CA2301437C - Implantable system for rehabilitation of a hearing disorder - Google Patents

Implantable system for rehabilitation of a hearing disorder Download PDF

Info

Publication number
CA2301437C
CA2301437C CA002301437A CA2301437A CA2301437C CA 2301437 C CA2301437 C CA 2301437C CA 002301437 A CA002301437 A CA 002301437A CA 2301437 A CA2301437 A CA 2301437A CA 2301437 C CA2301437 C CA 2301437C
Authority
CA
Canada
Prior art keywords
arrangement
implantable
signals
processing
generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002301437A
Other languages
French (fr)
Other versions
CA2301437A1 (en
Inventor
Hans Leysieffer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cochlear Ltd
Original Assignee
Cochlear Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cochlear Ltd filed Critical Cochlear Ltd
Publication of CA2301437A1 publication Critical patent/CA2301437A1/en
Application granted granted Critical
Publication of CA2301437C publication Critical patent/CA2301437C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/75Electric tinnitus maskers providing an auditory perception
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36036Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of the outer, middle or inner ear
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36036Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of the outer, middle or inner ear
    • A61N1/36038Cochlear stimulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/60Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles
    • H04R25/604Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers
    • H04R25/606Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers acting directly on the eardrum, the ossicles or the skull, e.g. mastoid, tooth, maxillary or mandibular bone, or mechanically stimulating the cochlea, e.g. at the oval window
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/361Phantom sensations, e.g. tinnitus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/55Communication between hearing aids and external devices via a network for data exchange
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/67Implantable hearing aids or parts thereof not covered by H04R25/606
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • H04R25/405Arrangements for obtaining a desired directivity characteristic by combining a plurality of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/50Customised settings for obtaining desired overall acoustical characteristics
    • H04R25/505Customised settings for obtaining desired overall acoustical characteristics using digital signal processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/55Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using an external connection, either wireless or wired
    • H04R25/552Binaural

Abstract

An at least partially implantable system for rehabilitation of a hearing disorder with an arrangement for processing and/or generation of signals is provided including an implantable processor arrangement with control logic which operates according to an operating program and an implantable storage arrangement for storage of the operating program and of operating parameters. A wireless telemetry means is provided for data transmission between the implantable part of the system and an external unit. The system also includes a power supply arrangement which supplies individual components of the system with current and a rewritable implantable storage arrangement assigned to the processor arrangement for holding and reproducing the operating program and the operating parameters. At least a part of the operating program and/or of the operating parameters can be modified and/or replaced by data transmitted from the external unit via the telemetry means.

Description

IMPLANTABLE SYSTEM FOR REHABILITATION
OF A HEARING DISORDER
Background of The Invention Technical Field This invention relates to an at least partially implantable system for rehabilitation of a hearing disorder with an arrangement for processing and/or generating signals, which includes an implantable processor arrangement with control logic which operates according to an operating program and an implantable memory arrangement for storage of the operating program and of operating parameters. Also, the invention relates to systems including a to wireless telemetry means for data transmission between the implantable part of the system and an external unit, and a power supply arrangement which supplies individual components of the system with current.
Description of Related Art Rehabilitation of sensory hearing disorders with partially implantable electronic systems in recent years has acquired major importance. The expression "hearing disorder" is defined here as inner ear damage, middle ear damage, combined inner ear and middle ear damage, cochlear deafness which necessitates use of a cochlea implant, likewise retrocochlear hearing disorders which necessitate use of an auditory brain stem implant, i.e. briefly, 2o everything which prevents or adversely affects sound reception and/or relay to the brain stem.
"Hearing disorders" here furthermore include temporary or permanent noise in the ears (tinnitus). In particular, the use of partially implantable electronic systems applies to the group of patients in which hearing has completely failed due to accident, illness or other effects or is congenitally absent. If, in these cases, only the inner ear (cochlea), and not the neuronal auditory path which leads to the center, is affected, the remaining auditory nerve can be stimulated with electrical stimulation signals and thus a hearing impression can be produced which can lead to clear understanding of speech. In these so-called cochlea implants, an array of stimulation electrodes, which is triggered by an electronic system, is inserted into the cochlea. This hermetically tight and biocompatibly encapsulated electronic module is surgically embedded in the bony area behind the ear (mastoid).
However, the electronic system contains essentially only decoder and driver circuits for the stimulating electrodes, sound reception and conversion of this acoustic signal into electrical signals, while their further processing takes place basically externally in a so-called speech processor which is carried outside on the body. The speech processor converts the preprocessing signals coded accordingly into a high frequency carrier signal which via inductive coupling is transmitted through the closed skin (transcutaneously) to the implant. The sound-receiving microphone is located without exception outside the body, and in most applications, in a housing of a behind-the-ear hearing aid worn on the external ear, and is connected to the speech processor by a cable. These cochlea implant systems, their components and principles of transcutaneous signal transmission are described by way of example in U.S.
Patent No.
5,070,535, U.S. Patent No. 4,441,210, published European patent application no. 0 200 321 2o and U.S. Patent No. 5,626,629. Methods of speech processing and coding in cochlea implants are disclosed for example, in published European patent no. 0 823 188, published European patent no. 0 190 836, U.S. Patent No. 5,597,380, U.S. Patent No.
5,271,397, U.S.
Patent No. 5,095,904, U.S. Patent No. 5,601,617 and U.S. Patent No. 5,603,726.
In addition to the rehabilitation of deaf patients, or those who have lost their hearing, using cochlea implants, for some time there have been approaches to offer better rehabilitation using partially or fully implantable hearing aids than with conventional hearing aids to patients with sensorineural hearing disorder which cannot be surgically corrected. The principle consists, in most embodiments, in directly stimulating an ossicle of the middle ear or the inner ear via mechanical or hydromechanical stimulation and not via the amplified 3o acoustic signal of a conventional hearing aid in which the amplified acoustic signal is sent to the external auditory canal. The actuator stimulus of these electromechanical systems is accomplished with different physical transducer principles such as, for example, by electromagnetic and piezoelectric systems. The advantage of these processes lies mainly in the sound quality which is improved compared to conventional hearing aids and, for fully implanted systems, in the fact that the hearing prosthesis is not visible.
These partially and fully implantable electromechanical hearing aids are described, for example, by Yanigahara et al. in Arch Otolaryngol Head Neck, Surg-Vol 113, August 1987, pp. 869-872;
Suzuki et al. in Advances in Audiology, Vol. 4, Karger Basel, 1988; Leysieffer et al. in HNO, Vol. 46, 1998, pp. 853-863; Zenner et al. in HNO, Vol. 46, 1998, pp. 844-852; and in numerous patent to documents, especially in commonly assigned CA patent application no.
2,243,407, in U.S.
Patent Nos. 4,850,962; 5,277,694; 5,411,467; 5,814,095; 3,764,748; 4,352,960;
5,015,224;
5,015,225; 3,557,775; 3,712,962; 4,729,366; 4,998,333; and 5,859,916, published European Patent No. 0 263 254, published PCT Application Nos. 98/36711; 98/06237;
98/03035;
99/08481; 99/08475; 99107436; and 97/18689.
Many patients with inner ear damage also suffer from temporary or permanent noise in the ears (tinnitus) which cannot be surgically corrected and against which there are no drug forms of treatment to date. Therefore, so-called tinnitus maskers are available; they are small, battery-driven devices which are worn like a hearing aid behind or in the ear. By means of artificial sounds which are emitted via, for example, a hearing aid speaker into the 2o auditory canal, the maskers mask the tinnitus by psychoacoustic means and thus reduce the disturbing noise in the ears, as much as possible, below the threshold of perception. The artificial sounds are often narrowband noise (for example, third-octave noise) which can be adjusted in its spectral location and loudness level via a programming device to enable adaptation to the individual tinnitus situation as optimally as possible. In addition, recently, the so-called retraining method has been introduced in which by combination of a mental training program and presenting broadband sound (noise) near the resting hearing threshold, the perceptibility of the tinnitus is likewise to be largely suppressed (journal "Hoerakustik"
2/97, pages 26 and 27). The devices used in this training program are also called "noisers".
In the two aforementioned methods for hardware treatment of tinnitus, hearing aid-like technical devices must be worn visibly outside on the body in the area of the ear. These devices stigmatize the wearer and therefore are not willingly worn.
U.S. Patent No. 5,795,287 discloses an implantable tinnitus masker with direct drive of the middle ear, for example, via an electromechanical converter, coupled to the ossicular chain. This directly coupled transducer can preferably be a so-called "Floating Mass Transducer" (FMT). This FMT corresponds to the transducer for implantable hearing aids which is described in U.S. Patent No. 5,624,376.
Implantable systems for the treatment of tinnitus by masking and/or noiser functions have been proposed, in which corresponding electronic modules are added to the signal-processing electronic path of a partially or fully implantable hearing system such that the 1o signals necessary for tinnitus masking or noiser functions can be fed into the signal processing path of the hearing aid function and the pertinent signal parameters can be adapted by further electronic measures individually to the pathological requirements.
This adaptability can be accomplished by the necessary setting data of the signal generation and feed electronics being filed or programmed in the same physical and logic data storage area of the implant system. Also, the feed of the masker or noiser signal into the audio path of the hearing implant can be controlled via the corresponding electronic means.
In all the above-described rehabilitation devices, it now seems to be a good idea to design the systems such that they can be completely implanted. These hearing systems, depending on the desired function, consist of three or four function units: a sensor (microphone) which converts the incident airborne sound into an electrical signal; an electronic signal processing, amplification and implant control unit; an electromechanical or implantable electroacoustic transducer which converts the amplified and preprocessed sensor signals into mechanical or acoustic vibrations and sends the signals, via suitable coupling mechanisms, to the damaged middle and/or inner ear, or a cochlear stimulation electrode for cochlea implants; and an electric power supply system which supplies the aforementioned modules. Furthermore, there can be an external unit which makes available electrical recharging energy to the implant when the implant-side power supply unit contains a rechargeable (secondary) battery. Especially advantageous devices and processes for charging of rechargeable implant batteries are described in commonly assigned CA patent 3o application no. 2,271,075 and in published European patent no. 0 499 939.
Feasibly, a telemetry unit can also be provided with which patient-specific, audiological data can be transmitted bidirectionally or programmed in the implant and thus permanently stored, as was described by Leysieffer et al. in HNO Vol. 46, 1998, pp. 853-863.
Basically, in all the above-described at least partially implantable systems, the (audio) signal processing or signal generation and the modules of the implant control are built, for example, like a controlled battery recharging system or a telemetry system for bidirectional transmission of, for example, variable, patient-specific parameters on the implant-side by permanently fixed hardware units. This design feature also applies in cases in which digital signal processors or microcontrollers or microprocessors are used for signal processing or to generation or for implant management, regardless of whether they are built as so-called "hardwired logic", i.e. in "hardwired" logic architecture, or whether their operating programs are filed in the read-only memories (ROM) of the corresponding processors.
These programs, which are provided and necessary for basic operation of the implant and for proper operation, are called hereinafter the operating program or operating software.
This operating software is placed in the implant systems described in the prior art during production, for example, by mask programming of the processor storage areas and can no longer be changed after implantation.
In contrast, patient-specific data such as, for example, audiologic adaptation data or also variable implant system parameters (for example, as a variable in one of the 2o aforementioned software programs for controlling battery recharging) are referred to as operating parameters. These operating parameters can be transmitted transcutaneously to the implant according to the aforementioned prior art in fully implantable implant systems after implantation, i.e. wirelessly through the closed skin and, thus, can be changed.
If, on the other hand, the operating software is to be changed because, for example, due to more recent scientific findings, improved algorithms for speech signal processing are available in, for example, fully implanted cochlea implants or electromechanical hearing systems for rehabilitation of an inner ear disorder, the entire implant or implant module which contains the corresponding signal processing unit must be replaced by a new unit containing the altered operating software by invasive surgery on the patient. This surgery entails 3o renewed medical risks for the patient, and is especially serious in the application of cochlea implants in children as patients. In addition, the surgery is very costly. In addition, this system change can only be done completely, especially in cochlea implants, i.e. with removal of the stimulation electrode, since a technically very complex, multipin and detachable plug connection to the signal processing implant module is not used given the currently conventional large number of stimulus channels.
Summary of The Invention Accordingly, it is a primary object of this invention to provide an at least partially implantable system for rehabilitation of a hearing disorder in which signal processing and 1 o generation can be better adapted than in existing systems after implantation.
The implantable system of the present invention, on the one hand, enables matching of system functions to patient-specific circumstances which can often only be ascertained after implantation of the system and, on the other hand, enables new medical and audiologic findings in signal processing or generation of the already implanted system to be taken into account.
This object is achieved by providing an at least partially implantable system for rehabilitation of a hearing disorder of the initially mentioned type which includes a rewritable implantable storage arrangement assigned to a processor arrangement for holding and reproducing an operating program, wherein at least parts of the operating program can be 2o modified or replaced by data transmitted from an external unit via a telemetry means. In this way, after implantation of the implantable system, not only can the operating parameters be transferred from the external unit to the implanted system, but the operating software as such can also be modified or completely replaced.
The storage arrangement for storage of operating parameters and the storage arrangement for holding and reproducing the operating program can be implemented as storage arrangements independent of one another; however it can also be a single storage arrangement in which both the operating parameters and also operating programs can be filed.
The approach of the present invention allows matching of the system to circumstances which can be acquired only after implantation of the implantable system. Thus, for example, 3o in an at least partially implantable hearing system for rehabilitation of a monaural or binaural ~ - 7 - 35CA
middle ear and/or inner ear disorder and tinnitus with electrical and/or mechanical and/or acoustic stimulation of the middle ear, inner ear or the higher neuronal structures of the auditory path, the sensor (acoustic sensor or microphone) and actuator (output stimulator) biological interfaces are always dependent on anatomic, biological and neurophysiological circumstances, for example on the individual healing process. These interface parameters can also be time-variant. Thus, for example, the response of an implanted microphone can vary individually and between individuals based on the tissue coverings, the response of an electromechanical transducer coupled to the ossicular chain or directly to the inner ear based on different coupling quality, or the response of an intracochlear electrode based on different 1 o electrode impedances and the electrode position in a cochlea implant or brain stem implant.
These differences of interface parameters, which cannot be eliminated or reduced in the devices disclosed in the prior art simply by replacing the implant, can now be optimized in the system of the present invention by changing or improving the signal processing of the implant.
In an at least partially implantable hearing system with electrical and/or mechanical and/or acoustic stimulation of the middle ear, inner ear or the higher neuronal structure of the auditory canal, it can be a good idea or even necessary to implement signal processing algorithms which have been improved after implantation. Regardless of the type of stimulation (electrical, mechanical, acoustic) the following signal processing algorithms 2o could be used: voice analysis processes (for example, optimization of a fast Fourier transform (FFT)); static or adaptive noise detection processes; static or adaptive noise suppression processes; processes for optimization of the signal to noise ratio within the system; optimized signal processing strategies in progressive hearing disorder; output level limiting processes for protection of the patient in implant malfunctions or external faulty programming; methods of preprocessing of several sensors (microphone) signals, especially for binaural positioning of the sensors; processes for binaural processing of two or more sensor signals in binaural sensor positioning, for example optimization of spatial hearing or space orientation; phase or group delay time optimization in binaural signal processing; and processes for optimized driving of the output stimulators, especially for binaural positioning of the stimulators.

If output stimulation takes place mechanically and/or acoustically, the following signal processing algorithms can be implemented with the system of the present invention even after implantation: a process for feedback suppression or reduction; a process for optimization of the operating process of the output transducers) (for example frequency response and phase response optimization, and improvement of the impulse response); a voice signal compression process for inner ear hearing disorders; and signal processing methods for recruitment compensation in inner ear hearing disorders.
Furthermore, in implant systems with a secondary power supply unit, i.e. a rechargeable battery system, but also in systems with primary battery supply, it can be 1o assumed that as technology advances, these electrical power storages will allow longer service lives and thus increasing residence times in the patients. It can be assumed that research on principles and applications for signal processing algorithms is making rapid progress. The necessity or patent desire for operating software adaptation and modification will, therefore, presumably take place before the service life of the implanted power source expires. While in known systems with hardware-linked operating software, adaptation of the operating software required surgical replacement of the implant, the system described here allows this adaptation of the operating programs of the implant even when it is already implanted.
The present invention may also include a buffer storage arrangement in which data 2o transmitted from the external unit via the telemetry means can be buffered before being relayed to the arrangement for processing and/or generating signals. In this way, the transmission process from the external unit to the implanted system can be closed before the data transmitted via the telemetry means is relayed to the arrangement for processing and/or generating signals. Furthermore, checking logic may be provided to check the data stored in the buffer storage arrangement before being relayed to the arrangement for processing and/or generating signals.
The arrangement for processing and/or generating signals may be implemented in a microcontroller, which advantageously also contains the checking logic and the buffer storage arrangement, and an implantable storage arrangement preferably being assigned to the 3o microcontroller. At least portions of a working program for the microcontroller may be changed or replaced by data transferred from the external unit via the telemetry means.
The buffer storage arrangement and the storage arrangement for storage of the working program for the microcontroller can be implemented as independent storages; but _ there can also be a single storage in which both data transferred from the external unit and working programs for the microcontroller can be filed.
In another embodiment of the invention, there may be at least two storage areas for holding and reproducing the operating program. Like the two aforementioned measures for reliability of the system, this design is also advantageous in that checking for the absence of faults in the software can be done, for example, after transmission from the exterior or when to the implant is turned on due to the multiple presence of the storage area which contains the operating program(s).
Similarly, the buffer storage arrangement can also have two storage areas for holding and reproducing data transferred from the external unit via the telemetry means so that, after data transmission from the external unit in the area of the buffer, the absence of errors in the transferred data can be checked. For example, the memory areas can be designed for complementary filing of the data transferred from the external unit,. At least one of the storage areas of the buffer storage arrangement however can also be designed to hold only part of the data transferred from the external unit resulting in the absence of errors in the transferred data being checked in sections.
2o To ensure that a new transmission process can be started in case of transmission errors, a preprogrammed read only memory area, which cannot be overwritten, can be assigned to the processor arrangement. The instructions and parameters necessary for "minimum operation" of the system are stored in the ROM area. For example, the instructions may include instructions which, after a "system crash", ensure at least error-free operation of the telemetry means for receiving an operating program and instructions for storage thereof in the control logic.
As already mentioned, the telemetry means is advantageously designed, not only for the reception of operating programs from the external unit, but also for the transfer of operating parameters between the implantable part of the system and the external unit such that, on the one hand, these parameters can be adjusted by a physician, a hearing aid acoustics specialist or the wearer of the system himself (for example, loudness) and, on the other hand, the system can also transfer the parameters to the external unit, for example, to check the status of the system.
If the at least partially implantable system for rehabilitation of a hearing disorder is a tinnitus masker, a noiser or a hearing aid with tinnitus masker or noiser functions, the system of the present invention preferably has a digital arrangement for generation of electrical signals and an arrangement downstream of the digital arrangement for generating stimuli, in this case masker or noiser signals, based on the electrical signals generated by the digital arrangement. If the at least partially implantable system for rehabilitation of a hearing 1o disorder is a hearing aid, according to another aspect of this invention, the invention includes at least one acoustic sensor, a digital arrangement for processing of the acoustic signals acquired by means of at least one acoustic sensor, and an arrangement for generating stimuli based on processing of the acoustic signals acquired by at least one acoustic sensor.
Depending on the function of the implant (especially cochlea implant, brain stem implant, tinnitus masker, noiser, hearing aid with or without tinnitus masker or noiser function), the arrangement for generating stimuli can comprise an array of stimulation electrodes for application of electrical cochlea or brain stem stimuli, one or more electroacoustic transducers, one or more electromechanical transducers which can also be piezoelectric transducers, or one or more electromagnetic transducers.
2o Conventionally the power supply arrangement of the system of the present invention advantageously comprises a rechargeable electrochemical cell which can be recharged from the outside, for example, by means of inductive coupling.
Brief Description of the Drawings Figure 1 is a schematic block diagram of an at least partially implantable hearing system for rehabilitation of a middle ear and/or inner ear disorder, or for treatment of tinnitus;
Figure 2 is a block diagram similar to Figure 1 of a technically simplified embodiment of the system of the present invention;
Figure 3 is a schematic view of a hearing system of the present invention implanted in 3o the head of a patient and the pertinent external units;

~ - 11 - 35CA
Figure 4 is a schematic view of an implanted hearing system of the present invention designed as a cochlea implant;
Figure 5 is a schematic view of a binaural hearing system of the present invention implanted in the head of a patient; and Figure 6 is a schematic view of a modified embodiment of the arrangement for processing and/or generation of signals.
Detailed Description of The Invention Figure 1 shows a schematic block diagram of an at least partially implantable hearing to system 1 for rehabilitation of a middle ear and/or inner ear disorder or tinnitus with electrical and/or mechanical and/or acoustic stimulation of the middle ear, inner ear or the higher neuronal structures of the auditory path. The external acoustic signal is received via one or more acoustic sensors (microphones) l0a to lOn and is converted into electrical signals. In the case of implantation for exclusive rehabilitation of tinnitus by masking or noiser functions without additional hearing aid function, these sensor functions are eliminated. The electrical sensor signals are routed to a module 40 in which the sensor signal or signals are selected and preprocessed. This preprocessing can consist, for example, of analog linear or nonlinear preamplification and filtering (for example anti-aliasing filtering). The preprocessed sensor signal leads to an analog-digital converter 130 (A/D). When using a plurality of sensors, 2o there can be a corresponding plurality of A/D converters. The digitized sensor signals) are supplied to a digital signal processor 141 (DSP) which executes the intended function of the hearing implant, for example, audio signal processing in a system for inner ear hearing disorders and/or signal generation in the case of a tinnitus masker or noiser.
The DSP 141 contains a read only memory area So which cannot be overwritten and in which the instructions and parameters necessary for "minimum operation" of the system are stored. The DSP 141 also contains a storage area S, in which the operating software of the intended function or functions of the implant system are filed. As already mentioned, this storage area can also be present twice (S,'). The rewritable program storage for holding the operating software can be based on EEPROM or RAM cells, and in this case provisions should be made 3o for this RAM area to always be "buffered" by the power supply system within the implant.

The digital output signals of the DSP 141 are converted in a digital to analog converter 150 (D/A) into analog signals. There can be more than one D/A
converter, depending on the implant function. Alternatively, the D/A connector can be completely eliminated if, for example, in the case of a hearing system with an electromagnetic output s converter, a pulse-width modulated, serial digital output signal of the DSP
141 is transferred directly to the output converter. The analog output signals) of the digital to analog converter 150 are then routed to a driver unit 80 which depending on the implant function triggers the output stimulator 20a. There can be more than one of both the driver unit 80 and also the output stimulator 20a (20a to 20n), for example in the case of a cochlea implant or brain stem 1o implant with several electrical stimulation electrodes as output stimulators.
In the embodiment shown in Figure l, the signal processing components 40, 130, 141, 150, and 80 are controlled by a microcontroller 5 (~,C) with one or two associated storages (SZ and Sz') via a bidirectional data bus 15. In the storage areas) SZ and Sz', the operating software portions of the implant management system can be filed (for example, 15 administration, monitoring and telemetry functions). Memories S, and/or Sz can also file patient-specific, for example audiologic adaptation, parameters which can be altered from the outside. Furthermore, the microcontroller 5 has a rewritable storage S3 in which a working program for the microcontroller 5 is filed.
The microcontroller 5 communicates via a data bus 16 with a telemetry system 20 (TS). This telemetry system 125 in turn communicates wirelessly through the closed skin 57 via the inductive coil coupling shown by way of example in Figure 1 (implant coil 122 and external coil 121) bidirectionally with an external programming system 120 (PS) which can advantageously be a computer with the corresponding programming, processing, display and administration software. Via this telemetry interface, the operating software of the implant 25 system 1 which is to be changed or completely replaced is transmitted and buffered first of all in the storage area SZ of the microcontroller 5. The storage area SZ' may be used for complementary filing of the data transferred from the external system, and coincidence of the contents of storage areas Sz and SZ' may be checked before changing or replacing the content of the rewritable storage S; in conformity the content of storage areas SZ.
The operating 3o software of the implantable hearing system 1 is to be understood to include both the operating ~ - 13 - 35CA
software of the microcontroller S (for example housekeeping functions such as energy management or handling of the telemetry functions) as well as the operating software of the digital signal processor 141. Thus, for example, simple verification of software transmission can be done by a reading process via the telemetry interface before the operating software, or the corresponding signal processing portions of this software, are transmitted into the program storage area S, of the digital signal processor 141 via the data bus 15. Furthermore, the working program for the microcontroller 5, stored for example in the rewritable storage S3, can be changed or replaced in whole or in part via the telemetry interface 125 using the external unit 120.
1o All electronic components of the implant system are supplied by a primary or secondary battery 60 with electrical operating energy.
According to Figure 6, downstream of the acoustic sensors (microphones) l0a to l On, respective preprocessing modules 40a to 40n and respective analog-digital converters 130a to 130n are connected. In a corresponding manner, according to Figure 6, upstream of the ~ 5 output stimulators 20a to 20n, respective digital-to-analog converters 1 SOa to 1 SOn and respective driver units 80a to 80n are connected. Depending on the intended implant function, on the output side, the digital to analog converters 150a to 150n and the driver units 80a to 80n for the output stimulators 20a to 20n can be functionally combined, as is illustrated in Figure 6 by the broken outlines. For example, in the case of a cochlea implant 2o with several stimulation electrodes, the digital output values delivered by the digital signal processor 141 can be sent to digitally programmable current sources which deliver the corresponding current-modulated and time-modulated electrical stimulation signals to the electrodes. In the case of a hearing system with one or more electromagnetic output converters, the digital to analog converters 150a to 150n can also be completely eliminated 25 when the outputs of the digital signal processor 141 deliver pulse-width modulated serial data and pertinent time integration takes place by the transducer or transducers themselves.
The technically simplified embodiment as shown in Figure 2 differs from that of Figure 1 essentially only in that in the module 30, which comprises all the implant electronics and the electrical power storage, a signal processor 141 (DSP) is provided which in addition 3o assumes the functions of the microcontroller 5 as shown in Figure 1. Figure 2 shows only w - 14 - 35CA
one sensor 10 and one output stimulator 20 as well as the overall storage area S of the DSP
141 which contains all variable operating and management software parts and also patient-specific parameters. In this case, the DSP 141 directly communicates bidirectionally via the data bus 15 with the telemetry system 125 (TS).
Figure 3 schematically shows one possible embodiment of a fully implantable hearing system for individuals with inner ear disorders which includes a sensor (microphone) and an electromechanical output transducer with transcutaneously alterable operating software according to Figures l, 2 and 6. In particular, a hermetically tight and biocompatible implant housing 56 holds an electronic module 31 as was described with reference to Figures 1, 2 and 6. Furthermore, the housing 56 contains a battery 60 for electrical supply to the implant and the telemetry means 125. A sensor 10 (microphone) which has been subcutaneously implanted in the rear wall of the auditory canal receives the sound and converts it into an electrical signal which is supplied via the implant line 61 to the electronic module in the housing 56. One especially advantageous microphone for use in the system described here is described in U.S. Patent No. 5,814,095.
The audiologically processed and amplified signal is sent via the implantable line 59 to the electromechanical transducer 20. This transducer 20, in this example, is shown as a directly coupled system, i.e. the output-side mechanical oscillations of the transducer 20 are directly coupled via a suitable coupling element 21 to an ossicle of the middle ear chain, i.e.
2o to the anvil 62. The transducer oscillations travel via the ossicle chain to the inner eax and cause the corresponding auditory impression. Suitable coupling elements are described, for example, in published German patent application no. 197 38 587 and the corresponding U.S.
Patent No. 5,941,814. Advantageous transducers for use in the systems described herein are disclosed in U.S. Patent No. 5,277,694 and in commonly assigned CA patent applications nos. 2,274,211 and 2,270,127.
Furthermore, Figure 3 shows an external programming system 120 with which the operating software to be replaced or changed can be transcutaneously transmitted. To do this, a transmitting and reading head with a coil 121 is used and placed over the implant for bidirectional data transmission by transferring the data inductively. If the battery 60 in the 3o implant housing 56 is a secondary rechargeable element, the implantable unit can also contain a power receiving circuit for implant-side preparation of recharging energy.
Then the external system 120 with the transmitting coil 121 also contains a wireless charger. One advantageous embodiment of an implantable unit with a receiving coil is described in commonly assigned CA patent application no. 2,271,080. Figure 3 furthermore illustrates a portable remote control unit 65 with which the wearer of the system can change or adjust important hearing system functions.
Figure 4 illustrates, by way of example, a completely implantable cochlea implant with transcutaneously variable operating software as shown in Figures 1, 2 and 6. An acoustic sensor 10 (microphone) receives external acoustic signals and transmits the signals 1o as electrical sensor signals to a hermetically tight and biocompatible electronic module 31 which is fixed in an artificial bone bed 22 on the mastoid plane. The electronic module 31 contains the implant components as shown in Figures l, 2 and 6. Via a multipin line 23 on the output side, a multichannel electrical stimulation electrode 24 is connected which is placed in the cochlea 7. The external modules necessary for transfer of the operating software can be made identical to that in Figure 3 and are therefore not shown in Figure 4.
The subject invention is applicable not only for monaural but also for binaural rehabilitation of any kind of the above described hearing disorders. Figure 5 shows by way of example a completely implantable hearing system for binaural supply of a bilateral inner ear hearing loss with electromechanical stimulation of the impaired inner ears. On each side, 2o there is an implanted acoustic sensor (microphone) 10 for example as shown in Figure 3 and 4. The electrical sensor signals travel to the hermetically tight and biocompatibly made electronic modules 31 which are positioned likewise on each side on the mastoid plane and which process the sensor signals. The modules 31 may contain signal processing and power supply components as shown in Figure l, 2 and 6.
The output signals lead to electromechanical transducers 20 likewise implanted on both sides. In this example, these transducers 20 are coupled via the corresponding coupling elements 21 directly to the ossicle chain, i.e, incus 62, of the middle ear and thus transmit the mechanical oscillations to the damaged inner ears. The two electronic modules 31 may be independent of one another, in which case provisions are preferably made for optimum 3o mutual matching by the corresponding programming of the individual modules.
The two electronic modules 31 can also however be interconnected by an electrical multipole data line, or wirelessly via an inductive or radio-based route to enable binaural signal processing as explained, for example, in published PCT application no. 98/26629. To do this in the two implant modules, there are corresponding interface units which implement galvanic coupling or wireless communication.
The following combination possibilities can be foreseen:
The two electronic modules may each contain one digital signal processor according to the aforementioned description, and the operating software of the two processors can be transcutaneously changed, as described. Then the connection of the two 1 o modules provides essentially for data exchange for optimized binaural signal processing, for example, of the sensor signals.
Only one module contains the described digital signal processor. The module connection then provides, in addition to transmission of sensor data for binaural sound analysis and balancing, for transfer of the output signal to the contralateral converter, and the latter module can house the electronic transducer driver. In this case, the operating software of the entire binaural system is filed in only one module and the software also changed in the module from the outside only transcutaneously via a telemetry unit, which is present on only one side. In this case, the power supply of the entire binaural system can be housed in only one electronic module and power to the 2o contralateral module being supplied by wire or wirelessly.
As illustrated in Figures 1 and 2, the implantable hearing system 1 and the module 30, respectively, may be provided with a transcutaneously operable switch, preferably a reed switch 25, which is adapted to be actuated by placing a magnet 26 on the closed skin 57. The switch 25 may be used, for example in an emergency such as a malfunction of the hearing system, to reset the housekeeping functions of the microcontroller 5 and/or to reset the digital signal processor 141 and/or to disable the auditory stimulation in monaural as well as in binaural systems. The reset may be of any desired type causing a defined operation.
The above described systems allow changes of a plurality of individual operating programs. Thus, for example, it can be a good idea in many implant systems to replace the 3o implant management system or parts thereof. This applies especially to the "housekeeping system" and analysis functions of the implant, such as for example:
charge control (for secondary power supply) and discharge monitoring (for secondary and primary power supply), energy optimization of the management system (for example, programmable or self adapting cutoff of the hardware modules of the implant), optimized battery cell monitoring in systems with secondary power supply, especially as described advantageously in commonly assigned CA patent application no.
2,270,127, optimization of telemetry transmission software, 1o replacement or reconfiguration of the remote control functions (also patient-specific) system messages within the implant to the patient, for example, on the charging state of a secondary power supply, for example as advantageously explained in commonly assigned CA patent application no. 2,271075, telemetry transmission to the outside of sensor functions) or sensor transmission functions, and audiometric implant functions.
In a completely implantable system which works only as a tinnitus masker or noiser or a system which executes both hearing aid and also tinnitus masker or noiser functions, the algorithms for signal generation for masking or the noiser function can advantageously be 2o replaceable by software. This relates fundamentally to all aspects of signal generation, for example spectral location, level and phase ratios, etc. regardless of whether individual sine signals, narrowband signals or broadband signals are used.
In all these systems, the following advantages are achieved:
the hardware structure of the implant can be designed such that in case of program errors or external problems or storage damage or other fault-triggering events, the system is shifted into a nonharmful state safe to the patient (for example, by a watchdog unit, internally triggered "warm start" or externally triggered "cold start"
(power on reset) of the implant system), transmission of the new operating software can take place with a fault-tolerant or 3o fault-correcting code, iii ' transmission both of operating parameters as well as operating programs between the implantable system and the external unit can take place with inductive, infrared or electromagnetic processes, signal transmission can take place between the implantable system and the external unit using a "hand-shake protocol" and if there is a EEPROM storage area, the implant system can have a hardware module for programming of the EEPROM area.

Claims (28)

1. An at least partially implantable system for rehabilitation of a hearing disorder, comprising:
an arrangement for at least one of processing and generating signals including an implantable processor arrangement with control logic which operates according to an operating program and an implantable storage arrangement for storage of the operating program and of operating parameters;
a wireless telemetry means for data transmission between an implantable part of the system and an external unit; and a power supply arrangement which supplies individual components of the system with current;
wherein said implantable storage arrangement is rewritable and assigned to the processor arrangement for holding and reproducing the operating program and the operating parameters, and at least a portion of at least one of the operating program and of the operating parameters is adapted to be at least one of modified and replaced by data transmitted from the external unit via the telemetry means.
2. The system of claim 1, further including a buffer storage arrangement in which data transmitted from the external unit via the telemetry means is buffered before being relayed to the arrangement for at least one of processing and generating signals.
3. The system of claim 2, further including checking logic to check the data stored in the buffer storage arrangement before the data is relayed to the arrangement for at least one of processing and generating signals.
4. The system of claim 3, including a microcontroller for controlling the arrangement for at least one of processing and generating signals.
5. The system of claim 4, wherein the checking logic and the buffer storage -20-~

arrangement are implemented in the microcontroller.
6. The system of claim 4, further including an implantable working storage arrangement for storage of a working program for the microcontroller, and wherein at least parts of the working program for the microcontroller can be at least one of changed and replaced by data transferred from the external unit via the telemetry means.
7. The system of claim 1, wherein said implantable storage arrangement includes at least two storage areas for holding and reproducing at least the operating program.
8. The system of claim 2, wherein the buffer storage arrangement includes at least two storage areas for holding and reproducing data transferred from the external unit via the telemetry means.
9. The system of claim 1, wherein a preprogrammed read only memory area which cannot be overwritten is assigned to the processor arrangement.
10. The system of claim 1, wherein the telemetry means has means for transferring operating parameters between the implantable part of the system and the external unit.
11. The system of claim 1, wherein said process arrangement includes a digital arrangement for generation of electrical signals and an arrangement downstream of the digital arrangement for generating stimuli based on the electrical signals generated by the digital arrangement.
12. The system of claim 1, wherein said process arrangement comprises a digital arrangement, at least one acoustic sensor, an arrangement for generating stimuli based on processing of the acoustic signals acquired by said at least one acoustic sensor, and a digital arrangement for processing the acoustic signals acquired by means of said at least one acoustic sensor.
13. The system of claim 12, wherein said arrangement for at least one of processing and generating signals includes a preprocessing arrangement for at least one of linear and nonlinear amplification and filtering of signals originating from said at least one acoustic sensor.
14. The system of claim 13, wherein the preprocessing arrangement comprises an anti-aliasing filter.
15. The system of claim 12, wherein said at least one acoustic sensor includes a plurality of acoustic sensors, and said arrangement for at least one of processing and generating signals includes an analog-digital converter connected downstream of each of the plurality of acoustic sensors.
16. The system of claim 11, wherein said arrangement for at least one of processing and generating signals includes at least one digital-analog converter connected upstream of the arrangement for generating stimuli.
17. The system of claim 16, wherein the arrangement for generating stimuli includes a plurality of stimuli producers to which its own digital-analog converter is connected upstream.
18. The system of claim 12, wherein said arrangement for at least one of processing and generating signals includes at least one driver arrangement connected upstream of the digital arrangement for processing of stimuli and is adapted to process the signals delivered by the arrangement for at least one of processing and generating signals according to a mode of stimulation.
19. The system of claim 12, wherein the arrangement for generating stimuli has means for producing electrical stimuli and further includes an array of stimulation electrodes for application of electrical cochlea or brain stem stimuli.
20. The system of claim 12, wherein the arrangement for generating stimuli comprises at least one electroacoustic transducer.
21. The system of claim 12, wherein the arrangement for generating stimuli comprises at least one electromechanical transducer.
22. The system of claim 21, wherein the arrangement for generating stimuli comprises at least one piezoelectric transducer.
23. The system of claim 12, wherein the arrangement for generating stimuli comprises at least one electromagnetic transducer.
24. The system of claim 1, wherein the power supply arrangement includes a rechargeable electrochemical cell.
25. The system of claim 1, wherein the system is a binaural system for rehabilitation of a hearing disorder of both ears and includes two system units, one for each of the ears.
26. The system of claim 25, wherein the two system units are essentially identical to one another.
27. The system of claim 25, wherein one system unit is a master unit and the other system unit is designed as the slave unit controlled by the master unit.
28. The system of claim 1, further including a transcutaneously operable reset switch.
CA002301437A 1999-04-08 2000-03-14 Implantable system for rehabilitation of a hearing disorder Expired - Fee Related CA2301437C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19915846.0 1999-04-08
DE19915846A DE19915846C1 (en) 1999-04-08 1999-04-08 Partially implantable system for rehabilitating hearing trouble includes a cordless telemetry device to transfer data between an implantable part, an external unit and an energy supply.

Publications (2)

Publication Number Publication Date
CA2301437A1 CA2301437A1 (en) 2000-10-08
CA2301437C true CA2301437C (en) 2002-12-17

Family

ID=7903886

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002301437A Expired - Fee Related CA2301437C (en) 1999-04-08 2000-03-14 Implantable system for rehabilitation of a hearing disorder

Country Status (6)

Country Link
US (1) US6198971B1 (en)
EP (1) EP1043914B1 (en)
AT (1) ATE401758T1 (en)
AU (1) AU758186B2 (en)
CA (1) CA2301437C (en)
DE (2) DE19915846C1 (en)

Families Citing this family (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7787647B2 (en) 1997-01-13 2010-08-31 Micro Ear Technology, Inc. Portable system for programming hearing aids
US6872187B1 (en) 1998-09-01 2005-03-29 Izex Technologies, Inc. Orthoses for joint rehabilitation
US7520851B2 (en) 1999-03-17 2009-04-21 Neurominics Pty Limited Tinnitus rehabilitation device and method
AUPP927599A0 (en) * 1999-03-17 1999-04-15 Curtin University Of Technology Tinnitus rehabilitation device and method
US7416537B1 (en) * 1999-06-23 2008-08-26 Izex Technologies, Inc. Rehabilitative orthoses
US7949395B2 (en) * 1999-10-01 2011-05-24 Boston Scientific Neuromodulation Corporation Implantable microdevice with extended lead and remote electrode
US6904402B1 (en) * 1999-11-05 2005-06-07 Microsoft Corporation System and iterative method for lexicon, segmentation and language model joint optimization
US6665565B1 (en) * 1999-12-24 2003-12-16 Medtronic, Inc. Method and a system for conducting failure mode recovery in an implanted medical device
EP1252799B2 (en) 2000-01-20 2022-11-02 Starkey Laboratories, Inc. Method and apparatus for fitting hearing aids
US20020091337A1 (en) * 2000-02-07 2002-07-11 Adams Theodore P. Wireless communications system for implantable hearing aid
DE10015421C2 (en) 2000-03-28 2002-07-04 Implex Ag Hearing Technology I Partially or fully implantable hearing system
DE60107062T2 (en) 2000-03-31 2005-11-24 Advanced Bionics Corp., Sylmar COMPLETELY IMPLANTABLE COCHLEA MICROPROTHESIS WITH A VARIETY OF CONTACTS
DE10018361C2 (en) 2000-04-13 2002-10-10 Cochlear Ltd At least partially implantable cochlear implant system for the rehabilitation of a hearing disorder
DE10018360C2 (en) 2000-04-13 2002-10-10 Cochlear Ltd At least partially implantable system for the rehabilitation of a hearing impairment
DE10018334C1 (en) * 2000-04-13 2002-02-28 Implex Hear Tech Ag At least partially implantable system for the rehabilitation of a hearing impairment
US6648813B2 (en) * 2000-06-17 2003-11-18 Alfred E. Mann Foundation For Scientific Research Hearing aid system including speaker implanted in middle ear
DE10031832C2 (en) * 2000-06-30 2003-04-30 Cochlear Ltd Hearing aid for the rehabilitation of a hearing disorder
DE10039401C2 (en) 2000-08-11 2002-06-13 Implex Ag Hearing Technology I At least partially implantable hearing system
US7822478B2 (en) * 2000-08-21 2010-10-26 Cochlear Limited Compressed neural coding
AUPQ952800A0 (en) * 2000-08-21 2000-09-14 Cochlear Limited Power efficient electrical stimulation
US9008786B2 (en) * 2000-08-21 2015-04-14 Cochlear Limited Determining stimulation signals for neural stimulation
US8285382B2 (en) 2000-08-21 2012-10-09 Cochlear Limited Determining stimulation signals for neural stimulation
DE10041726C1 (en) 2000-08-25 2002-05-23 Implex Ag Hearing Technology I Implantable hearing system with means for measuring the coupling quality
DE10046938A1 (en) * 2000-09-21 2002-04-25 Implex Ag Hearing Technology I At least partially implantable hearing system with direct mechanical stimulation of a lymphatic space in the inner ear
US7283874B2 (en) 2000-10-16 2007-10-16 Remon Medical Technologies Ltd. Acoustically powered implantable stimulating device
US6764446B2 (en) 2000-10-16 2004-07-20 Remon Medical Technologies Ltd Implantable pressure sensors and methods for making and using them
US7024248B2 (en) * 2000-10-16 2006-04-04 Remon Medical Technologies Ltd Systems and methods for communicating with implantable devices
US6816599B2 (en) * 2000-11-14 2004-11-09 Topholm & Westermann Aps Ear level device for synthesizing music
US7254246B2 (en) * 2001-03-13 2007-08-07 Phonak Ag Method for establishing a binaural communication link and binaural hearing devices
WO2001039569A2 (en) * 2001-03-13 2001-06-07 Phonak Ag Method for establishing a detachable mechanical and/or electrical connection
DE10114838A1 (en) 2001-03-26 2002-10-10 Implex Ag Hearing Technology I Fully implantable hearing system
EP1385453A1 (en) * 2001-04-06 2004-02-04 Cochlear Limited Endosteal electrode
US7962226B2 (en) * 2001-04-06 2011-06-14 Cochlear Limited Cochlear endosteal electrode carrier member
EP1250026A1 (en) * 2001-04-11 2002-10-16 Phonic Ear, Inc. Short range data transfer for communication devices
GB0111267D0 (en) * 2001-05-05 2001-06-27 Toumaz Technology Ltd Electronic circuit
AU2002312636B2 (en) * 2001-05-24 2007-08-30 Hearworks Pty Limited A peak-derived timing stimulation strategy for a multi-channel cochlear implant
AUPR523401A0 (en) * 2001-05-24 2001-06-21 University Of Melbourne, The A peak-synchronous stimulation strategy for a multi-channel cochlear implant
AUPR551301A0 (en) * 2001-06-06 2001-07-12 Cochlear Limited Monitor for auditory prosthesis
AUPR604801A0 (en) * 2001-06-29 2001-07-26 Cochlear Limited Multi-electrode cochlear implant system with distributed electronics
JP4812249B2 (en) * 2001-07-06 2011-11-09 コクレア リミテッド Port device configuration
US10576275B2 (en) 2001-07-06 2020-03-03 Cochlear Limited System and method for configuring an external device using operating parameters from an implanted device
US20030208244A1 (en) * 2002-04-26 2003-11-06 Medtronic, Inc. Voltage/current regulator improvements for an implantable medical device
EP1536852B1 (en) * 2002-09-10 2016-11-16 MED-EL Elektromedizinische Geräte GmbH Implantable medical device with multiple transducers
US20060256989A1 (en) * 2003-03-17 2006-11-16 Olsen Henrik B Hearing prosthesis comprising rechargeable battery information
US7945064B2 (en) * 2003-04-09 2011-05-17 Board Of Trustees Of The University Of Illinois Intrabody communication with ultrasound
US7076072B2 (en) * 2003-04-09 2006-07-11 Board Of Trustees For The University Of Illinois Systems and methods for interference-suppression with directional sensing patterns
WO2004098690A1 (en) * 2003-05-06 2004-11-18 Oticon A/S Tinnitus treatment
DE10323219B3 (en) * 2003-05-22 2004-12-09 Siemens Audiologische Technik Gmbh Coil system and remote control for a hearing aid
US20070021804A1 (en) * 2003-05-30 2007-01-25 Maltan Albert A Stimulation using a microstimulator to treat tinnitus
US7556597B2 (en) * 2003-11-07 2009-07-07 Otologics, Llc Active vibration attenuation for implantable microphone
US7702396B2 (en) 2003-11-21 2010-04-20 Advanced Bionics, Llc Optimizing pitch allocation in a cochlear implant
US7651460B2 (en) * 2004-03-22 2010-01-26 The Board Of Regents Of The University Of Oklahoma Totally implantable hearing system
US7333858B2 (en) * 2004-03-31 2008-02-19 Cochlear Limited Pulse burst electrical stimulation of nerve or tissue fibers
US7840020B1 (en) 2004-04-01 2010-11-23 Otologics, Llc Low acceleration sensitivity microphone
US7214179B2 (en) * 2004-04-01 2007-05-08 Otologics, Llc Low acceleration sensitivity microphone
DE102004025123A1 (en) 2004-05-21 2005-07-21 Siemens Audiologische Technik Gmbh Hearing aid with acoustic battery status display whereby the current charge level of the battery is determined and communicated to the user by an acoustic signal
WO2005124722A2 (en) * 2004-06-12 2005-12-29 Spl Development, Inc. Aural rehabilitation system and method
US8308794B2 (en) 2004-11-15 2012-11-13 IZEK Technologies, Inc. Instrumented implantable stents, vascular grafts and other medical devices
EP1819278A4 (en) 2004-11-15 2009-04-08 Izex Technologies Inc Instrumented orthopedic and other medical implants
US7522961B2 (en) 2004-11-17 2009-04-21 Advanced Bionics, Llc Inner hair cell stimulation model for the use by an intra-cochlear implant
US7242985B1 (en) * 2004-12-03 2007-07-10 Advanced Bionics Corporation Outer hair cell stimulation model for the use by an intra—cochlear implant
US7450994B1 (en) * 2004-12-16 2008-11-11 Advanced Bionics, Llc Estimating flap thickness for cochlear implants
WO2006076531A2 (en) * 2005-01-11 2006-07-20 Otologics, Llc Active vibration attenuation for implantable microphone
US8096937B2 (en) 2005-01-11 2012-01-17 Otologics, Llc Adaptive cancellation system for implantable hearing instruments
US7840279B2 (en) * 2005-02-11 2010-11-23 Boston Scientific Neuromodulation Corporation Implantable microstimulator having a separate battery unit and methods of use thereof
US7715912B2 (en) * 2005-04-13 2010-05-11 Intelect Medical, Inc. System and method for providing a waveform for stimulating biological tissue
US9211408B2 (en) 2005-04-13 2015-12-15 The Cleveland Clinic Foundation System and method for neuromodulation using composite patterns of stimulation or waveforms
US9339650B2 (en) 2005-04-13 2016-05-17 The Cleveland Clinic Foundation Systems and methods for neuromodulation using pre-recorded waveforms
US8170677B2 (en) * 2005-04-13 2012-05-01 Cochlear Limited Recording and retrieval of sound data in a hearing prosthesis
CN100394903C (en) * 2005-06-24 2008-06-18 清华大学 Bidirectional digital modulating multi-channel artificial cochlea system
CN100346755C (en) * 2005-06-24 2007-11-07 清华大学 Two-way multi-channel artificial cochlea system with on-chip signal processor
US7522738B2 (en) * 2005-11-30 2009-04-21 Otologics, Llc Dual feedback control system for implantable hearing instrument
US7937154B2 (en) * 2005-12-08 2011-05-03 Cochlear Limited Promoting curvature and maintaining orientation of an electrode carrier member of a stimulating medical device
US7757028B2 (en) * 2005-12-22 2010-07-13 Intuitive Surgical Operations, Inc. Multi-priority messaging
US7756036B2 (en) * 2005-12-22 2010-07-13 Intuitive Surgical Operations, Inc. Synchronous data communication
US8054752B2 (en) 2005-12-22 2011-11-08 Intuitive Surgical Operations, Inc. Synchronous data communication
US8078278B2 (en) * 2006-01-10 2011-12-13 Remon Medical Technologies Ltd. Body attachable unit in wireless communication with implantable devices
US8784312B2 (en) 2006-02-10 2014-07-22 Cochlear Limited Recognition of implantable medical device
US7650185B2 (en) * 2006-04-25 2010-01-19 Cardiac Pacemakers, Inc. System and method for walking an implantable medical device from a sleep state
US8818517B2 (en) * 2006-05-05 2014-08-26 Advanced Bionics Ag Information processing and storage in a cochlear stimulation system
DE102006023824B4 (en) * 2006-05-20 2010-01-28 Cerbomed Gmbh Device for the transcutaneous application of a stimulus or for transcutaneous detection of a parameter
DE102006036069B4 (en) * 2006-07-18 2008-09-04 Cerbomed Gmbh Audiological transmission system
CA2601662A1 (en) 2006-09-18 2008-03-18 Matthias Mullenborn Wireless interface for programming hearing assistance devices
US20080171941A1 (en) * 2007-01-12 2008-07-17 Huelskamp Paul J Low power methods for pressure waveform signal sampling using implantable medical devices
WO2008100845A1 (en) * 2007-02-12 2008-08-21 Med-El Elektromedizinische Geraete Gmbh Implantable microphone noise suppression
US8571673B2 (en) * 2007-02-12 2013-10-29 Med-El Elektromedizinische Geraete Gmbh Energy saving silent mode for hearing implant systems
DE102007009176A1 (en) 2007-02-26 2008-09-04 Siemens Audiologische Technik Gmbh Hearing device with a special energy intake system and corresponding method
JP5231525B2 (en) * 2007-03-26 2013-07-10 レモン メディカル テクノロジーズ, リミテッド Biased acoustic switch for implantable medical devices
US8472654B2 (en) * 2007-10-30 2013-06-25 Cochlear Limited Observer-based cancellation system for implantable hearing instruments
US20090312650A1 (en) * 2008-06-12 2009-12-17 Cardiac Pacemakers, Inc. Implantable pressure sensor with automatic measurement and storage capabilities
US8798761B2 (en) * 2008-06-27 2014-08-05 Cardiac Pacemakers, Inc. Systems and methods of monitoring the acoustic coupling of medical devices
US20100023091A1 (en) * 2008-07-24 2010-01-28 Stahmann Jeffrey E Acoustic communication of implantable device status
EP2361115A1 (en) 2008-10-27 2011-08-31 Cardiac Pacemakers, Inc. Methods and systems for recharging implantable devices
US8688222B2 (en) 2009-02-05 2014-04-01 Cochlear Limited Stimulus timing for a stimulating medical device
AU2009222439B2 (en) * 2009-09-28 2011-07-21 Cochlear Limited Method and circuitry for measurement and control of stimulation current
HUE032927T2 (en) 2010-11-23 2017-11-28 Nat Univ Ireland Maynooth Method and apparatus for sensory substitution
US8515540B2 (en) 2011-02-24 2013-08-20 Cochlear Limited Feedthrough having a non-linear conductor
DE102011100065A1 (en) 2011-04-30 2012-10-31 Cerbomed Gmbh Device for the combined application of a transcutaneous electrical stimulation stimulus and delivery of an acoustic signal
US10123096B2 (en) 2014-08-05 2018-11-06 Minipumps, Llc Implant telemetry with dynamic tuning
JP2017522992A (en) * 2014-08-05 2017-08-17 ミニパンプス, エルエルシー Embedded telemetry using dynamic tuning
US10525265B2 (en) * 2014-12-09 2020-01-07 Cochlear Limited Impulse noise management
US10105539B2 (en) 2014-12-17 2018-10-23 Cochlear Limited Configuring a stimulation unit of a hearing device
US10284968B2 (en) 2015-05-21 2019-05-07 Cochlear Limited Advanced management of an implantable sound management system
US10602284B2 (en) 2016-07-18 2020-03-24 Cochlear Limited Transducer management
US10904680B2 (en) 2017-02-23 2021-01-26 Advanced Bionics Ag Battery-based systems and methods for managing sound processor programming for a cochlear implant system
MX2021009963A (en) 2019-02-21 2022-01-06 Envoy Medical Corp Implantable cochlear system with integrated components and lead characterization.
US11564046B2 (en) 2020-08-28 2023-01-24 Envoy Medical Corporation Programming of cochlear implant accessories
US11697019B2 (en) 2020-12-02 2023-07-11 Envoy Medical Corporation Combination hearing aid and cochlear implant system
US11806531B2 (en) 2020-12-02 2023-11-07 Envoy Medical Corporation Implantable cochlear system with inner ear sensor
US11471689B2 (en) 2020-12-02 2022-10-18 Envoy Medical Corporation Cochlear implant stimulation calibration
US11633591B2 (en) 2021-02-23 2023-04-25 Envoy Medical Corporation Combination implant system with removable earplug sensor and implanted battery
US11839765B2 (en) * 2021-02-23 2023-12-12 Envoy Medical Corporation Cochlear implant system with integrated signal analysis functionality
US11865339B2 (en) 2021-04-05 2024-01-09 Envoy Medical Corporation Cochlear implant system with electrode impedance diagnostics

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3557775A (en) 1963-12-27 1971-01-26 Jack Lawrence Mahoney Method of implanting a hearing aid
US3712962A (en) 1971-04-05 1973-01-23 J Epley Implantable piezoelectric hearing aid
US3764748A (en) 1972-05-19 1973-10-09 J Branch Implanted hearing aids
US4352960A (en) 1980-09-30 1982-10-05 Baptist Medical Center Of Oklahoma, Inc. Magnetic transcutaneous mount for external device of an associated implant
US4441210A (en) * 1981-09-18 1984-04-03 Hochmair Erwin S Transcutaneous signal transmission system and methods
US4729366A (en) 1984-12-04 1988-03-08 Medical Devices Group, Inc. Implantable hearing aid and method of improving hearing
US4850962A (en) 1984-12-04 1989-07-25 Medical Devices Group, Inc. Implantable hearing aid and method of improving hearing
US4593696A (en) * 1985-01-17 1986-06-10 Hochmair Ingeborg Auditory stimulation using CW and pulsed signals
AU5481786A (en) * 1985-03-20 1986-09-25 Hochmair, E.S. Transcutaneous power and signal transmission system
US5015225A (en) 1985-05-22 1991-05-14 Xomed, Inc. Implantable electromagnetic middle-ear bone-conduction hearing aid device
FI80098C (en) 1988-06-29 1991-06-26 Tampella Oy Ab Roll for pressure of a paper machine or the like.
US5015224A (en) 1988-10-17 1991-05-14 Maniglia Anthony J Partially implantable hearing aid device
DE3940632C1 (en) 1989-06-02 1990-12-06 Hortmann Gmbh, 7449 Neckartenzlingen, De Hearing aid directly exciting inner ear - has microphone encapsulated for implantation in tympanic cavity or mastoid region
US5095904A (en) * 1989-09-08 1992-03-17 Cochlear Pty. Ltd. Multi-peak speech procession
US5271397A (en) * 1989-09-08 1993-12-21 Cochlear Pty. Ltd. Multi-peak speech processor
US5603726A (en) * 1989-09-22 1997-02-18 Alfred E. Mann Foundation For Scientific Research Multichannel cochlear implant system including wearable speech processor
DE4104359A1 (en) 1991-02-13 1992-08-20 Implex Gmbh CHARGING SYSTEM FOR IMPLANTABLE HOERHILFEN AND TINNITUS MASKERS
DE4104358A1 (en) 1991-02-13 1992-08-20 Implex Gmbh IMPLANTABLE HOER DEVICE FOR EXCITING THE INNER EAR
US5597380A (en) * 1991-07-02 1997-01-28 Cochlear Ltd. Spectral maxima sound processor
US5624376A (en) 1993-07-01 1997-04-29 Symphonix Devices, Inc. Implantable and external hearing systems having a floating mass transducer
US5456691A (en) * 1993-11-12 1995-10-10 Pacesetter, Inc. Programming system having multiple program modules
US5601617A (en) * 1995-04-26 1997-02-11 Advanced Bionics Corporation Multichannel cochlear prosthesis with flexible control of stimulus waveforms
US5626629A (en) * 1995-05-31 1997-05-06 Advanced Bionics Corporation Programming of a speech processor for an implantable cochlear stimulator
DE69534376T2 (en) 1995-11-13 2006-06-01 Cochlear Ltd., Lane Cove IMPLANTABLE MICROPHONE FOR COCHLEAR IMPLANTS
US5795287A (en) 1996-01-03 1998-08-18 Symphonix Devices, Inc. Tinnitus masker for direct drive hearing devices
US5859916A (en) 1996-07-12 1999-01-12 Symphonix Devices, Inc. Two stage implantable microphone
US5836863A (en) 1996-08-07 1998-11-17 St. Croix Medical, Inc. Hearing aid transducer support
US5814095A (en) 1996-09-18 1998-09-29 Implex Gmbh Spezialhorgerate Implantable microphone and implantable hearing aids utilizing same
US6010532A (en) * 1996-11-25 2000-01-04 St. Croix Medical, Inc. Dual path implantable hearing assistance device
US5999856A (en) 1997-02-21 1999-12-07 St. Croix Medical, Inc. Implantable hearing assistance system with calibration and auditory response testing
US5993376A (en) 1997-08-07 1999-11-30 St. Croix Medical, Inc. Electromagnetic input transducers for middle ear sensing
WO1999008480A2 (en) * 1997-08-07 1999-02-18 St. Croix Medical, Inc. Middle ear transducer
US5954628A (en) 1997-08-07 1999-09-21 St. Croix Medical, Inc. Capacitive input transducers for middle ear sensing
US6264603B1 (en) 1997-08-07 2001-07-24 St. Croix Medical, Inc. Middle ear vibration sensor using multiple transducers

Also Published As

Publication number Publication date
EP1043914B1 (en) 2008-07-16
CA2301437A1 (en) 2000-10-08
DE59914805D1 (en) 2008-08-28
ATE401758T1 (en) 2008-08-15
US6198971B1 (en) 2001-03-06
AU2226900A (en) 2000-10-12
EP1043914A2 (en) 2000-10-11
AU758186B2 (en) 2003-03-20
DE19915846C1 (en) 2000-08-31
EP1043914A3 (en) 2006-11-08

Similar Documents

Publication Publication Date Title
CA2301437C (en) Implantable system for rehabilitation of a hearing disorder
US11937048B2 (en) Integrated implantable hearing device, microphone and power unit
US6697674B2 (en) At least partially implantable system for rehabilitation of a hearing disorder
US6565503B2 (en) At least partially implantable system for rehabilitation of hearing disorder
US6575894B2 (en) At least partially implantable system for rehabilitation of a hearing disorder
US6629923B2 (en) At least partially implantable hearing system with direct mechanical stimulation of a lymphatic space of the inner ear
US6807445B2 (en) Totally implantable hearing system
US7376563B2 (en) System for rehabilitation of a hearing disorder
EP2140908B1 (en) Devices for hearing impaired persons
US20130296970A1 (en) Implantable hearing prosthesis
US9981129B2 (en) Universal implant
EP2545960A1 (en) Fully-implantable, microphoneless cochlear implant
AU2007257859A1 (en) Button processor for cochlear implants

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed
MKLA Lapsed

Effective date: 20100315