CA2335097A1 - Method and apparatus for identifying and tracking connections of communication lines - Google Patents

Method and apparatus for identifying and tracking connections of communication lines Download PDF

Info

Publication number
CA2335097A1
CA2335097A1 CA002335097A CA2335097A CA2335097A1 CA 2335097 A1 CA2335097 A1 CA 2335097A1 CA 002335097 A CA002335097 A CA 002335097A CA 2335097 A CA2335097 A CA 2335097A CA 2335097 A1 CA2335097 A1 CA 2335097A1
Authority
CA
Canada
Prior art keywords
identification
communications
transducer
adapter
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002335097A
Other languages
French (fr)
Inventor
Herzel Laor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FIBERID LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2335097A1 publication Critical patent/CA2335097A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q1/00Details of selecting apparatus or arrangements
    • H04Q1/02Constructional details
    • H04Q1/16Wiring arrangements for selector switches or relays in frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/465Identification means, e.g. labels, tags, markings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0037Operation
    • H04Q2011/0043Fault tolerance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0083Testing; Monitoring

Abstract

A communication line identification apparatus and method which automates the identification of communication line is engaged with a particular adapter within a communications system. A communication transducer (140) is mounted on a connector (122) of the communication line (118). The communication transducer (140) contains identification information for the communication line (118). Mounted near the adapter (114) which engages the connector (122), is an adapter transducer (138) which receives the identification information from the communications transducer (140). This identification information is transmitted to a system controller which provides the communication systems operator with the information about which communication line is connected to which adapter.

Description

METHOD AND APPARATUS FOR IDENTIFYING AND TRACKING
CONNECTIONS OF COMMUNICATION LINES
FIELDS OF THE INVENTION
The present invention relates to identifying and tracking communication line connections, and more specifically, to utilizing transducers which are associated with connection lines and adapters to provide connection instructions and status information.
EtACKGROUND OF THE INVENTION
Modern communications systems, such as fiber optics communications systems, require interconnection. of various communications lines within the system.
Such interconnections are provided, for example, in connection with switches, receiver/transmitter units provided at intervals along a single optical line fox regenerating optical signals (e.g., to facilitate transmission over long distances), at optical/electrical interfaces, in connection with test equipment, and in a variety of other situations. In this 1 S regard, various sites within the system have large communications panels to which large numbers of communication lines may be connected. A panel may be comprised of several modules, with each module having an array of, for example, 256 or more adapters which may receive connections from the communications lines. The communication lines acre usually ai number of cables bundled together with the cable ends separated for making connections. The incoming cables are individually connected to adapters in a patch panel, and the outgoing cables are individually connected to adapters in a second or the same patch panel. Patch cords may be used to link adapters in one panel to adapters, in either the same panel or the second panel.
The connections and disconnections of communication Iines to and from the panels are often made manually by a technician. The technician identifies the cable end and the adapter at which the cable is to be connected or disconnected. The technician then plugs a connector at the end of each cable into the appropriate adapter and reports the connections and/or disconnections to a central record system. This manual connecting and reporting system creates a significant possibility of human error when configuring a communications system.

If there has bet~n an error in connecting or reporting connections in a large system, it may be difficult to trace individual cables through a maze-like collection of other cables. Also, it m:ay be difficult to identify the proper adapter to which a particular cable end should be connected or disconnected, or to identify a particular cable end.
Numerous cables in a system may have the same types of connectors and be visually indistinguishable. Also, it requires a considerable amount of care to select the correct adapter which is located in a large; array of adapters on a patch panel. Thus, ensuring that the proper connections are made can be very time-consuming, and the process is prone to errors in both the making of connections and in keeping records of the connections.
SUMMARY OF THE INVENTION
The present invention is directed to an apparatus and method for monitoring connections of communications lines including inter alia, transmission elements (e.g., lines and adaptors) to bc~ connected;, reporting connection status, and/or tracking network connections. In accordlanee with the present invention, a communication line, such as would be used in a communication system, includes a communication transducer for the communication line. Vfhen establi skiing a connection the communication line is engaged by an adaptor. Locatc;d proximate to the adaptor, e.g., on or near the adaptor, is an adaptor transducer which communicates with the communications transducer. The transducer is identified by identification information which, in turn, can be used for communicating connection information between a controller and the elements that are, or are to be, connected. The connection information is sufficient to identify the line/adapter connection. For example, one of the transducers associated with either the line or the adaptor ma;y communicate identification information such as a code to the other transducer which, in turn, communicates such identification information to the controller. The controller may also obtain identification information regarding the other of the line and the adaptor, for example, via communicated identification information or based on knowledge; of the pathway by which the communication was received.
The controller can thereb~r uniquely identify the connection based on such connection information. In one embodiment, the communication line transducer is self powered, e.g., by energy derived from signals transmitted by the adaptor transducer, and is operative to transmit ickentification information regarding the communication line. It will be appreciated that the connection information can also be transmitted from the controller to the transdlucers of an adaptor and/or line to be connected based on the identification inforrnatiion. This connection information can be used to provide an indication, e.g., an audible or visible signal, to a technician to facilitate making the desired connection. For example, LEDs may be Lighted to identify the elements to be connected or to indicate whether a connection is correct or incorrect.
The above apparatus and. method can be used with almost any type of communication line which carries information signals. As will be understood from the description below, the invention is particularly useful in connection with fiber optic networks where the communication Lines are generally not adapted for directly transmitting identif cation or status information to a network controller.
In one aspect ~of the invc,ntion, the transducers communicate through the exchange of eiectro-magnetic signals. The communication transducer may include a radio transmitter which 'transmits a radio signal containing the identification information which is received by tf~e adaptor transducer. In another aspect, the transducers may exchange signals in the form of light energy.
In order to avoiel including a power source in the communications transducer, a isolated self powering chip may be used which has identification information for a line programmed into it. In order to activate the isolated chip, the adaptor transducer sends out a radio or Light signal which is received by the communications transducer. This radio signal provides the; power for the isolated chip to transmit back the identification information to the adaptor transducer.
The communications and adaptor transducers may be included as part of a larger system. The system inclludes a controller which receives and processes the identification information, and provides connection status data and/or identification data for the communication line-adaptor connections. In connection with the controller is a database in which the connection. status information can be stored. A user interface is provided so that the system operator may monitor the connections remotely as well as provide programming for the system configuration.
A communication system may include at least one communication panel in which a number of the ;adaptors are located to receive the communication lines. Each of the communication lines has a c;ommunication transducer mounted thereon, and an adaptor transducer mountable proximate to each of the adaptors. Also located proximate to each of the adaptors is an indicator such as a visual indicator. The adaptor transducer and the indicator are connected to the system controller. When a communication line is engaged in an adaptor, identification information is transferred from the communications transducer to the adaptor transducer. The controller receives all the identification information from all the adaptor transducers and processes this information. This connection status information is used to establish whether the correct connections have been made. Conversely, the controller can activate the indicators based on the identification information to provide assistance to a technician who is manually making conne;ctions at th.e communications panel.
DESCRIPTION OF THE DRAWINGS
Fig. 1 is a view of a prior art system for connecting fiber optics communications cables;
Fig. 2 is a view c~f the connection between a communications line and an adaptor in accordance with the present invention;
Figs. 3A and 3B show system diagrams for tracking communication line connections;
Fig. 4 is a perspective view of a portion of a communications panel in accordance with the present invention;
Fig. S is a view of a patch cable in accordance with the present invention;
and Fig. 6 is a schematic diagrann showing a sequential connector numbering system in accordance with the present invention.
DETAILED DESCRIPTION
Shown in Figure I is a prior art fiber optics connection apparatus 10. This apparatus provides a connection, for example, between a fiber optic cable and a switching panel within a communications system. A bulkhead I2, such as might be part of a communications ;panel, is equipped with adapter 14 that provides an optical connection between calales 16 and 18. Connectors 20 and 22 connect to adapter through use of locking mechanisms 32 and 34 which may include mating protrusions and grooves in connectors 20 and 22 and housings 24 and 26. Ferrules 28 and 30 extend from the housings and carry the optical communications between the cables 16 and 18 through an opening in adapter 14.
In a typical communications system, many communication lines are run in parallel and from time to time are connected through a communications panel which routes the signals on to other communication lines and ultimately to their final to destination. These communication ;panels may have hundreds ofadapters to receive and transfer communication signals from one Iine to another. Presently, the connection of the communication lines to the communications panel are made manually by a technician who must fir;ct find the correct cable (perhaps among hundreds), plug it into the appropriate adapter (which also must be identified by the technician), and then communicate this infornaation back to a remote site where it is recorded. The record of the system configuration is based on the technician's report. Because of the manual nature of finding, making and reporting connections, significant elements of time, frustration and human error are introduced into monitoring a communications network.
The invention described herein is a communications line connector configuration which removes a signifiicant amount of the human element in monitoring connections in a communications system. Although the invention is described in terms of a fiber optic communications network ands has particular advantages in connection therewith, one skilled in the art world know treat certain aspects of the invention described herein are equally applicable to other communications networks, including those which transmit electrical signals.
An embodiment of the invention is disclosed in Fig. 2. A communication line 118 which carries the communications signals terminates at connecter 122.
Adapter 114 is mounted on bulkhead 112 of a communications panel and is designed to receive and engage the connector 122. Bracket 136 is also mounted to bulkhead 112 adjacent to the adapter and supports adapter transducer 138. Alternatively, the transducer could be directly mounted on the bulkhead 112. Communications transducer 140 is mounted on WO 00/04671 PC'CIUS99/16377 or integrated into the housing for connector 122. When the connector 122 is engaged with the adapter I 14, transducers 138 and 140 are preferably in close proximity to each other so as to avoid communication with transducers of elements adjacent to the other connected elements. In this regard, the transducers preferably have a sensing range S between about I-10 mm, and do not respond to signals from transducers that are, for example, more than 2S mm away. ~4lternatively, the transducers may communicate aver greater distances and use a more complicated signaling process to avoid disabling signal interference.
The illustrated ixa~nsducers 138 and 140 are programmed to communicate with each other. Within thc~ communication system, the communications line 118 has a unique identification code assigned to it. This unique identification information can be programmed into transducer 140. Alternatively, where transducer 140 is provided from the manufacturer with its own pre-programmed code, the pre-programmed code can be stored in a system controller for use as the connnunications line identification code or 1 S correlated to a separate code. When the adapter 114 and connector 122 are engaged, the transducers are in close proximity to each other and the identification information for the communications line passes from the communications transducer 140 to the adaptor transducer 138. The identification information received at the adaptor transducer 138 can then be used by a controller which monitors which communications Iines are connected to, or are to be connected to, which adaptor.
It will thus be appreciated that, in the illustrated embodiment, it is useful to establish a connection between a connector and an adaptor such that the transducers are in close proximity. The manner fror accomplishing this depends on the nature of the connector and adaptor. Irr this regard, some connectors and adaptors are not selective 2S concerning the angular orientation of the elements that are being interconnected. In such cases, care may be required on the part of the technician to align the connector and adaptor so as to minimize the distance between the transducers upon establishing the connection. Other comaectorladaptor systems include a pair of diametrically opposed protrusions on one of the elements and a mating pair of grooves on the other element.
These protrusions and l;rooves allow for only two possible angular orientations of the elements. In this case, the technician should exercise care in selecting the correct polarity for proper ali~mment of the transducers. Finally, other connector/adaptor systems only allow for one angular alignment of the elements. Such systems are particularly well-suited fox implementation of the present invention as the opportunity for human error in relation to transducer positioning is minimized.
S There are a variety of different transducers which may be used in passing the identification information from the communications line to the controller. In one embodiment of the invention, transducer 140 is a radio signal transmitter of limited range and, transducer 138 receives this radio signal when transducer 140 is within a certain distance. In thi case, the communications transducer 140 would have its own power source in order to transmit the radio energy.
In another embodiment of the transducer, an isolated computer chip is placed in transducer 140 with tlue identification information for the communications cable programmed in to it. The adapter transducer 138 is configured such that it continually outputs a querying radio signal. ~JVhen communications transducer 140 is within a 1 S predetermined distance from the adapter transducer, the querying radio signal, which is received via an RF antenna formed in the chip, activates the isolated computer chip. The radio signal received from the adapter transducer, provides power to the isolated computer chip to transmit the identification information for the communication line.
Such isolated chips are well-known and axe used, for example, in certain smart cards.
The adapter transducer l'.38 receives the identification information and provides it to a controller which is monitoring the connection. An advantage of this embodiment is that no permanent power soccrce is requiired on the communications transducer.
Other possibilities exist for transducers which would work in the monitoring system described herein. These other embodiments include optical transducers which pass light signals back amd forth, or any other appropriate signaling technology. Yet another embodiment for the transducers is the establishment of a direct electrical connection between the transducers 'when the connector 122 is engaged with the adapter 114.
The apparatus described above may also include a system for processing and storing the identification information. One embodiment of such a system is illustrated in Fig. 3A. Communications transducer 140 and adapter transducer 138 are shown with a dotted line connection between them. This dotted line signifies that this is not necessarily a direct electrical connection between the two, but instead information can be transferred between the two transducers with electromagnetic, optical, or other types of signals. In direct connection with the adapter transducer 138 (or otherwise in S communicating with transducer 138) is controller 142. Controller 142 receives the connection information vto/from the adapter transducer 138. This connection information includes identification information for the communications line as well as identification information for the adapter which is engaged with the communications line. The controller 142 is connected to database 144 as well as a user interface 146.
The user interface allows the system operator to make queries and receive information back as to the connection status of the communications system and to identify elements that are to be connected. Any connection status information received may be stored in database 144.
Fig. 3B shows an alternative system configuration including communications transducers 140', adapter transducers 138', a database 144' and a human interface 146' generally corresponding to the system of Fig. 3A. However, in Fig. 3B, the adapter transducers 138' communicate with the controller via LRF or infrared signals rather than via direct electrical wiring.
The elements of the invention described above may be part of a large communications system in which many communication lines terminate at each bulkhead or patch panel. Great advantage can be gained by providing a system which electronically monitors these connections instead of having to rely.on a visual inspection by a remote technician. Shown in Fig. 4 is a portion of one patch panel within a communications system. Patch panel 200 includes bulkhead 212 and a plurality of adapters 214-228. Beneath the adapters and extending Laterally from bulkhead 212 are brackets 230-236. The adapter transducers 240-258 are mounted proximate to each adapter on the brackets. Also mounted on the brackets proximate to the adapters are rows of light emitting diodes (LED) 238. Each of the adapter transducers shown in Fig.
4 are in connection with the controller in the same manner as was described in Fig. 3.
Also in connection with the controller are the LED's. The LEDs 238 provide a connection status for adapters 214-228. In the embodiment shown, there are three individual LED's for each side of each adapter. The LED's serve a variety of purposes which will be described in greater detail below.
In operation, communication lines are connected to the adapters in order to direct the communications signals. As was described above, a communications transducer which contains identification information is mounted on the connector for each of the communications lines. When the connector on the communication line engages an adaptor, identification :information is passed to the adaptor transducer, which in turn provides this information for the controller. This information may be stored in the database or used by the controller to provide connection status information either through the user interface, or the LED's Providing connection status information through the LEDs may assist a technician in establishing correct connections at the communications bulkhead.
In one embodiment of the invention, there are three LED's associated with each adaptor and they are red, yellow ar.~d green. th.e system operator may program, through the user interface, the desired configuration of the communications panel. When the technician begins malting connections according to the pre-programmed configuration, the LED's can be used to inform the technician whether an incorrect or correct connection is made.
For example, if the technician makes a correct connection, the controller may be programmed to illuminate the green LED proximate to the adapter in which the connection was just made. Conversely, if an incorrect connection was made, the red LED will illuminate. Vilith the present system, not only is notification provided to the technician of the incorrect connection, information is also accessible as to the identity of the communications line which connected incorrectly. It will thus be appreciated that a system operator can thus enter, via the user interface, information sufficient to identify a connection, e.g., an identifier for an adaptor and a connector that are to be connected.
This information, or portions thereof, is stored in a central database and/or in memory at a panel or at the adaptor. When a connection is made, an identifier for the line is transmitted to the adapter transducer and corresponding reported connection information can be compared to the; stored information to verify a connection.
Additionally, the reported information can be stored for use in system tracking.
Further, assistance may be provided to the technician if there is trouble or otherwise to assist locat:ing the adaptor to which a particular connection is to be made.
For example, for a particular connection, a query can be made of the system operator.
The operator enters the. pertinent information for the communication line through the user interface, and the controller illuminates the yellow LED at the adaptor which is to receive the connection. the technician can then make the appropriate connection.
Described above is just one embodiment of the invention using the LED's, the controller, the database, and the u:;er interface;. One skilled in the art would realize that a variety of programming and n:nonitoring techniques could be developed using the above elements.
The present invention can also be used to track serial connections of a particular communications line that may include multiple optical cables arranged in series with intervening adaptors, panels, bulkheads, receiver/transmitter units, etc. In this regard, it may be necessary to make connections directly between adapters, for example between adapter 218 and adapter 226. A patch cable, such as the cable shown generally as 300 in Figure 5 may be utilized to make such a connection. Patch cable 300 has two ends with connectors 3 I O and 312 mounted at either end, Each of the connectors 310 and 312 has a communications transducer 314 and 316 mounted on its housing. Once connector 310 is plugged into adapter 218, communications are established between communications transducer 244 and adapter transducer 3I4. Similarly, when connector 312 is plugged into adapter 226, communications are established between communications transducer 252 and adapter transducer 316.
In order to facilitate tracking of serial connections of a-particular line, the identification numbers programmed into the transducers of a patch cable, or the identification numbers o~f transducers of separate elements that are to be interconnected to form a single line, can be in seriies or another pattern. For example, the transducer patch cable such as cable 300 can be programmed so that the cable 300 has an odd end and an even end. That is, the transducers of first cable ends of such cables, such as transducer 314, may have an identification number defined as 2N-1 (e.g., 1, 3, 5, 7 . . .) and the opposite transducers, such as transducer 316, may have an identification number defined as 2N (e.g., 2, 4, 6, 8 . . .). The associated adaptor transducers can be programmed according:fy. In this manner, for example, a system operator desiring to light LED's so as to indicate to a technician the proper connections for a patch cable can simply enter, via the user interface, two successive numbers. Similarly, if successive elements of a line are programmed to include serially arranged transducer identification numbers, the connections for that line or a segment thereof can be identified by entering a string of successive serial numbers. Similarly, two adapter transducers associated with one bulkhead adapter may have serial numbering, with the numbers listed properly in a database. For equipment such as transceivers, optical amplif ers, test equipment etc., any numbering system may be used.
Conversely, if the operator wished to obtain a picture of a given line, the operator could enter the associated string of numbers and select an appropriate display or print function. For example:, Fig. 6 schematically illustrates a series of connections for establishing a communications pathway between a first node {Node 1 ) such as first termination equipment or a terminal and a second node (Node 2). For the purposes of the present example, the series of connections is identified only by the identification numbers of transducers on patch cords but it will be appreciated that other identification numbers could be utilized. Node 1 is interconnected to a transmitter/receiver unit via patch cord 401 having a :first end transducer identification N and a second end transducer identification N+1. The illustrated transmitter/receiver unit effectively operates as an optical signal repeater to facilitate transmission of optical signals over long distances without unacceptable signal attenuation. The transmitter/receiver unit in turn is interconnected to communications panel 1 via patch cord 402 having transducer identifications N+2 and N+3.
In the illustrated communications pathway, an optical test bench is interposed in the signal pathway between panel 1 and panel 2. Such a test bench may be used for any of a variety of purposes, including testing the connections and configuration of the pathway. In the illustrated embodiment, panel 1 is interconnected to the test bench via patch cord 403 including transducer identifications N+4 and N+5, and the test bench is interconnected to panel 2 via patch. cord 404 including transducer identifications N+6 and N+7. Finally, panel 2 is connected to a second transrnitter/receiver unit via cord 405 having identifications N+8 and 'N+9; and then to node 2 via cord 406 having identifications N+10 and N+11. It will be appreciated that a network monitoring system can receive information concerning the identity and types of components (e..g., nodes, panels, text equipment) along the pathway. A remote network operator can thus conveniently obtain a picture of the overall pathway by simply entering the ID
code for S Node 1, and the controlller will retrieve the connection information one at a time and display the whole connection on the user interface.
One of the distinct advantages of the invention described above, is that many if not all of its elements may be incorporated into the design of a new communications system or may be rertrofitted on to an existing system. For example, the communications transducers may be mounted on to an already existing connector housing for a communications line, e.g., using an adhesive, or it may be integrated into the design of the housing for a new system: The adaptor transducers and brackets can be mounted on a existing; communications bulkhead or included in the bulkhead's initial design. Finally, the controller, database, and user interface can be an add on system with 1 S separate components, or these capat>ilities can be incorporated in the processing system already in existence for the system.
The foregoing description of the present invention has been presented for purposes of illustration and description. Furthermore, the description is not intended to limit the invention to the form disclosed herein. Consequently, variations and modifications commensz~rate with the above teaching, and the skill or knowledge of the relevant art, are within the scope of the present invention. The embodiments described hereinabove are further intended to explain best modes known for practicing the invention and to enable others skilled in the art to utilize the invention in such or other embodiments and with various modifications required by the particular applications or 2S uses of the present invf;ntion. It is intended that the claims be construed to include alternative embodiments to the extent permitted by the prior art.

Claims (51)

What is claimed is:
1. An apparatus for monitoring a connection between a communications line connector and an adapter, the apparatus comprising:
first identification means, disposed proximate to the communications connector, for use in communicating connection information regarding the connection between the communications connector and the adaptor; and second identification means, mountable proximate to the adapter, for use in communicating the connection information regarding said connection;
wherein the connection information is communicated between a controller and one of the first and second identification means so as to allow for monitoring of the connection.
2. The apparatus of Claim 1, wherein said connector is for a fiber optic communications line and said adapter is a fiber optic adapter.
3. The apparatus of Claim 1, wherein one of said first and second identification means includes a transducer which transmits a signal containing a portion of the connection information.
4. The apparatus of Claim 3, wherein the signal is an electromagnetic signal.
5. The apparatus of Claim 3, wherein the signal is one of a radio frequency signal and an optical signal.
6. The apparatus of Claim 1, wherein one of said first and second identification means includes means for receiving a signal from the controller, wherein the signal is used to assist a technician in making the connection.
7. The apparatus of Claim 1, wherein said adapter is mountable on a bulkhead of a communications panel.
8. The apparatus of Claim 1, wherein the controller provides connection status information in response to receipt of the connection information.
9. The apparatus of Claim 5 wherein the first identification means transmits the connection information in response to receiving a first signal from the second identification means.
10. The apparatus of Claim 9 wherein the first identification means receives energy to transmit the connection information from the first signal.
11. The apparatus of Claim 10 wherein the first identification means transmits the connection information in a second radio signal.
12. An apparatus for monitoring connections in a communications system comprising:
at least one communication line with at least one connector attached thereto, where an identification transducer is included in the at least one connector and the identification transducer contains identification information for the at least one communication line;
at least one adaptor which receives the at least one connector and establishes a connection for the communications signals; and an adapter transducer mountable proximate to the adaptor which receives the identification information from the identification means and transmits the identification information to a controller.
13. The apparatus of Claim 12, wherein said communication line carries fiber optic signals.
14. The apparatus of Claim 12, wherein said identification means is a transmitter which transmits a signal containing the identification information to the receiver.
15. The apparatus of Claim 14, wherein said signal is an electromagnetic signal.
16. The apparatus of Claim 15, wherein said signal comprises one of a radio frequency signal and an optical signal.
17. The apparatus of Claim 12, wherein said adaptor transducer is adapted to receive an identification signal from the controller, wherein an indication is provided in response to identification signal to indicate the connection that is to be made.
I8. The apparatus of Claim 12, wherein said adapter is mounted on a bulkhead of a communications panel.
19. The apparatus of Claim 12, wherein the controller provides connection status information in response to the receipt of the identification information.
20. The apparatus of Claim 19, wherein said connection status information is provided through a visual indicator.
21. The apparatus of Claim 20, wherein the visual indicator is located proximate to the at least one adapter.
22. The apparatus of Claim 16 wherein the identification transducer transmits the identification information in response to receiving a first radio signal from the adapter transducer.
23. The apparatus of Claim 22 wherein the identification means receives energy to transmit the identification information from the first radio signal.
24. The apparatus of Claim 23 wherein the identification means transmits the identification information in a second radio signal.
25. A systems according to Claim 12, wherein said communications device is a patch cable.
26. A communications .system comprising:
a plurality of communication lines;
an identification transducer mountable on each of said plurality of communication lines, where each of said identification transducers contains identification information for the communication line upon which said identification transducer is mounted;
a communications bulkhead with a plurality of adaptors mounted thereon, each of said adaptors receives one of the plurality of communications lines;
an adapter transducer mountable proximate to each of said adaptor means, said adapter transducer receives the identification information from the identification transducer; and a controller which receives the identification information from the adapter transducers and provides connection status information for each of the plurality communications Lines and adaptors.
27. The communications system of Claim 26 wherein the plurality of communication lines are fiber optic cables.
28. The communications system of Claim 26, wherein said identification transducers transmit signals containing the identification information to the adapter transducers.
29. The apparatus of Claim 28, wherein the signals are electromagnetic signals.
30. The apparatus of Claim 26, wherein said controller is further operative for transmitting an identification signal to identify, based on said identification information, a selected communication line and a selected adapter to be connected.
31. The apparatus of Claim 26, further comprising means for aligning a given communications line with a given adaptor such that a given transducer of said given line is positioned proximate to a given adaptor transducer of said given adapter when said line is coupled to said adapter.
32. The apparatus of Claim 26, wherein said connection status indicator information is provided through at least one visual indicator.
33. The apparatus of Claim 32, wherein each of the plurality of adapters has one of the visual indicators located proximately thereto.
34. The apparatus of Claim 33 wherein the visual indicator is at least one light emitting diode.
35. A system according to Claim 26, wherein the plurality of communications lines are patch cables.
36. The communications system of Claim 26 further including a database which stores the connection status information and other information relating to the communications network.
37. A system according to Claim 36, wherein the database includes information about the location and connection status for each of the plurality of connectors and adapters
38. A method for monitoring connections in communications system, comprising:
mounting an identification transducer on each of a number of communications lines within the communication system;
mounting an adapter transducer device on each of a number of adaptors which receive the communications lines;
transferring identification information between one of the identification transducers and one of the adapter transducers, where the identification information identifies a connection between one of the communications lines arid one of the transducers; and transmitting the identification information between a controller, which monitors connections between the communications lines and the adaptors, and one of said one identification transducer and said one adapter transducer.
39. A method according to Claim 38, wherein the step of transferring of identification information is done with a transmission signal which contains the identification information.
40. A method according to Claim 39, wherein the transmission signal is an electromagnetic signal.
41. A method according to Claim 40, wherein said transmission signals is a radio frequency signal.
42. A method according to Claim 38, wherein said identification transducers receive power to transmit transmission signals from a radio signal transmitted by the transducer.
43. A method according to Claim 38 wherein the communications system processes fiber optic signals.
44. A method according to Claim 38, further including the step of providing a visual indication based on connection status information.
45. A method according to Claim 38, wherein said step of transmitting comprises communicating a signal from said controller to identify an adaptor for use in making the connection.
46. A method according to Claim 38, further comprising the step of angularly aligning said one line and said one adapter relative to positions of said one identification transducer and said one adapter transducer and coupling said line to said adaptor.
47. An apparatus for use in monitoring connections in a communications system, said system including adapters for receiving communications lines so as to make said connections and further including detectors, associated with said adapters, for use in detecting a line connection and reporting the line connection to a controller for storing information regarding the line connection so as to allow for monitoring said connections in said communications system, said apparatus comprising:

communications line means for use in transmitting communications signals, said line means including a section of a communications line and at least one end portion for coupling to one of said adapters of said communications system; and identification means, associated with said communications line, for identifying said communications lime, said identification means including means for providing a unique identifier fox said communications line means and means for communicating with a detector of said one adaptor so as to provide identification information relative to said unique identifier to said detector of said one adaptor when said end portion of said communication line means and said adapter are engaged;
wherein said identification information can be reported to said controller by said detector so as to allow for enhanced monitoring of said connections in said communications system.
48. The apparatus of Claim 47, wherein said communications line comprises a fiber optic line and said end portion comprises a fiber optic connector.
49. The apparatus of Claim 47, wherein said identification means comprises a chip for storing a programmed identification code.
50. The apparatus of Claim 47, wherein said identification means comprises transceiver means for receiving signals from said detector and transmitting signals to said detector across an air interface between said detector and said transceiver means.
51. The apparatus of Claim 47, wherein said identification means comprises self powering means for receiving a signal from said detector and deriving energy from said received signal for powering operation of said identification means.
CA002335097A 1998-07-20 1999-07-20 Method and apparatus for identifying and tracking connections of communication lines Abandoned CA2335097A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/119,363 1998-07-20
US09/119,363 US6002331A (en) 1998-07-20 1998-07-20 Method and apparatus for identifying and tracking connections of communication lines
PCT/US1999/016377 WO2000004671A2 (en) 1998-07-20 1999-07-20 Method and apparatus for identifying and tracking connections of communication lines

Publications (1)

Publication Number Publication Date
CA2335097A1 true CA2335097A1 (en) 2000-01-27

Family

ID=22384005

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002335097A Abandoned CA2335097A1 (en) 1998-07-20 1999-07-20 Method and apparatus for identifying and tracking connections of communication lines

Country Status (8)

Country Link
US (1) US6002331A (en)
EP (1) EP1112557A2 (en)
JP (1) JP2002521649A (en)
KR (1) KR20010072027A (en)
CN (1) CN1315026A (en)
AU (1) AU5219399A (en)
CA (1) CA2335097A1 (en)
WO (1) WO2000004671A2 (en)

Families Citing this family (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6421322B1 (en) * 1997-11-17 2002-07-16 Adc Telecommunications, Inc. System and method for electronically identifying connections of a cross-connect system
US6208796B1 (en) * 1998-07-21 2001-03-27 Adc Telecommunications, Inc. Fiber optic module
US6438308B1 (en) * 1998-09-30 2002-08-20 Fitel Usa Corp. Upgradeable connector module for use in a fiber administration system
GB2344429A (en) * 1998-12-01 2000-06-07 Nokia Mobile Phones Ltd Electrical device and connector
US6424710B1 (en) 1999-02-10 2002-07-23 Avaya Technology Corp. Method and device for detecting the presence of a patch cord connector in a telecommunications patch system using passive detection sensors
US6493498B1 (en) * 1999-06-10 2002-12-10 Fitel Usa Corp. Fiber administration system having optical fiber route tracing capabilities
US6694072B1 (en) 1999-07-21 2004-02-17 Armand P. Neukermans Flexible, modular, compact fiber switch improvements
US6445844B1 (en) 1999-09-15 2002-09-03 Xros, Inc. Flexible, modular, compact fiber optic switch
US6243510B1 (en) 2000-03-13 2001-06-05 Apcon, Inc. Electronically-controllable fiber optic patch panel
AU2001286385A1 (en) * 2000-05-15 2001-11-26 Corning Incorporated Optical networking devices and methods for optical networks with increased transparency
US6798965B2 (en) * 2000-06-02 2004-09-28 Confluent Photonics Corporation Low loss fiber optic jumper with electronic presence detection
EP1336275A2 (en) * 2000-11-22 2003-08-20 Panduit Corp. Network revision system with local system ports
US6498569B2 (en) * 2001-01-12 2002-12-24 Patrick Dijkstra Traffic information analyzer system
JP2002315186A (en) * 2001-04-18 2002-10-25 Takata Corp Method for detecting erroneous connection of connector
US7246664B2 (en) * 2001-09-19 2007-07-24 Baker Hughes Incorporated Dual piston, single phase sampling mechanism and procedure
US6714698B2 (en) * 2002-01-11 2004-03-30 Adc Telecommunications, Inc. System and method for programming and controlling a fiber optic circuit and module with switch
US7519000B2 (en) 2002-01-30 2009-04-14 Panduit Corp. Systems and methods for managing a network
US7656903B2 (en) 2002-01-30 2010-02-02 Panduit Corp. System and methods for documenting networks with electronic modules
US6653845B2 (en) * 2002-02-25 2003-11-25 Daimlerchrysler Corporation Addressable open connector test circuit
US6937157B1 (en) * 2002-05-13 2005-08-30 Turnstone Systems, Inc. Smart cable for design of high density metallic cross connect systems
US6898368B2 (en) * 2002-09-13 2005-05-24 Fitel Usa Corp. Adapter systems for dynamically updating information related to a network and methods for developing the adapter systems
US7081808B2 (en) * 2002-09-13 2006-07-25 Fitel Usa Corp. Self-registration systems and methods for dynamically updating information related to a network
FR2844600A1 (en) * 2002-09-13 2004-03-19 Thomson Licensing Sa Second subscription domestic e.g. television, apparatus checking relative position domestic network method having alternating electrical periods measured first/second apparatus and offset comparison verified/not verified
US20040052471A1 (en) * 2002-09-13 2004-03-18 Fitel Usa Corp. Connector systems for dynamically updating information related to a network and methods for developing the connector systems
JP3638933B2 (en) * 2002-11-15 2005-04-13 東京通信機工業株式会社 Wiring device
JP3745728B2 (en) * 2002-11-15 2006-02-15 東京通信機工業株式会社 Adapter for memory function connector
JP2004303701A (en) * 2003-04-01 2004-10-28 Seiko Epson Corp Incorrect plug insertion preventing system, plug, plug insertion part, plug control program, non-contact identification tag control program and plug insertion part control program
US20040223684A1 (en) * 2003-05-09 2004-11-11 Creo Srl Calibration of optical cross-connect switches
US20050141431A1 (en) 2003-08-06 2005-06-30 Caveney Jack E. Network managed device installation and provisioning technique
US7352289B1 (en) * 2003-09-11 2008-04-01 Sun Microsystems, Inc. System and method for detecting the connection state of a network cable connector
US20050224585A1 (en) * 2004-04-02 2005-10-13 Durrant Richard C E Radio frequency identification of a connector by a patch panel or other similar structure
US7243837B2 (en) * 2004-04-02 2007-07-17 Stratos International, Inc. Media converter RFID security tag
EP1743490B1 (en) 2004-05-03 2011-09-14 Panduit Corporation Powered patch panel
JP4790722B2 (en) * 2004-11-03 2011-10-12 パンドウィット・コーポレーション Patch Panel Documentation for Patch Panel and Methods and Equipment for Revision
WO2006063023A1 (en) * 2004-12-06 2006-06-15 Commscope Solutions Properties, Llc Telecommunications patching system that utilizes rfid tags to detect and identify patch cord interconnections
US20060129347A1 (en) * 2004-12-10 2006-06-15 The Regents Of The University Of Californica Generic transducer interface
JP4585324B2 (en) * 2005-01-26 2010-11-24 株式会社日立製作所 Electrical device control method and electrical device control system
US7613124B2 (en) 2005-05-19 2009-11-03 Panduit Corp. Method and apparatus for documenting network paths
US20060277324A1 (en) * 2005-06-02 2006-12-07 Alfredo Aldereguia Apparatus, system, and method for automatically detecting a cable configuration
EP1734692A1 (en) * 2005-06-14 2006-12-20 Panduit Corporation Method and apparatus for monitoring physical network topology information
US20060282529A1 (en) * 2005-06-14 2006-12-14 Panduit Corp. Method and apparatus for monitoring physical network topology information
EP1922786A1 (en) 2005-08-08 2008-05-21 Panduit Corp. Systems and methods for detecting a patch cord end connection
US7234944B2 (en) * 2005-08-26 2007-06-26 Panduit Corp. Patch field documentation and revision systems
US7978845B2 (en) * 2005-09-28 2011-07-12 Panduit Corp. Powered patch panel
US7811119B2 (en) * 2005-11-18 2010-10-12 Panduit Corp. Smart cable provisioning for a patch cord management system
EP1791048B1 (en) * 2005-11-25 2008-03-05 Siemens Aktiengesellschaft Automation system comprising an RFID-identified sensor or actuator
US7768418B2 (en) * 2005-12-06 2010-08-03 Panduit Corp. Power patch panel with guided MAC capability
US7488206B2 (en) * 2006-02-14 2009-02-10 Panduit Corp. Method and apparatus for patch panel patch cord documentation and revision
US7869426B2 (en) * 2006-03-22 2011-01-11 Adc Gmbh Intelligent patching system and method
US20070221730A1 (en) * 2006-03-27 2007-09-27 Mcreynolds Alan RFID enabled cable tracking
US7227345B1 (en) * 2006-07-13 2007-06-05 International Business Machines Corporation Fibre Channel Cable Locator
US8421626B2 (en) * 2006-10-31 2013-04-16 Corning Cable Systems, Llc Radio frequency identification transponder for communicating condition of a component
US8264366B2 (en) * 2009-03-31 2012-09-11 Corning Incorporated Components, systems, and methods for associating sensor data with component location
US7782202B2 (en) 2006-10-31 2010-08-24 Corning Cable Systems, Llc Radio frequency identification of component connections
US9652707B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Radio frequency identification (RFID) connected tag communications protocol and related systems and methods
US10032102B2 (en) 2006-10-31 2018-07-24 Fiber Mountain, Inc. Excess radio-frequency (RF) power storage in RF identification (RFID) tags, and related systems and methods
US9652709B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Communications between multiple radio frequency identification (RFID) connected tags and one or more devices, and related systems and methods
US7772975B2 (en) * 2006-10-31 2010-08-10 Corning Cable Systems, Llc System for mapping connections using RFID function
US9652708B2 (en) 2006-10-31 2017-05-16 Fiber Mountain, Inc. Protocol for communications between a radio frequency identification (RFID) tag and a connected device, and related systems and methods
US8116434B2 (en) 2006-11-29 2012-02-14 Commscope, Inc. Of North Carolina Telecommunications patching system that facilitates detection and identification of patch cords
US20080175159A1 (en) * 2006-12-13 2008-07-24 Panduit Corp. High Performance Three-Port Switch for Managed Ethernet Systems
US7760094B1 (en) 2006-12-14 2010-07-20 Corning Cable Systems Llc RFID systems and methods for optical fiber network deployment and maintenance
US8264355B2 (en) * 2006-12-14 2012-09-11 Corning Cable Systems Llc RFID systems and methods for optical fiber network deployment and maintenance
US7667574B2 (en) * 2006-12-14 2010-02-23 Corning Cable Systems, Llc Signal-processing systems and methods for RFID-tag signals
US7965186B2 (en) * 2007-03-09 2011-06-21 Corning Cable Systems, Llc Passive RFID elements having visual indicators
US7547150B2 (en) 2007-03-09 2009-06-16 Corning Cable Systems, Llc Optically addressed RFID elements
US7785016B2 (en) * 2007-03-12 2010-08-31 Corning Cable Systems Llc Fiber optic adapter and connector assemblies
US7573254B2 (en) 2007-04-12 2009-08-11 Commscope Inc. Of North Carolina Systems and methods of identifying patch cord connections in a communications patching system using common mode transmission
US7715679B2 (en) 2007-05-07 2010-05-11 Adc Telecommunications, Inc. Fiber optic enclosure with external cable spool
US8044804B1 (en) * 2007-06-01 2011-10-25 Hewlett-Packard Development Company, L. P. Localizing a tag using variable signal range
US7850260B2 (en) * 2007-06-22 2010-12-14 Oracle America, Inc. Injection/ejection mechanism
CN101340238B (en) * 2007-07-05 2011-11-02 华为技术有限公司 Determination method and apparatus for connection relation between optical interfaces
US7756379B2 (en) 2007-08-06 2010-07-13 Adc Telecommunications, Inc. Fiber optic enclosure with internal cable spool
US7855697B2 (en) * 2007-08-13 2010-12-21 Corning Cable Systems, Llc Antenna systems for passive RFID tags
EP2206355B1 (en) * 2007-10-19 2011-05-11 Panduit Corp. Communication port identification system
US8203450B2 (en) * 2008-01-02 2012-06-19 Commscope, Inc. Intelligent MPO-to-MPO patch panels having connectivity tracking capabilities and related methods
WO2009105632A1 (en) 2008-02-21 2009-08-27 Panduit Corp. Intelligent inter-connect and cross-connect patching system
US8525649B2 (en) * 2008-04-17 2013-09-03 Finisar Corporation Intelligent bail
EP2306421B1 (en) * 2008-06-30 2014-08-13 Huawei Technologies Co., Ltd. An optical assemblymodule, optical node, optical distribution system and the management method thereof
US8248208B2 (en) 2008-07-15 2012-08-21 Corning Cable Systems, Llc. RFID-based active labeling system for telecommunication systems
US8731405B2 (en) 2008-08-28 2014-05-20 Corning Cable Systems Llc RFID-based systems and methods for collecting telecommunications network information
US8306935B2 (en) 2008-12-22 2012-11-06 Panduit Corp. Physical infrastructure management system
BRPI0923858B1 (en) 2008-12-31 2019-10-29 Panduit Corp plug for use with a cord mapping system, and cord mapping system
CN101782882A (en) * 2009-01-16 2010-07-21 鸿富锦精密工业(深圳)有限公司 Adapter board
CN104954170A (en) * 2009-02-13 2015-09-30 Adc长途电讯有限公司 System for communication, connector assembly, and equipment for communication
US8128428B2 (en) * 2009-02-19 2012-03-06 Panduit Corp. Cross connect patch guidance system
US8897637B2 (en) 2009-04-22 2014-11-25 Adc Gmbh Method and arrangement for identifying at least one object
CA2668976A1 (en) * 2009-06-15 2010-12-15 Fiber Connections Inc. Network mapping function
US8432252B2 (en) * 2009-06-19 2013-04-30 Authentec, Inc. Finger sensor having remote web based notifications
US8643476B2 (en) * 2009-06-29 2014-02-04 Commscope, Inc. Of North Carolina Dynamic labeling of patch panel ports
US9123217B2 (en) 2009-06-29 2015-09-01 Commscope, Inc. Of North Carolina Methods of automatically recording patching changes at passive patch panels and network equipment
US9538262B2 (en) 2009-08-21 2017-01-03 Commscope, Inc. Of North Carolina Systems, equipment and methods for automatically tracking cable connections and for identifying work area devices and related methods of operating communications networks
US8994547B2 (en) * 2009-08-21 2015-03-31 Commscope, Inc. Of North Carolina Systems for automatically tracking patching connections to network devices using a separate control channel and related patching equipment and methods
ES2608689T3 (en) 2009-10-16 2017-04-12 Adc Telecommunications, Inc. Directed connectivity in electrical systems and their methods
US8596882B2 (en) 2009-10-16 2013-12-03 Adc Telecommunications, Inc. Managed connectivity in fiber optic systems and methods thereof
JP2013508918A (en) 2009-10-19 2013-03-07 エーディーシー テレコミュニケーションズ,インコーポレイティド Managed electrical connection system
CN102741865B (en) * 2009-11-30 2016-04-06 康宁股份有限公司 RFID condition latches
US20110185012A1 (en) * 2010-01-27 2011-07-28 Colley Matthew D System and method for generating a notification mailing list
ES2679275T3 (en) 2010-02-12 2018-08-23 Adc Telecommunications, Inc. Managed fiber connectivity systems
EP2534846B1 (en) 2010-02-12 2018-07-25 ADC Telecommunications, Inc. Communications bladed panel system
CN107508724B (en) 2010-04-29 2022-03-08 克里斯多佛·布赖恩德·谢勒 Networking cable tracker system
US8172468B2 (en) 2010-05-06 2012-05-08 Corning Incorporated Radio frequency identification (RFID) in communication connections, including fiber optic components
CN103038655B (en) 2010-06-11 2015-06-24 Adc长途电讯有限公司 Switch-state information aggregation
CN105807379B (en) 2010-06-23 2019-06-18 Adc电信公司 Telecommunication assembly
US8696369B2 (en) 2010-09-09 2014-04-15 Adc Telecommunications, Inc. Electrical plug with main contacts and retractable secondary contacts
US9418256B2 (en) 2010-10-20 2016-08-16 Panduit Corp. RFID system
US8816857B2 (en) 2010-10-20 2014-08-26 Panduit Corp. RFID system
US8992261B2 (en) 2010-10-22 2015-03-31 Adc Telecommunications, Inc. Single-piece plug nose with multiple contact sets
US8952707B2 (en) 2011-01-21 2015-02-10 Commscope, Inc. Of North Carolina Plug insertion detection circuits and related methods and communications connectors
JP5750960B2 (en) * 2011-03-18 2015-07-22 ソニー株式会社 Detection apparatus and detection method
US9081537B2 (en) 2011-03-25 2015-07-14 Adc Telecommunications, Inc. Identifier encoding scheme for use with multi-path connectors
US9497098B2 (en) 2011-03-25 2016-11-15 Commscope Technologies Llc Event-monitoring in a system for automatically obtaining and managing physical layer information using a reliable packet-based communication protocol
US8832503B2 (en) 2011-03-25 2014-09-09 Adc Telecommunications, Inc. Dynamically detecting a defective connector at a port
US8715012B2 (en) 2011-04-15 2014-05-06 Adc Telecommunications, Inc. Managed electrical connectivity systems
CN103635842B (en) 2011-04-15 2016-06-01 Adc电信公司 The Fiber Connectivity system being managed
US20120274452A1 (en) * 2011-04-26 2012-11-01 Aravind Chamarti Radio frequency (rf)-enabled latches and related components, assemblies, systems, and methods
US9064022B2 (en) 2011-05-17 2015-06-23 Adc Telecommunications, Inc. Component identification and tracking system for telecommunication networks
CA2877896C (en) 2011-06-24 2020-07-21 Adc Telecommunications, Inc. Fiber termination enclosure with modular plate assemblies
US9590761B2 (en) 2011-09-23 2017-03-07 Commscope Technologies Llc Detective passive RF components using radio frequency identification tags
US20130078848A1 (en) 2011-09-23 2013-03-28 Andrew Llc Intelligent Patching Systems and Methods Using Radio Frequency Identification Tags that are Interrogated Over Network Cabling and Related Communications Connectors
US9038141B2 (en) 2011-12-07 2015-05-19 Adc Telecommunications, Inc. Systems and methods for using active optical cable segments
US9172465B2 (en) * 2012-01-19 2015-10-27 Huawei Technologies Co., Ltd. Optical device, and system and method for managing optical device
CN103217744B (en) * 2012-01-19 2016-03-30 华为技术有限公司 Optical device, for managing the system and method for optical device
US9361600B2 (en) 2012-02-14 2016-06-07 Tyco Electronics Uk Ltd Physical layer management (PLM) system for use with an optical distribution frame in which trays can be selectively removed and re-attached
US9678133B2 (en) 2012-03-12 2017-06-13 Commscope, Inc. Of North Carolina Intelligent patching systems and methods using electrical cable diagnostic tests and inference-based mapping techniques
CN102636849B (en) * 2012-03-29 2014-08-06 万马电子医疗有限公司 Intelligent optical fiber management system
US9165232B2 (en) 2012-05-14 2015-10-20 Corning Incorporated Radio-frequency identification (RFID) tag-to-tag autoconnect discovery, and related methods, circuits, and systems
WO2014004421A1 (en) 2012-06-25 2014-01-03 Adc Telecommunications, Inc. Physical layer management for an active optical module
US9093796B2 (en) 2012-07-06 2015-07-28 Adc Telecommunications, Inc. Managed electrical connectivity systems
US9219543B2 (en) 2012-07-11 2015-12-22 Commscope Technologies Llc Monitoring optical decay in fiber connectivity systems
WO2014011898A1 (en) * 2012-07-11 2014-01-16 Anderson David J Managed fiber connectivity systems
US9351571B2 (en) 2012-07-11 2016-05-31 Manitowoc Foodservice Companies, Llc Connection assembly for a base and a cabinet assembly of an ice maker
US9473361B2 (en) 2012-07-11 2016-10-18 Commscope Technologies Llc Physical layer management at a wall plate device
WO2014022781A1 (en) 2012-08-03 2014-02-06 Joseph Christopher Coffey Managed fiber connectivity systems
CN104685849B (en) 2012-08-31 2018-05-01 康普技术有限责任公司 A kind of method and system that passive RF components are detected using RFID tag
US11113642B2 (en) 2012-09-27 2021-09-07 Commscope Connectivity Uk Limited Mobile application for assisting a technician in carrying out an electronic work order
US9203198B2 (en) 2012-09-28 2015-12-01 Commscope Technologies Llc Low profile faceplate having managed connectivity
US9563832B2 (en) 2012-10-08 2017-02-07 Corning Incorporated Excess radio-frequency (RF) power storage and power sharing RF identification (RFID) tags, and related connection systems and methods
US9130318B2 (en) 2012-11-16 2015-09-08 Tyco Electronics Uk Ltd. Localized reading of RFID tags located on multiple sides of a port from a single side using RFID coupling circuit and portable RFID reader
EP2936228A1 (en) 2012-12-19 2015-10-28 Tyco Electronics Raychem BVBA Distribution device with incrementally added splitters
US10050389B2 (en) 2013-01-18 2018-08-14 Mertek Industries, Llc Field-terminable traceable cables, components, kits, and methods
US9423570B2 (en) 2013-02-05 2016-08-23 Commscope Technologies Llc Optical assemblies with managed connectivity
US9379501B2 (en) 2013-02-05 2016-06-28 Commscope Technologies Llc Optical assemblies with managed connectivity
US9285552B2 (en) 2013-02-05 2016-03-15 Commscope Technologies Llc Optical assemblies with managed connectivity
CN104238047A (en) * 2013-06-06 2014-12-24 泰科电子(上海)有限公司 Optical fiber interconnection system and method
CN104297871B (en) * 2013-07-19 2017-11-10 泰科电子(上海)有限公司 Optical interconnection system and method
US9578401B2 (en) * 2013-07-24 2017-02-21 Commscope Technologies Llc Systems and methods for detecting component rotation within a communication assembly
WO2015023768A1 (en) 2013-08-14 2015-02-19 Adc Telecommunications, Inc. Inferring physical layer connection status of generic cables from planned single-end connection events
CN105874367B (en) 2013-08-21 2018-05-18 克里斯多佛·B·谢勒 Traceable networking cable with long-range release connector
WO2015035014A1 (en) 2013-09-04 2015-03-12 Adc Telecommunications, Inc. Physical layer system with support for multiple active work orders and/or multiple active technicians
US9544058B2 (en) 2013-09-24 2017-01-10 Commscope Technologies Llc Pluggable active optical module with managed connectivity support and simulated memory table
US9536119B2 (en) 2013-12-12 2017-01-03 International Business Machines Corporation Network cable tracking system
US9798096B2 (en) 2014-02-07 2017-10-24 Commscope Technologies Llc Managed fiber connectivity systems
WO2015148840A1 (en) 2014-03-26 2015-10-01 Tyco Electronics Corporation Optical adapter module with managed connectivity
US9704373B2 (en) 2014-05-29 2017-07-11 Thomas & Betts International Llc Smart lug system
US10069569B1 (en) 2017-03-06 2018-09-04 Wipro Limited Method and system for identifying connectivity in an optical fiber communication (OFC) network
US10938167B2 (en) 2018-03-06 2021-03-02 Commscope Technologies Llc Automated capture of information about fixed cabling
EP3765881A4 (en) * 2018-03-13 2021-10-27 LEONI Kabel GmbH Adapter
US10805005B2 (en) 2018-11-16 2020-10-13 Rolls-Royce Corporation Frequency spectrum system security
US11689247B2 (en) 2019-01-16 2023-06-27 Mertek Industries, Llc Patch cord including wireless components
US11435534B2 (en) * 2019-06-11 2022-09-06 Clearfield, Inc. Flexible optical fiber connectors and assemblies
EP3994844A4 (en) 2019-09-12 2023-08-09 CommScope Technologies LLC Internet of things (iot) system for cabling infrastructure

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4449247A (en) * 1980-07-30 1984-05-15 Harris Corporation Local orderwire facility for fiber optic communication system
US4760327A (en) * 1986-11-10 1988-07-26 Boston Edison Company Cable status testing
US5131061A (en) * 1991-02-13 1992-07-14 International Business Machines Corp. Modular active fiber optic coupler system
US5420512A (en) * 1991-11-21 1995-05-30 Paladin Corporation Electronic cable testing system
US5222164A (en) * 1992-08-27 1993-06-22 International Business Machines Corporation Electrically isolated optical connector identification system
CA2081608C (en) * 1992-10-28 1998-05-05 Joseph Octave Regis Morin Distribution frame and optical connector holder combination
US5305405A (en) * 1993-02-25 1994-04-19 Adc Telecommunications, Inc. Patch cord
US5394503A (en) * 1993-10-08 1995-02-28 Data Switch Corporation Optical fiber connection monitoring apparatus, patch panel control system and method of using same
US5353367A (en) * 1993-11-29 1994-10-04 Northern Telecom Limited Distribution frame and optical connector holder combination
US5463706A (en) * 1994-02-16 1995-10-31 Thomas & Betts Corporation Light traceable transmission conduit assembly
US5448675A (en) * 1994-06-09 1995-09-05 At&T Ipm Corp. Telecommunications distribution frame with tracing
US5461693A (en) * 1994-07-14 1995-10-24 At&T Ipm Corp. Optical fiber distribution frame with fiber testing
US5666453A (en) * 1994-07-15 1997-09-09 Roy Witte Fiber optic jumper cables and tracing method using same

Also Published As

Publication number Publication date
WO2000004671A9 (en) 2000-04-06
JP2002521649A (en) 2002-07-16
US6002331A (en) 1999-12-14
AU5219399A (en) 2000-02-07
CN1315026A (en) 2001-09-26
WO2000004671A2 (en) 2000-01-27
WO2000004671A3 (en) 2001-04-19
KR20010072027A (en) 2001-07-31
EP1112557A2 (en) 2001-07-04

Similar Documents

Publication Publication Date Title
US6002331A (en) Method and apparatus for identifying and tracking connections of communication lines
AU680720B2 (en) Optical fiber connection monitoring apparatus, patch panel control system and method of using same
CN102742293B (en) Automatic tracing cable connects and identifies the correlation technique of the system of work area equipment, apparatus and method and operation communication network
US7028087B2 (en) Network documentation system with electronic modules
CN101142826A (en) Telecommunications patching system that utilizes rfid tags to detect and identify patch cord interconnections
CN101982797B (en) Optical fibre connection device
US8203450B2 (en) Intelligent MPO-to-MPO patch panels having connectivity tracking capabilities and related methods
CN102726056B (en) The system connected for using the wiring of the independent control channel automatic tracing network equipment and relevant termination and method
US6692311B1 (en) Sensor system and connector used therefor
US8264366B2 (en) Components, systems, and methods for associating sensor data with component location
JP2011510402A (en) RFID system and method for automatically detecting and / or indicating the physical configuration of a complex system
US20120063501A1 (en) Storing data relating to cables
WO2008112169A1 (en) Passive rfid elements having visual indicators
WO2019071330A1 (en) System for identification of the pairs of ports and of the respective patch cords in patch panels of telecommunication networks
US20190069049A1 (en) Intelligent system for interconnecting data networking equipment
KR100486856B1 (en) Apparatus for manage a line number of optical fiber distribution
Cisco 2-Port Token Ring Fiber UFC Planning and Installation Guide
Cisco 2-Port Token Ring Fiber UFC Planning and Installation Guide
Cisco 2-Port Token Ring Fiber Universal Feature Card Planning and Installation Guide
Cisco 2-Port Token Ring Fiber Universal Feature Card Planning and Installation Guide
Cisco 2-Port Token Ring Fiber Universal Feature Card Planning and Installation Guide
Cisco 2-Port Token Ring Fiber Universal Feature Card Planning and Installation Guide
KR102139973B1 (en) Administration module of optical cable and method for operating using the same
EP1137309A2 (en) An apparatus and method of routing information between remote sites in an optical network
WO2005107092A1 (en) System and method for monitoring cross connections of telecommunication cables

Legal Events

Date Code Title Description
FZDE Dead