CA2316024A1 - Heat-transferable security stamp - Google Patents

Heat-transferable security stamp Download PDF

Info

Publication number
CA2316024A1
CA2316024A1 CA002316024A CA2316024A CA2316024A1 CA 2316024 A1 CA2316024 A1 CA 2316024A1 CA 002316024 A CA002316024 A CA 002316024A CA 2316024 A CA2316024 A CA 2316024A CA 2316024 A1 CA2316024 A1 CA 2316024A1
Authority
CA
Canada
Prior art keywords
layer
design
component
forming
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002316024A
Other languages
French (fr)
Inventor
John M. Harden
Harry A. Seifert
Rajendra Mehta
William F. Pinell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Standard Register Co
Original Assignee
Standard Register Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Standard Register Co filed Critical Standard Register Co
Publication of CA2316024A1 publication Critical patent/CA2316024A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/14Security printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/12Transfer pictures or the like, e.g. decalcomanias
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/914Transfer or decalcomania
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/914Transfer or decalcomania
    • Y10S428/915Fraud or tamper detecting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24843Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] with heat sealable or heat releasable adhesive layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24851Intermediate layer is discontinuous or differential
    • Y10T428/2486Intermediate layer is discontinuous or differential with outer strippable or release layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24851Intermediate layer is discontinuous or differential
    • Y10T428/24868Translucent outer layer
    • Y10T428/24876Intermediate layer contains particulate material [e.g., pigment, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24893Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2852Adhesive compositions
    • Y10T428/2878Adhesive compositions including addition polymer from unsaturated monomer
    • Y10T428/2891Adhesive compositions including addition polymer from unsaturated monomer including addition polymer from alpha-beta unsaturated carboxylic acid [e.g., acrylic acid, methacrylic acid, etc.] Or derivative thereof

Abstract

A heat-transferable security stamp is provided including a carrier sheet, a top coat layer, at least one design layer between the carrier sheet and the top coat layer, a release layer between the carrier sheet and the design layer, and a base coat layer between the release layer and the design layer. The release layer includes a water-borne release component. The base coat layer includes a water-borne base coat component. The design layer includes a water-borne design component. The top coat layer includes a water-borne top coat component. The carrier sheet is resistant to heat above a predetermined heat, transfer temperature. The adhesive release component of the release layer is operative to secure the carrier sheet to the base coat layer at temperatures below the heat transfer temperature and to permit release of the carrier sheet from the base coat layer at temperatures above the heat transfer temperature.
The base coat component of the base coat layer is operative to function as a barrier between the release layer and the design layer at temperatures above and below the heat transfer temperature. The design component of the design layer is operative to provide an indication of the presence of the security stamp. The top coat component is operative to adhere to a substrate upon contact with the substrate and upon application of heat above the heat transfer temperature. The recited water borne components may be capable of being borne in water as an aqueous emulsion, an aqueous dispersion, or an aqueous solution.

Description

Gocket No. - STD 856 IA
HEAT-TRANSFERABLE SECURITY STAMP
CROSS REFERENCE TO RELATED APPLICATION
This application is a continuation-in-part of applicants' earlier filed application Serial No. 09/374,923, filed August 16, 1999.
BACKGROUND OF THE INVENTION
The present invention relates to heat-transferable security stamps and processes for forming the same. More particularly, the present invention relates to unitary and 0 multi-layered heat-transferable security stamps where the components of each layer within the security stamp are selected according to predefined processing goals.
Security stamps are commonly transferred from a paper or film carrier sheet to another surface under the application of heat. One common application example involves the transfer of a tax stamp to a carton or pack of cigarettes to indicate payment 5 of applicable taxes on the product. U.S. Patent No. 2,746,877 teaches a multi-layered dry release transfer stamp. Each of the layers utilizes specially selected solvent-based inks or coatings to enable the transfer of a visually perceptible security stamp to an associated target substrate. Other conventional transfer stamps also utilize non-aqueous solvents because they are widely available and were originally economical.
0 However, safety concerns related to the use, storage, recovery, and disposal of non-aqueous or alcohol-based solvents have given rise to a number of OSHA
regulations requiring the installation of specialized peripheral equipment for handling potentially dangerous solvents. The installation and maintenance of such peripheral equipment has driven up the cost of utilizing traditional solvents in the manufacture of transfer 5 stamps. Further, in many instances the cost of disposing a solvent used in a particular manufacturing process has become higher than the original cost of obtaining the solvent.
There are a limited number of alternatives to the traditional solvent-based production processes. Accordingly, it is currently not possible to address the above-0 noted negative manufacturing issues related to the use of solvents in the production of heat transfer stamps. As a result, there continues to be a need for an economical and versatile transferable security stamp that does not necessitate the use of solvent based layers for production.

Docket No. - STD 856 IA
BRIEF SUMMARY OF THE INVENTION - - - ~-- ~-This need is met by the present invention wherein a heat-transferable security stamp and an associated manufacturing scheme are provided wherein water-borne structural components are utilized and arranged to enable more cost-effective, efficient, and safe transfer stamp production while maintaining optimal transfer stamp functionality.
In accordance with one embodiment of the present invention, a process is provided for forming a unitary heat-transferable security stamp comprising a carrier sheet, a top coat layer, at least one design layer between the carrier sheet and the top coat layer, a release layer between the carrier sheet and the design layer, and a base coat layer between the release layer and the design layer. The process comprises the steps of: (i) providing the carrier sheet; (ii) forming the release layer by presenting a water borne adhesive release component (iii) forming the base coat layer by presenting a water-borne base coat component; (iv) forming the design layer by presenting a water-borne design component; and (v) forming the top coat layer by presenting a water-borne top coat component. The carrier sheet is selected such that it is resistant to heat above a predetermined heat transfer temperature. The adhesive release component of the release layer is selected such that it is operative to secure the carrier sheet to the base coat layer at temperatures below the heat transfer temperature and to J permit release of the carrier sheet from the base coat layer at temperatures above the heat transfer temperature. The base coat component of the base coat layer is selected such that it is operative to function as a barrier between the release layer and the design layer at temperatures above and below the heat transfer temperature.
The design component of the design layer is selected such that it is operative to provide an 5 indication of the presence of the security stamp. The top coat component is selected such that it is operative to adhere to a substrate upon contact with the substrate and upon application of heat at the heat transfer temperature.
The release layer, the base coat layer, the design layer, and the top coat layer are preferably further formed by a series of drying steps, wherein respective drying steps are executed following presentation of a selected one of the layers and prior to -- 2 of 19 --Docket No. - STD 856 IA
presentation of a subsequent one of the layers. The drying step may be characterized by microwave irradiation, infrared irradiation, heated forced air drying, etc.
.
The carrier sheet preferably comprises a non-siliconized liner. Preferably, the release layer is applied 'to a major surface of the carrier sheet, the base coat layer is applied to the release layer, the design layer is applied to the base coat layer, and the top coat layer is applied to the~design layer. The water-borne components may be presented as aqueous emulsions, aqueous dispersions, or aqueous solutions.
The release layer may be formed as a continuous film and may be presented as a blend of polyethylene and an aqueous paraffin wax emulsion having a melting point 0 that is less than the heat transfer temperature.
The base coat layer may also be formed as a continuous film and may be presented as a polymeric emulsion including the base coat component. The base coat component is preferably presented so as to form a cross linked polymeric layer having a melting point that exceeds the heat transfer temperature.
5 The design layer is formed by presenting a polymeric emulsion including the design component and is formed in a visually perceptible pattern in the security stamp.
The melting point of the design component also exceeds the heat transfer temperature.
Preferably, a plurality of design layers are provided and each design layer includes a distinct design component.
0 The top coat layer is formed by presenting a polymeric emulsion including the top coat component and is selected such that the heat transfer temperature is at least as great as a characteristic softening temperature of the top coat.
An additional design layer may be formed in a predetermined pattern on the top coat layer. The additional design layer may be formed after formation of the remaining :5 layers of the stamp. The additional design layer may be formed of UV
fluorescent ink via an ink jet printing process and may comprise a number selected from a series of consecutive numbers.
In accordance with another embodiment of the present invention, a unitary heat-transferable security stamp is provided comprising a carrier sheet, a top coat layer, at .0 least one design layer between the carrier sheet and the top coat layer, a release layer --3of19-Docket No. - STD 856 IA
between the carrier sheet and the design layer, and a base coat layer between the release layer and the design layer. The security stamp is formed by a process comprising the steps of: (i) providing the carrier sheet; (ii) forming the release layer by presenting a water-borne adhesive release component; (iii) forming the base coat layer by presenting a water-borne base coat component; (iv) forming the design layer by presenting a water-borne design component; and (v) forming the top coat layer by presenting a water-borne top coat component. The carrier sheet is selected such that it is resistant to heat above a predetermined heat transfer temperature. The adhesive release component of the release layer is selected such that it is operative to secure .
0 the carrier sheet to the base coat layer at temperatures below the heat transfer temperature and to permit release of the carrier sheet from the base coat layer at temperatures above the heat transfer temperature. The base coat component of the base coat layer is selected such that it is operative to function as a ban-ier betvueen the release layer and the design layer at temperatures above and below the heat transfer 5 temperature. The design component of the design layer is selected such that it is operative to provide an indication of the presence of the security stamp. The top coat component is selected such that it is operative to adhere to a substrate upon contact with the substrate and upon application of heat at the heat transfer temperature.
In accordance with yet another embodiment of the present invention, a heat-0 transferable security stamp is provided comprising a carrier sheet, a top coat layer, at least one design layer between the carrier sheet and the top coat layer, a release layer between the carrier sheet and the design layer, and a base coat layer between the release layer and the design layer. The release layer includes a water-borne release component. The base coat layer includes a water-borne base coat component. The 5 design layer includes a water-borne design component. The top coat layer includes a water-borne top coat component. The carrier sheet is resistant to heat above a predetermined heat transfer temperature. The adhesive release component of the release layer is operative to secure the carrier sheet to the base coat layer at temperatures below the heat transfer temperature and to permit release of the carrier 0 sheet from the base coat layer at temperatures above the heat transfer temperature.
-4of 19-Docket No. - STD 856 IA
The base coat component of the base coat layer is operative to function as a barrier between the release layer and the design layer at temperatures above and below the heat transfer temperature. The design component of the design layer is operative to provide an indication of the presence of the security stamp. The top coat component is operative to adhere to a substrate upon contact with the substrate and upon application of heat above the heat transfer temperature. The recited water-borne components may be capable of being dispersed in water as an aqueous emulsion, an aqueous dispersion, or as an aqueous solution.
Accordingly, it is an object of the present invention to provide an alternative transfer stamp and transfer stamp production technique that are economical, versatile, and safe. Other objects of the present invention will be apparent in light of the description of the invention embodied herein.

The following detailed description of the preferred embodiments of the present invention can be best understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:
Fig. 1 is a schematic illustration, in cross section, of a heat-transferable security 0 stamp according to the present invention; and Fig. 2 is an illustration of a facial design arrangement of a heat-transferable security stamp according to the present invention.

Referring now to Figs. 1 and 2, a unitary heat-transferable security stamp 10 and a process for its formation are illustrated in detail. The stamp 10 comprises a carrier sheet 20, a top coat layer 30, one or more design layers 40 between the carrier sheet 20 and the top coat layer 30, a release layer 50 between the carrier sheet and the 0 design layers 40, a base coat layer 60 between the release layer 50 and the design --5of 19--Docket No. - STD 856 IA
layers 40, and an additional design layer 80 formed on the top coat layer 30.
For the purposes of describing and defining the present invention, it is noted that a unitary stamp is a stamp including individual components or layers that are physically coupled together as a single object.
- The stamp 10 is formed by first providing the carrier sheet 20 and forming the .
release layer 50 thereon. The 'carrier sheet 20 typically comprises 2.1 mil non-siliconized densified bleached kraft paper liner. The release layer 50 is presented as a water-borne adhesive release component and is applied to a major surface 22 of the carrier sheet 20 as a continuous film. For the purposes of describing and defining the present invention, it is noted that a water-home component may comprise a component dispersed in water, emulsified in water, or otherwise dissolved in or mixed with water.
For example, the water-borne adhesive release component of the release layer 50 may be presented as an aqueous dispersion or an aqueous emulsion. For the purposes of describing and defining the present invention, it is noted that a dispersion is a distribution of finely divided particles in a medium. An emulsion is a stable dispersion of one liquid in a second immiscible liquid. A solution is a homogenous mixture in which particular components of the mixture are uniformly distributed on a molecular scale.
According to a specific embodiment of the present invention, the adhesive release layer 50 is formed by presenting a dispersion or emulsion of paraffin wax, polyethylene, high density, polyethylene, polypropylene, vegetable waxes, or a blend of polyethylene and a paraffin wax. The blend is applied to the carrier sheet 20 at the rate of about 8 g/m2 on a dry basis, i.e., not including the water in which it is dispersed.
The carrier sheet 20 is selected such that it is resistant to heat above a predetermined heat transfer temperature. In contrast, the adhesive release component of the release layer 50 is selected such that it is operative to secure the carrier sheet 20 to the base coat layer 60 at temperatures below the heat transfer temperature and to permit release of the carrier sheet 20 from the base coat layer 60 at temperatures above the heat transfer temperature. For example, where the heat transfer temperature is maintained at about 160°C (320°F) for about 0.33 seconds, the paraffin wax is selected such that it has a melting point of about 55°C
(130°F).
-6of19--Docket No. - STD 856 IA
As the release layer 50 reaches its melting point, the bond formed by the release layer 50 between the carrier sheet 20 and the base coat layer 60 is degraded and the carrier sheet 20 may be readily separated from the remainder of the stamp 10.
As will be described in detail below, application of transfer heat also enables formation of an adhesive bond between a substrate 70 and the top coat layer 30. Thus, upon application of suitable heat, th'e stamp 10 may be bonded to the substrate and the carrier sheet 20 may be removed therefrom, effectively transferring the remaining components of the stamp 10 from the carrier sheet 20 to the substrate 70.
The base coat layer 60 is presented as a water-borne base coat component and 0 is applied to the release layer 50 as a continuous film. The base coat component is either presented as an aqueous emulsion, an aqueous dispersion, or an aqueous solution and preferably forms a cross-linked polymeric layer within the structure of the stamp 10. According to a specific embodiment of the present invention, the base coat layer 60 is formed by presenting a water-borne modified acrylic material. For example, 5 a suitable base coat may be presented by utilizing an aqueous blend of styrenated-acrylic emulsions and resin solutions, such as that manufactured by Kustom Services, Inc. of Florence, KY under the product identifier KF-5013. More specifically, according to one embodiment of the present invention, the composition forming the base coat component contains about 85-90% of a styrenated acrylic emulsion polymer exhibiting '0 a glass transition temperature of about 120-130°C. Additional components of the composition may include defoamers, surfactants; and other performance additives.
To ensure stamp integrity, the base coat component is selected such that it has a melting point that exceeds the heat transfer temperature of the particular application.
For example, in one embodiment of the present invention, the base coat component is !5 selected to have a melting point of greater than 190°C
(380°F) and is applied at a rate of 4 g/m2 on a dry basis. Further, the base coat component of the base coat layer 60 is selected such that it is operative to function as a barrier between the release layer 50 and the design layers 40 at temperatures above and below the heat transfer temperature. In this manner, adverse reaction or mixing of the design layers 40 with i0 the release layer 50 is avoided.
-7of19-Docket No. - STD 856 IA
The design layers 40 are presented as respective water-borne design components and are applied to the base coat layer 60 in distinctive arrangements or patterns. Specifically, in the illustrated embodiment, a first design layer 40A is printed in a diagonal pattern over about 10% of the major surface 22 of the carrier sheet 20 i and also forms a selected logo in the diagonal pattern. According to a specific embodiment of the present invention, the first design layer 40A is formed by presenting a film-forming acrylic polymer dissolved in a solution of water and 2% blue dye. The polymer is selected such that its softening point is about 65°C
(150°F) and its melting point is about 100°C (220°F.) to ensure stamp integrity and pliability at the heat transfer temperature. A suitable design layer 40A may be printed by utilizing an aqueous blend of styrenated-acrylic emulsions and resin solutions manufactured by Kustom Services, Inc. of Florence, KY under the product identifier KF-5008. .More specifcally, the design layer 40A may be presented as a composition containing about 55-60% of a styrenated acrylic emulsion polymer exhibiting a glass transition temperature of about 20-25°C. In addition the composition also contains about 10-14% of a modifying rosin-based resin exhibiting a softening point of about 120-140°C. Additional components of the composition may include defoamers, surfactants, and other performance additives.
A second design layer 40B is printed as a series of white stripes. According to a specific embodiment of the present invention, the second design layer 40B is formed by presenting a film-forming acrylic polymer containing a white pigment. The polymer is selected such that its softening point is about 80°C (180°F) and the melting point is about 115°C (240°F) to ensure stamp integrity and pliability at the heat transfer temperature. A suitable design layer 40B may be printed by utilizing the above-noted KF-5008 product or a pigmented flexo ink available from Water Ink Technologies of 5 Lincolnton, NC under the product identifier WLL000904.
It is contemplated by the present invention that the number and arrangement of the particular design components disclosed herein are merely illustrative examples of specific embodiments of the present invention. A variety of additional distinct design components may be utilized in the present invention to indicate the presence of the 0 stamp 10 on a substrate. For example, the design layers 40 may be formed with a -8of19--Docket No. - STD 856 IA
variety of different pigments, in a variety of different visually perceptible patterns, or to incorporate fluorescent, thermo-chromic, photo-chromic, or other security features. It is further contemplated by the present invention that a variety of materials may be utilized to form the design component of the present invention.
The top coat layer 30 is presented as a water-borne. top coat component and is applied to the second design layer 40B over the area of the stamp as a continuous film.
The top coat component is either presented as an aqueous emulsion, an aqueous dispersion, or an aqueous solution. According to a specific embodiment of the present invention, the top coat layer 30 is formed by presenting a blend of water-borne film-0 forming acrylic polymers and applying the polymer to the second design layer 40B at the rate of about 3 g/m2 on a dry basis. The polymer is selected such that its softening point is preferably about 55°C (130°F), becoming tacky at about 75°~ (167°F), and having a melting point of about 150°C (300°F). The top coat component is selected so as to enable formation of an adhesive bond between the top coat layer 30 and a variety 5 of substrate materials upon application of a transfer heat above the softening point of the top coat component. Thus, the stamp 10 may be bonded to a substrate and the carrier sheet 20 may be removed therefrom, effectively transferring the remaining components of the stamp 10 from the carrier sheet 20 to the substrate 70. A
suitable top coat layer 30 may be printed by utilizing a tackifying resin and an aqueous blend of 0 solutions manufactured by Kustom Services, Inc. of Florence, KY under the product identifiers KF-5004 and KF-5008. More specifically, the top coat layer 30 may be presented as a composition containing about 60-65% of a styrenated acrylic emulsion polymer exhibiting a glass transition temperature of about -15°C. In addition, the composition also contains about 8-10% of a modifying resin exhibiting a melting point 5 range of about 160-170°C. Additional components of the composition may include defoamers, surfactants, and other performance additives.
The top coat layer 30, the design layers 40, the release layer 50, and the base coat layer 60 may each be printed on the respective underlying layer or carrier sheet through any one of a variety of printing techniques, including flexographic, gravure, dry .0 offset lithography, or wet offset lithography. Preferably, each layer is at least partially --9of 19-Docket No. - STD 856 IA
dried prior to application of~a subsequent layer. Each layer may be dried with heated air or through microwave irradiation. Drying through microwave irradiation is.
a preferred drying step for the water-borne polymers disclosed herein because it presents a means for quickly and precisely drying the water-borne layers applied according to the present invention: Further, microwave drying is advantageous because it provides a , means by which water may be removed from a given layer without substantially increasing the temperature of an underlying layer. One or more of the above-described layers may have incorporated into it, one or more security pigments or dyes exhibiting fluorescent, thermo-chromic, or photo-chromic characteristics, which may be detected according to conventional means.
The additional design layer 80 is formed in a predetermined pattern on the top coat layer 30 after all the other structural layers of the stamp 10 have been printed. It is important to note that the pattern or graphic design defined by the additional design layer 80 should be selected so as not to significantly interfere with the above-noted 5 adhesive bond created between the top coat layer 30 and the substrate 70 to which the stamp 10 is secured.
The additional design layer 80 may be formed on the top coat layer 30 via an ink jet printing process and may comprise a security pattern or number printed in UV
flourescent ink. In one embodiment of the present invention the additional design layer 0 80 comprises a number selected from a series of consecutive numbers.
Accordingly, by the present invention, a heat-transferable security stamp is provided comprising a carrier sheet 20, a top coat layer 30, at least one design layer 40 between the carrier sheet 20 and the top coat layer 30, a release layer 50 between the carrier sheet 20 and the design layer 40, and a base coat layer 60 between the release 5 layer 50 and the design layer 40. The release layer 50 includes a water-borne release component. The base coat layer 60 includes a water-borne base coat component.
The design layer 40 includes a water-home design component. The top coat layer 30 includes a water-borne top coat component. For the purposes of defining and describing the present invention, it is noted that water-borne components are --10of19-Docket No. - STD 856 IA
components that are capable of being dispersed in water as aqueous emulsion, an aqueous dispersion, or an aqueous solution.
The carrier sheet 20 is resistant to heat above a predetermined heat transfer temperature and the adhesive release component of the release layer 50 is operative to secure the carrier sheet 20 to the base coat layer 60 at temperatures below the heat , transfer temperature and to permit release of the carrier sheet 20 from the base coat layer 60 at temperatures above the heat transfer temperature. The top coat component of the top coat layer 30 is operative to adhere to a substrate 70 upon contact with the substrate 70 and upon application of heat~above the heat transfer temperature.
Having described the invention in detail and by reference to preferred embodiments thereof, it will be apparent that modifications and variations are possible without departing from the scope of the invention defined in the appended claims.
What is claimed is:
-11of19--i r

Claims (32)

1. A process for forming a unitary heat-transferable security stamp comprising a carrier sheet, a top coat layer, at least one design layer between said carrier sheet and said top coat layer, a release layer between said carrier sheet and said design layer, and a base coat layer between said release layer and said design layer, wherein said process comprises the steps of:
providing said carrier sheet;
forming said release layer by presenting a water-borne adhesive release component;
forming said base coat layer by presenting a water-borne base coat component;
forming said design layer by presenting a water-borne design component; and forming said top coat layer by presenting a water-borne top coat component, wherein said carrier sheet is selected such that it is resistant to heat above a predetermined heat transfer temperature, said adhesive release component of said release layer is selected such that it is operative to secure said carrier sheet to said base coat layer at temperatures below said heat transfer temperature and to permit release of said carrier sheet from said base coat layer at temperatures above said heat transfer temperature, said base coat component of said base coat layer is selected such that it is operative to function as a barrier between said release layer and said design layer at temperatures above and below said heat transfer temperature, said design component of said design layer is selected such that it is operative to provide an indication of the presence of said security stamp, and -12 of 19-said top coat component is selected such that it is operative to adhere to a substrate upon contact with said substrate and upon application of heat at said heat transfer temperature.
2. A process for forming a unitary heat-transferable security stamp as claimed in claim 1 wherein said release layer, said base coat layer, said design layer, and said top coat layer are further formed by at least one drying step.
3. A process for forming a unitary heat-transferable security stamp as claimed in claim 2 wherein said drying step is characterized by microwave irradiation.
4. A process for forming a unitary heat-transferable security stamp as claimed in claim 2 wherein respective drying steps are executed following presentation of a selected one of said layers and prior to presentation of a subsequent one of said layers.
5. A process for forming a unitary heat-transferable security stamp as claimed in claim 1 wherein said release layer is applied to a major surface of said carrier sheet, said base coat layer is applied to said release layer, said design layer is applied to said base coat layer, and said top coat layer is applied to said design layer.
6. A process for forming a unitary heat-transferable security stamp as claimed in claim 1 wherein at least one of said water-borne components is presented as an aqueous emulsion.
7. A process for forming a unitary heat-transferable security stamp as claimed in claim 1 wherein at least one of said water-borne components is presented as an aqueous solution.

-13 of 19-
8. A process for forming a unitary heat-transferable security stamp as claimed in claim 1 wherein said adhesive release layer is formed by presenting a wax emulsion.
9. A process for forming a unitary heat-transferable security stamp as claimed in claim 1 wherein said adhesive release layer is formed by presenting a blend of polyethylene and an aqueous paraffin wax emulsion.
10. A process for forming a unitary heat-transferable security stamp as claimed in claim 1 wherein said adhesive release component is selected to have a melting point that is less than said heat transfer temperature.
11. A process for forming a unitary heat-transferable security stamp as claimed in claim 1 wherein said base coat layer is formed by presenting a polymeric emulsion including said base coat component.
12. A process for forming a unitary heat-transferable security stamp as claimed in claim 1 wherein said base coat component is presented so as to form a cross linked polymeric layer.
13. A process for forming a unitary heat-transferable security stamp as claimed in claim 1 wherein a melting point of said base coat component exceeds said heat transfer temperature.
14. A process for forming a unitary heat-transferable security stamp as claimed in claim 1 wherein said design layer is formed by presenting a polymeric emulsion including said design component.
15. A process for forming a unitary heat-transferable security stamp as claimed in claim 1 wherein said design layer is formed in a visually perceptible pattern in said security stamp.

-14 of 19-
16. A process for forming a unitary heat-transferable security stamp as claimed in claim 1 wherein said design layer is formed by presenting a design component including a pigment or dye.
17. A process for forming a unitary heat-transferable security stamp as claimed in claim 1 wherein a melting point of said design component exceeds said heat transfer temperature.
18. A process for forming a unitary heat-transferable security stamp as claimed in claim 1 wherein a plurality of design layers are provided, and wherein each design layer includes a distinct design component.
19. A process for forming a unitary heat-transferable security stamp as claimed in claim 1 wherein said top coat layer is formed by presenting a polymeric emulsion including said top coat component.
20. A process for forming a unitary heat-transferable security stamp as claimed in claim 1 wherein said top coat component is selected such that said heat transfer temperature is at least as great as a characteristic softening temperature of said top coat.
21. A process for forming a unitary heat-transferable security stamp as claimed in claim 1 wherein at least one of said release layer, said base coat layer, said design layer, and said top coat layer are formed to incorporate a security feature selected from the following group of security features and combinations thereof:
fluorescent, thermo-chromic, and photo-chromic.

-15 of 19-
22. A process for forming a unitary heat-transferable security stamp as claimed in claim 1 wherein said top coat component is further selected such that it is not operative to adhere to said substrate upon application of heat below said heat transfer temperature.
23. A process for forming a unitary heat-transferable security stamp as claimed in claim 16 wherein said pigment or dye is selected such that it becomes apparent upon exposure to an activating agents selected from heat, a selected light intensity, or a selected UV light wavelength.
24. A process for forming a unitary heat-transferable security stamp as claimed in claim 1 further comprising the step of forming an additional design layer in a predetermined pattern on said top coat layer.
25. A process for forming a unitary heat-transferable security stamp as claimed in claim 1 wherein said additional design layer is formed after formation of the remaining layers of said stamp.
26. A process for forming a unitary heat-transferable security stamp as claimed in claim 1 wherein said additional design layer is formed of UV fluorescent ink.
27. A process for forming a unitary heat-transferable security stamp as claimed in claim 1 wherein said additional design layer is formed via an ink jet printing process.
28. A process for forming a unitary heat-transferable security stamp as claimed in claim 1 wherein said additional design layer comprises a number selected from a series of consecutive numbers.

-16 of 19-
29. A process for forming a unitary heat-transferable security stamp as claimed in claim 1 wherein said additional design layer comprises a security pattern or number printed in UV flourescent ink.
30. A unitary heat-transferable security stamp comprising a carrier sheet, a top coat layer, at least one design layer between said carrier sheet and said top coat layer, a release layer between said carrier sheet and said design layer, and a base coat layer between said release layer and said design layer, wherein said security stamp is formed by a process comprising the steps of:
forming said release layer by presenting a water-borne adhesive release component;
forming said base coat layer by presenting a water-borne base coat component;
forming said design layer by presenting a water-borne design component; and forming said top coat layer by presenting a water-borne top coat component, wherein said carrier sheet is selected such that it is resistant to heat above a predetermined heat transfer temperature, said adhesive release component of said release layer is selected such that it is operative to secure said carrier sheet to said base coat layer at temperatures below said heat transfer temperature and to permit release of said carrier sheet from said base coat layer at temperatures above said heat transfer temperature, said base coat component of said base coat layer is selected such that it is operative to function as a barrier between said release layer and said design layer at temperatures above and below said heat transfer temperature, said design component of said design layer is selected such that it is operative to provide an indication of the presence of said security stamp, and -17 of 19-said top coat component is selected such that it is operative to adhere to a substrate upon contact with said substrate and upon application of heat above said heat transfer temperature.
31. A unitary heat-transferable security stamp comprising a carrier sheet, a top coat layer, at least one design layer between said carrier sheet and said top coat layer, a release layer between said carrier sheet and said design layer, and a base coat layer between said release layer and said design layer, wherein:
said release layer includes a water-borne release component;
said base coat layer includes a water-borne base coat component;
said design layer includes a water-borne design component;
said top coat layer includes a water-borne top coat component;
said carrier sheet is resistant to heat above a predetermined heat transfer temperature;
said adhesive release component of said release layer is operative to secure said carrier sheet to said base coat layer at temperatures below said heat transfer temperature and to permit release of said carrier sheet from said base coat layer at temperatures above said heat transfer temperature;
said base coat component of said base coat layer is operative to function as a barrier between said release layer and said design layer at temperatures above and below said heat transfer temperature;
said design component of said design layer is operative to provide an indication of the presence of said security stamp; and said top coat component is operative to adhere to a substrate upon contact with said substrate and upon application of heat above said heat transfer temperature.
32. A unitary heat-transferable security stamp as claimed in claim 25 wherein said recited water-borne components are capable of being dispersed in water as an aqueous emulsion, an aqueous dispersion, or an aqueous solution.

-18 of 19-
CA002316024A 1999-08-16 2000-08-10 Heat-transferable security stamp Abandoned CA2316024A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US37492399A 1999-08-16 1999-08-16
US09/374,923 1999-08-16
US09/482,672 US6410082B1 (en) 1999-08-16 2000-01-13 Process for the formation of a heat-transferable security stamp entirely free of non-aqueous solvents
US09/482,672 2000-01-13

Publications (1)

Publication Number Publication Date
CA2316024A1 true CA2316024A1 (en) 2001-02-16

Family

ID=27006837

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002316024A Abandoned CA2316024A1 (en) 1999-08-16 2000-08-10 Heat-transferable security stamp

Country Status (2)

Country Link
US (2) US6410082B1 (en)
CA (1) CA2316024A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7396048B2 (en) * 2002-10-15 2008-07-08 Ncr Corporation Internet stamp
US20070026204A1 (en) * 2005-07-28 2007-02-01 Michael Patrick Caulley Embedded watermark
US20080047930A1 (en) * 2006-08-23 2008-02-28 Graciela Beatriz Blanchet Method to form a pattern of functional material on a substrate
CN103730049A (en) * 2013-12-13 2014-04-16 中山市美高力印刷有限公司 Fluorescent label

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2746877A (en) * 1953-07-29 1956-05-22 Meyercord Co Dry release transfer and method of making the same
US3928710A (en) 1970-04-29 1975-12-23 Letraset International Ltd Heat activated transfers
US4171398A (en) * 1975-07-21 1979-10-16 Hunt Delbert R Transfer sheet
US4687680A (en) 1983-12-28 1987-08-18 Oike Industrial Co., Ltd. Stamping foil
DE69032843T2 (en) 1989-07-14 1999-08-12 Dainippon Printing Co Ltd Thermal transfer layer
US5104719A (en) 1989-08-30 1992-04-14 Revlon, Inc. Heat activated, quick release decals and associated methods
US5438928A (en) * 1990-01-31 1995-08-08 Thomas De La Rue & Company Limited Signature panels
US5284690A (en) 1992-11-03 1994-02-08 Rohm And Haas Company Aqueous release coating composition for pressure sensitive adhesives
US5750630A (en) 1994-02-04 1998-05-12 Minnesota Mining And Manufacturing Company Water-based polyurethane polymer, release coating, adhesive tape and process of preparation
US5766731A (en) 1996-03-29 1998-06-16 Avery Dennison Corporation Heat-transfer label
US6228486B1 (en) * 1998-10-06 2001-05-08 Avery Dennison Corporation Thermal transfer laminate

Also Published As

Publication number Publication date
US6733867B2 (en) 2004-05-11
US20020136825A1 (en) 2002-09-26
US6410082B1 (en) 2002-06-25

Similar Documents

Publication Publication Date Title
US4063754A (en) Process for the production of pressure sensitive carbonless record sheets using novel hot melt systems and products thereof
CA1090053A (en) Heat transfer sheets
CN101184629B (en) Ink-jet authentication mark for a product or product packaging.
EP0601317B1 (en) Label
US5741387A (en) Lithographic printing process and transfer sheet
JP2533456B2 (en) Label and label base material and ink
US20070244219A1 (en) Printing inks with property enhancing microcapsules
US9757922B2 (en) Heat transfer label having a UV layer
US6592972B1 (en) Method and product for protecting an object with a soluble binder security print
NO151401B (en) SHEETS FOR PRESSURE SENSITIVE COPYING AND COATING PREPARATIONS CONTAINING RADIATELY SENSITIVE HARDWARE MATERIAL FOR THE PREPARATION OF SUCH SHEETS
US4336067A (en) Hot melt chromogenic coating composition
JP2002363466A (en) Temperature-sensitively color-changing dry offset ink and printed matter therewith
US5888283A (en) High solids direct thermal ink composition and method of making and using same
US6410082B1 (en) Process for the formation of a heat-transferable security stamp entirely free of non-aqueous solvents
US3273498A (en) Forming colored patterns upon polyolefin surfaces
EP0854051B1 (en) Printable adhesive sheet and label
KR100581131B1 (en) Functional sticker label for the prevention of counterfeiting and forgery, and method for preparing the same
CN106042700B (en) Integrated recording material and preparation method thereof
JPH01319577A (en) Printing ink for plastic and production of warranty document printed by said ink
JPS60149489A (en) Partial pressure sensitive paper
CN104755272A (en) Print media for water-based color ink jet printing and method for manufacturing same
JP2019511971A (en) Method of printing a substrate with a printing material containing a metallic pigment, and a substrate printed with a printing material containing metallic particles
KR100374293B1 (en) Security film contaning fluorescence color fiber and method for preparing the same
KR100260004B1 (en) Uv coating printed materials with higher adhesion strength and a process thereof
JPS60180888A (en) Pressure transfer sheet for thermal recording

Legal Events

Date Code Title Description
FZDE Discontinued