CA2288365C - Adaptive buffer management for voice over packet based networks - Google Patents

Adaptive buffer management for voice over packet based networks Download PDF

Info

Publication number
CA2288365C
CA2288365C CA002288365A CA2288365A CA2288365C CA 2288365 C CA2288365 C CA 2288365C CA 002288365 A CA002288365 A CA 002288365A CA 2288365 A CA2288365 A CA 2288365A CA 2288365 C CA2288365 C CA 2288365C
Authority
CA
Canada
Prior art keywords
voice
packet
queue
buffer queue
transmit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002288365A
Other languages
French (fr)
Other versions
CA2288365A1 (en
Inventor
Andre Moskal
Andre Diorio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitel Networks Corp
Original Assignee
Mitel Networks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitel Networks Corp filed Critical Mitel Networks Corp
Priority to CA002288365A priority Critical patent/CA2288365C/en
Priority to US09/432,540 priority patent/US6603759B1/en
Publication of CA2288365A1 publication Critical patent/CA2288365A1/en
Application granted granted Critical
Publication of CA2288365C publication Critical patent/CA2288365C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/80Responding to QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/23Bit dropping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/29Flow control; Congestion control using a combination of thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/90Buffering arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/90Buffering arrangements
    • H04L49/9042Separate storage for different parts of the packet, e.g. header and payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/90Buffering arrangements
    • H04L49/9084Reactions to storage capacity overflow
    • H04L49/9089Reactions to storage capacity overflow replacing packets in a storage arrangement, e.g. pushout
    • H04L49/9094Arrangements for simultaneous transmit and receive, e.g. simultaneous reading/writing from/to the storage element
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/64Hybrid switching systems
    • H04L12/6418Hybrid transport
    • H04L2012/6489Buffer Management, Threshold setting, Scheduling, Shaping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1101Session protocols

Abstract

A system is provided for carrying synchronous voice payloads of variable size across a packet-based network while eliminating network fitter losses. According to the preferred embodiment, two concurrent tasks are implemented. A Voice Packet Processing task receives packetized voice from a packet oriented interface, processes headers of the packet, and builds a receive payload buffer that is managed by means of copying packets to the synchronous interface according to the contents of the payload buffer. The Voice Packet Forwarding task builds a transmit payload buffer for voice samples received from the synchronous interface, builds the necessary protocol headers and forwards the packet to the packet oriented interface.

Description

ADAPTIVE BUFFER MANAGEMENT FOR VOICE OVER PACKET NETWORK
FIELD OF THE INVENTION
This invention relates in general to data transfer systems and more specifically to an apparatus and method for avoiding fitter and variations in payload size for a voice over packet network.
BACKGROUND OF THE INVENTION
Traditional voice networks are based on 64kbit/s synchronous transfer mode channels.
1o Recently, new methods utilizing packet-based networks have emerged for transmitting voice.
Carrying voice over a packet-based network introduces a number of problems such as fitter, various payload sizes, and lack of unified Quality of Service.
The usual method for transmitting 6.711 (64kbit/s) based payloads across a packet based network, such as an Internet Protocol (IP) network, is via compression technology (e.g.
15 G.723/G.729) in order to optimize bandwidth utilization over the Internet.
Some prior art methods address the problem of variable payloads by using de fitter buffers, however, most of these methods are based on single voice channel streaming. One such product is the NetMeeting'~ application by Microsoft Corporation.

According to the present invention, a system is provided for carrying 6.711 (64kbit/s) based voice payloads across a packet-based network while overcoming the problems of network fitter and variable payload size.
More particularly, two concurrent tasks are implemented according to the invention, 25 as follows: a Voice Packet Processing task and a Voice Packet Forwarding task. The Voice Packet Processing task receives packetized voice from a packet oriented interface, processes headers of the packet, and builds a payload buffer that is managed as described in greater detail below. The Voice Packet Forwarding task builds a payload buffer from the 6.711 voice samples received from the synchronous interface, builds the necessary protocol headers 3o and forwards the packet to the packet oriented interface.
BRIEF DESCRIPTION OF THE DRAWINGS
A preferred embodiment of the present invention is described herein below with reference to the drawings in which:
2 Figure 1 is a block diagram illustrating the functionality and interaction of software components according to the preferred embodiment;
Figure 2 shows the structure of a voice packet according to the well-known Internet Protocol;
Figure 3 is a diagrammatic representation of a state machine created by a voice processing task according to the present invention; and Figure 4 shows threshold levels used by the voice processing task according to the preferred embodiment.
1o DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Figure 1 shows the basic architecture of an adaptive voice packet management system according to the preferred embodiment, for sending and receiving voice packets which conform to the well known Internet Protocol shown in Figure 2.
Incoming packets are queued at an Ethernet Rx queue 100 and compared via a Packet 15 Router 103 with IP (Internet Protocol) destination addresses and User Datagram Protocol destination ports of a plurality of Internet Protocol datagram entries in a discrimination table 102.
Each discrimination table entry is programmed by a Connection Control task 104 during the establishment of a Voice-over Internet Protocol (VOID) session for each specified 2o Internet Protocol address and User Datagram Protocol,port. The Connection Control task 104 communicates with the entity handling call signaling (e.g. a call processing software agent), either within the same subsystem or on other nodes. The entity handling call signaling provides to the Connection Control task 104 connect or disconnect messages containing the Internet Protocol address and User Datagram Protocol port of the voice session being 25 established/disconnected by the call signaling entity. The Connection Control task 104, upon reception of a connect message, enters the Internet Protocol address, TDM
channel number of the voice session and the User Datagram Protocol port for the incoming channel into the discrimination table 102. The TDM channel number, packet size, and IP address, UDP port information for the outgoing channel are stored in a Tx packet table 106.
Thus, although the 30 type of information stored in tables 102 and 106 is the same, the content is different. This separation of data makes it easier to support half duplex operations when necessary.
Upon the reception of disconnect message the entry, the Internet Protocol address and User Datagram Protocol port for the VOID session is removed from the discrimination table
3 102 and TX packet table 106. The size of the payload in the voice packets is also programmed by the Connection Control task 104 based on information received on a per-channel basis from the call signaling entity.
The following pseudo-code sets forth operation of the Connection Control task 104:
Connection Control Task() {
Initialize Tx Packet Table Initialize Discriminator Table Loop forever {
Receive call signaling message if message == connect {
Parse remainder of the message Program channel entry in Tx Packet Table Program channel entry in Discrimination Table Build IP and UDP headers in channel's packet arrays } else if message == disconnect {
Parse remainder of the message Remove channel entry from TX Packet Table Remove channel entry from Discrimination Table } else if message == unknown {
Handle unknown message } /* end if message */
/* end loop forever */
/* end Connection Control Task */
The Packet Router 103 identifies voice packets by means of comparing the destination address in the IP header and the port number in the User Datagram Protocol header of the incoming packet to the entries in the discrimination table 102. If the entry in the discrimination table matches the Internet Protocol address and User Datagram Protocol of the 3o incoming packet, then the packet is forwarded to a Voice Processing Task 105.
The following pseudo-code sets forth operation of the Packet Router 103:
Packet router handler() Get Ethernet interrupt status if (interrupt == receive) {
Compare IP Address/UDP Port to the content of discrimination table if incoming packet is voice {
Update Ethernet layer's receive buffer pointers Flag receive buffer as used
4 Add a tag byte indicating TDM channels to the buffer Forward receive buffer to voice packet processing task } else { /* received packet is data: call kernel's handler */
Call Ethernet handler } /* endif incoming packet is voice? */
} else { /* it is not transmit interrupt */
Call Ethernet handler } /* endif receive interrupt? */
} /* end Packet router handler() */
Voice Packet Processing task 105 removes the headers from the packet and builds a contiguous buffer for each session, identified in Figure 1 as Rx Packet Queue 107.
The Voice Packet Processing task 105 also handles fitter and lost packets by building a per-channel state machine that compensates for buffer underflow or overflow.
The following pseudo-code sets forth operation of the Voice Packet Processing task 105:
Voice Packet Processing Task() Initialize state machine While mode NOT disconnecting Wait for receive msg from packet router handler Extract TDM channel number from the discrimination table Queue voice packet in specified channel's FIFO queue /* Update channel state */
old channel state = channel state if ( voice data queued > MAX VOICE DATR QUEUED ) channel state = VOICE Q OVERFLOW
} else if (voice data queued == UNDERFLOW) channel state = VOICE Q UNDERFLOW
} else if ( voice data queued < LOW WATER MARK ) channel state = VOICE Q STARVATION
} else if ( voice data queued > HIGH WATER MARK ) {
channel state = VOICE Q BUILDUP
} else {
channel state = VOICE Q OK
} /* endif beyond high watermark */
End while Buffer Cleanup /* End Voice Packet_Processing Task */

The state diagram of Figure 3 is implemented in TDM Transmit Frame Handler 109, which monitors five threshold levels for each received buffer 107, as shown in Figure 4. The TDM Transmit Frame Handler 109 copies the voice packets in buffers 107 to the appropriate
5 TDM Tx Frames in the TDM Tx Buffers 111. The TDM Transmit Frarne Handler 109 is called every n frames, where n is a preset number of frames. The TDM transmit buffer size determines when an interrupt will be generated. The TDM Transmit Frame Handler 109 scans all TDM channels and fills the TDM Transmit buffers 1 I 1 with queued packetized voice data.
As shown in Figure 3, the TDM Transmit Frame Handler 109 also updates the number of pending voice bytes and checks for a voice data underflow and overflow conditions.
The following pseudo-code sets forth operation of the TDM Transmit Frame Handler 109:
TDM Transmit Frame handler {
For each TDM channel {
/* Fill TDM Transmit buffers */
fill tdm out buffers( channel handle ) {
if (outgoing TDM frame buffers[channel numl free size > MIN_TRANSFER,SIZE) {
dequeue oldest voice packet from channel's FIFO
if (channel_state == VOICE Q OVERFLOW) {
increment overflow hit counter if (too many overflow hits) {
abort cal l ( ) } else {
/* force buffer level to mid-watermark and resume normal ** transmission */
voice data_queued = MID WATERMARK
Transfer voice data to TDM OUT frame buffers Update voice data queued counter else if (channel~state =-_ VOICE Q BUILDUP) Transfer voice data to TDM OUT frame buffers /* copy every second byte of voice data to the TDM OUT frame ** buffer and update the pointer to the voice data by two bytes ** for every byte copy */
Update voice data queued counter }
} else if (channel_state == VOICE Q STARVATION)
6 Transfer voice data to TDM OUT frame buffers /* copy each byte of voice data twice to the TDM OUT 'frame ** buffers and update pointer to the voice data by one byte ** for every two bytes copied */
Update voice data queued counter }
} else if (channel state == VOICE Q UNDERFLOW) {
Transfer silence buffer data to TDM OUT frame buffers } else if (channel-state == VOICE Q OK) {
Transfer voice data to outgoing TDM frame buffers Update voice data queued counter } else /* state in non Active mode on the buffer */
handle active state error /* endif channel state? */
/* Update channel state */
old channel -state = channel state if ( voice data queued >
MAX VOICE DATA
QUEUED ) {

channel state = VOICE Q OVERFLOW

} else if (voice data queued == UNDERFLOW) channel state = VOICE Q UNDERFLOW

} else if ( voice data queued < LOW WATER
MARK ) channel- state = VOICE Q STARVATION

} else if ( voice data queued > HIGH WATER
MARK ) channel state = VOICE Q BUILDUP
} else {
channel state = VOICE Q OR
} /* endif beyond high watermark */
/* Free consumed ethernet packet */
Flag receive buffer as free } /* endif free space on outgoing TDM frame buffers */
} /* End fill tdm out buffers() */
} /* EndFor each TDM channel */
} /* End TDMx Transmit Frame handler */
With reference to Figures 3 and 4, and the foregoing pseudo-code representing operation of the Transmit Frame Handler 109, the low level threshold (i.e.
LOW WATER MARK) indicates a content of the Rx Packet Queue 107 above which it is sufficient to transmit to the synchronous (TDM) interface without any additional processing.
7 If the content of the queue 107 falls below the low level threshold then each byte in the queue is duplicated during the copy of 6.711 voice format samples to the TDM Tx buffer I 11 until the content of the Rx Packet Queue 107 is restored to above the low level threshold. A
consequence of using this method is a change in the frequency of the voice (decreased by factor of 2 in this case).
The high level threshold (i.e. HIGH WATER MARK) indicates a content of the queue 107 below which it is sufficient to transmit to the synchronous (T DM) interface without any additional processing. If the content of the queue rises above the high level threshold then every second byte in the queue is removed during the copy of 6.711 voice format samples to the TDM Tx buffer 111 until the content of the RX Packet Queue 107 is reduced to below the high level threshold. A consequence eof using this method is a change in the frequency of the voice (increased by factor of 2 in this case).
Incoming voice samples from a synchronous interface (TDM) a.re received via the TDM
Rx buffer 113 by the TDM Receive Frame Handler 115 which receives information on the voice packet size from the Tx Packet Table 106 that was configured by the Connection Control 104 during the call setup, on a per channel basis. The TDM Receive Frame Handler 115 builds packet for each session and if any buffer 117 in the Tx packet array size becomes full, the TDM
Receive Frame Handler 115 activates a Voice packet Forwarding task 119 via mutex, which is the inter-task synchronization mechanism.
The following pseudo-code sets forth operation of the TDM Receive Frame Handler 115:
TDM Receive Frame handler {
For each active TDM channel {
Transfer voice data to current tx packet array If Lx packet array full {
Update tx packet array state to full in Tx Packet Table Signal packet forwarding task Go to next packet array } /* end for each active channel */
} /* End TDMx Receive Frame handler */
The Voice Packet Forwarding task 119 scans for any voice packets that are ready to be sent by accessing Tx Packet Table 106, checks for any packet full state in the Tx packet array 117, and if it has a complete packet it passes the appropriate Tx packet to the Ethernet driver 121 for transmission.
8 The following pseudo-code sets forth operation of the Voice Packet Forwarding task 119:
Voice Packet Forwarding Task {
Loop forever For each active TDM channel {
if (tx packet array indicates packet ready for transmit) {
Insert packet header information (RTP) Forward tx packet to Ethernet Tx Driver endif } /* End for each active TDM channel */
} /* end loop forever } /* End TDMx Receive Frame handler */
It will be appreciated that, although a particular embodiment of the invention has been described and illustrated in detail, various changes and modifications may be made. All such changes and modifications may be made without departing from the sphere and scope of the invention as defined by the claims appended hereto.

Claims (5)

WE CLAIM:
1. In a system for transmitting Ethernet voice packets between a synchronous interface and a packet oriented interface during a voice-over IP session, the improvement comprising:
a packet router for receiving and identifying predetermined ones of said Ethernet packets from said packet oriented interface as voice packets;
a voice packet processor for building a buffer queue for temporarily storing said voice packets; and a transmit frame handler for monitoring contents of said buffer queue and selectively transmitting said voice packets from said buffer queue to said synchronous interface in accordance with contents of said buffer queue;
wherein said transmit frame handler implements a state machine for:
i) forcing said contents of said buffer queue to a mid watermark level when said buffer queue has contents in excess of a voice queue overflow level, and thereafter copying said contents of said buffer queue to said synchronous interface;
ii) copying only every second byte of said voice packets from said buffer queue to said synchronous interface when said buffer queue has contents in excess of a voice queue buildup level which is less than said voice queue overflow level and greater than said mid watermark level;
iii) copying each byte of said voice packets from said buffer queue to said synchronous interface twice when said buffer queue has contents less than a voice queue starvation level which is less than said mid_watermark level; and iv) transferring silence code to said synchronous interface when said buffer queue has contents less than a voice queue underflow level which is less than said voice queue starvation level.
2. The improvement of claim 1, further comprising a connection controller for storing Internet Protocol addresses and User Datagram Protocol ports for each voice-over IP session into a discrimination table and a transmit packet table.
3. The improvement of claim 2, wherein said packet muter includes means for comparing header information of said Ethernet packets with said Internet Protocol addresses and User Datagram Protocol ports stored in said discrimination table and if matching, identifying said Ethernet packets as voice packets and forwarding said voice packets to said voice packet processor.
4. The improvement of claim 2, further comprising a receive frame handler for receiving voice samples from said synchronous interface, building a transmit packet for each of said voice samples utilizing said Internet Protocol addresses and User Datagram Protocol ports stored as entries in said transmit packet table, storing each said transmit packet in a respective one of a plurality of transmit packet arrays corresponding to said entries in said transmit packet table, and when any one of said transmit packet arrays becomes full then tagging a corresponding once of said entries in said transmit packet table.
5. The improvement of claim 4, further comprising a voice packet forwarder for detecting each said corresponding one of said entries in said transmit packet table which has been tagged and in response passing said transmit packet to said packet oriented interface for transmission.
CA002288365A 1999-11-02 1999-11-02 Adaptive buffer management for voice over packet based networks Expired - Lifetime CA2288365C (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA002288365A CA2288365C (en) 1999-11-02 1999-11-02 Adaptive buffer management for voice over packet based networks
US09/432,540 US6603759B1 (en) 1999-11-02 1999-11-03 Adaptive buffer management for voice over packet network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA002288365A CA2288365C (en) 1999-11-02 1999-11-02 Adaptive buffer management for voice over packet based networks
US09/432,540 US6603759B1 (en) 1999-11-02 1999-11-03 Adaptive buffer management for voice over packet network

Publications (2)

Publication Number Publication Date
CA2288365A1 CA2288365A1 (en) 2001-05-02
CA2288365C true CA2288365C (en) 2004-08-10

Family

ID=29251569

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002288365A Expired - Lifetime CA2288365C (en) 1999-11-02 1999-11-02 Adaptive buffer management for voice over packet based networks

Country Status (2)

Country Link
US (1) US6603759B1 (en)
CA (1) CA2288365C (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6963561B1 (en) * 2000-12-15 2005-11-08 Atrica Israel Ltd. Facility for transporting TDM streams over an asynchronous ethernet network using internet protocol
US6757292B2 (en) 2001-07-11 2004-06-29 Overture Networks, Inc. Automatic adjustment of buffer depth for the correction of packet delay variation
US6768748B2 (en) 2001-07-30 2004-07-27 Overture Networks, Inc. Flexible mapping of circuits into packets
US7061916B2 (en) * 2002-03-12 2006-06-13 Adtran Inc. Mechanism for utilizing voice path DMA in packetized voice communication system to decrease latency and processor overhead
US7221917B2 (en) * 2002-05-01 2007-05-22 Ibiquity Digital Corporation Adjacent channel interference mitigation for FM digital audio broadcasting receivers
JP2004045458A (en) * 2002-07-08 2004-02-12 Brother Ind Ltd Image forming apparatus
US7286549B2 (en) * 2002-10-30 2007-10-23 Intel Corporation Method, system, and program for processing data packets in packet buffers
US7573894B2 (en) * 2004-02-17 2009-08-11 Mitel Networks Corporation Method of dynamic adaptation for jitter buffering in packet networks
US7545739B1 (en) * 2004-05-07 2009-06-09 Sprint Communications Company L.P. System and method for hybrid dynamic communication routing
KR100647956B1 (en) * 2004-12-14 2006-11-23 엘지전자 주식회사 Method for encoding and decoding a still photographic in mobile phone
US7701980B1 (en) * 2005-07-25 2010-04-20 Sprint Communications Company L.P. Predetermined jitter buffer settings
US8213444B1 (en) 2006-02-28 2012-07-03 Sprint Communications Company L.P. Adaptively adjusting jitter buffer characteristics
US8085803B2 (en) * 2007-01-29 2011-12-27 Intel Corporation Method and apparatus for improving quality of service for packetized voice
US8611337B2 (en) * 2009-03-31 2013-12-17 Adobe Systems Incorporated Adaptive subscriber buffering policy with persistent delay detection for live audio streams

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6215858B1 (en) 1994-12-05 2001-04-10 Bell Atlantic Network Services, Inc. Analog terminal internet access
US6173044B1 (en) 1996-02-06 2001-01-09 International Business Machines Corporation Multipoint simultaneous voice and data services using a media splitter gateway architecture
US6052375A (en) 1997-11-26 2000-04-18 International Business Machines Corporation High speed internetworking traffic scaler and shaper
US6219339B1 (en) 1998-02-20 2001-04-17 Lucent Technologies Inc. Method and apparatus for selectively discarding packets
US6430175B1 (en) 1998-05-05 2002-08-06 Lucent Technologies Inc. Integrating the telephone network and the internet web
US6449251B1 (en) 1999-04-02 2002-09-10 Nortel Networks Limited Packet mapper for dynamic data packet prioritization
US6272633B1 (en) 1999-04-14 2001-08-07 General Dynamics Government Systems Corporation Methods and apparatus for transmitting, receiving, and processing secure voice over internet protocol

Also Published As

Publication number Publication date
CA2288365A1 (en) 2001-05-02
US6603759B1 (en) 2003-08-05

Similar Documents

Publication Publication Date Title
KR100922654B1 (en) System and method for processing packets
US5598535A (en) System for selectively and cumulatively grouping packets from different sessions upon the absence of exception condition and sending the packets after preselected time conditions
CA2288365C (en) Adaptive buffer management for voice over packet based networks
EP1234428B1 (en) Method and apparatus for packet delay reduction using scheduling and header compression
KR100551859B1 (en) Priority handling of voice over data in a voice-over-internet protocol processor
US10432556B1 (en) Enhanced audio video bridging (AVB) methods and apparatus
JP3682082B2 (en) Apparatus and method for packet processing in packet switching network and frame processing system for frame relay network
US20030093550A1 (en) Method for sending multiple voice channels over packet networks
US20030081605A1 (en) Method and apparatus to manage packet fragmentation with address translation
US6954460B2 (en) Method and apparatus for compressing packet headers
JPH07235946A (en) Token star bridge
US7321557B1 (en) Dynamic latency assignment methodology for bandwidth optimization of packet flows
US6977899B1 (en) Method and apparatus for message-based overload control in a distributed call-processor communication system
US20030137979A1 (en) Switching unit
EP1323268A2 (en) Dynamic tcp configuration for low latency voice/data traffic
KR100440063B1 (en) Apparatus And Method For VoIP Service In IPBX System
US7277452B2 (en) Signalling TDM channel changes
US7006515B1 (en) Isochronous queue and buffer management
JPH07226758A (en) Token star switch
JP2005123985A (en) Communication apparatus and communication method
Tanenbaum et al. The Transport Layer
JPH08223224A (en) Flow control system of inter lan and packet exchange
JPH10257074A (en) Packet communication method and its device

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20191104