CA2337122C - Method of controlling particulate flowback in subterranean wells and introducing treatment chemicals - Google Patents

Method of controlling particulate flowback in subterranean wells and introducing treatment chemicals Download PDF

Info

Publication number
CA2337122C
CA2337122C CA002337122A CA2337122A CA2337122C CA 2337122 C CA2337122 C CA 2337122C CA 002337122 A CA002337122 A CA 002337122A CA 2337122 A CA2337122 A CA 2337122A CA 2337122 C CA2337122 C CA 2337122C
Authority
CA
Canada
Prior art keywords
particulate
formation
tackifying compound
treatment chemical
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002337122A
Other languages
French (fr)
Other versions
CA2337122A1 (en
Inventor
Philip D. Nguyen
Jimmie D. Weaver
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Energy Services Inc
Original Assignee
Halliburton Energy Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Halliburton Energy Services Inc filed Critical Halliburton Energy Services Inc
Publication of CA2337122A1 publication Critical patent/CA2337122A1/en
Application granted granted Critical
Publication of CA2337122C publication Critical patent/CA2337122C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/025Consolidation of loose sand or the like round the wells without excessively decreasing the permeability thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/5086Compositions based on water or polar solvents containing organic compounds macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/56Compositions for consolidating loose sand or the like around wells without excessively decreasing the permeability thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/56Compositions for consolidating loose sand or the like around wells without excessively decreasing the permeability thereof
    • C09K8/57Compositions based on water or polar solvents
    • C09K8/575Compositions based on water or polar solvents containing organic compounds
    • C09K8/5751Macromolecular compounds
    • C09K8/5755Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • C09K8/805Coated proppants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/04Gravelling of wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S166/00Wells
    • Y10S166/902Wells for inhibiting corrosion or coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/902Controlled release agent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/922Fracture fluid
    • Y10S507/924Fracture fluid with specified propping feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/939Corrosion inhibitor

Abstract

The present invention provides a method of treating a subterranean formation with a particulate laden fluid whereby particulate flowback is reduced or prevented while also providing a controlled release of a treatment chemical within the formation. The method includes the steps of providing a fluid suspension including a mixture of a particulate, a tackifying compound and a treatment chemical, pumping the suspension into a subterranean formation and depositing the mixture within the formation whereby the tackifying compound retards movement of at least a portion of the particulate within the formation upon flow of fluids from the subterranean formation and said tackifying compound retards release of at least a portion.

Description

METHOD OF CONTROLLING PARTICULATE FLOWBACK IN
SUBTERRANEAN WELLS AND INTRODUCING TREATMENT CHEMICALS

BACKGROUND OF THE INVENTION
1. Field Of The Invention This invention relates to means for recovering hydrocarbons from a subterranean formation and more particularly to a method and means for controlling particulate solids transport during the production of hydrocarbons from a subterranean formation and providing delayed release of treatment chemicals into a subterranean formation in a substantially uniform manner.
2. Brief Description Of The Prior Art Transport of particulate solids during the production of hydrocarbons from a subterranean formation is a continuing problem. The transported solids can erode or cause significant wear in the hydrocarbon production equipment used in the recovery process. The solids also can clog or plug the wellbore thereby limiting or completely stopping fluid production. Further, the transported particulates must be separated from the recovered hydrocarbons adding further expense to the processing.

The particulates which are available for transport may be present due to an unconsolidated nature of a subterranean formation and/or as a result of well treatments placing particulates in a wellbore or formation, such as, by gravel packing or propped fracturing.

In the treatment of subterranean formations, it is common to place particulate materials as a filter medium and/or a proppant in the near wellbore area and in fractures extending outwardly from the wellbore. In fracturing operations, proppant is carried into fractures created when hydraulic pressure is applied to these subterranean rock formations to a point where fractures are developed. Proppant suspended in a viscosified fracturing fluid is carried outwardly away from the wellbore within the fractures as they are created and extended with continued pumping. Upon release of pumping pressure, the proppant materials remain in the fractures holding the separated rock faces in an open position forming a channel for flow of formation fluids back to the wellbore.

Proppant flowback is the transport of proppants back into the wellbore with the production of formation fluids following fracturing. This undesirable result causes undue wear on production equipment, the need for separation of solids from the produced hydrocarbons and occasionally also decreases the efficiency of the fracturing operation since the proppant does not remain within the fracture and may limit the width or conductivity of the created flow channel. Proppant flowback often may be a aggravated by what is described as "aggressive"
flowback of the well after a stimulation treatment.

Aggressive flowback generally entails flowback of the treatment fluid at a rate of from about 0.001 to about 0.1 barrels per minute (BPM) per perforation of the treatment fluids which were introduced into the subterranean formation.

Such flowback rates accelerate or force closure of the formation upon the proppant introduced into the formation.
The rapid flowrate can result in large quantities of the proppant flowing back into the wellbore before closure occurs or where inadequate bridging within the formation occurs. The rapid flowback is highly desirable for the operator as it returns a wellbore to production of hydrocarbons significantly sooner than would result from other techniques.

Currently, the primary means for addressing the proppant flowback problem is to employ resin-coated proppants or resin consolidation of the proppant which are not capable of use in aggressive flowback situations. Further, the cost of resin-coated proppant is high, and is therefore used only as a tail-in in the last five to twenty five percent of the proppant placement. Resin-coated proppant is not always effective since there is some difficulty in placing it uniformly within the fractures. Another means showing reasonable effectiveness has been to gradually release fracturing pressure once the fracturing operation has been completed so that fracture closure pressure acting against the proppant builds slowly allowing the proppant particles to stabilize before flowback of the fracturing fluid and the beginning of hydrocarbon production. Such slow return is undesirable, however, since it reduces the production from the wellbore until the treatment fluid is removed.

In unconsolidated formations, it is common to place a filtration bed of gravel in the near-wellbore area in order to present a physical barrier to the transport of unconsolidated formation fines with the production of hydrocarbons.
Typically, such so-called "gravel packing operations" involve the pumping and placement of a quantity of gravel and/or sand having a mesh size between about 10 and 60 mesh on the U.S.
Standard Sieve Series into the unconsolidated formation adjacent to the wellbore. It is sometimes also desirable to bind the gravel particles together in order to form a porous matrix through which formation fluids can pass while straining out and retaining the bulk of the unconsolidated sand and/or fines transported to the near wellbore area by the formation fluids. The gravel particles may constitute a resin-coated gravel which is either partially cured and subsequently completes curing or can be cured by an overflush of a chemical binding agent once the gravel is in place. It has also been known to add various hardenable binding agents or hardenable adhesives directly to an overflush of unconsolidated gravel in order to bind the particles together.

U. S. Patents 5,330,005, 5,439,055 and 5,501,275 disclose a method for overcoming the difficulties of resin coating proppants or gravel packs by the incorporation of a fibrous material in the fluid with which the particulates are introduced into the subterranean formation. The fibers generally have a length ranging upwardly from about 2 millimeters and a diameter of from about 6 to about 200 microns. Fibrillated fibers of smaller diameter also may be used. The fibers are believed to act to bridge across constrictions and orifices in the proppant pack and form a mat or framework which holds the particulates in place thereby limiting particulate flowback. The fibers typically result in a 25 percent or greater loss in permeability of the proppant pack that is created in comparison to a pack without the fibers.

While this technique may function to limit some flowback, it fails to secure the particulates to one another in the manner achieved by use of resin coated particulates. U.S.

Patent 5,501,274 discloses a method for reducing proppant flowback by the incorporation of thermoplastic material in particulate, ribbon or flake form with the proppant. Upon deposition of the proppant and thermoplastic material in the formation, the thermoplastic material softens and causes particulates adjacent the material to adhere to the thermoplastic creating agglomerates. The agglomerates then bridge with the other agglomerates and other particulates to prevent flowback from the formation.

It would be desirable to provide a more permanent method which will bind greater numbers of particles of the particulate to one another whereby agglomerates may be formed which would further assist in preventing movement or flowback of particulates from a wellbore or formation without significantly reducing the permeability of the particulate pack during aggressive flowback of treatment fluids.

It is also desirable to provide a method by which a substantially uniform release of a treatment chemical such as a gel breaker, scale inhibitor, biocide, corrosion inhibitor, paraffin inhibitor or other treatment chemical may be effected within a proppant pack in a subterranean formation. It is also desirable to be able to control the rate of release of the treatment chemical within the subterranean formation.

BRIEF SUMMARY OF THE INVENTION

The present invention provides a method and fluid for treating a subterranean formation and uniformly delivering a controlled release of a treatment chemical to the formation as well as providing a resultant porous particulate pack that inhibits the flow of particulates back through the wellbore during the production of hydrocarbons without significant effects upon the permeability of the particulate pack.

In accordance with the invention, a method of treating a subterranean formation penetrated by a wellbore is provided comprising the steps of providing a fluid suspension including a mixture of particulate material, a material comprising a liquid or solution of a tackifying compound, which coats at least a portion of the particulate upon admixture therewith, a treatment chemical which may be in particulate form or coated upon or in a substrate and, optionally, a hardenable resin, which coats or is coated upon at least a portion of the particulate, pumping the fluid suspension including the coated particulate and treatment chemical through the wellbore and depositing the mixture in the formation. Upon deposition of proppants having been coated with the tackifying compound and optionally the resin material mixture in the formation the coating causes particulate adjacent to the coated material as well as the dispersed treatment chemical particles to adhere to the coated material thereby creating proppant agglomerates which bridge against other particles in the formation to minimize initial particulate flowback and the hardenable resin, when present, subsequently consolidates the particulate.

The coated material is effective in inhibiting the flowback of particulate in a porous pack having a size ranging from about 2 to about 400 mesh in intimate admixture with the tackifying compound coated particulates.

The coated material is effective in consolidating particulate into the form of agglomerates in a formation as a result of a fracturing or gravel packing treatment performed on a subterranean formation during aggressive flowback of the treatment fluid.

DETAILED DESCRIPTION OF THE INVENTION

In accordance with the present invention, a liquid or solution of a tackifying compound is incorporated in an intimate mixture with a particulate material such as conventional proppants or gravel packing materials together with an optional hardenable resin and introduced into a subterranean formation.

As used in this specification, the term "intimate mixture" will be understood to mean a substantially uniform dispersion of the components in the mixture. The term "simultaneous mixture" will be understood to mean a mixture of components that are blended together in the initial steps of the subterranean formation treatment process or the preparation for the performance of the treatment process.

The coated particulate or proppant material may comprise substantially any substrate material that does not undesirably chemically interact with other components used in treating the subterranean formation. The material may comprise sand, ceramics, glass, sintered bauxite, resin coated sand, resin beads, metal beads and the like. The coated material also may comprise an additional material that is admixed with a particulate and introduced into a subterranean formation to reduce particulate flowback. In this instance the additional substrate material may comprise glass, ceramic, carbon composites, natural or synthetic polymers or metal and the like in the form of fibers, flakes, ribbons, beads, shavings, platelets and the like. In this instance, the additional substrate material generally will be admixed with the particulate in an amount of from about 0.1 to about 5 percent by weight of the particulate.

Surprisingly, it has been found that the additional material also may comprise porous or non-porous substrates upon which a treatment chemical is either absorbed or coated or even particulates or agglomerates of particles of a desired solid treatment chemical which exhibits solubility in the formation fluids upon contact therewith. The additional material may or may not function as a proppant or gravel pack material in the subterranean formation, depending upon the presence or absence of a substrate and its properties. The treatment chemical may comprise gel breakers, such as oxidizers, enzymes or hydrolyzable esters that are capable of producing a pH change in the fluid, scale inhibitors, biocides, corrosion inhibitors, paraffin inhibitors or substantially any other chemical which is soluble in the fluids in the formation at the temperature conditions within the formation within which it is placed. It has been found that the tackifying compound, upon at least partially coating the treatment chemical, retards the dissolution or absorption of the treatment chemical by the formation fluids. The treatment chemical is slowly released within the formation by contact with the fluids present in the formation. The tackifying compound changes the interfacial surface tension effects of the fluids in contact with the treatment chemicals to reduce wetting of the treatment chemicals by the formation fluids thereby reducing the dissolution rate of the chemicals.

The presence of the tackifying compound on the particulate or substrate material causes the treatment chemical containing or coated particles to adhere to and remain dispersed within the coated particulate both during mixing, introduction into the formation and upon placement therein. The transported treatment chemicals are not subject to the gravity segregation or premature settling from the particulate material with which it is introduced. Thus, the treatment chemicals can be uniformly dispersed in a proppant pack or gravel pack without undesired segregation or settling to enable uniform release of the treatment chemical within the formation.

The tackifying compound comprises a liquid or a solution of a compound capable of forming at least a partial coating upon the substrate material with which it is admixed prior to or subsequent to placement in the subterranean formation. In some instances, the tackifying compound may be a solid at ambient surface conditions and upon initial admixing with the particulate and after heating upon entry into the wellbore for introduction into the subterranean formation become a melted liquid which at least partially coats a portion of the particulate. Compounds suitable for use as a tackifying compound comprise substantially any compound which when in liquid form or in a solvent solution will form a non-hardening coating, by themselves, upon the particulate which facilitates agglomeration and will increase the continuous critical resuspension velocity of the particulate when contacted by a stream of water as hereinafter described in Example I by at least about 30 percent over the particulate alone when present in a 0.5 percent by weight active material concentration.

Preferably, the continuous critical resuspension velocity is increased by at least 50 percent over particulate alone. A
particularly preferred group of tackifying compounds comprise polyamides which are liquids or in solvent solution at the temperature of the subterranean formation to be treated such that the polyamides are, by themselves, non-hardening when present on the particulates introduced into the subterranean formation. A particularly preferred product is a condensation reaction product comprised of commercially available polyacids and a polyamine. Such commercial products include compounds such as mixtures of C36 dibasic acids containing some trimer and higher oligomers and also small amounts of monomer acids which are reacted with polyamines. Other polyacids include trimer acids, synthetic acids produced from fatty acids, maleic anhydride and acrylic acid and the like. Such acid compounds are available from companies such as Witco, Union Camp, Chemtall, and Emery Industries. The reaction products are available from, for example, Champion Chemicals, Inc. and Witco.

In general, the polyamides of the present invention are commercially produced in batchwise processing of polyacids predominately having two or more acid functionalities per molecule with a polyamine. As is well known in the manufacturing industry, the polyacids and polyfunctional amines are introduced into a reactor where, with agitation, the mildly exothermic formation of the amine salt occurs.
After mixing, heat is applied to promote endothermic dehydration and formation of the polymer melt by polycondensation. The water of reaction is condensed and removed leaving the polyamide. The molecular weight and final properties of the polymer are controlled by choice and ratio of feedstock, heating rate, and judicious use of monofunctional acids and amines to terminate chain propagation. Generally an excess of polyamine is present to prevent runaway chain propagation. Unreacted amines can be removed by distillation, if desired. Often a solvent, such as an alcohol, is admixed with the final condensation reaction product to produce a liquid solution that can readily be handled. The condensation reaction generally is accomplished at a temperature of from about 225 F to about 450 F under a nitrogen sweep to remove the condensed water from the reaction. The polyamines can comprise, for example, ethylenediamine, diethylenetriamine, triethylene tetraamine, amino ethyl piperazine and the like.

The polyamides can be converted to quaternary compounds by reaction with methylene chloride, dimethyl sulfate, benzylchloride, diethyl sulfate and the like. Typically the quaternization reaction would be effected at a temperature of from about 100 to about 200 F over a period of from about 4 to 6 hours.

The quaternization reaction may be employed to improve the chemical compatibility of the tackifying compound with the other chemicals utilized in the treatment fluids.
Quaternization of the tackifying compound can reduce effects upon breakers in the fluids and reduce or minimize the buffer effects of the compounds when present in various fluids.

Additional compounds which may be utilized as tackifying compounds include liquids and solutions of, for example, polyesters, polyethers and polycarbamates, polycarbonates, styrene-butadiene latticies, natural or synthetic resins such as shellac and the like.

The tackifying compound is admixed with the particulate and the treatment chemical particles in an amount of from about 0.1 to about 3.0 percent active material by weight of the coated particulate. It is to be understood that larger quantities may be used, however, the larger quantities generally do not significantly increase performance and could undesirably reduce the permeability of the particulate pack.
Preferably, the tackifying compound is admixed with the particulate and treatment chemical particles introduced into the subterranean formation in an amount of from about 0.25 to about 2.0 percent by weight of the coated particulate.

When the tackifying compound is utilized with another material that is to be admixed with the particulate and which is to be at least partially coated with the tackifying compound, such as glass fibers or the like, the compound is present in an amount of from about 10 to about 250 percent active material by weight of the glass fibers or other added material and generally from about 0.1 to about 3 percent active material by weight of the quantity of particulate with which the coated material is intimately admixed. Preferably the tackifying compound is present in an amount of from about 50 to about 150 percent of the material which is to be at least partially coated with the tackifying compound and then added to the particulate. At least a portion of the tackifying compound introduced with the additional material will contact and coat at least a portion of the particulate with which it is admixed.

The hardenable resin, when present, comprises an epoxy or phenolic resin or other compound capable of being at least partially coated upon a particulate substrate and then cured to a higher degree of polylnerization. Examples of such resins include phenol-aldehyde resins of both the resole and novolac type, urea-aldehyde resins, melamine-aldehyde resins, epoxy resins, furfuryl alcohol resins and the like.
The curing may result from heating the resin to a higher temperature such as can occur with the resole resins or by the addition of a catalyst or crosslinker to the resin which initiates polymerization. Admixtures of resins such as the resole and novalac resins may be utilized wherein sufficient resole resin is incorporated to initiate polymerization in the novalac resin. Various resins are described in for example U.S.
Patents No. 5,420,174; No. 5,218,038; No. 5,425,994 and No. 4,888,240.
Particularly preferred resins include epoxy resins such as "EPON 828" epoxy resin from Shell Chemical C ompany, 1 iouston, Texas. I'henolic resins such as "Resin 1866" from Acme Resin Corporation, Borden Division, Forrest Park, Illinois, furan resins such as "ARS-1500" resin trom Advanced Resin Systems, Des Plains, Illinois and novalac resins such as "Bakelite 9283 FP" resin also available from Advanced Resin Systems.

'I'he resin is admixed with particulate in an aniount of from about 0.01 to about 5.0 pet-cent by weight of the particulate. Preferably, the resin is admixed with the particulate in an amount of from about 0.05 about 1.0 percent by weight of the particulate. Curing agents, catalysts or crosslinkers selected from those well known in the art may be utilized with the resin to harden the resin and form a consolidated matrix of particulate.

The liquid or solution of tackifying compound interacts mechanically with the particles of particulate introduced into the subterranean formation to limit or prevent the flowback of particulates to the wellbore during initial flowback. When the hardenable resin is present, the tackifying compound substantially limits flowback prior to hardening and consolidation of the particulates by the hardenable resin.

The tackifying compound causes the treatment chemical particles admixed with the coated particulates to adhere to the coated particles and to remain uniformly dispersed within the portion of the coated particulate to which it is added.

In one embodiment, the tackifying compound, when comprised of polyamides that contain reactive sites such as amine groups, may be admixed and contacted with a material that has multi-functional reactive sites which are capable of reacting with the reactive sites on the tackifying compound to form a hard reaction product which consolidates the agglomerates formed by the tackifying compound. A "hard reaction product" as used herein means that the reaction of the tackifying compound with the multifunctional material will result in a substantially nonflowable reaction product that exhibits a higher compressive strength in a consolidated agglomerate than the tackifying compound alone with the particulates. One means of evaluating the consolidated agglomerate to determine whether an increase in compressive strength has occurred is through testing with a penetrometer.

Samples may be prepared comprising particulate coated with the tackifying compound, multifunctional material and an admixture as described herein and penetrometer readings can be made using equipment such as a PWG Penetrometer from Precision Scientific Company, Chicago, Illinois. Comparison of the penetrometer readings readily demonstrates the change that has occurred as a result of the reaction. In this instance, the tackifying compound also functions as the hardenable resin.
The material having multi-functional reactive sites include compounds such as aldehydes such as formaldehyde, dialdehydes such as glutaraldehyde, hemiacetals or aldehyde releasing compounds, diacid halides, dihalides such as dichlorides and dibromides, polyacid anhydrides such as citric acid anhydride, epoxides and the like. Preferred compounds for use with polyamides containing reactive sites comprise furfuraldehyde, glutaraldehyde or aldehyde condensates and the like. The multi-functional compound is admixed with the tackifying compound in an amount of from about 0.01 to about 50 percent by weight of the tackifying compound to effect formation of the reaction product. Preferably, the compound is present in an amount of from about 0.5 to about 1 percent by weight of the tackifying compound.

The liquid or solution of tackifying compound and hardenable resin generally are incorporated with the particulate in any of the conventional fracturing or gravel packing fluids comprised of an aqueous fluid, an aqueous foam, a hydrocarbon fluid or an emulsion, a viscosifying agent and any of the various known breakers, buffers, surfactants, clay stabilizers or the like.

Generally the tackifying compound and hardenable resin may be incorporated into fluids having a pH in the range of from about 3 to about 12 for introduction into a subterranean formation. The compounds are useful in reducing particulate movement within the formation at temperatures from about ambient to in excess of 300 F. It is to be understood that not every hardenable resin or tackifying compound will be useful over the entire pH or temperature range but every compound is useful over at least some portion of the range and individuals can readily determine the useful operating range for various products utilizing well known tests and without undue experimentation.

The liquid or solution of tackifying compound and the hardenable resin generally are incorporated with the particulate as a simultaneous mixture by introduction into the fracturing or gravel packing fluid along with the particulate.

The treatment chemical may be introduced in a similar manner and may be at least partially coated by the tackifying compound or may adhere to the particulate which has been at least partially coated with the tackifying compound.
Fracturing fluid slurries are introduced into the subterranean formation at a rate and pressure sufficient to create at least one fracture in the formation into which particulate then is introduced to prop the created fracture open to facilitate hydrocarbon production. Gravel packing treatments generally are performed at lower rates and pressures whereby the fluid can be introduced into a formation to create a controlled particle size pack surrounding a screen positioned in the wellbore where fracturing of the formation may or may not occur. The particulate pack surrounding the wellbore then functions to prevent fines or formation particulate migration into the wellbore with the production of hydrocarbons from the subterranean formation. The treatment chemical then is dissolved by the fluids present in the formation to provide the desired treatment. The dissolution may be effected with either the natural formation fluids or a fluid that may be introduced into the formation specifically to dissolve the treatment chemical.

The gravel packing treatment also may be performed without a screen in the wellbore. In such a screenless completion, the fluid generally is introduced into the wellbore to fill the perforations and wellbore to a level above the perforations and permitted to consolidate. The consolidated pack can then be drilled or reamed out to reopen the bore while providing a consolidated pack to screen fines and formation particulate from migrating into the wellbore.
When the treatment chemical comprises a breaker, uniform dispersion within the particulate pack can result in better clean-up of viscosifying agents from the gravel pack and higher pack permeability and less formation damage from the filter cake.

The tackifying compound may be introduced into the fluid before, after or simultaneously with introduction of the particulate into the fluid. The liquid or solution may be incorporated with the entire quantity of particulate introduced into the subterranean formation or it may be introduced with only a portion of the particulate, such as in the final stages of the treatment to place the intimate mixture in the formation in the vicinity of the wellbore. For example, the tackifying compound may be added to only the final 20 to 30 percent of the particulate laden fluid introduced into the formation and the hardenable resin may be added to only the last 10 to 20 percent of the particulate laden fluid. In this instance, the intimate mixture will form a tail-in to the treatment which upon interaction within the formation with the particulate will cause the particles to bridge on the agglomerates formed therein and prevent movement of the particles into the wellbore with any produced fluids.
The tackifying compound and hardenable resin may be introduced into the blender or into any flowline in which they will contact the material to be at least partially coated by the compounds. The compounds may be introduced with metering pumps or the like prior to entry of the treatment fluid into the subterranean formation. The treatment chemicals generally will be introduced into those portions of the particulate that are coated with the tackifying compound unless the treatment chemical is itself at least partially coated with the tackifying compound. In this instance, the treatment chemical may be introduced with any of the particulate introduced into the subterranean formation.

In an alternate embodiment, the particulate may be premixed with either the tackifying compound or the hardenable resin prior to admixing with a treatment fluid and the other constituents for use in a subterranean formation. In some instances, resin precoated particulates may be utilized and the tackifying compound then would be added during performance of the subterranean formation treatment. Depending upon the type of resin coating employed, a catalyst then would be added to the treatment fluid or introduced in a flush fluid or the like.

Surprisingly, it has been found that use of the method of the present invention can produce high permeability tunnels extending from wellbore perforations back into proppant packed fractures created in the subterranean formation which then may be consolidated. Control of the flowback rate of the treatment or formation fluids from the wellbore can be used to provide a controlled erosion of the treated particulate immediately adjacent a perforation in the wellbore. The flowback rate is controlled so as to provide a level above the initial critical resuspension velocity of the tackifying compound but generally is maintained below the continuous critical resuspension velocity. This results in controlled production of particulate from the formation. The erosion surprisingly has been found to be very uniform in nature and to create a tunnel into the particulate in the formation generally corresponding to the size and shape of the perforation in the wellbore. After the tunnel is formed, the hardenable resin consolidates the remaining particulate to provide a high permeability passage or tunnel from the formation to the wellbore.

To further illustrate the present invention and not by way of limitation, the following examples are provided.

EXAMPLE I

The evaluation of a liquid or solution of a compound for use as a tackifying compound is accomplished by the following test. A critical resuspension velocity is first determined for the material upon which the tackifying compound is to be coated. The apparatus comprises a 1/2" glass tee which is connected to an inlet source of water and an outlet disposal line is blocked to fluid flow. A water slurry of particulate is aspirated into the tee through the inlet and collected within a lower portion of said tee by filtration against a screen. When the lower portion of the tee is full, the vacuum source is removed and a plug is used to seal the end of the lower portion of the tee. The flow channel from inlet to outlet then is swabbed clean and a volumetrically controlled pump, such as a "MOYNO" pump, is connected to the inlet and a controlled flow of water is initiated. The velocity of the fluid is slowly increased through the inlet until the first particle of particulate material is picked up by the flowing water stream. This determines the baseline for the starting of the resuspension velocity. The flow rate then is further increased until the removal of particles becomes continuous.
This determines the baseline for the continuous resuspension velocity. The test then is terminated and the apparatus is refilled with particulate having a coating corresponding to about 0.5 percent active material by weight of the particulate applied thereto. Similar trends generally are seen in the results when the concentrations tested are from about 0.1 to about 3 percent, however, the 0.5 percent level which is within the preferred application range is preferred for standardization of the procedure. The test is repeated to determine the starting point of particulate removal and the velocity at which removal becomes continuous. The percent of velocity increase (or decrease) then is determined based upon the initial or continuous baseline value. The results of several tests employing the preferred polyamide of the present invention, and conventional epoxy and phenolic resins known for use in consolidation treatments in subterranean formations with 12/20 and 20/40 mesh sand are set forth below in Table I.

TABLE I

Percent Of Velocity Change At:
Coating Agent, %- V/Wt Starting of Continuous Test Particulate Sand Particle Sand No. Size Particulate Transport Transport 1 20/40/mesh None 0 sand 2 20/40 mesh 1/2 percent 192 222 sand polyamide 3 20/40 mesh 1 percent 271 391 sand polyamide 4 20/40 mesh 1/2 percent -0.5 6.5 sand phenolic 20/40 mesh 1 percent -9 -6.8 sand phenolic 6 20/40 mesh 1/2 percent -9 -1.2 sand epoxy 7 20/40 mesh 1 percent 5.2 12.2 sand epoxy 8 12/20 mesh 1/2 percent 228 173 sand polyamide 9 12/20 mesh 1 percent 367 242 sand polyamide 12/20 mesh 1/2 percent 42 22 sand phenolic 11 12/20 mesh 1 percent 42 13 sand phenolic 12 12/20 mesh 1/2 percent 48 30 sand epoxy 13 12/20 mesh 1 percent 38 15 sand epoxy The data clearly illustrates the substantial increase in the critical resuspension velocity of a particulate coated with the tackifying compound in comparison to other known formation consolidation agents which require hardening to be effective.

The test results clearly demonstrate the beneficial results achieved by practice of the method of the present invention with respect to proppant production from a simulated formation.

EXAMPLE II

The stabilization properties of the method of the present invention are determined by comparison to untreated sand and sand including a tackifying compound. The flowback velocity is measured in an American Petroleum Institute approved simulated fracture flow cell. The cell contains Ohio sandstone cores having a proppant bed size of about 1.5 inches in height, about 7 inches in length and about 0.25 inches in width between the cores. The bed is initially prepacked with 20/40 mesh sand by introducing the sand into the cell in an aqueous slurry or a gelled fluid containing 40 pounds of guar per 1000 gallons of aqueous fluid. The cell is fitted with a 0.3 inch hole at one end to simulate a perforation.

The hole is visible through a sight glass so that proppant production through the hole can be visually determined.
The cell then was cleaned and packed with another proppant pack for testing. The tested materials are set forth in Table II, below.

TABLE II

ADDITIVES TO FLOW RATE, SAMPLE PACKING SAND, ~; BY WT. ml; mi.n AT WHICH
FLUID SAND FAILURE OCCURS
1 water None 84 2 gel None 90 3 gel 1% by wt 180 polyamide 4 gel 2% by wt 384 polyamide gel 11i by wt >30001 polyamide and 1%
out Bakelite 9282 FP resin 6 gel lo by wt >26002 polyamide and 1%
by wt Bakelite 9282 FP resin 1' pack heated at 250 F for 72 hours before testing, no sand production during test 2. pack heated at 180 F for 4 hours before testing no sand production during test EXAMPLE III

The controlled release properties of the method of the present invention are determined by comparison to breaker solutions, untreated substrates containing breakers and substrates containing breaker including a tackifying compound.

The breaker utilized comprised sodium persulfate.
The solution was prepared by dissolving 3 grams of sodium persulfate in 100 ml of deionized water. The particular substrates utilized comprised diatomaceous earth and amorphous silica. The diatomaceous earth substrate was prepared by dissolving 5 grams of sodium persulfate in 10 ml of deionized water to which was added 10 grams of diatomaceous earth. The sample then was dried for 24 hours in a 140 F. vacuum oven. The sample material has a concentration of 0.5 gram sodium persulfate per gram of diatomaceous earth. The amorphous silica substrate was prepared by dissolving 5 grams of sodium persulfate in 10 ml of deionized water to which was added 5 grams of amorphous silica. The sample then is fried for 24 hours in a 140 F. vacuum oven. The sample material has a concentration of 1 gram sodium persulfate per gram of amorphous silica.

The samples are admixed with a quantity of a crosslinked hydroxypropylguar containing fluid. The gelled fluid is prepared by hydrating hydroxypropylguar in tap water in an amount of 25 pounds per 1000 gallons of fluid. A liquid borate containing crosslinker such as described in U.S. Patent 5,827,804 issued October 27, 1998, the entire disclosure of which is incorporated herein by reference, then was admixed with the gelled fluid in an amount of 2 gallons per 1000 gallons of fluid. The crosslinked fluid then is admixed with a quantity of 20-40 mesh sand, tackifying compound and breaker or substrate loaded breaker in a concentration of 2 lbs. sodium persulfate per 1000 gallons of fluid. The tackifying compound was admixed with the sand and substrate prior to admixture with the crosslinked gel resulting in a partial coating of the substrate with the tackifying compound. The tackifying compound is present in an amount of 1.2 percent by weight of the sand present. Each sample is placed in a beaker and heated to 150 F. in a hot water bath. At designated intervals, the viscosity is measured on a Model 35 FANNTM Viscometer.
The results of the tests are set forth in the Table III, below.

TABLE III

Tackifying Viscosity, cp Sample Breaker pH Compound No: Present 0.5hr lhr 2hr 3.5hr 1 LS 8.47 No C C 1.5 1 2 LS 8.40 Yes C C 5 2.5 3 DE 8.45 No C C 1.5 1 4 AS 8.47 No C C 3 1.5 DE 8.48 Yes C C 9 3 6 AS 8.43 Yes C C 80 5 LS . liquid breaker solution DE . diatomaceous earth substrate with breaker AS . amorphous silica substrate with breaker C . fully crosslinked fluid The results clearly demonstrate the tackifying compound delayed the release of the breaker from the substrate material.

While the present invention has been described with regard to that which is currently considered to comprise the preferred embodiments of the invention, other embodiments have been suggested and still other embodiments will occur to those individuals skilled in the art upon receiving the foregoing specification. It is intended that all such embodiments shall be included within the scope of the present invention as defined by the claims appended hereto.

Claims (19)

1. A method of introducing treatment chemicals and treating a subterranean formation comprising the steps of:
introducing a particulate-containing fluid suspension into a subterranean formation;

admixing with at least a portion of said particulate in said fluid suspension a liquid or solution of a non-hardening tackifying compound whereby at least a portion of said particulate is at least partially coated by said compound;
admixing with at least a portion of said particulate in said fluid suspension a treatment chemical whereby at least a portion of said treatment chemical is contacted by said tackifying compound and at least partially coated therewith whereby the tackifying compound retards release of said treatment chemical in said fluid suspension; and depositing the tackifying compound coated particulates and treatment chemical in the subterranean formation whereby upon flowing back fluid from the formation the tackifying compound coated treatment chemical is subsequently released within the subterranean formation to treat at least a portion of the formation or fluids in contact therewith.
2. The method of claim 1 wherein said tackifying compound comprises at least one member selected from the group of polyamides, polyesters, polyethers, polycarbamates, polycarbonates, styrene-butadiene latticies and natural and synthetic resins.
3. A method of treating a subterranean formation comprising the steps of:

introducing a treatment fluid into a subterranean formation;

admixing with at least a portion of said fluid, a particulate which is introduced into and deposited within said fracture;

admixing with at least a portion of said particulate a liquid or solution of a tackifying compound comprising a polyamide whereby at least a portion of said particulate is at least partially coated by said compound such that the critical resuspension velocity of said at least partially coated particulate is increased by at least about 30 percent when tested at a level of 0.5% active material by weight over said particulate alone with water;

admixing with at least a portion of said particulate in said treatment fluid a treatment chemical whereby at least a portion of said treatment chemical is contacted by said tackifying compound and at least partially coated therewith whereby the tackifying compound retards release of said treatment chemical in said treatment fluid; and depositing the tackifying compound coated particulates and the treatment chemical in the subterranean formation whereby upon flowing back fluid from the formation the tackifying compound coated treatment chemical is subsequently released within the subterranean formation to treat at least a portion of the formation or fluids in contact therewith.
4. The method of claim 3 wherein said tackifying compound is admixed with said particulate in an amount of from about 0.1 to about 3.0 percent by weight of said particulate.
5. The method of claim 3 wherein said tackifying compound is admixed with said particulate in an amount of from about 0.25 to about 2 percent by weight of said particulate.
6. The method of claim 3 wherein said coated particulate has a critical resuspension velocity in excess of 100 percent over said particulate alone.
7. The method of claim 3 wherein said polyamide comprises predominately a condensation reaction product of a dimer acid containing some trimer and higher oligomers and some monomer acids with a polyamine.
8. The method of claim 7 wherein said treatment chemical comprises at least one member selected from the group of scale inhibitors, biocides, breakers, buffers, paraffin inhibitor and corrosion inhibitors.
9. The method of claim 8 wherein said treatment chemical is coated upon or absorbed upon an inert porous substrate or a non-porous substrate.
10. A method of treating a subterranean formation penetrated by a wellbore comprising the steps of:
providing a fluid suspension including a mixture of a particulate material and another material comprising a treatment chemical which are at least partially coated with a liquid or solution of a non-hardening tackifying compound;

introducing the fluid suspension into a subterranean formation through a wellbore; and depositing the fluid suspension in the formation whereupon flowing back fluid from the formation the tackifying compound retards movement of at least a portion of the particulate material from the formation into the wellbore and retards release of the treatment chemical within the fluid within at least a portion of the said formation.
11. The method of claim 10 wherein said treatment chemical comprises at least one member selected from the group of scale inhibitors, biocides, breakers, buffers, paraffin inhibitor and corrosion inhibitors.
12. The method of claim 10 wherein said treatment chemical is coated upon or absorbed upon an inert porous substrate or a non-porous substrate.
13. The method of claim 10 wherein said tackifying compound is present in an amount of from about 0.1 to about 3%
by weight of said particulate.
14. The method of claim 10 wherein said tackifying compound comprises at least one member selected from the group of polyamides, polyesters, polyethers, polycarbamates, polycarbonates, styrene-butadiene latticies and natural and synthetic resins.
15. A method of treating a subterranean formation penetrated by a wellbore and controlling fines migration in a particulate pack placed within said formation comprising the steps of:

providing a fluid suspension including a mixture of a particulate material and another material comprising a treatment chemical which are at least partially coated with a liquid or solution of a tackifying compound;

introducing the fluid suspension into a subterranean formation through a wellbore; and depositing the fluid suspension in the formation whereupon flowing back fluid from the formation the tackifying compound coated particulate retards movement of at least a portion of any fine particulate material moving to said wellbore from the formation and the tackifying compound coated upon said treatment chemical retards release of the treatment chemical within at least a portion of said formation.
16. The method of claim 15 wherein said treatment chemical comprises at least one member selected from the group of scale inhibitors, biocides, breakers, buffers, paraffin inhibitor and corrosion inhibitors.
17. The method of claim 16 wherein said treatment chemical is coated upon or absorbed upon an inert porous substrate or a non-porous substrate.
18. The method of claim 15 wherein said tackifying compound is present in an amount of from about 0.1 to about 3%
by weight of said particulate.
19. The method of claim 15 wherein said tackifying compound comprises at least one member selected from the group of polyamides, polyesters, polyethers, polycarbamates, polycarbonates, styrene-butadiene latticies and natural and synthetic resins.
CA002337122A 2000-03-06 2001-03-05 Method of controlling particulate flowback in subterranean wells and introducing treatment chemicals Expired - Fee Related CA2337122C (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/519,071 2000-03-06
US09/519,071 US6209643B1 (en) 1995-03-29 2000-03-06 Method of controlling particulate flowback in subterranean wells and introducing treatment chemicals

Publications (2)

Publication Number Publication Date
CA2337122A1 CA2337122A1 (en) 2001-09-06
CA2337122C true CA2337122C (en) 2009-05-19

Family

ID=24066674

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002337122A Expired - Fee Related CA2337122C (en) 2000-03-06 2001-03-05 Method of controlling particulate flowback in subterranean wells and introducing treatment chemicals

Country Status (6)

Country Link
US (1) US6209643B1 (en)
EP (1) EP1132569B1 (en)
BR (1) BR0100869A (en)
CA (1) CA2337122C (en)
DK (1) DK1132569T3 (en)
NO (1) NO20011115L (en)

Families Citing this family (212)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050028979A1 (en) * 1996-11-27 2005-02-10 Brannon Harold Dean Methods and compositions of a storable relatively lightweight proppant slurry for hydraulic fracturing and gravel packing applications
US6772838B2 (en) 1996-11-27 2004-08-10 Bj Services Company Lightweight particulate materials and uses therefor
US7080688B2 (en) * 2003-08-14 2006-07-25 Halliburton Energy Services, Inc. Compositions and methods for degrading filter cake
US7276466B2 (en) * 2001-06-11 2007-10-02 Halliburton Energy Services, Inc. Compositions and methods for reducing the viscosity of a fluid
US7168489B2 (en) * 2001-06-11 2007-01-30 Halliburton Energy Services, Inc. Orthoester compositions and methods for reducing the viscosified treatment fluids
US7140438B2 (en) * 2003-08-14 2006-11-28 Halliburton Energy Services, Inc. Orthoester compositions and methods of use in subterranean applications
US6938693B2 (en) * 2001-10-31 2005-09-06 Schlumberger Technology Corporation Methods for controlling screenouts
US7066284B2 (en) 2001-11-14 2006-06-27 Halliburton Energy Services, Inc. Method and apparatus for a monodiameter wellbore, monodiameter casing, monobore, and/or monowell
US6830105B2 (en) * 2002-03-26 2004-12-14 Halliburton Energy Services, Inc. Proppant flowback control using elastomeric component
US6691780B2 (en) * 2002-04-18 2004-02-17 Halliburton Energy Services, Inc. Tracking of particulate flowback in subterranean wells
US6877560B2 (en) * 2002-07-19 2005-04-12 Halliburton Energy Services Methods of preventing the flow-back of particulates deposited in subterranean formations
GB0219037D0 (en) 2002-08-15 2002-09-25 Bp Exploration Operating Process
US6742590B1 (en) 2002-09-05 2004-06-01 Halliburton Energy Services, Inc. Methods of treating subterranean formations using solid particles and other larger solid materials
US20040211561A1 (en) * 2003-03-06 2004-10-28 Nguyen Philip D. Methods and compositions for consolidating proppant in fractures
WO2004083600A1 (en) 2003-03-18 2004-09-30 Bj Services Company Method of treating subterranean formations using mixed density proppants or sequential proppant stages
US6951250B2 (en) * 2003-05-13 2005-10-04 Halliburton Energy Services, Inc. Sealant compositions and methods of using the same to isolate a subterranean zone from a disposal well
US7032663B2 (en) * 2003-06-27 2006-04-25 Halliburton Energy Services, Inc. Permeable cement and sand control methods utilizing permeable cement in subterranean well bores
US7044224B2 (en) * 2003-06-27 2006-05-16 Halliburton Energy Services, Inc. Permeable cement and methods of fracturing utilizing permeable cement in subterranean well bores
US7044220B2 (en) * 2003-06-27 2006-05-16 Halliburton Energy Services, Inc. Compositions and methods for improving proppant pack permeability and fracture conductivity in a subterranean well
US7178596B2 (en) * 2003-06-27 2007-02-20 Halliburton Energy Services, Inc. Methods for improving proppant pack permeability and fracture conductivity in a subterranean well
US20050130848A1 (en) * 2003-06-27 2005-06-16 Halliburton Energy Services, Inc. Compositions and methods for improving fracture conductivity in a subterranean well
US7228904B2 (en) * 2003-06-27 2007-06-12 Halliburton Energy Services, Inc. Compositions and methods for improving fracture conductivity in a subterranean well
US7036587B2 (en) * 2003-06-27 2006-05-02 Halliburton Energy Services, Inc. Methods of diverting treating fluids in subterranean zones and degradable diverting materials
US7066258B2 (en) * 2003-07-08 2006-06-27 Halliburton Energy Services, Inc. Reduced-density proppants and methods of using reduced-density proppants to enhance their transport in well bores and fractures
US20050028976A1 (en) * 2003-08-05 2005-02-10 Nguyen Philip D. Compositions and methods for controlling the release of chemicals placed on particulates
US8541051B2 (en) * 2003-08-14 2013-09-24 Halliburton Energy Services, Inc. On-the fly coating of acid-releasing degradable material onto a particulate
US7497278B2 (en) * 2003-08-14 2009-03-03 Halliburton Energy Services, Inc. Methods of degrading filter cakes in a subterranean formation
US7040403B2 (en) * 2003-08-27 2006-05-09 Halliburton Energy Services, Inc. Methods for controlling migration of particulates in a subterranean formation
US8076271B2 (en) * 2004-06-09 2011-12-13 Halliburton Energy Services, Inc. Aqueous tackifier and methods of controlling particulates
US7131491B2 (en) * 2004-06-09 2006-11-07 Halliburton Energy Services, Inc. Aqueous-based tackifier fluids and methods of use
US7204311B2 (en) * 2003-08-27 2007-04-17 Halliburton Energy Services, Inc. Methods for controlling migration of particulates in a subterranean formation
US6997259B2 (en) * 2003-09-05 2006-02-14 Halliburton Energy Services, Inc. Methods for forming a permeable and stable mass in a subterranean formation
US7032667B2 (en) * 2003-09-10 2006-04-25 Halliburtonn Energy Services, Inc. Methods for enhancing the consolidation strength of resin coated particulates
US7021377B2 (en) 2003-09-11 2006-04-04 Halliburton Energy Services, Inc. Methods of removing filter cake from well producing zones
US7833944B2 (en) 2003-09-17 2010-11-16 Halliburton Energy Services, Inc. Methods and compositions using crosslinked aliphatic polyesters in well bore applications
US7674753B2 (en) 2003-09-17 2010-03-09 Halliburton Energy Services, Inc. Treatment fluids and methods of forming degradable filter cakes comprising aliphatic polyester and their use in subterranean formations
US7829507B2 (en) * 2003-09-17 2010-11-09 Halliburton Energy Services Inc. Subterranean treatment fluids comprising a degradable bridging agent and methods of treating subterranean formations
US20050089631A1 (en) * 2003-10-22 2005-04-28 Nguyen Philip D. Methods for reducing particulate density and methods of using reduced-density particulates
US7195068B2 (en) * 2003-12-15 2007-03-27 Halliburton Energy Services, Inc. Filter cake degradation compositions and methods of use in subterranean operations
US20070007009A1 (en) * 2004-01-05 2007-01-11 Halliburton Energy Services, Inc. Methods of well stimulation and completion
US7096947B2 (en) * 2004-01-27 2006-08-29 Halliburton Energy Services, Inc. Fluid loss control additives for use in fracturing subterranean formations
US20050173116A1 (en) 2004-02-10 2005-08-11 Nguyen Philip D. Resin compositions and methods of using resin compositions to control proppant flow-back
US20050183741A1 (en) * 2004-02-20 2005-08-25 Surjaatmadja Jim B. Methods of cleaning and cutting using jetted fluids
US7211547B2 (en) 2004-03-03 2007-05-01 Halliburton Energy Services, Inc. Resin compositions and methods of using such resin compositions in subterranean applications
US7063151B2 (en) * 2004-03-05 2006-06-20 Halliburton Energy Services, Inc. Methods of preparing and using coated particulates
US7172022B2 (en) * 2004-03-17 2007-02-06 Halliburton Energy Services, Inc. Cement compositions containing degradable materials and methods of cementing in subterranean formations
US10047280B2 (en) 2013-09-20 2018-08-14 Baker Hughes, A Ge Company, Llc Organophosphorus containing composites for use in well treatment operations
US7299875B2 (en) 2004-06-08 2007-11-27 Halliburton Energy Services, Inc. Methods for controlling particulate migration
US7213651B2 (en) * 2004-06-10 2007-05-08 Bj Services Company Methods and compositions for introducing conductive channels into a hydraulic fracturing treatment
US7475728B2 (en) * 2004-07-23 2009-01-13 Halliburton Energy Services, Inc. Treatment fluids and methods of use in subterranean formations
US20060032633A1 (en) * 2004-08-10 2006-02-16 Nguyen Philip D Methods and compositions for carrier fluids comprising water-absorbent fibers
WO2006023172A2 (en) * 2004-08-16 2006-03-02 Fairmount Minerals, Ltd. Control of particulate flowback in subterranean formations using elastomeric resin coated proppants
US20060046938A1 (en) * 2004-09-02 2006-03-02 Harris Philip C Methods and compositions for delinking crosslinked fluids
US7299869B2 (en) * 2004-09-03 2007-11-27 Halliburton Energy Services, Inc. Carbon foam particulates and methods of using carbon foam particulates in subterranean applications
US7413017B2 (en) * 2004-09-24 2008-08-19 Halliburton Energy Services, Inc. Methods and compositions for inducing tip screenouts in frac-packing operations
US7757768B2 (en) 2004-10-08 2010-07-20 Halliburton Energy Services, Inc. Method and composition for enhancing coverage and displacement of treatment fluids into subterranean formations
US7093658B2 (en) * 2004-10-29 2006-08-22 Halliburton Energy Services, Inc. Foamed treatment fluids, foaming additives, and associated methods
US7648946B2 (en) 2004-11-17 2010-01-19 Halliburton Energy Services, Inc. Methods of degrading filter cakes in subterranean formations
US7325608B2 (en) * 2004-12-01 2008-02-05 Halliburton Energy Services, Inc. Methods of hydraulic fracturing and of propping fractures in subterranean formations
US7748451B2 (en) * 2004-12-08 2010-07-06 Halliburton Energy Services, Inc. Methods for improving low-quality proppant and method of using low-quality proppant in subterranean operations
US7883740B2 (en) 2004-12-12 2011-02-08 Halliburton Energy Services, Inc. Low-quality particulates and methods of making and using improved low-quality particulates
US7491682B2 (en) * 2004-12-15 2009-02-17 Bj Services Company Method of inhibiting or controlling formation of inorganic scales
US20060167133A1 (en) * 2005-01-24 2006-07-27 Jan Gromsveld Sealant composition comprising a crosslinkable material and a reduced amount of cement for a permeable zone downhole
US8703659B2 (en) * 2005-01-24 2014-04-22 Halliburton Energy Services, Inc. Sealant composition comprising a gel system and a reduced amount of cement for a permeable zone downhole
US20060169182A1 (en) * 2005-01-28 2006-08-03 Halliburton Energy Services, Inc. Methods and compositions relating to the hydrolysis of water-hydrolysable materials
US8030249B2 (en) * 2005-01-28 2011-10-04 Halliburton Energy Services, Inc. Methods and compositions relating to the hydrolysis of water-hydrolysable materials
US7267170B2 (en) * 2005-01-31 2007-09-11 Halliburton Energy Services, Inc. Self-degrading fibers and associated methods of use and manufacture
US20080009423A1 (en) * 2005-01-31 2008-01-10 Halliburton Energy Services, Inc. Self-degrading fibers and associated methods of use and manufacture
US7353876B2 (en) * 2005-02-01 2008-04-08 Halliburton Energy Services, Inc. Self-degrading cement compositions and methods of using self-degrading cement compositions in subterranean formations
US8598092B2 (en) 2005-02-02 2013-12-03 Halliburton Energy Services, Inc. Methods of preparing degradable materials and methods of use in subterranean formations
US20060169450A1 (en) * 2005-02-02 2006-08-03 Halliburton Energy Services, Inc. Degradable particulate generation and associated methods
US20060172894A1 (en) * 2005-02-02 2006-08-03 Halliburton Energy Services, Inc. Degradable particulate generation and associated methods
US20070298977A1 (en) * 2005-02-02 2007-12-27 Halliburton Energy Services, Inc. Degradable particulate generation and associated methods
US7506689B2 (en) * 2005-02-22 2009-03-24 Halliburton Energy Services, Inc. Fracturing fluids comprising degradable diverting agents and methods of use in subterranean formations
US7216705B2 (en) * 2005-02-22 2007-05-15 Halliburton Energy Services, Inc. Methods of placing treatment chemicals
US7673686B2 (en) 2005-03-29 2010-03-09 Halliburton Energy Services, Inc. Method of stabilizing unconsolidated formation for sand control
US7316273B2 (en) * 2005-04-29 2008-01-08 Halliburton Energy Services, Inc. Methods and compositions for enhancing hydrocarbon production
US7662753B2 (en) 2005-05-12 2010-02-16 Halliburton Energy Services, Inc. Degradable surfactants and methods for use
US7677315B2 (en) * 2005-05-12 2010-03-16 Halliburton Energy Services, Inc. Degradable surfactants and methods for use
US7258170B2 (en) * 2005-06-16 2007-08-21 Halliburton Energy Services, Inc. Methods for remediating subterranean formations
US7318474B2 (en) 2005-07-11 2008-01-15 Halliburton Energy Services, Inc. Methods and compositions for controlling formation fines and reducing proppant flow-back
US7484564B2 (en) * 2005-08-16 2009-02-03 Halliburton Energy Services, Inc. Delayed tackifying compositions and associated methods involving controlling particulate migration
US20070049501A1 (en) * 2005-09-01 2007-03-01 Halliburton Energy Services, Inc. Fluid-loss control pills comprising breakers that comprise orthoesters and/or poly(orthoesters) and methods of use
DE102005045180B4 (en) * 2005-09-21 2007-11-15 Center For Abrasives And Refractories Research & Development C.A.R.R.D. Gmbh Spherical corundum grains based on molten aluminum oxide and a process for their preparation
US7713916B2 (en) 2005-09-22 2010-05-11 Halliburton Energy Services, Inc. Orthoester-based surfactants and associated methods
US7387161B2 (en) * 2005-12-06 2008-06-17 Saudi Arabian Oil Company Determination of well shut-in time for curing resin-coated proppant particles
US7650940B2 (en) * 2005-12-29 2010-01-26 Halliburton Energy Services Inc. Cement compositions comprising particulate carboxylated elastomers and associated methods
US7645817B2 (en) * 2005-12-29 2010-01-12 Halliburton Energy Services, Inc. Cement compositions comprising particulate carboxylated elastomers and associated methods
US7431088B2 (en) * 2006-01-20 2008-10-07 Halliburton Energy Services, Inc. Methods of controlled acidization in a wellbore
US7776797B2 (en) * 2006-01-23 2010-08-17 Halliburton Energy Services, Inc. Lost circulation compositions
US8132623B2 (en) * 2006-01-23 2012-03-13 Halliburton Energy Services Inc. Methods of using lost circulation compositions
US7598209B2 (en) * 2006-01-26 2009-10-06 Bj Services Company Porous composites containing hydrocarbon-soluble well treatment agents and methods for using the same
US7819192B2 (en) * 2006-02-10 2010-10-26 Halliburton Energy Services, Inc. Consolidating agent emulsions and associated methods
US7926591B2 (en) 2006-02-10 2011-04-19 Halliburton Energy Services, Inc. Aqueous-based emulsified consolidating agents suitable for use in drill-in applications
US8613320B2 (en) 2006-02-10 2013-12-24 Halliburton Energy Services, Inc. Compositions and applications of resins in treating subterranean formations
US7665517B2 (en) 2006-02-15 2010-02-23 Halliburton Energy Services, Inc. Methods of cleaning sand control screens and gravel packs
US20070246214A1 (en) * 2006-03-20 2007-10-25 Fish Robert B Jr Proppants made from filled polymers for use during oil and gas production and associated processes
US7237610B1 (en) 2006-03-30 2007-07-03 Halliburton Energy Services, Inc. Degradable particulates as friction reducers for the flow of solid particulates and associated methods of use
US7621324B2 (en) * 2006-03-30 2009-11-24 Don Atencio Automated flowback and information system
US20080011476A1 (en) * 2006-07-11 2008-01-17 Halliburton Energy Services, Inc. Methods for coating particulates with tackifying compounds
US8133587B2 (en) * 2006-07-12 2012-03-13 Georgia-Pacific Chemicals Llc Proppant materials comprising a coating of thermoplastic material, and methods of making and using
US8003214B2 (en) * 2006-07-12 2011-08-23 Georgia-Pacific Chemicals Llc Well treating materials comprising coated proppants, and methods
US8329621B2 (en) 2006-07-25 2012-12-11 Halliburton Energy Services, Inc. Degradable particulates and associated methods
US8562900B2 (en) 2006-09-01 2013-10-22 Imerys Method of manufacturing and using rod-shaped proppants and anti-flowback additives
US20080066910A1 (en) * 2006-09-01 2008-03-20 Jean Andre Alary Rod-shaped proppant and anti-flowback additive, method of manufacture, and method of use
US20080060811A1 (en) * 2006-09-13 2008-03-13 Halliburton Energy Services, Inc. Method to control the physical interface between two or more fluids
US7678743B2 (en) 2006-09-20 2010-03-16 Halliburton Energy Services, Inc. Drill-in fluids and associated methods
US7687438B2 (en) 2006-09-20 2010-03-30 Halliburton Energy Services, Inc. Drill-in fluids and associated methods
US7678742B2 (en) 2006-09-20 2010-03-16 Halliburton Energy Services, Inc. Drill-in fluids and associated methods
US20080078545A1 (en) * 2006-09-28 2008-04-03 Halliburton Energy Services, Inc. Treatment fluids viscosifield with modified xanthan and associated methods for well completion and stimulation
US7455112B2 (en) * 2006-09-29 2008-11-25 Halliburton Energy Services, Inc. Methods and compositions relating to the control of the rates of acid-generating compounds in acidizing operations
US7686080B2 (en) 2006-11-09 2010-03-30 Halliburton Energy Services, Inc. Acid-generating fluid loss control additives and associated methods
US7681644B2 (en) * 2006-11-13 2010-03-23 Exxonmobil Upstream Research Company Managing lost returns in a wellbore
RU2006140858A (en) 2006-11-20 2008-05-27 Шлюмбергер Текнолоджи Б.В. (Nl) METHOD FOR RESTRICTING THE PROPANTA WITHDRAWAL FROM CRACK
KR20090087928A (en) * 2006-12-19 2009-08-18 다우 글로벌 테크놀로지스 인크. A new coating composition for proppant and the method of making the same
US7939471B2 (en) * 2006-12-29 2011-05-10 Halliburton Energy Services, Inc. Subterranean treatment fluids comprising viscoelastic surfactant gels
US7997342B2 (en) * 2006-12-29 2011-08-16 Halliburton Energy Services, Inc. Subterranean treatment fluids comprising viscoelastic surfactant gels
US8815785B2 (en) * 2006-12-29 2014-08-26 Halliburton Energy Services, Inc. Utilization of surfactant as conformance materials
US7718584B2 (en) 2006-12-29 2010-05-18 Halliburton Energy Services, Inc. Dual-function additives for enhancing fluid loss control and stabilizing viscoelastic surfactant fluids
US7727935B2 (en) * 2006-12-29 2010-06-01 Halliburton Energy Services, Inc. Dual-function additives for enhancing fluid loss control and stabilizing viscoelastic surfactant fluids
US8220548B2 (en) 2007-01-12 2012-07-17 Halliburton Energy Services Inc. Surfactant wash treatment fluids and associated methods
US7730950B2 (en) * 2007-01-19 2010-06-08 Halliburton Energy Services, Inc. Methods for treating intervals of a subterranean formation having variable permeability
US7934557B2 (en) 2007-02-15 2011-05-03 Halliburton Energy Services, Inc. Methods of completing wells for controlling water and particulate production
RU2351632C2 (en) * 2007-03-22 2009-04-10 Шлюмбергер Текнолоджи Б.В. Proppant and method of proppant producing
RU2373253C2 (en) * 2007-03-26 2009-11-20 Шлюмбергер Текнолоджи Б.В. Granules of material used to reduce proppant carry-away from hydraulic rupture crack
US8424599B2 (en) * 2007-03-29 2013-04-23 Fracmaster, Llc Automated closed loop flowback and separation system
US8058213B2 (en) * 2007-05-11 2011-11-15 Georgia-Pacific Chemicals Llc Increasing buoyancy of well treating materials
US7754659B2 (en) * 2007-05-15 2010-07-13 Georgia-Pacific Chemicals Llc Reducing flow-back in well treating materials
US7591312B2 (en) * 2007-06-04 2009-09-22 Baker Hughes Incorporated Completion method for fracturing and gravel packing
US8490699B2 (en) * 2007-07-25 2013-07-23 Schlumberger Technology Corporation High solids content slurry methods
US8490698B2 (en) * 2007-07-25 2013-07-23 Schlumberger Technology Corporation High solids content methods and slurries
US9080440B2 (en) 2007-07-25 2015-07-14 Schlumberger Technology Corporation Proppant pillar placement in a fracture with high solid content fluid
US9040468B2 (en) 2007-07-25 2015-05-26 Schlumberger Technology Corporation Hydrolyzable particle compositions, treatment fluids and methods
US10011763B2 (en) 2007-07-25 2018-07-03 Schlumberger Technology Corporation Methods to deliver fluids on a well site with variable solids concentration from solid slurries
US8936082B2 (en) 2007-07-25 2015-01-20 Schlumberger Technology Corporation High solids content slurry systems and methods
US20090038799A1 (en) * 2007-07-27 2009-02-12 Garcia-Lopez De Victoria Marieliz System, Method, and Apparatus for Combined Fracturing Treatment and Scale Inhibition
US7971646B2 (en) 2007-08-16 2011-07-05 Baker Hughes Incorporated Multi-position valve for fracturing and sand control and associated completion methods
US20090151957A1 (en) * 2007-12-12 2009-06-18 Edgar Van Sickle Zonal Isolation of Telescoping Perforation Apparatus with Memory Based Material
WO2009078745A1 (en) * 2007-12-14 2009-06-25 Schlumberger Canada Limited Proppant flowback control using encapsulated adhesive materials
US7950455B2 (en) * 2008-01-14 2011-05-31 Baker Hughes Incorporated Non-spherical well treating particulates and methods of using the same
US7530396B1 (en) 2008-01-24 2009-05-12 Halliburton Energy Services, Inc. Self repairing cement compositions and methods of using same
US20090197780A1 (en) * 2008-02-01 2009-08-06 Weaver Jimmie D Ultrafine Grinding of Soft Materials
US8006760B2 (en) 2008-04-10 2011-08-30 Halliburton Energy Services, Inc. Clean fluid systems for partial monolayer fracturing
CN102007193B (en) * 2008-04-17 2013-08-28 陶氏环球技术公司 Powder coated proppant and method of making the same
US7906464B2 (en) 2008-05-13 2011-03-15 Halliburton Energy Services, Inc. Compositions and methods for the removal of oil-based filtercakes
US7833943B2 (en) 2008-09-26 2010-11-16 Halliburton Energy Services Inc. Microemulsifiers and methods of making and using same
US8205675B2 (en) 2008-10-09 2012-06-26 Baker Hughes Incorporated Method of enhancing fracture conductivity
CA2746368A1 (en) * 2008-12-10 2010-06-17 Schlumberger Canada Limited Hydraulic fracture height growth control
US7762329B1 (en) 2009-01-27 2010-07-27 Halliburton Energy Services, Inc. Methods for servicing well bores with hardenable resin compositions
US7998910B2 (en) 2009-02-24 2011-08-16 Halliburton Energy Services, Inc. Treatment fluids comprising relative permeability modifiers and methods of use
US8579028B2 (en) * 2009-06-09 2013-11-12 Halliburton Energy Services, Inc. Tackifying agent pre-coated particulates
US7833947B1 (en) 2009-06-25 2010-11-16 Schlumberger Technology Corporation Method for treatment of a well using high solid content fluid delivery
US8082992B2 (en) 2009-07-13 2011-12-27 Halliburton Energy Services, Inc. Methods of fluid-controlled geometry stimulation
US8662172B2 (en) 2010-04-12 2014-03-04 Schlumberger Technology Corporation Methods to gravel pack a well using expanding materials
US8505628B2 (en) 2010-06-30 2013-08-13 Schlumberger Technology Corporation High solids content slurries, systems and methods
US8511381B2 (en) 2010-06-30 2013-08-20 Schlumberger Technology Corporation High solids content slurry methods and systems
US9976070B2 (en) 2010-07-19 2018-05-22 Baker Hughes, A Ge Company, Llc Method of using shaped compressed pellets in well treatment operations
US10822536B2 (en) 2010-07-19 2020-11-03 Baker Hughes, A Ge Company, Llc Method of using a screen containing a composite for release of well treatment agent into a well
US9010430B2 (en) * 2010-07-19 2015-04-21 Baker Hughes Incorporated Method of using shaped compressed pellets in treating a well
US8276663B2 (en) * 2010-09-28 2012-10-02 Halliburton Energy Services Inc. Methods for reducing biological load in subterranean formations
US8607870B2 (en) 2010-11-19 2013-12-17 Schlumberger Technology Corporation Methods to create high conductivity fractures that connect hydraulic fracture networks in a well
US20120138295A1 (en) * 2010-12-01 2012-06-07 Novotny Rudolf J Well Bore Operations Using Reactive Proppant
GB201103295D0 (en) * 2011-02-25 2011-04-13 Corpro Systems Ltd
US9371479B2 (en) 2011-03-16 2016-06-21 Schlumberger Technology Corporation Controlled release biocides in oilfield applications
US8664168B2 (en) 2011-03-30 2014-03-04 Baker Hughes Incorporated Method of using composites in the treatment of wells
US9133387B2 (en) 2011-06-06 2015-09-15 Schlumberger Technology Corporation Methods to improve stability of high solid content fluid
US9528351B2 (en) 2011-11-16 2016-12-27 Schlumberger Technology Corporation Gravel and fracture packing using fibers
US9920610B2 (en) 2012-06-26 2018-03-20 Baker Hughes, A Ge Company, Llc Method of using diverter and proppant mixture
US9919966B2 (en) 2012-06-26 2018-03-20 Baker Hughes, A Ge Company, Llc Method of using phthalic and terephthalic acids and derivatives thereof in well treatment operations
US10041327B2 (en) 2012-06-26 2018-08-07 Baker Hughes, A Ge Company, Llc Diverting systems for use in low temperature well treatment operations
US9803457B2 (en) 2012-03-08 2017-10-31 Schlumberger Technology Corporation System and method for delivering treatment fluid
US9863228B2 (en) 2012-03-08 2018-01-09 Schlumberger Technology Corporation System and method for delivering treatment fluid
US10988678B2 (en) 2012-06-26 2021-04-27 Baker Hughes, A Ge Company, Llc Well treatment operations using diverting system
PL2864442T3 (en) 2012-06-26 2019-03-29 Baker Hughes, A Ge Company, Llc Methods of improving hydraulic fracture network
US11111766B2 (en) 2012-06-26 2021-09-07 Baker Hughes Holdings Llc Methods of improving hydraulic fracture network
RU2513434C2 (en) * 2012-07-26 2014-04-20 Общество С Ограниченной Ответственностью "Форэс" Method of producing ceramic proppants
US9528354B2 (en) 2012-11-14 2016-12-27 Schlumberger Technology Corporation Downhole tool positioning system and method
US11352551B2 (en) * 2012-11-26 2022-06-07 Agienic, Inc. Proppant coatings containing antimicrobial agents
US9429005B2 (en) * 2012-11-28 2016-08-30 Halliburton Energy Services, Inc. Methods for hindering the settling of proppant in a subterranean formation
US9321956B2 (en) 2012-11-28 2016-04-26 Halliburton Energy Services, Inc. Methods for hindering the settling of particulates in a subterranean formation
US11008505B2 (en) 2013-01-04 2021-05-18 Carbo Ceramics Inc. Electrically conductive proppant
US9429006B2 (en) 2013-03-01 2016-08-30 Baker Hughes Incorporated Method of enhancing fracture conductivity
US10316242B2 (en) * 2013-03-15 2019-06-11 Carbo Ceramics Inc. Composition and method for hydraulic fracturing and evaluation and diagnostics of hydraulic fractures using infused porous ceramic proppant
GB2527479B (en) * 2013-04-26 2020-10-14 Desbarats Andrew A proppant immobilized enzyme and a viscofied fracture fluid
EP2989177A4 (en) * 2013-04-26 2016-12-28 Carbo Ceramics Inc Compositions and methods for use of proppant surface chemistry to improve proppant consolidation and flowback control
US9388335B2 (en) 2013-07-25 2016-07-12 Schlumberger Technology Corporation Pickering emulsion treatment fluid
US9085958B2 (en) 2013-09-19 2015-07-21 Sas Institute Inc. Control variable determination to maximize a drilling rate of penetration
CA2922692C (en) 2013-09-20 2018-02-20 Baker Hughes Incorporated Method of using surface modifying metallic treatment agents to treat subterranean formations
MX2016003571A (en) 2013-09-20 2016-10-28 Baker Hughes Inc Method of using surface modifying treatment agents to treat subterranean formations.
CA2923221C (en) 2013-09-20 2020-04-28 Baker Hughes Incorporated Method of inhibiting fouling on a metallic surface using a surface modifying treatment agent comprising an anchor and a hydrophobic tail
US9701892B2 (en) 2014-04-17 2017-07-11 Baker Hughes Incorporated Method of pumping aqueous fluid containing surface modifying treatment agent into a well
EP3046991B1 (en) 2013-09-20 2019-10-30 Baker Hughes, a GE company, LLC Composites for use in stimulation and sand control operations
US10301523B2 (en) * 2013-10-18 2019-05-28 Halliburton Energy Services, Inc. Surface treated lost circulation material
US9163497B2 (en) 2013-10-22 2015-10-20 Sas Institute Inc. Fluid flow back prediction
AU2014379657B2 (en) 2014-01-22 2017-05-18 Halliburton Energy Services, Inc. Delayed delivery of chemicals in a wellbore
CN106715639A (en) 2014-07-23 2017-05-24 贝克休斯公司 Composite comprising well treatment agent and/or a tracer adhered onto a calcined substrate of a metal oxide coated core and a method of using the same
CN106795750A (en) 2014-08-15 2017-05-31 贝克休斯公司 For the steering of well treatment operation
US20160075940A1 (en) 2014-09-16 2016-03-17 Durez Corporation Low temperature curable proppant
WO2016160521A1 (en) 2015-03-27 2016-10-06 Carbo Ceramics, Inc. Methods and compositions for use of proppant surface chemistry and internal porosity to consolidate proppant particulates
US10259991B2 (en) * 2015-05-15 2019-04-16 Halliburton Energy Services, Inc. Multifunctional proppant for fracturing applications
US20180127645A1 (en) * 2015-08-31 2018-05-10 Halliburton Energy Services, Inc. Self-supporting proppant with improved proppant pack conductivity
US11370960B2 (en) 2016-02-04 2022-06-28 Schlumberger Technology Corporation Polymer fiber additive for proppant flowback prevention
US10641083B2 (en) 2016-06-02 2020-05-05 Baker Hughes, A Ge Company, Llc Method of monitoring fluid flow from a reservoir using well treatment agents
US10413966B2 (en) 2016-06-20 2019-09-17 Baker Hughes, A Ge Company, Llc Nanoparticles having magnetic core encapsulated by carbon shell and composites of the same
US10808168B2 (en) * 2017-01-19 2020-10-20 Halliburton Energy Services, Inc. Methods for controlling conductive aggregates
US11254861B2 (en) 2017-07-13 2022-02-22 Baker Hughes Holdings Llc Delivery system for oil-soluble well treatment agents and methods of using the same
CA3079526C (en) 2017-11-03 2022-06-28 Baker Hughes, A Ge Company, Llc Treatment methods using aqueous fluids containing oil-soluble treatment agents
WO2019195478A1 (en) 2018-04-03 2019-10-10 Schlumberger Technology Corporation Proppant-fiber schedule for far field diversion
US10961444B1 (en) 2019-11-01 2021-03-30 Baker Hughes Oilfield Operations Llc Method of using coated composites containing delayed release agent in a well treatment operation
US11015414B1 (en) 2019-11-04 2021-05-25 Reservoir Group Inc Shearable tool activation device
US11384273B2 (en) * 2020-01-20 2022-07-12 Kraton Polymers Llc Drilling fluid compositions
CN113931607A (en) * 2020-07-14 2022-01-14 中国石油化工股份有限公司 Injection control method of shielding temporary plugging agent and application thereof

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2187895A (en) 1938-03-28 1940-01-23 Stanolind Oil & Gas Co Method of forming a porous concrete well strainer
US2823753A (en) 1955-12-27 1958-02-18 Dow Chemical Co Method of treating wells
US3149673A (en) 1961-08-23 1964-09-22 Jersey Prod Res Co Use of solid polyolefin propping agent in hydraulic fracturing
US3247902A (en) * 1962-11-13 1966-04-26 Marathon Oil Co Prevention of emulsion formation in crude oil production
US3363690A (en) 1965-05-10 1968-01-16 Union Oil Co Method and composition for treating subterranean formations
US3443637A (en) 1967-06-21 1969-05-13 Continental Oil Co Method for placing gravel packs
US3659651A (en) 1970-08-17 1972-05-02 Exxon Production Research Co Hydraulic fracturing using reinforced resin pellets
US3815680A (en) 1971-04-09 1974-06-11 Continental Oil Co Method for fracturing and propping unconsolidated and dilatant subterranean formations
US3973627A (en) 1971-10-18 1976-08-10 Sun Oil Company (Delaware) Wellbore gravel pack method
US3976135A (en) 1972-10-02 1976-08-24 Halliburton Company Method of forming a highly permeable solid mass in a subterranean formation
US4494605A (en) 1981-12-11 1985-01-22 Texaco Inc. Sand control employing halogenated, oil soluble hydrocarbons
US4741400A (en) * 1986-08-07 1988-05-03 Atlantic Richfield Company Method for scale inhibition in a well penetrating a subterranean formation
US4829100A (en) * 1987-10-23 1989-05-09 Halliburton Company Continuously forming and transporting consolidatable resin coated particulate materials in aqueous gels
US4875525A (en) * 1989-03-03 1989-10-24 Atlantic Richfield Company Consolidated proppant pack for producing formations
DE4237836C1 (en) 1992-11-10 1994-03-17 Bergwerksverband Gmbh Method for sealing water inflows from geological rock formations
CA2119316C (en) 1993-04-05 2006-01-03 Roger J. Card Control of particulate flowback in subterranean wells
US5330005A (en) 1993-04-05 1994-07-19 Dowell Schlumberger Incorporated Control of particulate flowback in subterranean wells
US5721302A (en) 1994-06-06 1998-02-24 Wood; Benny R. Water dispersible adhesive
JPH10504596A (en) 1994-08-19 1998-05-06 ミネソタ マイニング アンド マニュファクチャリング カンパニー Water-based adhesive
US5551514A (en) 1995-01-06 1996-09-03 Dowell, A Division Of Schlumberger Technology Corp. Sand control without requiring a gravel pack screen
GB9503949D0 (en) * 1995-02-28 1995-04-19 Atomic Energy Authority Uk Oil well treatment
US5833000A (en) 1995-03-29 1998-11-10 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US5775425A (en) 1995-03-29 1998-07-07 Halliburton Energy Services, Inc. Control of fine particulate flowback in subterranean wells
US5839510A (en) 1995-03-29 1998-11-24 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US5501274A (en) 1995-03-29 1996-03-26 Halliburton Company Control of particulate flowback in subterranean wells
US5960878A (en) * 1995-03-29 1999-10-05 Halliburton Energy Services, Inc. Methods of protecting well tubular goods from corrosion
US5582249A (en) 1995-08-02 1996-12-10 Halliburton Company Control of particulate flowback in subterranean wells
US5787986A (en) 1995-03-29 1998-08-04 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US5697440A (en) 1996-01-04 1997-12-16 Halliburton Energy Services, Inc. Control of particulate flowback in subterranean wells
US5699860A (en) * 1996-02-22 1997-12-23 Halliburton Energy Services, Inc. Fracture propping agents and methods
US5723538A (en) 1996-06-14 1998-03-03 Henkel Corporation Aqueous dispersions of polyamides
US6059034A (en) * 1996-11-27 2000-05-09 Bj Services Company Formation treatment method using deformable particles
US5791415A (en) 1997-03-13 1998-08-11 Halliburton Energy Services, Inc. Stimulating wells in unconsolidated formations
US5924488A (en) 1997-06-11 1999-07-20 Halliburton Energy Services, Inc. Methods of preventing well fracture proppant flow-back
US6114410A (en) * 1998-07-17 2000-09-05 Technisand, Inc. Proppant containing bondable particles and removable particles

Also Published As

Publication number Publication date
EP1132569B1 (en) 2012-09-26
EP1132569A3 (en) 2006-04-19
NO20011115L (en) 2001-09-07
CA2337122A1 (en) 2001-09-06
EP1132569A2 (en) 2001-09-12
NO20011115D0 (en) 2001-03-05
DK1132569T3 (en) 2013-01-07
US6209643B1 (en) 2001-04-03
BR0100869A (en) 2001-10-30

Similar Documents

Publication Publication Date Title
CA2337122C (en) Method of controlling particulate flowback in subterranean wells and introducing treatment chemicals
EP0853186B1 (en) Treatment of subterranean formation to control particulate flowback
US6047772A (en) Control of particulate flowback in subterranean wells
EP0834644B1 (en) Treating subterranean formation to control particulate flowback
CA2217636C (en) Control of particulate flowback in subterranean wells
CA2217638C (en) Control of fine particulate flowback in subterranean wells
US7325608B2 (en) Methods of hydraulic fracturing and of propping fractures in subterranean formations
US7500519B2 (en) Methods of modifying fracture faces and other surfaces in subterranean formations
AU2006248810B2 (en) Methods of treating surfaces in subterranean formations
CA2261256C (en) Methods of protecting well tubular goods from corrosion
US7281581B2 (en) Methods of hydraulic fracturing and of propping fractures in subterranean formations
US5604184A (en) Chemically inert resin coated proppant system for control of proppant flowback in hydraulically fractured wells
US7591313B2 (en) Methods of treating particulates and use in subterranean formations
AU2010258467B2 (en) Tackifying agent pre-coated particulates
WO2006117510A1 (en) Methods and compositions for enhancing hydrocarbon production
CA2432612C (en) Control of fine particulate flowback in subterranean wells

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20180305