CA2334286A1 - Container system for pressurized fluids - Google Patents

Container system for pressurized fluids Download PDF

Info

Publication number
CA2334286A1
CA2334286A1 CA002334286A CA2334286A CA2334286A1 CA 2334286 A1 CA2334286 A1 CA 2334286A1 CA 002334286 A CA002334286 A CA 002334286A CA 2334286 A CA2334286 A CA 2334286A CA 2334286 A1 CA2334286 A1 CA 2334286A1
Authority
CA
Canada
Prior art keywords
tubular core
shells
shell
chambers
container system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002334286A
Other languages
French (fr)
Inventor
Stan A. Sanders
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECC SYSTEMS Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2334286A1 publication Critical patent/CA2334286A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/16Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of plastics materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D7/00Apparatus or devices for transferring liquids from bulk storage containers or reservoirs into vehicles or into portable containers, e.g. for retail sale purposes
    • B67D7/06Details or accessories
    • B67D7/78Arrangements of storage tanks, reservoirs or pipe-lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0138Shape tubular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/032Orientation with substantially vertical main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/054Size medium (>1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/058Size portable (<30 l)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0607Coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0619Single wall with two layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0621Single wall with three layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/066Plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • F17C2203/0673Polymers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0103Exterior arrangements
    • F17C2205/0115Dismountable protective hulls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/013Two or more vessels
    • F17C2205/0134Two or more vessels characterised by the presence of fluid connection between vessels
    • F17C2205/0138Two or more vessels characterised by the presence of fluid connection between vessels bundled in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0153Details of mounting arrangements
    • F17C2205/0157Details of mounting arrangements for transport
    • F17C2205/0165Details of mounting arrangements for transport with handgrip
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0358Pipes coaxial
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0364Pipes flexible or articulated, e.g. a hose
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0388Arrangement of valves, regulators, filters
    • F17C2205/0394Arrangement of valves, regulators, filters in direct contact with the pressure vessel
    • F17C2205/0397Arrangement of valves, regulators, filters in direct contact with the pressure vessel on both sides of the pressure vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2109Moulding
    • F17C2209/2118Moulding by injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2109Moulding
    • F17C2209/2127Moulding by blowing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2109Moulding
    • F17C2209/2145Moulding by rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2154Winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/22Assembling processes
    • F17C2209/221Welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • F17C2209/232Manufacturing of particular parts or at special locations of walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/011Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/031Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/04Reducing risks and environmental impact
    • F17C2260/042Reducing risk of explosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • F17C2270/0178Cars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0186Applications for fluid transport or storage in the air or in space
    • F17C2270/0189Planes

Abstract

A container system for pressurized fluids that includes a plurality of generally ellipsoidal chambers (C) connected by a tubular core (T). The tubular core (T) is formed with a plurality of apertures (A) each of which i s positioned within one of the chambers (C). The apertures (A) are of comparatively small size so as to be able to control the rate of evacuation of pressurized fluid should a chamber (C) be ruptured.

Description

CONTAINER SYSTEM FOR PRESSURIZED FLUIDS
FIELD OF THE INVENTION
The present invention relates to containers for containing high-pressure fluids and is directed to an inexpensive, light, compact, flexible and safe container for pressurized fluids which is resistant to explosive rupturing.
BACKGROUND OF THE INVENTION
Containers presently used for the storage and use of compressed fluids and particularly gasses, generally take the form of cylindrical metal bottles wound with reinforcing materials to withstand high fluid pressures. Such storage units are expensive to manufacture, inherently heavy, bulky, inflexible and prone to fragmentation that can lead to explosions. Such containers are commonly used to store oxygen. By way of example, the medical use of compressed oxygen for ambulatory patients is growing rapidly. As another example, portable metal tank containers are carried by fire fighters at the scene of a fire to provide emergency air.
Synthetic plastic containers for pressurized fluids are also presently utilized, however, existing containers of this type do not provide sufficient bursting strength where high fluid pressures are encountered.
SUMMARY OF THE INVENTION
The container system for pressurized fluids embodying the present invention overcomes the aforementioned problems inherent to prior art pressurized fluid container systems.
More particularly, the container system for pressurized fluids embodying the present ' 20 invention includes a plurality of form-retaining, generally ellipsoidal chambers having open ends through which coaxially extends a tubular core which is sealingly secured within the ends of the chambers. The core serves to support the ellipsoidal chambers along the length of the core. The core is formed with apertures along its length, with one of such apertures being positioned within the confines of each ellipsoidal chamber so as to be in fluid-transfer communication with the interior of the ellipsoidal chambers. The apertures are of comparatively small size so as to be CA 02334286 2000-11-29 ' 2 , able to control the rate of evacuation of pressurized fluid from the ellipsoidal chambers.
Accordingly, if one or more of the ellipsoidal chambers are punctured, the pressurized fluid contained therewithin must escape from all of the chambers through the core apertures, thus causing the pressurized fluid to maintain its inertia of internal mass because of the resistance provided by the comparatively small apertures. A very low fluid evacuation rate is thereby effected so as to avoid a large and potentially dangerous burst of energy.
The fluid container system of the present invention utilizes a plurality of the aforementioned ellipsoidal chambers which are connected by a common tubular core with the core supporting a desired number of ellipsoidal chambers within a protective housing:
Preferably, the ellipsoidal chambers will be disposed in parallel rows within the housing, with the tubular core being curved so as to interconnect the upper and lower ends of such rows. One end of the tubular core is connected to a fluid inlet while the other end of the core is connected to a fluid outlet supported by the housing. Applications for such containers include portable oxygen back-packs, home oxygen bottles, lightweight welder bottles and compressed air operated tool back-packs. Such containers may also be utilized as replacement fuel tanks on aircraft, boats and automotive vehicles, particularly since the containers can be shaped for storage in desired locations. In the event of a sharp impact, the fuel containers would not explode as often happens with conventional single chamber fuel containers.
The present invention also provides a method and apparatus for forming ellipsoidal chamber and tubular core assemblies so as to enable the aforementioned pressurized fluid container system to be manufactured at low production cost, particularly as compared as to conventional fiber wound metal cylinders used to contain oxygen and other gasses at high pressures.
These and other objects and advantages of the present invention will become apparent from the following detailed description when taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a broken side elevational view of a plurality of aligned rigid generally ellipsoidal chambers interconnected by a tubular core embodying the present invention;
Fig. 2 is an enlarged horizontal sectional view taken along line 2-2 of Fig.
I;
Fig. 3 is a vertical sectional view of an ellipsoidal chamber and tubular core taken along line 3-3 of Fig. 2;
Fig. 4 is a vertical sectional view taken along 4-4 of Fig. 2;
Fig. 5 is a horizontal sectional view taken in enlarged scale along line 5-5 of Fig. 1;
Fig. 6 is a horizontal sectional view taken in enlarged scale along line 6-6 of Fig 1;
Fig. 7 is a side elevational view of apparatus which may be employed with the method of the present invention for making the generally ellipsoid chamber and tubular core assembly shown in Figs. I -6;
Fig. 7A shown a first step in making an ellipsoidal chamber and tubular core assembly;
Fig. 7B shows a second step in making such assembly;
Fig. 7C is a broken sectional view showing a third step in making such assembly;
Fig. 8 is a schematic side elevational view of a machine employed in the fabrication of the ellipsoidal chamber and tubular core assembly embodying the present invention;
Fig. 9 is a vertical sectional view taken in enlarged scale along line 9-9 of Fig. 7 showing an ellipsoidal chamber being sonically welded to a tubular core;
Fig. 10 is a vertical sectional view taken in enlarged scale alang line 10-10 in Fig. 7 showing a filament winding step of the method of making the ellipsoid chamber and tubular core assembly;
Fig. 11 is a side elevational view taken in enlarged scale along line 11-11 in Fig. 7 showing an ellipsoidal chamber and tubular core being coated with a hot protective synthetic plastic coating in accordance with the present invention;
Fig. 12 is a perspective view of a housing for a plurality of the ellipsoidal chambers and tubular core assemblies of the present invention;
Fig. 13 is a top plan view of the housing of Fig. 11;
Fig. 14 is a broken side elevational view of the housing ofFig. 12 taken along line 14-15 of Fig. 15; and Fig. 15 is a vertical sectional view taken in enlarged scale along line 1 S-15 of Fig.l2.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
Referring to the drawings, particularly Figs. 1-6 thereof, a container system for pressurized fluids embodying the present invention includes a plurality of assemblies of form-retaining generally ellipsoidal chambers C and a tubular core T. Tubular core T is coaxial to and S sealingly secured to the chambers C. The tubular core T is formed along its length with a plurality of longitudinally equal distantly spaced apertures A which are in fluid-transfer communication with the interior 20 of each chamber C. The size of the apertures A are pre-selected so as to control the rate of evacuation of pressurized fluid from chambers C. In this manner, a very low fluid evacuation rate can be effected so as to avoid a large and potentially dangerous large burst of energy should one or more of the chambers C be punctured.
Referring to Figs. 2 and 3, each chamber C includes a generally ellipsoidal shell 24 molded of a suitable synthetic plastic material and having open front and rear ends 26 and 28.
The diameters of the holes 26 and 28 are dimensioned so as to snugly receive the outside diameter of the tubular core T. The tubular core T is sonically welded to the shells 24 so as to form a fluid tight seal therebetween. The exterior of the shells 24 and the increments of tubular core T between such shells are pressure wrapped with suitable pressure resistant reinforcing filaments 30 to resist bursting of the shells and tubular core. A protective synthetic plastic coating 32 is applied to the exterior of the filament wrapped shells and tubular core T.
More particularly, the shells 24 may be either roto molded, blow molded, or injection molded of a synthetic plastic material such as TEFLON or fluorinated ethylene propylene.
Preferably, the tubular core T will be formed of the same material. The pressure resistant filaments 30 maybe made of a carbon fiber, Kevlon or Nylon. The protective coating 32 may be made of urethane to protect the chambers and tubular core against abrasions, UV rays, or thermal elements. The assembly of a plurality of generally ellipsoidal chambers C and their supporting tubular core T can be made in desired lengths such as 10 to 20 feet. The size of the apertures A will depend upon various parameters, such as the volume and viscosity of fluid being contained, the anticipated pressure range, and the desired flow rate. In general, smaller diameters will be selected for gasses as composed to liquids. Thus, the aperture size may generally vary from about 0.010 to 0.125 inches.
Refernng to Fig. 5, the inlet or front end of the tubular core T is provided with a suitable conventional threaded male fitting 34. The discharge or rear end of a tubular core T is provided with a conventional threaded female fitting 36. Such male and female fittings provide a pressure-s type connection between contiguous lengths of tubular cores T.
5 Referring now to Figs. 7-11, there is shown a preferred fornl of apparatus which may be employed to carry out the method of the present invention for making the assembly of generally ellipsoid chambers C and tubular core T shown in Figs. 1-6. Referring to Fig 7, such apparatus includes a frame F upon which are mounted in aligned relationship, commencing with the right-hand end of Fig. 7, a chamber shell loader L, a sonic welder S disposed to the left thereof, a filament winder W, disposed to the left of the sonic welder S and a plastic coater P disposed to the left of the filament winder F. The chamber shell loader L is shown in greater detail in Fig.
8. Referring thereto such loader includes posts 38 and 39 having their lower ends affixed to the base 40 of frame F and with their upper ends supporting supply bin 4I below which is disposed a shell transfer tray 42. The transfer tray 42 is vertically movably supported on the posts by rollers 43 for movement between a first, raised loading position below the loader shown in Fig.
7 and Fig. 8 in solid outline and a second, lower unloading position shown in dotted outline in Fig. 8. The upper portion of post 39 supports a spool 44 which carries a coiled supply of tubular core material T. The tubular core material is moved through the transfer tray 42 by conventional power-operated pusher roller units 46 and 47 arranged on right-hand post 39 and a conventional power-operated pulley roller unit 48 arranged at the upper portion left-hand post 38. A conventional power-operated hole puncher 50 is disposed above the pusher roller unit 47. A first conventional power-operated rear tubular core cutter 52 is positioned above the pusher roller unit 46 and a like second front tubular core cutter 54 is positioned above the pulley roller unit 48. A conventional electrically operated counter and control box 56 is earned by left-hand post 38 adjacent pulley roller unit 48. A conventional hydraulically-operated pusher ram unit 58 is carried by post 39 in horizontal alignment with the unloading position of shell transfer tray 42.
In the operation of the shell loader L a plurality of horizontally and vertically aligned arrays AA of the shells 24 are supported within the bin 41 of shell transfer tray 42 at horizontally equidistant positions, as shown in dotted outline in Fig. 8. The horizontally aligned arrays of shells 24 subsequently fall out of bin 41 in single horizontal rows into the upper open end of ~6 transfer tray 42 and are temporarily held by suitable conventional means (not shown) in coaxial, horizontal alignment to receive a first increment of tubular core material T
from the supply roll 44 while the transfer tray is disposed in its raised shell loading position. A
first length of tubular core material T is sequentially urged horizontally through the transfer tray 42 so as to be inserted within the open ends of the shells 24 with a retention fit. During such movement of the tubular 'core material through the shells, the hole puncher 50 will sequentially form the apertures A at longitudinally equidistant locations on the tubular core corresponding to approximately the center of the individual shells 24. With the tubular core material snugly received within the open ends of shells 24 the rear cutter 52 will sever the portion of tubular core disposed adjacent the entrance end of tray 42, while the front cutter 54 will sever the portion of the tubular core adj acent the exit end of the tray 42. The tray 42 and the assembly 55 of tubular core T-1 and shells 24 contained therewithin is then lowered to the dotted outline shell ej ection position ofFig. 8, with the tubular core in coaxial alignment with the plunger 59 of the hydraulic ram. The hydraulic ram plunger 59 will then force the first shell and tubular core assembly 60 out of the tray towards and into the sonic welder S. The tray 42 will then be returned upwardly to its original solid outline position of Fig. 8 to receive the next array AA of chamber shells 24 and tubular core material T. It should be understood that suitable conventional power-actuated control means are incorporated in the chamber shell loader L to effect the above-described operation of the parts thereof.
As the first shell and tubular core assembly 60 is urged out of the tray 42 by hydraulic ram plunger 59, the left-hand or front end of the tubular core of such first assembly 60 will abut the right-hand or rear end of the shell and tubing core assembly 64 to force such assembly into sonic welder S in Fig. 9. The conventional sonic welder S includes fusion horns 66 and 68 which serve to effect fusion of the tubular core T to the generally ellipsoidal shaped shells 24.
Movement of the shell and tubular core assembly 64 into the sonic welder S by plunger 59 will cause the left-hand or front end of the tubular core of such assembly to force the adjacent shell and tubular core assembly 70 into the conventional filament winder W. As shown in Fig. 10, the conventional filament winder W includes a rotatable spool 72 which effects high-speed wrapping of reinforcement filaments 74 over the exterior surfaces of the shells 24 and tubular core T. It should be noted that the use of generally ellipsoidal shells 24 permits even coverage of the filaments over the entire surface area of the shells and the tubular core C between the shell.

Maximum bursting resistance is thereby achieved. At the completion of the filament winding step, the assembly of shells 24 and tubular core T are pushed to the left out of the filament winder W into the confines of the conventional plastic coater P. As indicated in Fig.
11, the plastic ~.
coater P is provided with a tank 80 containing a suitable synthetic plastic such as TEFLON or fluorinated ethylene propylene. The tank 80 is connected to a spray nozzle member 82, which as indicated in Fig. 11, serves to coat the exterior surfaces of the filament-wound sTiells and tubular core assembly 76 with a protective coating. The completed shell and tubular core assembly 84 is then urged out of plastic coater P by the shell and tubular core assembly 76 during the next stroke of hydraulic ram plunger 59.
Referring now to Figs. 12-15, there is shown an exemplar of a container system for pressurized fluids embodying the present invention. In these figures, such container system take the form of a pressurized gas pack having a housing H provided with an inlet fitting 87 and a discharge fitting 88. The discharge fitting 88 is connected to a conventional mask 89. More particularly, the housing H may be fabricated of a suitable non-flammable material such as a carbon fiber, polyethylene, synthetic plastic foam or cast into a dense block of synthetic foam rubber. Housing H is formed at its upper portion with a carrying handle 90.
Conventional inlet fitting 87 is attached to one side of housing H in communication with the upper end of a tubular core element 91 of a first row 92 of vertically disposed generally ellipsoidal chambers and tubular core assemblies made in accordance with the aforedescribed method. The lower end of the tubular core element 91 is formed with a reverse curve section 93 and then extends upwardly through a second row 94 of generally ellipsoidal chamber and tubular core assemblies. The upper end of the tubular care element of the second row 94 is in turn formed with a reverse curve and extends downwardly through a third row 96 of generally ellipsoidal chambers. Additional assemblies are similarly arranged within the housing H. The upper end of the tubular core of the last row of assemblies is in communication with the conventional discharge fitting 88, attached to the left-hand side of the housing. Such discharge fitting 88 is in turn fitted to a flexible hose 97 connected to mask 89. The aforedescribed pack can be made lighter and more compact than conventional packs of this nature, and can serve as a regulatory device containing air, oxygen, nitrogen or other gasses.
From the foregoing description it will be understood that the container system for pressurized fluids embodying the present invention provides important advantages over existing CA 02334286 2000-11-29 ' fluid container systems. By way of example, should one or more of the chambers C be ruptured, only the pressurized fluid disposed within such chambers would undergo a sudden release. The , pressurized fluid disposed in the other chambers could only escape into the atmosphere at a safe controlled rate because of the throttling effect of the apertures A. :j While a particular form of the invention has been illustrated and described, it will also be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited except by the appended claims.

Claims (15)

WHAT IS CLAIMED IS:
1. A container system for pressurized fluids, said container system including:
a plurality of form-retaining generally ellipsoidal chambers;
a tubular core coaxial with and sealingly secured to the chambers along the length of the core; and apertures formed along the length of the tubular core to be in fluid-transfer communication with the interiors of the chambers, and with the size of such apertures controlling the rate of evacuation of fluid from the chambers.
2. A container system as set forth in Claim 1 wherein a tubular core aperture is positioned at substantially the mid-portion of each chamber.
3. A container system as set forth in Claim 1 wherein the chambers each include a generally ellipsoidal synthetic plastic shell having open ends which sealingly and rigidly receive the tubular core.
4. A container system as set forth in Claim 3 wherein reinforcing filaments are wrapped about the shells and the tubular core.
5. A container system as set forth in Claim 3 wherein the tubular core is formed of synthetic plastic material and the tubular core and shells are sonically welded together.
6. A container system as set forth in Claim 5 wherein reinforcing filaments are wrapped about the shells and the tubular core and a synthetic plastic protective coating covers the reinforcing filaments.
7. A container system as set forth in Claim 6 wherein a tubular core aperture is positioned at substantially the mid-portion of each shell.
8. A method of making a container system for storing pressurized fluids that includes the steps of:
providing a plurality of form-retaining generally ellipsoid chambers having open ends;
positioning said chambers in longitudinal alignment;
providing a tubular core;
forming fluid evacuation rate controlling apertures at longitudinally spaced points along the length of the tubular core;
extending the tubular core through the open ends of the chambers with one of the apertures disposed within the interior of each chamber; and sealingly securing the tubular core within the ends of the chambers.
9. A method of making a container system for storing pressurized fluids that includes the steps of:
molding a plurality for form-retaining synthetic plastic shells having a generally ellipsoidal configuration;
forming a hole in the front and rear ends of the shells;
aligning the shells in coaxial relationship;
providing a tubular core of synthetic plastic material;
making fluid evacuation rate controlling apertures at longitudinally spaced points along the length of tubular core;
inserting a length of such tubular core within the holes of the shells, with one of said apertures disposed within the interior of each shell;
wrapping the exterior surfaces of the shells and the tubular core with reinforcing fibers; and coating the exterior of the filament wrapped shells and tubular core with a protective coating.
10. The method set forth in Claim 9 wherein the shells and the tubular core are formed of the same synthetic plastic material, and the tubular core and shells are sonically welded together.
11. Apparatus for making an assembly of generally ellipsoidal open-ended shells and a length of tubular core material, such apparatus comprising:
a frame;
a loader bin on the frame holding a plurality of arrays of the shells in horizontal and vertical alignment;
a horizontal shell transfer tray on the frame below the loader bin in vertical alignment with the array of shells for vertical movement between a raised shell loading position and a lower shell ejection position;
a tubular core supply source on the frame to one side of the loader bin;
power-operated means on the frame to incrementally advance a length of tubular core material below the loader bin through the open-ends of the shells with a retention fit;
a hole puncher on the frame to form apertures in said tubular core length on centers corresponding to the approximate centers of the spacing of the shell arrays;
cutters on the frame to cut of said length of tubular core on either side of the shell loader tray;
support means on the frame to support the shell transfer tray for vertical movement between its raised shell loading position and its lower shell ejection position; and an ejector on the frame to force the assembly of shells and tubular core out of the shell loader tray when said tray is disposed in its lower shell ejection position.
12. Apparatus as set forth in Claim 11 wherein the shell and tubular core are formed of synthetic plastic material, and the apparatus further includes a sonic welder that receives the shell and tubular core assembly from said ejector.
13. Apparatus as set forth in Claim 12 wherein the apparatus further includes a filament winding machine that receives the shell and tubular core assembly from the sonic welder.
14. Apparatus as set forth in Claim 13 wherein the apparatus further includes a protective synthetic plastic coating device that receives the shell and tubular core assembly from the filament winding machine.
15. A pack for pressurized gas, comprising:
a housing;
an inlet fitting attached to the housing;
a discharge fitting attached to the housing;
a plurality of rows of form-retaining generally ellipsoidal chambers connected together by a tubular core;
gas evacuation rate controlling apertures formed in the tubular core, each aperture being disposed within one of the chambers; and one end of the tubular core being in communication with the inlet fitting and the opposite end of the tubular chamber being in communication with the discharge fitting.
CA002334286A 1998-06-12 1999-06-07 Container system for pressurized fluids Abandoned CA2334286A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/097,142 US6047860A (en) 1998-06-12 1998-06-12 Container system for pressurized fluids
US09/097,142 1998-06-12
PCT/US1999/012705 WO1999064345A1 (en) 1998-06-12 1999-06-07 Container system for pressurized fluids

Publications (1)

Publication Number Publication Date
CA2334286A1 true CA2334286A1 (en) 1999-12-16

Family

ID=22261449

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002334286A Abandoned CA2334286A1 (en) 1998-06-12 1999-06-07 Container system for pressurized fluids

Country Status (10)

Country Link
US (2) US6047860A (en)
EP (1) EP1133445A1 (en)
JP (1) JP2002517687A (en)
KR (1) KR20010052745A (en)
CN (1) CN1107024C (en)
AU (1) AU751261B2 (en)
CA (1) CA2334286A1 (en)
MX (1) MXPA00012124A (en)
NZ (1) NZ508573A (en)
WO (1) WO1999064345A1 (en)

Families Citing this family (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6024089A (en) 1997-03-14 2000-02-15 Nelcor Puritan Bennett Incorporated System and method for setting and displaying ventilator alarms
US6513522B1 (en) 2000-06-13 2003-02-04 Mallinckrodt Inc. Wearable storage system for pressurized fluids
US6412484B1 (en) 2000-06-13 2002-07-02 Mallinckrodt Inc. Fluid control valve for pressure vessel
US6502571B1 (en) 2000-06-13 2003-01-07 Mallinckrodt Inc. High pressure fitting with dual locking swaging mechanism
US6510849B1 (en) * 2000-06-13 2003-01-28 Mallinckrodt Inc. Polymeric container system for pressurized fluids
US6345730B1 (en) * 2000-06-13 2002-02-12 Mallinckrodt Inc. Adhesively connected polymeric pressure chambers and method for making the same
US6412801B1 (en) 2000-11-01 2002-07-02 Mallinckrodt Inc. Wheeled personal transport device incorporating gas storage vessel comprising a polymeric container system for pressurized fluids
US6579401B1 (en) 2000-11-01 2003-06-17 Mallinckrodt, Inc. Method for forming a polymeric container system for pressurized fluids
US6536425B1 (en) 2000-11-01 2003-03-25 Mallinckrodt Inc. Litter incorporating gas storage vessel comprising a polymeric container system for pressurized fluids
WO2002037019A2 (en) * 2000-11-01 2002-05-10 Mallinckrodt Inc. High pressure fitting with dual locking swaging mechanism for container system
US6513523B1 (en) 2000-11-08 2003-02-04 Mallinckrodt Inc. Wearable belt incorporating gas storage vessel comprising a polymeric container system for pressurized fluids
US6527075B1 (en) 2000-11-08 2003-03-04 Mallinckrodt Inc. Vehicle incorporating gas storage vessel comprising a polymeric container system for pressurized fluids
US6526968B1 (en) 2000-11-08 2003-03-04 Mallinckrodt Inc. Utility belt incorporating a gas storage vessel
US6453920B1 (en) 2000-11-08 2002-09-24 Mallinckrodt Inc. Walking assistance device incorporating gas storage vessel comprising a polymeric container system for pressurized fluids
US6510850B1 (en) 2000-11-08 2003-01-28 Mallinckrodt Inc. Emergency breathing apparatus incorporating gas storage vessel comprising a polymeric container system for pressurized fluids
US6443817B1 (en) * 2001-02-06 2002-09-03 Mccarter Technology, Inc. Method of finishing a silicon part
US6651659B2 (en) 2001-05-23 2003-11-25 John I. Izuchukwu Ambulatory storage system for pressurized gases
US6796421B2 (en) * 2001-05-23 2004-09-28 Stan A. Sanders Flexible pressure vessel, apparatus and method for making same
US7086397B2 (en) * 2002-02-16 2006-08-08 Graham Lindley Spruiell Patient usable emergency medical kit
US7121423B2 (en) * 2002-11-14 2006-10-17 Sanders Stan A Ovoid flexible pressure vessel, apparatus and method for making same
EP1431096A3 (en) * 2002-12-18 2006-04-26 Conception et Développement Michelin S.A. High pressure storage tank for storing fuel on a vehicle
FR2858236B1 (en) 2003-07-29 2006-04-28 Airox DEVICE AND METHOD FOR SUPPLYING RESPIRATORY GAS IN PRESSURE OR VOLUME
US20060000515A1 (en) * 2004-07-02 2006-01-05 Huffman Thomas R Dredge flotation hose and system
FR2875138B1 (en) * 2004-09-15 2008-07-11 Mallinckrodt Dev France Sa CONTROL METHOD FOR A HEATING HUMIDIFIER
US7624761B2 (en) * 2005-10-04 2009-12-01 Gm Global Technology Operations, Inc. Tube shaped high pressure storage tank
US8021310B2 (en) 2006-04-21 2011-09-20 Nellcor Puritan Bennett Llc Work of breathing display for a ventilation system
US7784461B2 (en) 2006-09-26 2010-08-31 Nellcor Puritan Bennett Llc Three-dimensional waveform display for a breathing assistance system
US8902568B2 (en) 2006-09-27 2014-12-02 Covidien Lp Power supply interface system for a breathing assistance system
US20080078390A1 (en) * 2006-09-29 2008-04-03 Nellcor Puritan Bennett Incorporated Providing predetermined groups of trending parameters for display in a breathing assistance system
US20090205663A1 (en) * 2008-02-19 2009-08-20 Nellcor Puritan Bennett Llc Configuring the operation of an alternating pressure ventilation mode
US20090205661A1 (en) * 2008-02-20 2009-08-20 Nellcor Puritan Bennett Llc Systems and methods for extended volume range ventilation
WO2009120607A1 (en) * 2008-03-27 2009-10-01 Nellcor Puritan Bennett Llc Method for controlling delivery of breathing gas to a patient using multiple ventilaton parameters
US8640700B2 (en) 2008-03-27 2014-02-04 Covidien Lp Method for selecting target settings in a medical device
US8425428B2 (en) * 2008-03-31 2013-04-23 Covidien Lp Nitric oxide measurements in patients using flowfeedback
US8272379B2 (en) 2008-03-31 2012-09-25 Nellcor Puritan Bennett, Llc Leak-compensated flow triggering and cycling in medical ventilators
US8746248B2 (en) 2008-03-31 2014-06-10 Covidien Lp Determination of patient circuit disconnect in leak-compensated ventilatory support
US8267085B2 (en) 2009-03-20 2012-09-18 Nellcor Puritan Bennett Llc Leak-compensated proportional assist ventilation
US8792949B2 (en) * 2008-03-31 2014-07-29 Covidien Lp Reducing nuisance alarms
US10207069B2 (en) 2008-03-31 2019-02-19 Covidien Lp System and method for determining ventilator leakage during stable periods within a breath
ES1067949Y (en) * 2008-05-16 2008-11-16 Diewersol S L CONTAINER FOR THE STORAGE OF ALL TYPES OF FUEL GASES INCLUDED COMBURENT BLENDS
CN102056538B (en) 2008-06-06 2014-10-15 柯惠有限合伙公司 Systems and methods for determining patient effort and/or respiratory parameters in a ventilation system
EP2356407A1 (en) * 2008-09-04 2011-08-17 Nellcor Puritan Bennett LLC Inverse sawtooth pressure wave train purging in medical ventilators
US8551006B2 (en) 2008-09-17 2013-10-08 Covidien Lp Method for determining hemodynamic effects
US8424520B2 (en) 2008-09-23 2013-04-23 Covidien Lp Safe standby mode for ventilator
US8794234B2 (en) 2008-09-25 2014-08-05 Covidien Lp Inversion-based feed-forward compensation of inspiratory trigger dynamics in medical ventilators
US8181648B2 (en) 2008-09-26 2012-05-22 Nellcor Puritan Bennett Llc Systems and methods for managing pressure in a breathing assistance system
US8393323B2 (en) 2008-09-30 2013-03-12 Covidien Lp Supplemental gas safety system for a breathing assistance system
US8585412B2 (en) * 2008-09-30 2013-11-19 Covidien Lp Configurable respiratory muscle pressure generator
US8302600B2 (en) 2008-09-30 2012-11-06 Nellcor Puritan Bennett Llc Battery management for a breathing assistance system
US8302602B2 (en) 2008-09-30 2012-11-06 Nellcor Puritan Bennett Llc Breathing assistance system with multiple pressure sensors
US8439032B2 (en) * 2008-09-30 2013-05-14 Covidien Lp Wireless communications for a breathing assistance system
US8652064B2 (en) 2008-09-30 2014-02-18 Covidien Lp Sampling circuit for measuring analytes
US20100218766A1 (en) * 2009-02-27 2010-09-02 Nellcor Puritan Bennett Llc Customizable mandatory/spontaneous closed loop mode selection
US8434479B2 (en) 2009-02-27 2013-05-07 Covidien Lp Flow rate compensation for transient thermal response of hot-wire anemometers
US8424521B2 (en) 2009-02-27 2013-04-23 Covidien Lp Leak-compensated respiratory mechanics estimation in medical ventilators
US8418691B2 (en) 2009-03-20 2013-04-16 Covidien Lp Leak-compensated pressure regulated volume control ventilation
US9186075B2 (en) * 2009-03-24 2015-11-17 Covidien Lp Indicating the accuracy of a physiological parameter
US8776790B2 (en) * 2009-07-16 2014-07-15 Covidien Lp Wireless, gas flow-powered sensor system for a breathing assistance system
US20110023878A1 (en) * 2009-07-31 2011-02-03 Nellcor Puritan Bennett Llc Method And System For Delivering A Single-Breath, Low Flow Recruitment Maneuver
US8789529B2 (en) * 2009-08-20 2014-07-29 Covidien Lp Method for ventilation
US8439036B2 (en) 2009-12-01 2013-05-14 Covidien Lp Exhalation valve assembly with integral flow sensor
US8469030B2 (en) 2009-12-01 2013-06-25 Covidien Lp Exhalation valve assembly with selectable contagious/non-contagious latch
US8439037B2 (en) * 2009-12-01 2013-05-14 Covidien Lp Exhalation valve assembly with integrated filter and flow sensor
US8469031B2 (en) 2009-12-01 2013-06-25 Covidien Lp Exhalation valve assembly with integrated filter
US8421465B2 (en) 2009-12-02 2013-04-16 Covidien Lp Method and apparatus for indicating battery cell status on a battery pack assembly used during mechanical ventilation
US8434484B2 (en) * 2009-12-03 2013-05-07 Covidien Lp Ventilator Respiratory Variable-Sized Gas Accumulator
US20110138311A1 (en) * 2009-12-04 2011-06-09 Nellcor Puritan Bennett Llc Display Of Respiratory Data On A Ventilator Graphical User Interface
US9119925B2 (en) 2009-12-04 2015-09-01 Covidien Lp Quick initiation of respiratory support via a ventilator user interface
US8482415B2 (en) * 2009-12-04 2013-07-09 Covidien Lp Interactive multilevel alarm
US8924878B2 (en) 2009-12-04 2014-12-30 Covidien Lp Display and access to settings on a ventilator graphical user interface
US8418692B2 (en) * 2009-12-04 2013-04-16 Covidien Lp Ventilation system with removable primary display
US9262588B2 (en) 2009-12-18 2016-02-16 Covidien Lp Display of respiratory data graphs on a ventilator graphical user interface
US8499252B2 (en) 2009-12-18 2013-07-30 Covidien Lp Display of respiratory data graphs on a ventilator graphical user interface
US20110146681A1 (en) * 2009-12-21 2011-06-23 Nellcor Puritan Bennett Llc Adaptive Flow Sensor Model
US20110146683A1 (en) * 2009-12-21 2011-06-23 Nellcor Puritan Bennett Llc Sensor Model
US8400290B2 (en) 2010-01-19 2013-03-19 Covidien Lp Nuisance alarm reduction method for therapeutic parameters
US8707952B2 (en) 2010-02-10 2014-04-29 Covidien Lp Leak determination in a breathing assistance system
US8251064B2 (en) * 2010-02-17 2012-08-28 Sanders Stan A Articulated firefighter breathing pack
US9302061B2 (en) 2010-02-26 2016-04-05 Covidien Lp Event-based delay detection and control of networked systems in medical ventilation
US20110209702A1 (en) * 2010-02-26 2011-09-01 Nellcor Puritan Bennett Llc Proportional Solenoid Valve For Low Molecular Weight Gas Mixtures
US8453643B2 (en) 2010-04-27 2013-06-04 Covidien Lp Ventilation system with system status display for configuration and program information
US8511306B2 (en) 2010-04-27 2013-08-20 Covidien Lp Ventilation system with system status display for maintenance and service information
US8539949B2 (en) 2010-04-27 2013-09-24 Covidien Lp Ventilation system with a two-point perspective view
US8638200B2 (en) 2010-05-07 2014-01-28 Covidien Lp Ventilator-initiated prompt regarding Auto-PEEP detection during volume ventilation of non-triggering patient
US8607791B2 (en) 2010-06-30 2013-12-17 Covidien Lp Ventilator-initiated prompt regarding auto-PEEP detection during pressure ventilation
US8607789B2 (en) 2010-06-30 2013-12-17 Covidien Lp Ventilator-initiated prompt regarding auto-PEEP detection during volume ventilation of non-triggering patient exhibiting obstructive component
US8607790B2 (en) 2010-06-30 2013-12-17 Covidien Lp Ventilator-initiated prompt regarding auto-PEEP detection during pressure ventilation of patient exhibiting obstructive component
US8607788B2 (en) 2010-06-30 2013-12-17 Covidien Lp Ventilator-initiated prompt regarding auto-PEEP detection during volume ventilation of triggering patient exhibiting obstructive component
US8676285B2 (en) 2010-07-28 2014-03-18 Covidien Lp Methods for validating patient identity
US8554298B2 (en) 2010-09-21 2013-10-08 Cividien LP Medical ventilator with integrated oximeter data
US8757153B2 (en) 2010-11-29 2014-06-24 Covidien Lp Ventilator-initiated prompt regarding detection of double triggering during ventilation
US8595639B2 (en) 2010-11-29 2013-11-26 Covidien Lp Ventilator-initiated prompt regarding detection of fluctuations in resistance
US8757152B2 (en) 2010-11-29 2014-06-24 Covidien Lp Ventilator-initiated prompt regarding detection of double triggering during a volume-control breath type
US8676529B2 (en) 2011-01-31 2014-03-18 Covidien Lp Systems and methods for simulation and software testing
US8788236B2 (en) 2011-01-31 2014-07-22 Covidien Lp Systems and methods for medical device testing
US8783250B2 (en) 2011-02-27 2014-07-22 Covidien Lp Methods and systems for transitory ventilation support
US9038633B2 (en) 2011-03-02 2015-05-26 Covidien Lp Ventilator-initiated prompt regarding high delivered tidal volume
US8714154B2 (en) 2011-03-30 2014-05-06 Covidien Lp Systems and methods for automatic adjustment of ventilator settings
US9629971B2 (en) 2011-04-29 2017-04-25 Covidien Lp Methods and systems for exhalation control and trajectory optimization
US8776792B2 (en) 2011-04-29 2014-07-15 Covidien Lp Methods and systems for volume-targeted minimum pressure-control ventilation
US9089657B2 (en) 2011-10-31 2015-07-28 Covidien Lp Methods and systems for gating user initiated increases in oxygen concentration during ventilation
US9364624B2 (en) 2011-12-07 2016-06-14 Covidien Lp Methods and systems for adaptive base flow
US9498589B2 (en) 2011-12-31 2016-11-22 Covidien Lp Methods and systems for adaptive base flow and leak compensation
US9022031B2 (en) 2012-01-31 2015-05-05 Covidien Lp Using estimated carinal pressure for feedback control of carinal pressure during ventilation
US8844526B2 (en) 2012-03-30 2014-09-30 Covidien Lp Methods and systems for triggering with unknown base flow
US9327089B2 (en) 2012-03-30 2016-05-03 Covidien Lp Methods and systems for compensation of tubing related loss effects
US9993604B2 (en) 2012-04-27 2018-06-12 Covidien Lp Methods and systems for an optimized proportional assist ventilation
US9144658B2 (en) 2012-04-30 2015-09-29 Covidien Lp Minimizing imposed expiratory resistance of mechanical ventilator by optimizing exhalation valve control
WO2013166452A1 (en) 2012-05-03 2013-11-07 Other Lab, Llc Conforming natural energy storage
US10362967B2 (en) 2012-07-09 2019-07-30 Covidien Lp Systems and methods for missed breath detection and indication
US9027552B2 (en) 2012-07-31 2015-05-12 Covidien Lp Ventilator-initiated prompt or setting regarding detection of asynchrony during ventilation
US9375542B2 (en) 2012-11-08 2016-06-28 Covidien Lp Systems and methods for monitoring, managing, and/or preventing fatigue during ventilation
US20150048095A1 (en) * 2012-12-04 2015-02-19 Hecr, Llc Compressed gas storage systems
US9289573B2 (en) 2012-12-28 2016-03-22 Covidien Lp Ventilator pressure oscillation filter
EP2954248A4 (en) 2013-02-05 2016-09-07 Other Lab Llc Natural gas intestine packed storage tank
US9492629B2 (en) 2013-02-14 2016-11-15 Covidien Lp Methods and systems for ventilation with unknown exhalation flow and exhalation pressure
USD731049S1 (en) 2013-03-05 2015-06-02 Covidien Lp EVQ housing of an exhalation module
USD731065S1 (en) 2013-03-08 2015-06-02 Covidien Lp EVQ pressure sensor filter of an exhalation module
USD693001S1 (en) 2013-03-08 2013-11-05 Covidien Lp Neonate expiratory filter assembly of an exhalation module
USD701601S1 (en) 2013-03-08 2014-03-25 Covidien Lp Condensate vial of an exhalation module
USD731048S1 (en) 2013-03-08 2015-06-02 Covidien Lp EVQ diaphragm of an exhalation module
USD744095S1 (en) 2013-03-08 2015-11-24 Covidien Lp Exhalation module EVQ internal flow sensor
USD692556S1 (en) 2013-03-08 2013-10-29 Covidien Lp Expiratory filter body of an exhalation module
USD736905S1 (en) 2013-03-08 2015-08-18 Covidien Lp Exhalation module EVQ housing
US9358355B2 (en) 2013-03-11 2016-06-07 Covidien Lp Methods and systems for managing a patient move
US9981096B2 (en) 2013-03-13 2018-05-29 Covidien Lp Methods and systems for triggering with unknown inspiratory flow
US9950135B2 (en) 2013-03-15 2018-04-24 Covidien Lp Maintaining an exhalation valve sensor assembly
US10064583B2 (en) 2013-08-07 2018-09-04 Covidien Lp Detection of expiratory airflow limitation in ventilated patient
US9675771B2 (en) 2013-10-18 2017-06-13 Covidien Lp Methods and systems for leak estimation
US9808591B2 (en) 2014-08-15 2017-11-07 Covidien Lp Methods and systems for breath delivery synchronization
US9950129B2 (en) 2014-10-27 2018-04-24 Covidien Lp Ventilation triggering using change-point detection
US9925346B2 (en) 2015-01-20 2018-03-27 Covidien Lp Systems and methods for ventilation with unknown exhalation flow
USD775345S1 (en) 2015-04-10 2016-12-27 Covidien Lp Ventilator console
US10690288B2 (en) * 2015-06-15 2020-06-23 Other Lab, Llc System and method for a conformable pressure vessel
WO2017096283A1 (en) 2015-12-02 2017-06-08 Other Lab, Llc Systems and methods for liner braiding and resin application
US10765822B2 (en) 2016-04-18 2020-09-08 Covidien Lp Endotracheal tube extubation detection
US10054267B2 (en) 2016-05-27 2018-08-21 GM Global Technology Operations LLC Pressure vessel array
DE102016214509A1 (en) * 2016-08-05 2018-02-08 Robert Bosch Gmbh Fuel reservoir
US10851925B2 (en) 2016-10-24 2020-12-01 Other Lab, Llc Fittings for compressed gas storage vessels
US20180283612A1 (en) 2017-03-31 2018-10-04 Other Lab, Llc Tank filling system and method
CN110049799B (en) 2017-11-14 2022-04-26 柯惠有限合伙公司 Method and system for driving pressure spontaneous ventilation
US10463898B1 (en) * 2018-07-19 2019-11-05 Jaco du Plessis Expandable fire-fighting foam system, composition, and method of manufacture

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA695372A (en) * 1964-10-06 Takemoto Kiyoshi Method of making reinforced high pressure plastic hose
BE397256A (en) * 1929-10-12 1933-06-29
US2106495A (en) * 1932-07-01 1938-01-25 Dominion Oxygen Company Ltd Method of making pressure vessels
US2148234A (en) * 1935-03-06 1939-02-21 Dominion Oxygen Company Ltd Pressure container and process of making same
US2171973A (en) * 1935-09-05 1939-09-05 Dominion Oxygen Company Ltd Safety device for pressure vessels
US2171972A (en) * 1935-09-05 1939-09-05 Dominion Oxygen Company Ltd Pressure vessel and method of making same
DE658447C (en) * 1935-10-15 1938-04-02 Franz Pfeffer Container for high tension gases and liquids
DE651616C (en) * 1936-08-08 1937-10-16 Franz Pfeffer Pressure vessel
US2222762A (en) * 1937-04-01 1940-11-26 Dominion Oxygen Company Ltd Hollow metal bodies and means for producing same
US2380372A (en) * 1942-09-28 1945-07-31 Edward D Andrews Portable container for compressed gases
US2962195A (en) * 1955-03-11 1960-11-29 Chrysler Corp Pressure vessel
NL302301A (en) * 1962-12-24
DE1272653B (en) * 1964-06-06 1968-07-11 Boelkow Gmbh Geodetically wound high pressure vessel
US3440118A (en) * 1965-12-17 1969-04-22 Branson Instr Method and apparatus for bonding together a plurality of insulated electrical conductors by sonic energy
US3491752A (en) * 1966-07-05 1970-01-27 Abbott Lab Breathing apparatus
US3601128A (en) * 1968-12-26 1971-08-24 Salomon Hakim Ventriculoatrial shunt accumulator
DE2305840A1 (en) * 1973-02-07 1974-08-08 Wankel Felix Dr Ing H C TRANSPORTABLE COMPRESSED GAS TANK
US4000760A (en) * 1973-11-05 1977-01-04 William C. Heller, Jr. Plastic hose having embedded reinforcing braid
GB1503502A (en) * 1974-04-19 1978-03-15 Dunlop Ltd Flexible hose lines
US4484698A (en) * 1981-09-22 1984-11-27 American Monitor Corporation Ultra micro precision fluid metering device
GB2204390B (en) * 1987-04-30 1990-12-12 Nash Frazer Ltd Gas storage bottles
US4932546A (en) * 1989-03-16 1990-06-12 Buttes Gas & Oil Co. Pressure vessel
US5127399A (en) * 1989-04-14 1992-07-07 Scholley Frank G Flexible container for compressed gases
US4932403A (en) * 1989-04-14 1990-06-12 Scholley Frank G Flexible container for compressed gases
US5036845A (en) * 1989-04-14 1991-08-06 Scholley Frank G Flexible container for compressed gases
US5135497A (en) * 1991-07-08 1992-08-04 Baxter International Inc. Large volume pressurized fluid dispenser
SE514327C2 (en) * 1991-12-23 2001-02-12 Ingemar Falk Press container
GB2274498B (en) * 1993-01-26 1996-10-02 Dunlop Ltd Improvements in and relating to floatable flexible hose
ES2108980T3 (en) * 1993-02-04 1998-01-01 Baxter Int SET OF ELONGATED PLASTIC ELEMENTS AND PROCEDURE AND DEVICE FOR ITS REALIZATION.
US5499739A (en) * 1994-01-19 1996-03-19 Atlantic Research Corporation Thermoplastic liner for and method of overwrapping high pressure vessels
US5653358A (en) * 1994-04-08 1997-08-05 Arde, Inc. Multilayer composite pressure vessel with a fitting incorporated in a stem portion thereof

Also Published As

Publication number Publication date
US6116464A (en) 2000-09-12
CN1107024C (en) 2003-04-30
NZ508573A (en) 2002-06-28
JP2002517687A (en) 2002-06-18
US6047860A (en) 2000-04-11
EP1133445A1 (en) 2001-09-19
WO1999064345A1 (en) 1999-12-16
AU4550099A (en) 1999-12-30
MXPA00012124A (en) 2003-04-22
AU751261B2 (en) 2002-08-08
CN1305435A (en) 2001-07-25
KR20010052745A (en) 2001-06-25

Similar Documents

Publication Publication Date Title
US6116464A (en) Container system for pressurized fluids
US6527075B1 (en) Vehicle incorporating gas storage vessel comprising a polymeric container system for pressurized fluids
EP1349784B1 (en) Fluid dispenser having improved cleaning solvent delivery system
US7124908B2 (en) Ovoid flexible pressure vessel, apparatus and method for making same
EP4050249A1 (en) High-pressure gas storage system having adaptable morphology
US6996956B2 (en) Fluid dispenser having improved cleaning solvent delivery system
US5310080A (en) Conformal fuel tank
AU772965B2 (en) Apparatus for making a container system for pressurised fluids
US6412801B1 (en) Wheeled personal transport device incorporating gas storage vessel comprising a polymeric container system for pressurized fluids
US6502571B1 (en) High pressure fitting with dual locking swaging mechanism
EP1347873A1 (en) Method and apparatus for forming a polymeric container system for pressurized fluids
KR101930141B1 (en) Fusion holder for tube body molding device
DE10314075A1 (en) A tire filling device especially a puncture adjuvant device with a holder formed as a pressure vessel useful for repairing damage e.g. punctures to car tires
US5251344A (en) Tank for sterile, portable, self-contained shower and shower equipped therewith
US6345730B1 (en) Adhesively connected polymeric pressure chambers and method for making the same
RU2156399C1 (en) High-pressure vessel for fluid medium
DE60118554T2 (en) ARRANGEMENT OF POLYMER CONTAINERS FOR UNDER PRESSURE LIQUIDS
JP2021160792A (en) Aerosol container and manufacturing method of the same
WO2002037019A2 (en) High pressure fitting with dual locking swaging mechanism for container system

Legal Events

Date Code Title Description
FZDE Discontinued