purification.
Water must be effectively treated to remove or stop the growth of micro-organisms such as bacteria, parasites, or algae, particularly when the water is confined. Confined volumes of water are highly susceptible to rapid micro-organism growth and can become health hazards if not properly and regularly treated.
Water purification can be accomplished by filtration or by treating the water with chlorine, bromine, ozone, or silver ions to provide water suitable for consumption or for use in recirculating systems such as swimming pools, hot tubs, spas, or cooling towers. For example, water can be treated with silver-containing materials described, for example, in U.S. Pat. No. 5,352,369 and in U.S. Ser. No. 081628,405, entitled "Self Regulating Water Purification Composition" and filed April 5, 1996, which are incorporated herein by reference.
In recent years, chlorine dioxide (C102 (g)) has been used to disinfect drinking water. See, for example, C. Yapijakis "R,~ for H20" Water & Water Engineering, May (1978), p. 33-37 and "Chlorine Dioxide" in Handbook of Chlorination and Alternative Disinfectants, G.C. White, Van Nostrand Rcinhold, New York ( 1992), Chapter 12, p. 980-1045. Chlorine dioxide can be generated in several different ways. For example, chlorine dioxide can be produced by introducing chlorine gas into the flowing stream containing chlorite (C10,-) or chlorate (C103~).
Chlorine dioxide also can be produced by lowering the pH of a concentrated solution of chlorite or chlorate. This can be done either directly in water or, as in certain methods of disinfecting bandaged wounds, by adding an acid (e.g., citric acid) and water to a dry powder containing salts of chlorite or chlorate, as described, for example, in Chvapil et al. U.S. Pat. No.5,104,660. Chlorine dioxide also can be generated by adding chlorine (HOC I ) or exposing a catalyst to a solution containing chlorite. See, for example, Daly et al. U.5. Pat. No. 5,435,984.

WO 98!30502 PCT/US97/227I7 Summary of the Invention In one aspect, the invention features a method of purifying water including the step of contacting water containing an oxide of chlorine, such as chlorine dioxide, chlorite, or chlorate, with a water purification composition including a Group 11 or Group 12 metal, such as silver, copper, or zinc. Preferably, the water contains chlorite.
In preferred embodiments, the water has a pH between about 5 and 9.
More preferably, the water has a pH between 6 and 8. Most preferably, the water has a pH between 6.5 and 7.5.
Preferably, the water purification composition includes a silver-containing material, and the silver-containing material maintains a silver ion concentration in the water of between 0.01 and 0.1 ppm. The silver-containing material can include a second metal like zinc, copper, aluminum, iron, or manganese.
The silver-containing material may further include an inorganic oxide having a zeta potential less than or equal to +20 mV in the water being purified (e.g., alumina).
The water may further contain a peroxygen compound or a halogen.
Preferably, the peroxygen compound is a peroxymonosulfate such as potassium peroxymonosulfate.
The water may be recirculatcd, for example, in swimming pools, spas, cooling towers, or other industrial applications. Alternatively, the water can be single pass water, such as drinking water or waste water.
In another aspect, the invention features a method of purifying water including the steps of adding an oxide of chlorine (i.e., chlorine dioxide, chlorite, or chlorate) to water; and contacting the water with a water purification composition including a Group 11 or Group 12 metal (i.e., silver, copper, or zinc).
In yet another aspect, the invention features a method of purifying water including: (1) adding an oxide of chlorine to water; (2) adding a peroxygen compound or a halogen to the water; and (3) contacting the water with a water purification composition including a Group I 1 or Group 12 metal.
The water purification composition can be a silver containing material.
Alternatively, the water purification composition can include copper or zinc.
The silver containing material can maintain a silver ion concentration in the water of between 0.01 and 0.1 ppm.
As used herein, "halogen" means free available chlorine or bromine in water. The halogen can be an active agent in the purification of the water.
As used herein, "purifying water" means killing bacteria, killing algae, killing cysts, destroying viruses, or stopping the growth of algae in water.
Purifying water also can include destroying other parasites in the water.
The method is an effective way to treat and disinfect water. The method is economical and generally does not present significant carcinogenic and environmental threats. For example, the method can effectively destroy and kill bacteria, viruses, fungi, spores, cysts, or parasites in water, including Giardia, Cryptosporidium, or Legionella. The method of treating water also effectively controls levels of algae in the water.
Other advantages and features of the invention will be apparent from the detailed description, and from the claims.
Detailed Description Water can be purified by dissolving salts including chlorite (C102-) or chlorate (C103-) in water at a concentration of up to 200 mg/L and adding Group 11 or 12 ions (e.g., silver (Ag+), copper, or zinc ions) to the water (e.g., at concentrations of up to 0.1 ppm, 2 ppm, or 5 ppm, respectively). Alternatively, chlorine dioxide gas (C102 (g)) can be dissolved in the water with the silver ions, copper ions, or zinc ions.
For example, the chlorine dioxide can be prepared independently and added to the water, or the chlorine dioxide can be generated from chlorite or chlorate in the water by adding an acid or other catalyst to the solution. Copper or zinc ions can be added to the water instead of or in addition to the silver ions.
The chlorite or chlorate can be the anion of any salt that is soluble in water at concentrations up to 200 mg/L. Preferably, the concentration of chlorite or chlorate is less than 50 mg/L. More preferably, the concentration of chlorite or chlorate is less than 20 mg/L. The chlorite or chlorate concentration is preferably greater than 0.02 mg/L. Examples of suitable chlorite or chlorate salts include the lithium, sodium, potassium, calcium, magnesium, silver, copper, or zinc salts.
The silver ion concentration in the water can be produced by dissolving a silver salt in water or by exposing the water to a water purification composition that includes silver. Copper or zinc ions can be added to the water by exposing water to water purification materials that include copper, or zinc or by dissolving an appropriate salt in the water. The silver, copper, or zinc in the water purification material can be a metal or metal salt. For example, the water purification compositions described in U.S. Pat. No. 5,352,369 and in U.S. Ser. No.
08/628,405 are appropriate silver-containing materials for introducing silver ions into the water.
The silver-containing material can include silver metal on a support. The support can be a ceramic and can include an inorganic oxide, e.g., an aluminum oxide. The silver can be chemically deposited on the ceramic support or dispersed as a powder, shavings, or turnings with the ceramic support. The silver-containing material can include a second metal, preferably zinc, copper, aluminum, iron, or manganese, most preferably, zinc. Alternatively to the silver-containing material, the water purification composition can be a composition that introduces copper or zinc ions into the water.
The water purification composition can be in powder, granule, tablet, stick, monolithic ceramic foam. or any other suitable form.
The water can contain other oxidizing agents to enhance the purifying ability of the chlorite or chlorate and silver ions. The additional oxidizing agents include halogens, such as chlorine (e.g.. trichloroisocyanurate or calcium hypochlorite) or bromine, and peroxygen compounds, such as potassium peroxymonosulfate or hydrogen peroxide. The preferred oxidizing agent is potassium peroxymonosulfate. Potassium peroxymonosulfate is a triple salt mixture of K2S04~KHS04.2KHS05 (OXONET"' , manufactured by E.I. duPont de Nemours and Company, Inc., Delaware). The oxidizing agent helps provide low level of chlorine dioxide to the water. Peroxymonopersulfate can also convert a halide (i.e., chloride or bromide) into a halogen (i.e., chlorine or bromine).
The water purified by the method has a pH that is nearly neutral (i.e., it is not particularly acidic or basic). Preferably, the pH of the water being purified is between 5 and 9. More preferably, the pH of the water is between 6 and 8 and, most preferably, the pH is between 6.5 and 7.5.
The water purified according to the method can be single pass water, such as drinking water or waste water, or recirculated water, such as water in 5 swimming pools, spas, cooling towers, or other industrial applications where a recirculating body of water is disinfected.
It is believed there is a synergy between silver ion and chlorine dioxide, chlorite, or chlorate. By adding silver ion to the water being treated prior to formation of chlorine dioxide, greater disinfecting ability can be imparted on both the chlorine dioxide generated in the water and the residual chlorite or chlorate dissolved in the water. Typically the silver ion concentration is not greater than 0.1 ppm.
Silver ions in combination with chlorite (or chlorate) in water are effective at killing bacteria, as shown in Examples 1-14. In addition, bactericidal activity of chlorite is enhanced when an oxidizing agent (i.e., peroxymonosulfate) is added to the water, as demonstrated in Examples 8-14. In particular, the combination of chlorite with silver ion and an oxidizing agent such as potassium peroxymonosulfate kills bacteria efficiently in water. The method of treating water b5~
adding chlorite and silver ions to water is also suitable to control the growth of algae, as demonstrated in Examples 15-21.
The following Examples are to be construed as merely illustrative, and not limitive, of the-remainder of the disclosure.
Examples 1-7 Aqueous solutions of chlorite (C102-), chlorate (C103-) and silver ions (Ag+) were tested alone and in various combinations for their bactericidal efficacy against an inoculum of E. coll. Experiments were conducted in 500 mL of room temperature, double distilled, deionized water at pH 7.0 in acid-washed, pre-sterilized 1 L Erlenmeyer flasks. The flasks were inoculated with approximately 2 x 1 O6 colony forming units per mL (CFU/mL) of E. coll. 1 mL aliquots were taken after 20 minutes of contact time and neutralized with 0.01 mL of a solution containing 10%
sodium thioglycolate and 14.6% sodium thiosulfate. The efficacy of this neutralizer was determined to be 100% effective against the various agents tested. The results of the tests are summarized in Table I . As demonstrated in Examples 5-7, silver ions in combination with chlorite or chlorate showed a bactericidal synergy against E.
coli.
The bactericidal activity of the solutions containing, e.g., silver ions and chlorite was greater than the sum of the activities of each component alone.
T_ ABLE 1 Example System Log Reduction 3 C 1 O,- & C 103- 0 4 Ag+ 1.19 Ag+ & C 1 OZ- >4.0 6 Ag+ & C10~- 2.11 Ag+. C I O,- & C >5.14 * Concentrations were as follows:
Ag = 0.05 ppm;
C1 Oz = 5.0 ppm;
C1 O~ _ 0.2 ppm.

Examples 8-14 Additional experiments were performed with aqueous solutions of chlorite, silver ions, and potassium peroxymonosulfate (hereinafter MPS) in various combinations to determine the bactericidal activity of the components (i.e., low levels of chlorine dioxide in combination with silver ions) against E. cold .
Experiments were conducted in 500 mL room temperature, double distilled, deionized water at pH
7.0 in acid-washed, pre-sterilized 1 L Erlenmeyer flasks. The flasks were inoculated with approximately 2 x 1 O6 CFU/mL of E. col i. 1 mL samples were taken after minutes of contact time and neutralized with 0.01 mL of a solution containing 10%
sodium thioglycolate and 14.6% sodium thiosulfate. The efficacy of this neutralizer was determined to be 100% effective against the various agents tested. Results of the experiments are summarized in Table 2. As the results of Examples 12-14 demonstrate, chlorite in combination with MPS or silver ion show a synergy in their bactericidal activity against E. coli.

Example System Log Reduction 8 MPS 0.46 Ag+ 0.26 11 MPS & AG+ 0.38 12 Ag+ & C I 02- 2.0 13 MPS & C 102- 2.47 14 MPS, Ag+, & C I >5.2 Concentrations were as follows: MPS
(as C12) = 4.5 ppm; Ag+ = 0.034 ppm;
C 1 O2~ = 4.8 ppm;
C 103- = 0.2 ppm.

Examples 15-17 The ability of silver ions, chlorite, and the combination of silver ions and chlorite to prevent the growth of the green alga Chlorella vulgari.s was tested. The tests were carried out using 25 mL of sterile Allen's medium (329 mg K2HP04~3H20, 66 mg CaCl2~2H20, 50 mg NH4Cl, 1000 mg NaN03, 513 mg mgS04~7H20 and 1 mL
of 3,000 ppm FeCl3 solution in 1 L distilled, deionized water) at room temperature in 50 mL acid washed, sterilized Erlenmeyer flasks. The pH of each solution was adjusted to 6.5-7.5 using 1N NaOH and 1N HNO~. The flasks containing the various test solutions were inoculated with approximately 5 x 1 OS cells/mL of the test alga and placed on an orbital shaker at 500 rpm under 200 ft-candles of illumination.
After 96 hours the cells in a 10 pL aliquot from each flask were counted using a hemacytometer counting chamber and inhibition of growth relative to a control was calculated. Results are summarized in Table 3. The results of Example 17 indicate that silver ions with chlorite are synergistic in their algistatic activity against Chlorella vulgaris.

Example System Growth Inhibition (%) 15 Ag+ 26%

16 C 102- I 0%

17 Ag+ & C 1 OZ 100%

* Concentrations were as follows:
Ag+ = 0.05 ppm; C 102 = S.0 ppm.

Examples 18-21 After 7 days under 200 ft-candles of illumination with shaking at 500 rpm, the Ag+ & C102- solution described in Example 17 above still showed 100%
growth inhibition. This solution was filtered through a sterile, 0.45 pm, Teflon syringe filter into a sterile, acid washed, 50 mL borosilicate glass Erlenmeyer flask.
The pH of the solution was checked and found to be between 6.5 and 7.5. The solution was re-inoculated with Chlorella vulgaris to a cell concentration of approximately Sx105 cells/mL. The solution remained under 200 ft-candles of illumination on an orbital shaker at 500 rpm for 25 additional days. As Examples 18-21 illustrate, the algistatic activity of the Ag+/C I OZ- solution is maintained over a period of at least 25 days, as suggested by the nearly constant concentration of cells in the sample (Table 4).

Example Day Cells/mL

18 7 5.1x10' 19 10 4.7x105 14 5.5x10' 21 25 7.3x10' 15 Examples 22-28 An experiment was performed to test the ability of A~1. CI O,- and MPS and combinations of these three to prevent the growth of the green alga Chlorella vulgaris. Thesc tests were carried out using; ''~ mL of sterile CI-free Allen's medium (329 mg K~HP04~7H20, 1060 mg Ca(N03)z~H~O, 77 mg NH4N03, 1000 mg 20 NaN03, 513 mg MgS04~7H20 and 72 mL of a 100 ppm iron nitrate solution in mL distilled, deionized water) at room temperature in 50 mL acid washed, sterilized Erlenmeyer flasks. The pH of each solution was adjusted to 6.5-7.5 using 1N
NaOH
and 1N HN03. Flasks containing the various test solutions were inoculated with Chlorella vulgaris to a cell density of approximately 3x105 cells/mL and placed on an orbital shaker at 200 rpm under 200 ft-candles of illumination. After 96 hours, the cells in the 10 pL aliquot from each flask were counted using a hemacytometer ., i WO 98!30502 PCT/ITS97/22717 counting chamber and inhibition of growth relative to a control was calculated. In order to determine if the treatments were having an algistatic or algicidal effect, 1 mL
of each solution was transferred aseptically to a 50 mL acid washed, sterilized Erlenmeyer flask containing 24 mL of sterile, C1- free Allen's medium and placed under 200 ft-candles of illumination on an orbital shaker at 200 rpm. After 10 days, the new flasks were examined for growth. If the new flasks showed growth, the cells had revived and the original solution was considered algistatic. If the new flasks showed no growth, the cells were dead and the original solution was considered algicidal. Results are shown in Table S. Examples 22-24 illustrate that Ag+, C102-and MPS are all algistatic. Examples 25-28 show that combinations of Ag+, MPS and CIOz- are algicidal.
TABLE
S

Example System Growth Growth in Algistatic/
Inhibition Fresh Media Algicidal 22 C102- 25% Yes Algistat (mild) 23 Ag+ 98% Yes Algistat 24 MPS 93% Yes Algistat 25 Ag; & MPS 100% No Algicide 26 Age & C 1 90% No Algicide Oz-27 MPS & C 1 100% No Algicidc OZ-28 Ag+, MPS & 100% No Algicide C 1 O,-Concentrations were as follows:
Ag+=0.1 ppm;
C10~-=10 ppm;
MPS=10 ppm.

Other embodiments are within the claims. For example, the water containing chlorite or chlorate can be exposed to a catalyst to generate chlorine dioxide in the water, enhancing the purifying power of the mixture.

Claims (25)

Claims
1. A method of purifying water comprising contacting water containing an oxide of chlorine selected from the group consisting of chlorite and chlorate with a water purification composition comprising silver, copper, or zinc.
2. The method of claim 1, wherein the water has a pH between about 5 and 9.
3. The method of claim 2, wherein the water further contains a peroxygen compound or a halogen.
4. The method of claim 2, wherein the water purification composition comprises a silver-containing material.
5. The method of claim 4, wherein the silver containing material maintains a silver ion concentration in the water of between 0.01 and 0.1 ppm.
6. The method of claim 4, wherein the water contains chlorite.
7. The method of claim 6, wherein the water further contains a peroxygen compound or a halogen.
8. The method of claim 7, wherein the peroxygen compound comprises a peroxymonosulfate.
9. The method of claim 7, wherein the halogen comprises chlorine.
10. The method of claim 4, wherein the silver-containing material includes a second metal comprising zinc, copper, aluminum, iron, or manganese.
11. The method of claim 10, wherein said second metal comprises zinc.
12. The method of claim 11, wherein the silver-containing material further comprises an inorganic oxide having a zeta potential less than or equal to +20 mV in said water being purified.
13. The method of claim 12, wherein the inorganic oxide comprises alumina.
14. The method of claim 2, wherein the water is recirculated.
15. The method of claim 2, wherein the water is single pass water.
16. A method of purifying water comprising:
adding an oxide of chlorine selected from the group consisting of chlorite salts and chlorate salts to the water; and contacting the water with a water purification composition comprising silver, copper, or zinc.
17. The method of claim 16, wherein the water has a pH between about 5 and 9.
18. The method of claim 17, wherein the water contains a peroxygen compound or a halogen.
19. The method of claim 17, wherein the water purification composition is a silver-containing material.
20. The method of claim 19, wherein the water contains a peroxygen compound or a halogen.
21. A method of purifying water comprising the steps of:
adding an oxide of chlorine selected from the group consisting of chlorite salts and chlorate salts to water;
adding a peroxygen compound or a halogen to the water; and contacting the water with a water purification composition comprising silver, copper, or zinc.
22. The method of claim 21, wherein the water has a pH between about 5 and 9.
23. The method of claim 22, wherein the water purification composition is a silver-containing material.
24. The method according to claim 1, wherein the concentration of the oxide of chlorine is between 0.02 mg/L and 200 mg/L.
25. The method according to claim 24, wherein the concentration of the oxide of chlorine is between 0.02 mg/L and 50 mg/L.
CA002277912A 1997-01-14 1997-12-10 Method of water purification with oxides of chlorine Expired - Lifetime CA2277912C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/783,558 US5858246A (en) 1997-01-14 1997-01-14 Method of water purification with oxides of chlorine
US08/783,558 1997-01-14
PCT/US1997/022717 WO1998030502A1 (en) 1997-01-14 1997-12-10 Method of water purification with oxides of chlorine

Publications (2)

Publication Number Publication Date
CA2277912A1 CA2277912A1 (en) 1998-07-16
CA2277912C true CA2277912C (en) 2007-02-13

Family

ID=25129651

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002277912A Expired - Lifetime CA2277912C (en) 1997-01-14 1997-12-10 Method of water purification with oxides of chlorine

Country Status (6)

Country Link
US (1) US5858246A (en)
EP (1) EP0952963A1 (en)
AU (1) AU745200B2 (en)
CA (1) CA2277912C (en)
WO (1) WO1998030502A1 (en)
ZA (1) ZA98249B (en)

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPP216198A0 (en) * 1998-03-05 1998-03-26 Rex, Hans Method of sanitizing a body of water
AUPP242898A0 (en) * 1998-03-18 1998-04-09 Australian National University, The Method of water purification
IL125520A0 (en) * 1998-07-27 1999-03-12 Makhteshim Chem Works Ltd Environmentally compatible processes and compositions and materials treated thereby
US6143184A (en) * 1999-03-02 2000-11-07 United States Filter Corporation Air and water purification using continuous breakpoint halogenation
US6149819A (en) * 1999-03-02 2000-11-21 United States Filter Corporation Air and water purification using continuous breakpoint halogenation and peroxygenation
US6409926B1 (en) * 1999-03-02 2002-06-25 United States Filter Corporation Air and water purification using continuous breakpoint halogenation and peroxygenation
US6383273B1 (en) * 1999-08-12 2002-05-07 Apyron Technologies, Incorporated Compositions containing a biocidal compound or an adsorbent and/or catalyst compound and methods of making and using therefor
MXPA02012886A (en) 2000-06-22 2003-05-14 United States Filter Corp Corrosion control utilizing a hydrogen peroxide donor.
US6716359B1 (en) 2000-08-29 2004-04-06 United States Filter Corporation Enhanced time-based proportional control
US6620315B2 (en) 2001-02-09 2003-09-16 United States Filter Corporation System for optimized control of multiple oxidizer feedstreams
US6440300B1 (en) 2001-07-16 2002-08-27 Michael Randall Water treatment system for swimming pool water
US6776926B2 (en) * 2001-08-09 2004-08-17 United States Filter Corporation Calcium hypochlorite of reduced reactivity
CA2463378A1 (en) * 2001-10-22 2003-12-24 Felice Dimascio Electrolytic process and apparatus
GB0130072D0 (en) * 2001-12-15 2002-02-06 Salamander Engineering Ltd Anti-bacterial treatment
US6991735B2 (en) * 2002-02-26 2006-01-31 Usfilter Corporation Free radical generator and method
US7108781B2 (en) * 2002-02-26 2006-09-19 Usfilter Corporation Enhanced air and water purification using continuous breakpoint halogenation with free oxygen radicals
US8668779B2 (en) * 2002-04-30 2014-03-11 Nalco Company Method of simultaneously cleaning and disinfecting industrial water systems
US6913741B2 (en) * 2002-09-30 2005-07-05 Halox Technologies, Inc. System and process for producing halogen oxides
DE10323851A1 (en) * 2003-05-26 2004-12-16 BSH Bosch und Siemens Hausgeräte GmbH Refrigeration device with thaw server evaporator
AU2003903858A0 (en) * 2003-07-25 2003-08-07 Water Corporation Treatment of chloraminated water
US7179363B2 (en) * 2003-08-12 2007-02-20 Halox Technologies, Inc. Electrolytic process for generating chlorine dioxide
US7488457B2 (en) * 2003-10-10 2009-02-10 Halox Technologies, Inc. Systems and methods for generating chlorine dioxide
US7476307B2 (en) * 2003-10-10 2009-01-13 Halox Technologies, Inc. Systems and methods for generating chlorine dioxide
US7560033B2 (en) * 2004-10-13 2009-07-14 E.I. Dupont De Nemours And Company Multi-functional oxidizing composition
US20060018940A1 (en) * 2004-07-21 2006-01-26 E. I. Du Pont De Nemours And Company Stabilized antimicrobial composition
US20060016765A1 (en) * 2004-07-21 2006-01-26 Dipietro David G Water treatment
US7666317B2 (en) * 2005-01-31 2010-02-23 MAC Aerospace Industries, Inc. Methods and systems for disinfecting potable water supplies
US20060169645A1 (en) * 2005-01-31 2006-08-03 Hsueh Angela M Water treatment systems and techniques principally for use on-board aircraft
US7976725B2 (en) * 2005-06-22 2011-07-12 Truox, Inc. Cyclic process for the efficient generation of chlorine dioxide in dilute solutions
US7927509B2 (en) * 2005-06-22 2011-04-19 Truox, Inc. Cyclic process for the efficient generation of chlorine dioxide in dilute solutions
US7927508B2 (en) * 2005-06-22 2011-04-19 Truox, Inc. Composition and process for enhanced sanitation and oxidation of aqueous systems
US7449119B2 (en) 2005-07-28 2008-11-11 Chemtura Corporation Methods for controlling Mycobacterium chelonae and removing bacterial cell membrane fragments from turbulent waters
US10343939B2 (en) 2006-06-06 2019-07-09 Evoqua Water Technologies Llc Ultraviolet light activated oxidation process for the reduction of organic carbon in semiconductor process water
WO2007146671A2 (en) 2006-06-06 2007-12-21 Fluid Lines Ultaviolet light activated oxidation process for the reduction of organic carbon in semiconductor process water
DE602006018745D1 (en) * 2006-10-02 2011-01-20 Borealis Tech Oy Polyolefin composition with improved resistance to CIO2-containing water
US20080245737A1 (en) * 2007-04-03 2008-10-09 Siemens Water Technologies Corp. Method and system for providing ultrapure water
US9365436B2 (en) 2007-04-03 2016-06-14 Evoqua Water Technologies Llc Method of irradiating a liquid
US9725343B2 (en) 2007-04-03 2017-08-08 Evoqua Water Technologies Llc System and method for measuring and treating a liquid stream
US8753522B2 (en) 2007-04-03 2014-06-17 Evoqua Water Technologies Llc System for controlling introduction of a reducing agent to a liquid stream
US8741155B2 (en) 2007-04-03 2014-06-03 Evoqua Water Technologies Llc Method and system for providing ultrapure water
US9365435B2 (en) 2007-04-03 2016-06-14 Evoqua Water Technologies Llc Actinic radiation reactor
US8961798B2 (en) 2007-04-03 2015-02-24 Evoqua Water Technologies Llc Method for measuring a concentration of a compound in a liquid stream
US9045718B2 (en) 2007-04-09 2015-06-02 Innovation Services, Inc. Residue cleaning composition and method
US7794606B2 (en) * 2007-04-09 2010-09-14 Innovation Services, Inc. Modular flameless waste treatment method
US7799234B2 (en) * 2007-04-09 2010-09-21 Innovation Services, Inc. In-line waste disinfection method
US20100101010A1 (en) * 2008-10-24 2010-04-29 Watkins Manufacturing Corporation Chlorinator for portable spas
US7922933B2 (en) * 2009-01-09 2011-04-12 Truox, Inc Composition and method for enhanced sanitation and oxidation of aqueous systems
US8465650B2 (en) * 2009-05-20 2013-06-18 Watkins Manufacturing Corporation Spa calcium removal methods and apparatus
US8273254B2 (en) 2010-04-19 2012-09-25 Watkins Manufacturing Corporation Spa water sanitizing system
US8266736B2 (en) * 2009-07-16 2012-09-18 Watkins Manufacturing Corporation Drop-in chlorinator for portable spas
US8591730B2 (en) 2009-07-30 2013-11-26 Siemens Pte. Ltd. Baffle plates for an ultraviolet reactor
US8366922B2 (en) * 2009-09-15 2013-02-05 Watkins Manufacturing Corporation Exchangeable media filter
US20140124426A1 (en) * 2009-12-01 2014-05-08 Joseph A. King Wastewater treatment
CA2797228C (en) 2010-04-27 2020-07-21 Bcr Environmental Corporation Wastewater treatment apparatus to achieve class b biosolids using chlorine dioxide
EP2527301B1 (en) 2011-05-26 2016-04-27 Evoqua Water Technologies GmbH Method and arrangement for a water treatment
MX2015003878A (en) * 2012-09-28 2015-10-22 Procleanse Llc Residual disinfection of water.
US10640403B2 (en) 2013-08-15 2020-05-05 Applied Silver, Inc. Antimicrobial batch dilution system
US11618696B2 (en) 2013-08-15 2023-04-04 Applied Silver, Inc. Antimicrobial batch dilution system
US9689106B2 (en) 2013-12-06 2017-06-27 Applied Silver, Inc. Antimicrobial fabric application system
US10494281B2 (en) 2015-01-21 2019-12-03 Evoqua Water Technologies Llc Advanced oxidation process for ex-situ groundwater remediation
US11161762B2 (en) 2015-01-21 2021-11-02 Evoqua Water Technologies Llc Advanced oxidation process for ex-situ groundwater remediation
US20170050870A1 (en) 2015-08-21 2017-02-23 Applied Silver, Inc. Systems And Processes For Treating Textiles With An Antimicrobial Agent
TWI588098B (en) * 2016-05-25 2017-06-21 Liu de-hui A waste liquid treatment device and an air pollution control device using the waste liquid treatment device
US20200123700A1 (en) 2017-03-01 2020-04-23 Applied Silver, Inc. Systems and processes for treating textiles with an antimicrobial agent
CN107568208A (en) * 2017-08-25 2018-01-12 南京斯泰尔医药科技有限公司 A kind of sustained-release gel composition containing zinc and chlorine dioxide

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR355086A (en) * 1904-07-19 1905-10-23 Maison E Merck Process for the preparation of guanines using cyanamido-4.5-diamido-6-oxypyrimidine and its homologues
US3702298A (en) * 1970-09-10 1972-11-07 Eco Sciences Inc Method of disinfecting with divalent and trivalent metal germicide
US3770646A (en) * 1971-02-16 1973-11-06 Hooker Chemical Corp Activated chlorate
US3791979A (en) * 1971-12-10 1974-02-12 Hooker Chemical Corp Activated chlorate
JPS5510315B2 (en) * 1972-12-29 1980-03-14
US4049784A (en) * 1975-03-07 1977-09-20 Hooker Chemicals & Plastics Corporation Production of chlorine dioxide with product slurry metathesis
CA1090091A (en) * 1976-03-19 1980-11-25 Richard Swindells Production of chlorine dioxide from buffered reaction media
CA1223715A (en) * 1976-10-26 1987-07-07 David N. Glew Production of chlorine dioxide
US4079123A (en) * 1976-12-30 1978-03-14 Hooker Chemicals & Plastics Corporation Process for the production of chlorine dioxide
JPS5458948A (en) * 1977-10-18 1979-05-12 Asahi Glass Co Ltd Method of decoloring raw sewage disposal water
CA1146707A (en) * 1981-02-10 1983-05-24 Stan G. Guttormson Swimming pool shock and pool maintenance composition
US4403374A (en) * 1981-06-17 1983-09-13 Rando Machine Corporation Means for controlling density of non-woven fiber webs
US4681739A (en) * 1982-10-19 1987-07-21 The Scopas Technology Co., Inc. Use of chlorine dioxide gas as a chemosterilizing agent
LU85532A1 (en) * 1984-09-06 1986-04-03 Panzer Swimart N V Sa WATER DISINFECTION PROCESS
US5124164A (en) * 1988-11-16 1992-06-23 Nippon Kayaku Kabushiki Kaisha Method for preserving fresh marine products with use of a deoxidant
US5108649A (en) * 1988-11-16 1992-04-28 Nippon Kayaku Kabushiki Kaisha Preserving agent, method and container for preserving fresh marine product
US5104660A (en) * 1989-11-21 1992-04-14 Bruce A. Barber Method of preparing an antimicrobial wound dressing
US5217626A (en) * 1991-05-28 1993-06-08 Research Corporation Technologies, Inc. Water disinfection system and method
TW222251B (en) * 1992-04-09 1994-04-11 Takeda Chemical Industries Ltd
US5435984A (en) * 1992-04-28 1995-07-25 Degussa Corporation Catalyst for the synthesis of chlorine dioxide
ATE153319T1 (en) * 1992-07-23 1997-06-15 Unilever Nv METHOD AND DEVICE FOR MONITORING MICROORGANISMS
US5330658A (en) * 1993-03-17 1994-07-19 Westinghouse Electric Corporation Solution decontamination method using precipitation and flocculation techniques
US5352369A (en) * 1993-04-01 1994-10-04 Fountainhead Technologies, Inc. Method of treating water
US5603844A (en) * 1993-09-22 1997-02-18 The United States Of America As Represented By The Secretary Of The Interior Instant, chemical-free dechlorination of water supplies
GB9406117D0 (en) * 1994-03-28 1994-05-18 Ici Plc Oxidation process
JP4004538B2 (en) * 1994-09-08 2007-11-07 ゾルファイ ウムヴェルトヒエミー ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for removing chlorate- and bromate compounds from water by catalytic reduction
US5476579A (en) * 1995-04-24 1995-12-19 Choi; Hyeong S. Process for generating chlorine dioxide and apparatus therefor
DE19514612A1 (en) * 1995-04-25 1996-10-31 Fritz Dr Kueke Process for the preparation of an aqueous chlorine dioxide solution

Also Published As

Publication number Publication date
ZA98249B (en) 1999-07-13
WO1998030502A1 (en) 1998-07-16
US5858246A (en) 1999-01-12
CA2277912A1 (en) 1998-07-16
AU745200B2 (en) 2002-03-14
AU5695698A (en) 1998-08-03
EP0952963A1 (en) 1999-11-03

Similar Documents

Publication Publication Date Title
CA2277912C (en) Method of water purification with oxides of chlorine
CA2159352C (en) Method of treating water
US5935609A (en) Self-regulating water purification composition
US6254894B1 (en) Silver self-regulating water purification compositions and methods
US6524540B1 (en) Materials and methods for water purification
US5332511A (en) Process of sanitizing swimming pools, spas and, hot tubs
US5089275A (en) Stabilized divalent silver bactericides
US4119535A (en) Method of sanitizing a volume of water in conjunction with chlorine
US5217626A (en) Water disinfection system and method
JPS6324485B2 (en)
US20040048762A1 (en) Method of purifying or cleansing a body of liquid
CA2484889C (en) Catalytic oxidation of peroxy salts
Hasan et al. Disinfection by-product removal by activated carbon-using batch mode
Niven Investigation of silver electrochemistry water disinfection applications
RU2192392C1 (en) Composite for water treatment
GB2305426A (en) The purification of water
JPS6038198B2 (en) Stabilization method for residual chlorine
CA2248992C (en) Self-regulating water purification composition
AU4509100A (en) Silver self-regulating water purification compositions and methods
CN111943305A (en) Aquaculture water purifying agent and preparation method thereof
Davies et al. Colloidal Silver Facts
Idris et al. Purification and Disinfection of Water by Using Electrochemical Activation
ZA200302861B (en) A method of purifying or cleansing a body of liquid.

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20171211