CA2297122A1 - Stationary central tunnel dialysis catheter with optional separable sheath - Google Patents

Stationary central tunnel dialysis catheter with optional separable sheath Download PDF

Info

Publication number
CA2297122A1
CA2297122A1 CA002297122A CA2297122A CA2297122A1 CA 2297122 A1 CA2297122 A1 CA 2297122A1 CA 002297122 A CA002297122 A CA 002297122A CA 2297122 A CA2297122 A CA 2297122A CA 2297122 A1 CA2297122 A1 CA 2297122A1
Authority
CA
Canada
Prior art keywords
tubular member
catheter
sheath
predetermined
further characterized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002297122A
Other languages
French (fr)
Inventor
James F. Mcguckin, Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2297122A1 publication Critical patent/CA2297122A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M25/0041Catheters; Hollow probes characterised by the form of the tubing pre-formed, e.g. specially adapted to fit with the anatomy of body channels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M25/0023Catheters; Hollow probes characterised by the form of the tubing by the form of the lumen, e.g. cross-section, variable diameter
    • A61M25/0026Multi-lumen catheters with stationary elements
    • A61M25/003Multi-lumen catheters with stationary elements characterized by features relating to least one lumen located at the distal part of the catheter, e.g. filters, plugs or valves
    • A61M2025/0031Multi-lumen catheters with stationary elements characterized by features relating to least one lumen located at the distal part of the catheter, e.g. filters, plugs or valves characterized by lumina for withdrawing or delivering, i.e. used for extracorporeal circuit treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M25/0023Catheters; Hollow probes characterised by the form of the tubing by the form of the lumen, e.g. cross-section, variable diameter
    • A61M25/0026Multi-lumen catheters with stationary elements
    • A61M2025/0037Multi-lumen catheters with stationary elements characterized by lumina being arranged side-by-side

Abstract

A stationary central tunnel dialysis catheter includes a planar axially elongated sinuous tubular member having a plurality of axially extending lumens formed therein with at least two of said lumens each having at least one aperture for through passage of fluid during dialysis with said apertures being axially displaced from one another along said tubular member.

Description

WO 99/04844 PCTlUS98/14756 WITH OPTIONAL SEPARABLE SHEATH
Field of the Invention This invention relates to an implantable surgical device and method of delivery. More specifically, this invention provides a multiple lumen catheter and separable sheath for delivering the catheter to the arteriovenous system in order to perform hemodialysis.
Background of the Invention and Description of the Prior Art Multiple lumen catheters which are surgically implanted into the body and used for dialysis are known, being disclosed in U.S. patents 5,405,320 and 5,509,897 to Twardowski et al. and 5,509,900 to Kirkman.
The multiple lumen catheters disclosed in '320 and '897 are three dimensional in form, specifically calling for catheter portions which are substantially perpendicular to remaining, planar portions. Such multiple lumen catheters have been promoted as being allegedly permanent devices providing access to a patient arteriovenous system for hemodialysis but have proven to have significant disadvantages. The three dimensional character of these catheters inherently serves to stress the vessels of the arteriovenous system in which the catheter resides, thereby shortening useful life of the catheter.

The catheter disclosed in '900 is intended and designed to be retained at a specific spot within a blood vessel by an anchoring tip which serves to retain the catheter with respect to the wall of the blood vessel. The anchoring tip, by fixing the catheter in place and not permitting relative movement of the vessel vis-a-vis the catheter, creates a potential for rupture of the vessel or for collection of thrombolytic material about the positioning means, both of which are undesirable.

With the increasing use of dialysis therapy and ever increasing expected lives of dialysis patients, the need exists for a permanent dialysis catheter which can be surgically implanted within the patient's blood vessels, and causing minimum trauma to the patient on a continuing basis. The need further exists for such a catheter which minimizes the possible collection of thrombolytic material at the inlet and outlet orifices of the catheter while keeping the inlet and outlet orifices remote from the wall of the vessel in which the catheter resides, thereby promoting high flow hemodialysis with relatively low fluid pressures, resulting in minimal patient connection time to the dialysis machine, longer catheter useful life and reduced possibility of catheter dysfunction as a result of malpositioning.

Surgical cannulas or "sheaths" are typically utilized by medical personnel to establish transcutaneous access channels from a first percutaneous location to a second subcutaneous location. The access channel provides a conduit for the delivery of pharmaceutical products, removal of subcutaneous sample tissue and fluid, as well as the coaxial passage of instrumentation such as catheters and the like.

In surgical procedures which require only temporary use of a sheath conduit, "peel-away" style sheaths are utilized. The peel-away sheath has lines of weakness extending about opposing sides of its longitudinal length such that removal of the sheath can be accomplished by applying a separating force or "peeling" the wall sections downwardly from the transcutaneous end by way of integral pull tabs located thereon, to cause a linear tearing of the sheath material causing the "peeling" or failure of the material. In this way, the sheath can be removed from the patient without removing the instruments positioned within the sheath channel.

However, application of the peeling force to the sheath wall sections tends to aggravate and/or enlarge the incision in the region of the sheath as force is applied downwardly into the incision.

Stressing of the incision is particularly problematic in irregularly manufactured sheaths having uneven wall thickness along the lines of weakness. The wall thickness may also cause kinking when attempting to insert a product or device through its thin walls.

Moreover, the peeling force tends to lift instruments within the sheath pathway upwardly from the patient.
Summary of the Invention In one of its aspects, this invention provides a stationary central tunnel dialysis catheter including a planar axially elongated sinuous tabular member having a plurality of axially extending lumens formed therein.
At least a part of the tubular member may be of predetermined two-dimensional, generally M-shape in order to substantially match the human left side venous anatomy. The M-shape includes portions of relative straightness connected by curved portions and is adapted to fit in a preselected body lumen in the anatomical region of interest. The M-shaped part of the tubular member is preferably deformable, resiliently returning to the predetermined two-dimensional M-shaped after deformative surgical implantation in the patient by way of a separable sheath delivery system. The M-shape part of the tubular' member preferably has at least two lumens, with each having at least one aperture separated from the other but proximate the extremity of a leg of the M for through passage of fluid during dialysis; the apertures are axially displaced one from another. In the M-shape configuration of the catheter, there are preferably at least four portions of relative straightness.
In yet another of its aspects, this invention provides a stationary central tunnel dialysis catheter WO 99/04844 PCT/US98/14~56 including a planar axially elongated sinuous tubular member having a plurality of axially extending lumens formed therein. At least a part of the tubular member preferably has a predetermined two-dimensional shape substantially matching an anatomical central tunnel region of interest and preferably includes at least two portions of relative straightness connected by a curved portions, fitting a preselected body lumen in the anatomical region of interest. The tubular member is preferably deformable, resiliently returning to its predetermined two-dimensional shape after deformative surgical implantation in the patient.

In the part of the tubular member having predetermined shape, at least two of the lumens each have at least one aperture for through passage of fluid during dialysis with the apertures being axially displaced one from another along the tubular member.

The catheter may further optionally but preferably include a flexible sheath complementally surrounding at least the part of the tubular member having predetermined two-dimensional shape to facilitate delivery and aseptic protection thereof with the sheath being removable therefrom in situ when the tubular member has been positioned within the preselected lumen.

When the flexible sheath is included as a part of the catheter, ripcord means preferably extends along the length of the tubular member for rupturing the sheath in the vicinity of an axial extremity of the tubular member proximate the apertures. The ripcord means extends in response to preferably manual force preferably applied to a portion of the ripcord extending from a body of the patient in whom the catheter has been implanted: The ripcord may be embedded in the tubular wall or may be inside the sheath or may be imbedded in the sheath.

This invention additionally provides a separable surgical sheath wherein the sheath is removed from the transcutaneous location and readily separated from the catheter positioned therein by percutaneously initiating separation of a length of the conduit from a first conduit wall location to a second conduit wall location. This allows for remote sheath removal and for the catheter to be delivered along with the sheath as a package, facilitating passage of the device into the patient's arteriovenous system for hemodialysis.

The sheath in accordance with the invention includes a conduit preferably having distal and proximate ends and a line of weakness extending about the longitudinal length of the conduit. The line of weakness is ruptured by a separation control. The conduit has a pre-formed line of weakness traversing its longitudinal length. The device preferably utilizes an embedded suture to define the line of weakness which is ruptured by the application of force to a free end of the embedded suture or ripcord. The tip of the embedded portion of the sheath may employ a stress concentration area to initiate predetermined failure such that *rB

embedded suture rupture begins along a predetermined end of the conduit.
In a preferred embodiment the embedded suture defines the weakened section of the conduit wall such that pulling the suture away from the wall separates the conduit wall along the line of weakness. The suture is embedded from the proximal end of the conduit downwardly to the distal end with a free end of the suture preferably looping at the distal end upwardly to the proximal end. In this way separation control is simply the free end of the suture maintained at a percutaneous location i.e., the distal end of the conduit. Drawing the suture upwardly, away from distal end of the conduit causes the conduit, to rupture along the suture path such that the sheath may be removed from its transcutaneous position. Alternatively, the suture may be configured to rupture the conduit wall beginning with the proximate end and proceeding toward the distal end depending on orientation of the free end of the suture and application of force thereto.
In yet another of its aspects, this invention provides a stationary dialysis catheter including a planar axially elongated sinuous tubular member of integral construction having a plurality of axially extending lumens formed therein and a generally rounded smooth outer periphery. At least two of the lumens each have at least one aperture for through passage of fluid during dialysis with the apertures being axially displaced one from another along the tubular member yet proximate one end of the tubular member. The tubular member preferably has predetermined two-dimensional shape substantially matching an anatomical central tunnel of interest and includes at least two portions of relative straightness connected by a curved portion region, to fit the preselected body lumen in the anatomical region of interest. The tubular member is preferably deformable, resiliently returning to the predetermined two-dimensional shape after deformation, i.e. implantation using the separable sheath, and includes means for separating the tubular member aperture remote from the end of the tubular member from the surrounding wall of the preselected body lumen when the catheter is in place therewithin while permitting axial movement of the tubular member within the lumen relative to the lumen wall.
The tubular member preferably has a generally oval cross-section. The oval periphery is preferably formed by a pair of parallel sides connected by opposed semi-circular arcs.
The vessel wall separating means preferably is an enlarged portion extending outwardly beyond one of the arc segments or outwardly beyond one of the parallel sides or both. The vessel wall separating means is preferably resiliently deformable, for example to within the periphery of the tubular member. The inlet and outlet apertures of the tubular member may face axially _g_ or radially or both.
In yet another of its aspects, the invention provides a stationary dialysis catheter including a tubular member of the type described above where the tubular member has wall thickness greater in the area of its curved portions than in the area of its straight portions to assist kinking. The tubular wall member thickness may be greater at an outer part of the curved portion than at a corresponding inner part of the curved portion.
Additional benefits and advantages of this invention will become apparent to those skilled in the art upon a reading and understanding of the following detailed specification and related~drawings.
Brief Description of the Drawings Figure 1 is a schematic view illustrating a catheter embodying aspects of the invention in position in the right venous cavity of a human body.
Figure 2 is a schematic view illustrating the planar nature of the catheter embodying aspects of the invention as illustrated in Figure 1.
Figure 3 is a schematic view illustrating the planar nature of a catheter embodying aspects of the invention and being formed in a generally M-shaped to fit in the left venous cavity of the body.
Figure 4 is a broken view of a tubular member forming a portion of a catheter embodying aspects of the *rB

invention.
Figure 5 is a sectional view taken at arrows 5-5 in Figure 4.

Figure 6 is a sectional view taken at arrow 6-6 in Figure 4.

Figure 7 is an enlarged view of the in situ enlarged end of a sinuous tubular member forming a part of a catheter embodying aspects of the invention.

Figure 8 is a schematic view illustrating a catheter embodying aspects of the invention in position in the left venous cavity of a human body.

Figure 9 is a view similar to Figure 8 but illustrating a different enlarged tip configuration at the in situ end of the tubular member.

Figure 10 is a view similar to Figure 7 but illustrating a different configuration of the enlarged tubular tip member in situ.

Figure 11 is a view similar to Figure 7 but illustrating yet a still different configuration of the tubular member enlarged in situ.

Figure 12 is a partially sectioned side elevation of a tip extremity of a tubular member part of a catheter embodying aspects of the invention.

Figure 13 is a side elevation of the structure illustrated in Figure 12 showing the vessel separating means in a deformed condition.

Figure 14 is a top view of the structure illustrated in Figure 12.

Figure 15 is a side elevation of the structure illustrated in Figure 12.
Figure 16 is a side elevation of a second embodiment of a tip with vessel separating means at an extremity of the tubular member forming a part of the catheter of the invention.
Figure 17 is an end view of the structure illustrated in Figure 16.
Figure 18 is a top view of the structure illustrated in Figure 16.
Figure 19 is a top view of the structure illustrated in Figure 16 with the vessel separating means in a deformed, compressed condition.
Figure 20 is a side elevation of a third embodiment of a tip with vessel separating means at an extremity of the tubular member forming a part of the catheter of the invention.
Figure 21 is an end view of the structure illustrated in Figure 20.
Figure 22 is a view similar to Figure 20 but showing the vessel separation means in a deformed condition.
Figure 23 is a top view of the structure illustrated in Figures 20 and 22.
Figure 24 is a partially sectioned view of the tip portion of the tubular means part of a catheter embodying the invention packaged in a peelaway sheath together with a protective nose cone and in position on a wire for unitary delivery and implantation into a patient.
Figure 25 is a view of the structure illustrated in Figure 24 showing the peelaway nature of the sheath.
Figure 26 is a view of a variation of the structure illustrated in Figure 24 showing the sheath peeling from the opposite end.
Figure 27 is a sectional view of the catheter and sheath taken at lines and arrows 27-27 in Figure 25.
Figure 28 is an end view of the catheter and sheath shown in Figure 26.
Figure 29 shows a separable surgical sheath.
Figure 30 is a sectional view of the sheath.
Figure 31 shows the sheath of Figure 29 with its proximal end separated by the embedded suture.
Figure 32 shows a side section of the sheath conduit tube and embedded suture configured to rupture from the distal to proximate end as show in Figure 31.
Figure 33 shows a side section of the sheath conduit tube and embedded suture configured to rupture from the proximate end to the distal end.
Description of the preferred Embodiments A stationary central tunnel dialysis catheter in accordance with.the invention is illustrated in Figures 1, 8 and 9 positioned in the thoracic cavity of the body where the catheter is designated generally 10. Figure 1 illustrates the catheter in position on the right side of the body; Figures 8 and 9 depict a catheter implanted in the left side of the body.
Catheter 10 is formed as a planar axially elongated sinuous tubular member of integral construction. The tubular member is designated generally 16 and has a plurality of axially extending lumens formed therein and a generally rounded, smooth outer periphery. The preferred configuration of tubular member 16 is illustrated in cross-section in Figures 5 and 6 where the rounded, smooth exterior of tubular member 16 is apparent.
Tubular member 16 includes at least one intake lumen for inflow of blood out of the patient to a dialysis apparatus and a discharge lumen where discharge of blood which has been dialyzed back into the patient.
The discharge lumen is designated generally 15 in the drawing; the intake lumen is designated generally 20.
The planar catheter 10, whether installed in the left portion of the body or the right-hand portion of the body, is depicted in Figures 2 and 3 where planes have been depicted in dotted lines with the catheter 10 resident within the plane, to illustrate such planar character. Figure 2 illustrates the catheter when configured for the right side; Figure 3 illustrates the catheter when configured for the left side. In either case tubular member 16 of catheter 10 has a predetermined two-dimensional shape substantially matching an anatomical central tunnel region of interest. From Figures 2 and 3, it may be seen that in both instances catheter 10 includes at least two portions of relative straightness which are connected by a curved region; the shapes illustrated fit preselected body lumens in the anatomical regions of interest.
Tubular member 16 of catheter is deformable and has a memory characteristic so that when deformed, tubular member 16 resiliently returns to the predetermined two-dimensional shape upon deformation. Hence, when the catheter is installed in the body, while the catheter may be deformed from the predetermined shape, once resident in the selected lumen of the body, the catheter returns to its predetermined shape due to the memory characteristic. With the catheter assuming the predetermined shape, this contributes to comfort for the patient and minimal trauma to the arteries in which the catheter resides.
As apparent from Figures 5 and 6, tubular member 16 preferably has a generally oval cross-section. The oval has a pair of parallel sides connected by opposed semi-circular arc segments. As apparent from Figures 4, 5 and 6, curved portions of tubular member 16, which curved portions are denoted generally 36, have greater wall thickness, as illustrated in Figure 5, then straight portions of tubular member 16 as designated generally 38.
As apparent from Figures 3, 8 and 9, when catheter is the left side of thoracic cavity 12, catheter 10 assumes a generally M-shape as indicated 24 in Figure 3 where straight lines have been drawn as extensions of the straight line portions of catheter to to emphasize 5 the M-shape when catheter 10 is installed on the left side of the body. The interior angles of the M-shape indicated as 100 and 102 in Figure 3 can desirably vary from about 45° to as great as 120°; angles in the neighborhood of 45° to 60° are most common and are 10 preferred.
In any of its embodiments catheter 10 includes means for separating the inlet aperture for intake lumen from the wall 34 of a surrounding vessel in which catheter 10 is installed.
15 Figures 7, 10, ll.and 14 through 23 depict various embodiments of the means for separating tubular member aperture 20 from the vessel wall 34. In Figures 7, 10 and 11 through 23, the outlet aperture of discharge lumen 15 is designated 25 while the inlet aperture of 20 intake lumen 20 is designated 35.
In the embodiment illustrated in Figure 7, means for separating inlet aperture 35 from vessel wall 34 are provided in part by a step 102 formed transversely to the axis of elongation of tubular member 16 where intake aperture 35 sits within step 102 and faces axially. In the embodiment illustrated in Figure 7 means for separating tubular member aperture 35 from wall 34 is further provided by a circumferentially spaced collection of petal-like enlargement structures 104 which are connected about a central collar 106 and fixed about tubular member 16. Petals 104 extend somewhat radially outwardly respecting collar 106 and may contact the cylindrical interior of wall 34 thereby to separate wall 34 from intake aperture 35. Petals 104 are preferably unitarily formed of plastic together with collar 106 and are resiliently biased outwardly respecting the axis of tubular member 16 so that the radially outer extremities of petals 104 are well outboard of intake aperture 35. Two intake apertures 35 are provided in the embodiment illustrated in Figure 7.
In the embodiment illustrated in Figure 10 two intake apertures 35 are provided. The embodiment of Figure 10, like the embodiment of Figure 7, utilizes a step construction with step 102 extending transversely respecting the longitudinal axis of tubular member 16 and one of intake apertures 35 formed in step 102. A
second intake aperture 35 is formed in the cylindrical outwardly facing surface of tubular member 16. In the embodiment illustrated in Figure 10, the means for separating inlet aperture 35 from vessel wall 34 is further provided by a collection of elongated leaf members 108 which extend between two collars 106 and are formed of generally flattened, broad strands of plastic with leaf members 108 having effective width, measured transversely respecting vessel 32 to define a circumferential outer extremity of tubular member 16 WO 99104844 PCT/tJS98/1475G
which is outboard of immediately adjacent inlet orifice 35. Hence, vessel wall 34 would first contact a lateral portion of leaf member 108 and not clog or cover aperture 35.

Figure 11 illustrates a variation of the structure shown in Figure 10 where leaf members 108 have been radially outwardly bowed to provide even greater separation of vessel wall from aperture 35 which adjacent to one of the two enlargement collars 106 between which leaf members 108 extend.

In Figure 12 means 30 for separating tubular member intake aperture 35 from vessel wall 34 is provided by a cantilever finger member 110 which extends somewhat radially outwardly from a central portion of tubular 15 member 16 and longitudinally along tubular member 16 to overly aperture 35. Cantilever finger member 110 is resiliently deformable so that upon force applied to finger member 110 in the direction indicated generally by arrow F in Figure 12, finger member 110 deforms 20 downwardly considering Figure 12 to the position illustrated in Figure 13, thereby covering inlet aperture 35 and presenting the intake of debris thereby.

When such force is relieved, cantilever finger member 110 resiliently returns to its position illustrated in Figure 12 thereby opening aperture 35 yet preventing aperture 35 from encountering wall 34 of vessel 32 within which tubular member 16 is resident.

Preferably a pair of cantilever finger members 110 is provided as is apparent from Figures 14 and 15.
Optionally, apertures 112 may be provided in finger members 110 to provide maximum access of fluid flow within vessel 32 to intake aperture 35.
In Figure 16 means for separating tubular member 20 intake aperture 35 from vessel wall 34 is provided by a pair of outwardly biased flaps 114 which are preferably integrally formed from tubular member 16. Flaps 114 serving as the separating means extend outwardly beyond respective parallel sides of tubular member 16 and are resiliently deformable to within the periphery of tubular member 16 in response to force in such direction. The flap members extending radially outwardly beyond the periphery of the catheter is apparent from Figure 18 with the flap members being resiliently deformed within the periphery of the tubular member as apparent from Figure 19. In the position illustrated in Figure 18, the flap members maintain tubular member 20 inlet aperture 35 spaced from vessel wall 34. In every embodiment of the tip members particularly means for separating the tubular member 20 intake aperture 35 from vessel wall 34, tubular member 16 and tip portion thereof is free to move longitudinally within vessel 32. The separating means 30, no matter what their configuration, do not fix tubular member vis-a-vis the vessel in which the tubular member resides. This prevents trauma and stress to the vessel wall and reduces the possibility of build-up of thrombolytic material in the vicinity of inlet aperture 35.
The preferred cross-sectional configuration of tubular member 16 is illustrated in Figures 5 and 6 where the periphery of tubular member 16 includes a pair of parallel side segments each designated 44 connected by a pair of semi-circular arc segments each designated 46. An internal web 48 separates intake lumen 20 from discharge lumen 15.
In the embodiments illustrated in Figures 12 through 23 tubular member 16 includes a rounded distal end 22 in addition to a rounded lateral outer periphery 18 defined by the two arc segments 46 and connecting parallel segments 44.
Figures 20 through 23 depict another embodiment of means for separating tubular member 20 intake aperture 35 from vessel wall 34 which is similar to the structure illustrated in Figures 12 through 15. In Figures 20 through 23 a cantilever finger member 110A extends somewhat radially outwardly from the remaining portion of tubular member 16 and axially longitudinally with respect to intake aperture 35. In the embodiment illustrated in Figures 20 through 23, upon a resilient deformation of cantilever finger member ilOA, that member deforms against a remaining axially elongated portion of tubular member l6, closing aperture 35 and preventing any influx thereinto of debris. This is not unlike the structure illustrated in Figures 12 through 15, where there are two cantilever finger members 110 which fold on either side of the remaining longitudinally extending portion 116 of tubular member 16. Similarly to the structure illustrated in Figures 12 through 15, the embodiment of Figures 20 through 23 may optionally include an auxiliary aperture 112 in cantilever finger member 110A to minimize resistance of flow to a lead aperture 35 of inflow lumen 20. In the embodiments illustrated all edges and external surfaces of tubular member 16 are rounded or flat; there are no sharp edges.

Figures 24 and 25 depict catheter 10 in accordance with the invention equipped with an optional peelaway sheath designated generally 66 together with a protective auxiliary nose cone 70 overlying the rounded distal end 22 of tubular member 16 within sheath 66. In Figure 24 catheter 10 overlying protective nose cone 70 and sheath 66 is depicted on a guide wire 72 in configuration to be implanted within a patient of interest. The wire 72 is similarly depicted in Figure 1. Sheath 66 together with protective nose cone 70 facilitate installation of the catheter l0 in a patient.

For such procedure, the surgeon initially inserts a wire 72 using a dilator into the patient. The catheter 10, having protective nose cone 70 in place thereover and sheath 66 encasing nose cone 70 and catheter 10 is then fed along guide wire 72 and positioned, preferably using x-ray or radiographic guidance, in the appropriate lumen in the human body. Once the catheter is in the appropriate position, a ripcord 68 may be pulled, thereby causing sheath 66 to rent, permitting sheath 66 to be withdrawn from the patient and leaving catheter 10 in place. Protective nose cone 70 is configured to fit over distal end of catheter 10 and particularly to fit over the distal end configuration chosen for the particular catheter application.
The sheath aspect of the invention provides a surgical apparatus capable of transcutaneously traversing from a first percutaneous location to a second subcutaneous location.
The separable sheath preferably includes an embedded suture adjusted to separate opposing wall sections along a longitudinal suture path formed in the sheath material such that the sheath may be split along the line by removing the suture and removed from the transcutaneous channel subsequent to the passage of a desired device.
Referring to Figures 29 through 33, the separable sheath is generally designated 66. The separable sheath preferably includes a cylindrical conduit 120 having a distal end 140 and proximal end 160, a longitudinal line of weakness 300 and flange portions 180 and 220 formed about proximal end 160 of conduit 120. Flange portions 180 and 220 maintain the percutaneous position of proximal end 160. Flange tabs 180 and 220 position sheath 66 in the transcutaneous pathway such that the sheath does not advance into tissue too deeply. A line of weakness 300 runs along the length of conduit 120 such that upon separating conduit wall flange tabs 220 and 180 separate along line 300.
The separable sheath includes an interior axially lumen extending from distal end 140 to proximal end 160. The distal end 140 accesses a subcutaneous location; proximal end 160 is positioned at a percutaneous location.
The sheath is desirably transcutaneously positioned to provide access for surgical apparatus such as catheter 10 to a subcutaneous location. Typically, the sheath is introduced through a transcutaneous access channel provided by an incision or needle path and advanced over a guide wire 72 to the subcutaneous site of interest by threading the guide wire through nose cone 70 by way of cone tip aperture 420. The cone shaped tip of conduit 120 dilates the transcutaneous pathway as it is advanced therethrough.
The elongated portion of sheath 66 is cylindrical and preferably formed of thin plastic such as polyethylene, fluorinated ethylene-propylene or like plastic materials employed in medical applications. In the embodiments shown in Figures 29 through 33, a suture 350 is preferably embedded along the longitudinal length of the conduit wall defining a line of weakness 300 along the length of conduit 120 portion of sheath 66.

Pulling a free end or "ripcord" 68 of the suture 350 away from the wall separates the conduit wall along the line of weakness 300. In this way, the conduit 120 may be split to facilitate retrieval of the conduit 120 portion of the sheath from the transcutaneous pathway.

The embedded suture 350 may be formed within conduit 120 to provide a stress concentration area on either the distal or proximate end to facilitate rupture of conduit 120 in a predetermined direction.

In the embodiment shown in Figures 32 and 33, the embedded suture 350 defines a weakened section of the conduit wall such that pulling the suture away from the wall separates the conduit wall along the line of weakness. As shown in Figure 32, the suture 350 is preferably embedded from proximal end 160 of the conduit 120 downwardly to distal end 140 of the conduit 120, with a free end of the suture 68 preferably looping at and around distal end 140 upwardly, and back towards the proximal 160. In this way, separation is effectuated using the free end of suture 68 which is maintained at a percutaneous location i.e., distal end 140 of conduit 120. Drawing ripcord 68 upwardly, away from distal end 140 as denoted by arrow "A", causes conduit 12 to rupture along the longitudinal suture path in the direction indicated by arrow "SP" from distal to proximate direction such that the sheath 66 may be removed from its transcutaneous position as illustrated in Figure 32.

Alternatively, suture 350 may be configured to rupture the conduit wall beginning with proximate end 160 and proceeding toward distal end 140 as shown in Figure 33, depending on the position of suture free end 68. As shown in Figure 33, suture 35 is embedded from proximal end 160 of conduit 120 downwardly to distal end 140, with a free end of suture 68 looping at proximate end 160 downwardly through lumen 260 to distal end 140 where it again loops upwardly to proximate end 160, extending along the outside surface of conduit 120. In this way, separation effectuated by the free end of suture 68 which extends upwardly though lumen 260 and is maintained at a percutaneous location, i.e. distal end 140 of the conduit. Drawing the suture upwardly, away from distal end 140, as indicated by arrow "B", causes conduit 120 to rupture along the suture path from proximate end 160 of conduit 120. Tn this embodiment, suture 350 ruptures from proximate to distal as denoted by the arrow "SP" such that the sheath 66 may be removed from its transcutaneous position.
Once the sheath is positioned in the transcutaneous pathway surrounding any associated instrumentation, the sheath is removed and the instruments) within deployed. The sheath is removed from the transcutaneous pathway by rupturing embedded suture 350 along the line of weakness defined by the embedded suture.

Claims (8)

  1. .1. A stationary central tunnel dialysis catheter (10) including a planar axially elongated sinuous tubular member (16) having a plurality of axially extending lumens (15, 20) formed therein, characterized by at least a part of the tubular member (16) having predetermined two-dimensional shape substantially matching an anatomical central tunnel region of interest, including at least two portions (38) of relative straightness connected by a curved portion region (36), to fit a preselected body lumen in the anatomical region of interest, the tubular member (16) being deformable and resiliently returning to the predetermined two-dimensional shape after deformation, and in the part of the tubular member (16) having predetermined shape at least two of the lumens (15, 20) each having at least one aperture (15, 35) for through passage of fluid during dialysis, the apertures (25, 35) being axially displaced from one another along the tubular member (16).
  2. 2. The catheter (10) of claim 1 further characterized by a flexible sheath (66) complementally surrounding at least the part having predetermined two-dimensional shape, for protecting the tubular member (16) part having predetermined shape, and being peelably removable therefrom in situ when the tubular member (16) has been positioned within the preselected lumen.
  3. 3. The catheter (10) of claim 2 further characterized by a ripcord (68) means extending along the length of the tubular member (16) for rupturing the sheath in the vicinity of an axial extremity of the tubular member (16) proximate the apertures (25, 35) in response to manual force applied to a portion of the ripcord (68) extending from the body of a patient in whom the catheter (10) has been implanted.
  4. 4. The catheter (10) of claim 3 further characterized by the ripcord (68) being embedded into the tubular member (16) wall.
  5. 5. The catheter (10) of claim 3 further characterized by the ripcord (68) being inside of the sheath (66).
  6. 6. The catheter (10) of claim 3 further characterized by the ripcord (68) being embedded in the sheath (66).
  7. 7. The stationary central tunnel dialysis catheter (10) of claim 6 wherein the tubular member (16) is further characterized by being of predetermined two-dimensional generally M-shape (24) substantially matching human left side venous anatomy, including portions (38) of relative straightness connected by curved portions (36), fitting a preselected body lumen in the anatomical region of interest, the M-shaped part (24) of the tubular member (16) being deformable and resiliently returning to the predetermined two-dimensional M-shape after deformation and the M-shaped part (24) of the tubular member (16) having at least two of the lumens (15, 20) each having at least one aperture proximate the extremity of one of the legs of the M for through passage of fluid during dialysis, the apertures (25, 35) being axially displaced from one another.
  8. 8. The stationary central tunnel dialysis catheter (10) of claim 1 further characterized by the sinuous tubular member (16) being of integral construction having a plurality of axially extending lumens (15, 20) formed therein and being a generally rounded smooth outer periphery with the tubular member (16) including means (102) for separating the tubular member (16) aperture (25, 35) remote from the end from a surrounding wall of the preselected body lumen when the catheter (10) is in place therewithin while permitting axial movement of the tubular member (16) within the lumen relative to the wall, with the tubular member (16) having wall thickness greater in the curved portion (36) than in the portions (38) of relative straightness.
CA002297122A 1997-07-24 1998-07-23 Stationary central tunnel dialysis catheter with optional separable sheath Abandoned CA2297122A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US5366297P 1997-07-24 1997-07-24
US60/053,662 1997-07-24
PCT/US1998/014756 WO1999004844A1 (en) 1997-07-24 1998-07-23 Stationary central tunnel dialysis catheter with optional separable sheath

Publications (1)

Publication Number Publication Date
CA2297122A1 true CA2297122A1 (en) 1999-02-04

Family

ID=21985755

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002297122A Abandoned CA2297122A1 (en) 1997-07-24 1998-07-23 Stationary central tunnel dialysis catheter with optional separable sheath

Country Status (6)

Country Link
US (1) US6293927B1 (en)
EP (1) EP1003585A1 (en)
JP (1) JP2001510715A (en)
AU (1) AU8572598A (en)
CA (1) CA2297122A1 (en)
WO (1) WO1999004844A1 (en)

Families Citing this family (458)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6287291B1 (en) * 1999-11-09 2001-09-11 Advanced Cardiovascular Systems, Inc. Protective sheath for catheters
US6482169B1 (en) 2000-06-08 2002-11-19 William G. Kuhle Double-lumen catheter
US6814718B2 (en) 2001-01-09 2004-11-09 Rex Medical, L.P Dialysis catheter
US7011645B2 (en) * 2001-01-09 2006-03-14 Rex Medical, L.P. Dialysis catheter
US8323228B2 (en) 2007-04-12 2012-12-04 Rex Medical L.P. Dialysis catheter
US7077829B2 (en) * 2001-01-09 2006-07-18 Rex Medical, L.P. Dialysis catheter
US7300430B2 (en) * 2001-01-24 2007-11-27 Arrow International, Inc. Multi-lumen catheter with attachable hub
US20020099326A1 (en) * 2001-01-24 2002-07-25 Wilson Jon S. Multi-lumen catheter with attachable hub
US6872198B1 (en) * 2001-01-24 2005-03-29 Arrow International, Inc. Double-y-shaped multi-lumen catheter with selectively attachable hubs
ITMI20010533A1 (en) * 2001-03-13 2002-09-13 Inge Spa BOTTLE FOR THE DELIVERY OF PRODUCTS AND IMPROVED APPLICABILITY
JP4480936B2 (en) * 2001-11-26 2010-06-16 オリンパス株式会社 Tissue puncture system
US6758836B2 (en) 2002-02-07 2004-07-06 C. R. Bard, Inc. Split tip dialysis catheter
US6921396B1 (en) 2002-08-30 2005-07-26 Arrow International, Inc. Multi-lumen catheter with integrated connector
US7128734B1 (en) 2002-09-20 2006-10-31 Arrow International, Inc. Apparatus and method for reverse tunneling a multi-lumen catheter in a patient
US7393339B2 (en) 2003-02-21 2008-07-01 C. R. Bard, Inc. Multi-lumen catheter with separate distal tips
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US20040243095A1 (en) 2003-05-27 2004-12-02 Shekhar Nimkar Methods and apparatus for inserting multi-lumen spit-tip catheters into a blood vessel
US7594911B2 (en) * 2004-03-18 2009-09-29 C. R. Bard, Inc. Connector system for a proximally trimmable catheter
US8083728B2 (en) 2004-03-18 2011-12-27 C. R. Bard, Inc. Multifunction adaptor for an open-ended catheter
US7854731B2 (en) 2004-03-18 2010-12-21 C. R. Bard, Inc. Valved catheter
US7594910B2 (en) * 2004-03-18 2009-09-29 C. R. Bard, Inc. Catheter connector
US7377915B2 (en) 2004-04-01 2008-05-27 C. R. Bard, Inc. Catheter connector system
US8992454B2 (en) 2004-06-09 2015-03-31 Bard Access Systems, Inc. Splitable tip catheter with bioresorbable adhesive
US8323227B2 (en) 2004-07-02 2012-12-04 C. R. Bard, Inc. Tip configurations for a multi-lumen catheter
US20060004316A1 (en) 2004-07-02 2006-01-05 Difiore Attilio E Reduction of recirculation in catheters
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US20080108969A1 (en) * 2005-11-28 2008-05-08 Andrew Kerr Dialysis Catheter
US7258685B2 (en) * 2004-11-29 2007-08-21 Andrew Kerr Dialysis catheter
US20070233047A1 (en) * 2005-11-28 2007-10-04 Andrew Kerr Dialysis catheter
US7875019B2 (en) 2005-06-20 2011-01-25 C. R. Bard, Inc. Connection system for multi-lumen catheter
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
DE602007004718D1 (en) 2006-03-31 2010-03-25 Bard Inc C R Catheter with arched transition area
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US7947019B2 (en) * 2006-08-18 2011-05-24 Angio Dynamics, Inc Catheter retention assembly and method of use
US20080082079A1 (en) 2006-09-28 2008-04-03 Tyco Healthcare Group Lp Low profile catheter assembly
US7506791B2 (en) 2006-09-29 2009-03-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with mechanical mechanism for limiting maximum tissue compression
US9168355B2 (en) 2006-09-29 2015-10-27 Covidien Lp Acute hemodialysis catheter assembly
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US8540128B2 (en) 2007-01-11 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with a curved end effector
US8727197B2 (en) 2007-03-15 2014-05-20 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configuration with cooperative surgical staple
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US7753889B2 (en) 2007-06-15 2010-07-13 Interrad Medical, Inc. Anchor instrumentation and methods
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US8500939B2 (en) 2007-10-17 2013-08-06 Bard Access Systems, Inc. Manufacture of split tip catheters
US8066660B2 (en) 2007-10-26 2011-11-29 C. R. Bard, Inc. Split-tip catheter including lateral distal openings
US8292841B2 (en) 2007-10-26 2012-10-23 C. R. Bard, Inc. Solid-body catheter including lateral distal openings
US9579485B2 (en) 2007-11-01 2017-02-28 C. R. Bard, Inc. Catheter assembly including a multi-lumen configuration
WO2009059220A1 (en) 2007-11-01 2009-05-07 C.R. Bard, Inc. Catheter assembly including triple lumen tip
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
BRPI0901282A2 (en) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc surgical cutting and fixation instrument with rf electrodes
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
WO2009123729A1 (en) * 2008-04-02 2009-10-08 The Trustees Of The University Of Pennsylvania Dual lumen dialysis catheter with internally bored or externally-grooved small bore
JP2009273609A (en) 2008-05-14 2009-11-26 Nippon Sherwood Medical Industries Ltd Catheter with valve
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9005154B2 (en) 2008-09-26 2015-04-14 Covidien Lp Valved hemodialysis catheter
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
CN102341048A (en) 2009-02-06 2012-02-01 伊西康内外科公司 Driven surgical stapler improvements
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
WO2010151825A1 (en) 2009-06-26 2010-12-29 C. R. Bard, Inc. Proximally trimmable catheter including pre-attached bifurcation and related methods
JP2011050420A (en) 2009-08-31 2011-03-17 Nippon Sherwood Medical Industries Ltd Valved catheter
CA2715857A1 (en) 2009-09-30 2011-03-30 Tyco Healthcare Group Lp Medical catheter having a design providing low recirculation and reversibility
US8899466B2 (en) 2009-11-19 2014-12-02 Ethicon Endo-Surgery, Inc. Devices and methods for introducing a surgical circular stapling instrument into a patient
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8591450B2 (en) 2010-06-07 2013-11-26 Rex Medical L.P. Dialysis catheter
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8360296B2 (en) 2010-09-09 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US9282962B2 (en) 2010-09-30 2016-03-15 Ethicon Endo-Surgery, Llc Adhesive film laminate
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9016542B2 (en) 2010-09-30 2015-04-28 Ethicon Endo-Surgery, Inc. Staple cartridge comprising compressible distortion resistant components
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9517063B2 (en) 2012-03-28 2016-12-13 Ethicon Endo-Surgery, Llc Movable member for use with a tissue thickness compensator
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US9884165B2 (en) 2011-02-10 2018-02-06 C. R. Bard, Inc. Multi-lumen catheter including an elliptical profile
US9717883B2 (en) 2011-02-10 2017-08-01 C. R. Bard, Inc. Multi-lumen catheter with enhanced flow features
US9656043B2 (en) 2011-03-08 2017-05-23 Cook Medical Technologies Llc Multi-split-tipped catheter
JP5713732B2 (en) 2011-03-08 2015-05-07 日本コヴィディエン株式会社 Catheter with valve
US8632462B2 (en) 2011-03-14 2014-01-21 Ethicon Endo-Surgery, Inc. Trans-rectum universal ports
CA2834649C (en) 2011-04-29 2021-02-16 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9072867B2 (en) 2011-09-30 2015-07-07 Covidien Lp Catheter with external flow channel
US8747343B2 (en) 2011-09-30 2014-06-10 Covidien Lp Hemodialysis catheter with improved side opening design
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
BR112014024098B1 (en) 2012-03-28 2021-05-25 Ethicon Endo-Surgery, Inc. staple cartridge
CN104379068B (en) 2012-03-28 2017-09-22 伊西康内外科公司 Holding device assembly including tissue thickness compensation part
BR112014024102B1 (en) 2012-03-28 2022-03-03 Ethicon Endo-Surgery, Inc CLAMP CARTRIDGE ASSEMBLY FOR A SURGICAL INSTRUMENT AND END ACTUATOR ASSEMBLY FOR A SURGICAL INSTRUMENT
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US11278284B2 (en) 2012-06-28 2022-03-22 Cilag Gmbh International Rotary drive arrangements for surgical instruments
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US10143822B2 (en) 2012-07-05 2018-12-04 Covidien Lp Valved tip catheters
US9155862B2 (en) 2012-09-28 2015-10-13 Covidien Lp Symmetrical tip acute catheter
US10252023B2 (en) 2013-01-11 2019-04-09 C. R. Bard, Inc. Curved catheter and methods for making same
USD748252S1 (en) 2013-02-08 2016-01-26 C. R. Bard, Inc. Multi-lumen catheter tip
JP6345707B2 (en) 2013-03-01 2018-06-20 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Surgical instrument with soft stop
JP6382235B2 (en) 2013-03-01 2018-08-29 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Articulatable surgical instrument with a conductive path for signal communication
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9844368B2 (en) 2013-04-16 2017-12-19 Ethicon Llc Surgical system comprising first and second drive systems
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
JP6416260B2 (en) 2013-08-23 2018-10-31 エシコン エルエルシー Firing member retractor for a powered surgical instrument
US20150053746A1 (en) 2013-08-23 2015-02-26 Ethicon Endo-Surgery, Inc. Torque optimization for surgical instruments
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
CN106232029B (en) 2014-02-24 2019-04-12 伊西康内外科有限责任公司 Fastening system including firing member locking piece
US10201364B2 (en) 2014-03-26 2019-02-12 Ethicon Llc Surgical instrument comprising a rotatable shaft
US10004497B2 (en) 2014-03-26 2018-06-26 Ethicon Llc Interface systems for use with surgical instruments
US9733663B2 (en) 2014-03-26 2017-08-15 Ethicon Llc Power management through segmented circuit and variable voltage protection
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
JP6532889B2 (en) 2014-04-16 2019-06-19 エシコン エルエルシーEthicon LLC Fastener cartridge assembly and staple holder cover arrangement
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
US10561422B2 (en) 2014-04-16 2020-02-18 Ethicon Llc Fastener cartridge comprising deployable tissue engaging members
BR112016023825B1 (en) 2014-04-16 2022-08-02 Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
JP6636452B2 (en) 2014-04-16 2020-01-29 エシコン エルエルシーEthicon LLC Fastener cartridge including extension having different configurations
US10258768B2 (en) 2014-07-14 2019-04-16 C. R. Bard, Inc. Apparatuses, systems, and methods for inserting catheters having enhanced stiffening and guiding features
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10111679B2 (en) 2014-09-05 2018-10-30 Ethicon Llc Circuitry and sensors for powered medical device
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
JP6648119B2 (en) 2014-09-26 2020-02-14 エシコン エルエルシーEthicon LLC Surgical stapling buttress and accessory materials
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10272227B2 (en) 2014-11-07 2019-04-30 C. R. Bard, Inc. Connection system for tunneled catheters
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10004501B2 (en) 2014-12-18 2018-06-26 Ethicon Llc Surgical instruments with improved closure arrangements
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
MX2017008108A (en) 2014-12-18 2018-03-06 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge.
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10321907B2 (en) 2015-02-27 2019-06-18 Ethicon Llc System for monitoring whether a surgical instrument needs to be serviced
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10327777B2 (en) 2015-09-30 2019-06-25 Ethicon Llc Implantable layer comprising plastically deformed fibers
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US20170224332A1 (en) 2016-02-09 2017-08-10 Ethicon Endo-Surgery, Llc Surgical instruments with non-symmetrical articulation arrangements
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US10307159B2 (en) 2016-04-01 2019-06-04 Ethicon Llc Surgical instrument handle assembly with reconfigurable grip portion
US11064997B2 (en) 2016-04-01 2021-07-20 Cilag Gmbh International Surgical stapling instrument
US10271851B2 (en) 2016-04-01 2019-04-30 Ethicon Llc Modular surgical stapling system comprising a display
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10368867B2 (en) 2016-04-18 2019-08-06 Ethicon Llc Surgical instrument comprising a lockout
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US20180168633A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments and staple-forming anvils
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US10568624B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
CN110099619B (en) 2016-12-21 2022-07-15 爱惜康有限责任公司 Lockout device for surgical end effector and replaceable tool assembly
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US10973516B2 (en) 2016-12-21 2021-04-13 Ethicon Llc Surgical end effectors and adaptable firing members therefor
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
US10588631B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical instruments with positive jaw opening features
US10695055B2 (en) 2016-12-21 2020-06-30 Ethicon Llc Firing assembly comprising a lockout
US10959727B2 (en) 2016-12-21 2021-03-30 Ethicon Llc Articulatable surgical end effector with asymmetric shaft arrangement
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
MX2019007311A (en) 2016-12-21 2019-11-18 Ethicon Llc Surgical stapling systems.
US10918385B2 (en) 2016-12-21 2021-02-16 Ethicon Llc Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US11478242B2 (en) 2017-06-28 2022-10-25 Cilag Gmbh International Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw
US11484310B2 (en) 2017-06-28 2022-11-01 Cilag Gmbh International Surgical instrument comprising a shaft including a closure tube profile
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11896782B2 (en) 2017-08-23 2024-02-13 C. R. Bard, Inc. Priming and tunneling system for a retrograde catheter assembly
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11179152B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a tissue grasping system
EP3773834A4 (en) 2018-04-12 2021-12-22 Rocket Science Health Corp. Intranasal drug delivery device, system, and process
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11350938B2 (en) 2019-06-28 2022-06-07 Cilag Gmbh International Surgical instrument comprising an aligned rfid sensor
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
US20220031320A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with flexible firing member actuator constraint arrangements
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3938530A (en) * 1974-11-15 1976-02-17 Santomieri Louis Catheter
US4166469A (en) * 1977-12-13 1979-09-04 Littleford Philip O Apparatus and method for inserting an electrode
CA1092927A (en) 1979-12-28 1981-01-06 Allentyne Limited Hemodialysis cannula for subclavian insertion
US4451252A (en) 1981-07-24 1984-05-29 Vas-Cath Of Canada Limited Cannula
US4403983A (en) 1981-11-06 1983-09-13 Shiley Incorporated Dual lumen subclavian cannula
US4568329A (en) 1982-03-08 1986-02-04 Mahurkar Sakharam D Double lumen catheter
US4619643A (en) * 1983-07-25 1986-10-28 Bai Chao Liang Catheter
US4583968A (en) 1983-10-03 1986-04-22 Mahurkar Sakharam D Smooth bore double lumen catheter
US4543087A (en) 1983-11-14 1985-09-24 Quinton Instrument Company Double lumen catheter tip
CA1219785A (en) 1984-05-24 1987-03-31 Geoffrey S. Martin Dual lumen cannula
US4643711A (en) 1984-05-25 1987-02-17 Cook, Inc. Two lumen hemodialysis catheter
US4623327A (en) 1985-02-12 1986-11-18 Mahurkar Sakharam D Method and apparatus for using dual-lumen catheters for extracorporeal treatment
US4808155A (en) 1986-02-27 1989-02-28 Mahurkar Sakharam D Simple double lumen catheter
US4738667A (en) * 1986-11-04 1988-04-19 Galloway Niall T M Preformed catheter assembly
US4808163A (en) * 1987-07-29 1989-02-28 Laub Glenn W Percutaneous venous cannula for cardiopulmonary bypass
GB8723931D0 (en) 1987-10-12 1987-11-18 Hsc Res Dev Corp Peritoneal dialysis catheter
CA1330285C (en) 1987-12-22 1994-06-21 Geoffrey S. Martin Triple lumen catheter
DE3812754C1 (en) 1988-04-16 1989-04-27 Rudolf Schoen
US5057073A (en) 1988-04-21 1991-10-15 Vas-Cath Incorporated Dual lumen catheter
US4968307A (en) 1989-01-09 1990-11-06 Advanced Cardiovascular Systems, Inc. Catheter for uniform distribution of therapeutic fluids
DE3907618A1 (en) 1989-03-09 1990-09-20 Braun Melsungen Ag CATHETER
NL8902286A (en) * 1989-09-13 1991-04-02 Cordis Europ DRAINAGE CATHETER AND METHOD FOR MANUFACTURING THAT.
US5009636A (en) 1989-12-06 1991-04-23 The Kendall Company Dual-lumen catheter apparatus and method
US5569182A (en) 1990-01-08 1996-10-29 The Curators Of The University Of Missouri Clot resistant multiple lumen catheter and method
US5405320A (en) 1990-01-08 1995-04-11 The Curators Of The University Of Missouri Multiple lumen catheter for hemodialysis
US5209723A (en) * 1990-01-08 1993-05-11 The Curators Of The University Of Missouri Multiple lumen catheter for hemodialysis
CA2030638C (en) 1990-01-10 1996-05-28 Sakharam D. Mahurkar Reinforced multiple-lumen catheter
US5221255A (en) 1990-01-10 1993-06-22 Mahurkar Sakharam D Reinforced multiple lumen catheter
US5350360A (en) 1990-03-01 1994-09-27 Michigan Transtech Corporation Implantable access devices
CA2013877C (en) 1990-04-04 2000-09-19 Geoffrey S. Martin Pre-curved dual lumen catheter
US5122125A (en) 1990-04-25 1992-06-16 Ashridge A.G. Catheter for angioplasty with soft centering tip
US5104388A (en) * 1990-05-08 1992-04-14 Fbk International Corporation Membrane splittable tubing
US5053022A (en) 1990-06-28 1991-10-01 Mobay Corporation Applicator for intranasal administration of vaccines to horses
US5167623A (en) 1990-12-27 1992-12-01 The Kendall Company Multilumen catheter
US5445625A (en) * 1991-01-23 1995-08-29 Voda; Jan Angioplasty guide catheter
CA2052300A1 (en) 1991-09-26 1993-03-27 Med-Pro Design, Inc. Co-axial catheter
US5215527A (en) 1991-12-12 1993-06-01 Becton, Dickinson And Company Catheter introducer assembly
US5221256A (en) 1992-02-10 1993-06-22 Mahurkar Sakharam D Multiple-lumen catheter
US5509900A (en) 1992-03-02 1996-04-23 Kirkman; Thomas R. Apparatus and method for retaining a catheter in a blood vessel in a fixed position
US5246430A (en) 1992-03-27 1993-09-21 Taut, Inc. Reinforced cholangiogram catheter
US5350358A (en) 1992-12-22 1994-09-27 Med-Pro Design, Inc. Bent co-axial catheter
EP0689466B1 (en) 1993-03-16 1997-05-28 Med-Pro Design, Inc. Catheters and method of manufacture
US5346471A (en) 1993-03-22 1994-09-13 Raulerson J Daniel Dual lumen catheter
US5360397A (en) 1993-07-02 1994-11-01 Corvita Corporation Hemodiaylsis catheter and catheter assembly
US5348536A (en) 1993-08-02 1994-09-20 Quinton Instrument Company Coextruded catheter and method of forming
US5403291A (en) 1993-08-02 1995-04-04 Quinton Instrument Company Catheter with elongated side holes
US5486159A (en) 1993-10-01 1996-01-23 Mahurkar; Sakharam D. Multiple-lumen catheter
US5800384A (en) 1993-10-08 1998-09-01 Medical Parameters, Inc. Multi-lumen percutaneous introducer
US5364344A (en) 1993-10-22 1994-11-15 The Kendall Company Dual lumen catheter
US5380276A (en) 1994-02-28 1995-01-10 The Kendall Company Dual lumen catheter and method of use
US5571093A (en) 1994-09-21 1996-11-05 Cruz; Cosme Multiple-lumen catheter
US5556390A (en) 1995-03-07 1996-09-17 Quinton Instrument Company Catheter with oval or elliptical lumens
FR2738154B1 (en) 1995-09-05 1997-12-26 Pourchez Thierry MULTI-PIPE CATHETER, ESPECIALLY HEMODIALYSIS
DE69636325T2 (en) 1995-09-21 2007-07-26 Sherwood Services Ag Cone-shaped reinforced catheter
US5772693A (en) * 1996-02-09 1998-06-30 Cardiac Control Systems, Inc. Single preformed catheter configuration for a dual-chamber pacemaker system
US5807329A (en) 1996-05-07 1998-09-15 Gelman; Martin L. Displaceable catheter device
US5913848A (en) 1996-06-06 1999-06-22 Luther Medical Products, Inc. Hard tip over-the-needle catheter and method of manufacturing the same
US5718678A (en) 1996-06-26 1998-02-17 Medical Components, Inc. Multi-lumen coaxial catheter and method for making same
US5779669A (en) 1996-10-28 1998-07-14 C. R. Bard, Inc. Steerable catheter with fixed curve
US5807311A (en) 1996-11-29 1998-09-15 Palestrant; Aubrey M. Dialysis catheter having rigid and collapsible lumens and related method
US6059771A (en) 1996-12-23 2000-05-09 Johnson & Johnson Medical, Inc. Stiffening member to increase fluid flow within a medical device
US5984908A (en) 1997-04-10 1999-11-16 Chase Medical Inc Venous return catheter having integral support member
US5752937A (en) * 1997-04-30 1998-05-19 Medtronic Inc. Reinforced splittable medical introducer cannula
US5976120A (en) 1997-05-05 1999-11-02 Micro Therapeutics, Inc. Single segment microcatheter
US5916209A (en) * 1997-12-24 1999-06-29 Mick; Matthew J. Coronary catheters for use in a transradial catheterization
US6013068A (en) 1998-07-28 2000-01-11 Spiegelhalter; Judith A. Variable lumen catheter

Also Published As

Publication number Publication date
AU8572598A (en) 1999-02-16
US6293927B1 (en) 2001-09-25
WO1999004844A1 (en) 1999-02-04
EP1003585A1 (en) 2000-05-31
JP2001510715A (en) 2001-08-07

Similar Documents

Publication Publication Date Title
US6293927B1 (en) Stationary central tunnel dialysis catheter with optional separable sheath
JP3889053B2 (en) Introducer system with splittable anti-kink sheath
AU668321B2 (en) Introducer system having kink resistant splittable sheath
US5752937A (en) Reinforced splittable medical introducer cannula
CA2307867C (en) Introducing device with flared sheath end
US6277108B1 (en) Introducer with location marker
EP1049510B1 (en) Cannula placement system
US6045734A (en) Process of making a catheter
US6159198A (en) Introducer system
US6638268B2 (en) Catheter to cannulate the coronary sinus
US6589262B1 (en) Locking catheter introducing system
EP0504934B1 (en) Infusion catheter
US5776096A (en) Dual lumen vascular catheter with expanding side portal
US7144386B2 (en) Catheter introducer having an expandable tip
US5601582A (en) Cutting catheter
US5120299A (en) Intra-aortic balloon assembly with hemostasis device
US20070287967A1 (en) Selective renal cannulation and infusion systems and methods
JPS63229066A (en) Replacing system of catheter and guide wire
JPH11508455A (en) RX safety catheter
US20050234497A1 (en) Externally positioned medical dilator
EP0265864B1 (en) Hemostasis sheath
US20240033468A1 (en) Single lumen drainage catheter with tip anchor
EP0314281A1 (en) Catheter
CA2249616C (en) Introducer system having kink resistant splittable sheath

Legal Events

Date Code Title Description
FZDE Discontinued