CA2338946C - Hepatitis c inhibitor tri-peptides - Google Patents

Hepatitis c inhibitor tri-peptides Download PDF

Info

Publication number
CA2338946C
CA2338946C CA2338946A CA2338946A CA2338946C CA 2338946 C CA2338946 C CA 2338946C CA 2338946 A CA2338946 A CA 2338946A CA 2338946 A CA2338946 A CA 2338946A CA 2338946 C CA2338946 C CA 2338946C
Authority
CA
Canada
Prior art keywords
alkyl
substituted
amino
optionally substituted
lower alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA2338946A
Other languages
French (fr)
Other versions
CA2338946A1 (en
Inventor
Montse Llinas-Brunet
Murray D. Bailey
Dale Cameron
Anne-Marie Faucher
Elise Ghiro
Nathalie Goudreau
Teddy Halmos
Marc-Andre Poupart
Jean Rancourt
Youla S. Tsantrizos
Dominik M. Wernic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boehringer Ingelheim Canada Ltd
Original Assignee
Boehringer Ingelheim Canada Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer Ingelheim Canada Ltd filed Critical Boehringer Ingelheim Canada Ltd
Priority to CA2445938A priority Critical patent/CA2445938C/en
Publication of CA2338946A1 publication Critical patent/CA2338946A1/en
Application granted granted Critical
Publication of CA2338946C publication Critical patent/CA2338946C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/02Amides, e.g. chloramphenicol or polyamides; Imides or polyimides; Urethanes, i.e. compounds comprising N-C=O structural element or polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/21Interferons [IFN]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/16Antivirals for RNA viruses for influenza or rhinoviruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/10Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/16Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • C07K5/0804Tripeptides with the first amino acid being neutral and aliphatic
    • C07K5/0806Tripeptides with the first amino acid being neutral and aliphatic the side chain containing 0 or 1 carbon atoms, i.e. Gly, Ala
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • C07K5/0804Tripeptides with the first amino acid being neutral and aliphatic
    • C07K5/0808Tripeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms, e.g. Val, Ile, Leu
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • C07K5/0804Tripeptides with the first amino acid being neutral and aliphatic
    • C07K5/081Tripeptides with the first amino acid being neutral and aliphatic the side chain containing O or S as heteroatoms, e.g. Cys, Ser
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0802Tripeptides with the first amino acid being neutral
    • C07K5/0812Tripeptides with the first amino acid being neutral and aromatic or cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/003Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by ester formation, lactone formation or the inverse reactions
    • C12P41/005Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by ester formation, lactone formation or the inverse reactions by esterification of carboxylic acid groups in the enantiomers or the inverse reaction

Abstract

Racemates, diastereoisomers and optical isomers of a compound of formula (I) wherein B is H, a C6 or C10 aryl, C7-16 aralkyl; Het or (lower alkyl)-Het, all of which optionally substituted with C1-6 alkyl;
C1-6 alkoxy; C1-6 alkanoyl; hydroxy; hydroxyalkyl;
halo; haloalkyl; nitro; cyano; cyanoalkyl; amino optionally substituted with C1-6 alkyl; amido; or (lower alkyl)amide; or B is an acyl derivative of formula R4-C(O)-; a carboxyl of formula R4-O-C(O)-; an amide of formula R4-N(R5)-C(O)-; a thioamide of formula R4-N(R5)-C(S)-;or a sulfonyl of formula R4-SO2;
R5 is H or C1-6 alkyl; and Y is H or C1-6 alkyl; R3 is C1-8 alkyl, C3-7 cycloalkyl, or C4-10 alkylcycloalkyl, all optionally substituted with hydroxy, C1-6 alkoxy, C1-6 thioalkyl, amido, (lower alkyl)amido, C6 or C10 aryl, or C7-16 aralkyl; R2 is CH2-R20, NH-R20, O-R20or S-R20, wherein R20 is a saturated or unsaturated C3-7 cycloalkyl or C4-10 (alkylcycloalkyl), all of which being optionally mono-, di- or tri-substituted with R21, or R20 is a C6 or C1 o aryl or C7-14 aralkyl optionally substituted, or R20 is Het or (lower alkyl)-Het, both optionally substituted, Het or (lower alkyl)-Het;
carboxyl; carboxy(lower alkyl); C6 or C10 aryl, C7-14 aralkyl or Het, said aryl, aralkyl or Het being optionally substituted; and R1 is H;
C1-6 alkyl, C3-7 cycloalkyl, C2-6 alkenyl, or C2-6 alkynyl, all optionally substituted with halogen; or a pharmaceutically acceptable salt or ester thereof.

Description

HEPATITIS C INHIBITOR TRI-PEPTIDES

FIELD OF THE INVENTION

The present invention relates to compounds, process for their synthesis, compositions and methods for the treatment of hepatitis C virus (HCV) infection. In particular, the present invention provides novel peptide analogs, pharmaceutical compositions containing such analogs and methods for using these analogs in the treatment of HCV infection. The present invention also provides processes and intermediates for the synthesis of these peptide analogs.

BACKGROUND OF THE INVENTION

Hepatitis C virus (HCV) is the major etiological agent of post-transfusion and community-acquired non-A non-B hepatitis worldwide. It is estimated that over million people worldwide are infected by the virus. A high percentage of carriers become chronically infected and many progress to chronic liver disease, so-called chronic hepatitis C. This group is in turn at high risk for serious liver disease such as liver cirrhosis, hepatocellular carcinoma and terminal liver disease leading to death.
The mechanism by which HCV establishes viral persistence and causes a high rate of chronic liver disease has not been thoroughly elucidated. It is not known how HCV interacts with and evades the host immune system. In addition, the roles of cellular and humoral immune responses in protection against HCV infection and disease have yet to be established. Immunoglobulins have been reported for prophylaxis of transfusion-associated viral hepatitis, however, the Center for Disease Control does not presently recommend immunoglobulins treatment for this purpose.
The lack of an effective protective immune response is hampering the development of a vaccine or adequate post-exposure prophylaxis measures, so in the near-term, hopes are firmly pinned on antiviral interventions.

Various clinical studies have been conducted with the goal of identifying pharmaceutical agents capable of effectively treating HCV infection in patients afflicted with chronic hepatitis C. These studies have involved the use of interferon-alpha, alone and in combination with other antiviral agents. Such studies have shown that a substantial number of the participants do not respond to these therapies, and of those that do respond favorably, a large proportion were found to relapse after termination of treatment.
Until recently, interferon (IFN) was the only available therapy of proven benefit approved in the clinic for patients with chronic hepatitis C. However the sustained response rate is low, and interferon treatment also induces severe side-effects (i.e.
retinopathy, thyroiditis, acute pancreatitis, depression) that diminish the quality of life of treated patients. Recently, interferon in combination with ribavirin has been approved for patients non-responsive to IFN alone. However, the side effects caused by IFN are not alleviated with this combination therapy.

Therefore, a need exists for the development of effective antiviral agents for treatment of HCV infection that overcomes the limitations of existing pharmaceutical therapies.

HCV is an enveloped positive strand RNA virus in the Flaviviridae family. The single strand HCV RNA genome is approximately 9500 nucleotides in length and has a single open reading frame (ORF) encoding a single large polyprotein of about amino acids. In infected cells, this polyprotein is cleaved at multiple sites by cellular and viral proteases to produce the structural and non-structural (NS) proteins. In the case of HCV, the generation of mature nonstructural proteins (NS2, NS3, NS4A, NS4B, NS5A, and NS5B) is effected by two viral proteases. The first one, as yet poorly characterized, cleaves at the NS2-NS3 junction; the second one is a serine protease contained within the N-terminal region of NS3 (henceforth referred to as NS3 protease) and mediates all the subsequent cleavages downstream of NS3, both in cis, at the NS3-NS4A cleavage site, and in trans, for the remaining NS4A-NS4B, NS4B-NS5A, NS5A-NS5B sites. The NS4A protein appears to serve multiple functions, acting as a cofactor for the NS3 protease and possibly assisting in the membrane localization of NS3 and other viral replicase components. The complex formation of the NS3 protein with NS4A seems necessary to the processing events, enhancing the proteolytic efficiency at all of the sites. The NS3 protein also exhibits nucleoside triphosphatase and RNA helicase activities. NS5B is a RNA-dependent RNA polymerase that is involved in the replication of HCV.

A general strategy for the development of antiviral agents is to inactivate virally encoded enzymes that are essential for the replication of the virus. In this vein, patent application WO 97/06804 describes the (-) enantiomer of the nucleoside analogue cytosine-1,3-oxathiolane (also known as 3TC) as active against HCV.
This compound, although reported as safe in previous clinical trials against HIV
and HBV, has yet to be clinically proven active against HCV and its mechanism of action against the virus has yet to be reported.

Intense efforts to discover compounds which inhibit the NS3 protease or RNA
helicase of HCV have led to the following disclosures:

= US patent 5,633,388 describes heterocyclic-substituted carboxamides and analogues as being active against HCV. These compounds are directed against the helicase activity of the NS3 protein of the virus but clinical tests have not yet been reported.

= A phenanthrenequinone has been reported by Chu et al., (Tet. Lett., (1996), 7229-7232) to have activity against the HCV NS3 protease in vitro. No further development on this compound has been reported.

= A paper presented at the Ninth International Conference on Antiviral Research, Urabandai, Fukyshima, Japan (1996) (Antiviral Research, (1996), 30, 1, A23 (abstract 19)) reports thiazolidine derivatives to be inhibitory to the HCV
protease.

Several studies have reported compounds inhibitory to other serine proteases, such as human leukocyte elastase. One family of these compounds is reported in WO
95/33764 (Hoechst Marion Roussel, 1995). The peptides disclosed in this application are morpholinylcarbonyl-benzoyl-peptide analogues that are structurally different from the peptides of the present invention.

= WO 98/17679 from Vertex Pharmaceuticals Inc. discloses inhibitors of serine protease, particularly, Hepatitis C virus NS3 protease. These inhibitors are peptide analogues based on the NS5A/5B natural substrate. Although several tripeptides are disclosed, all of these peptide analogues contain C-terminal activated carbonyl function as an essential feature. These analogues were also reported to be active against other serine protease and are therefore not specific for HCV NS3 protease.

= Hoffman LaRoche has also reported hexapeptides that are proteinase inhibitors useful as antiviral agents for the treatment of HCV infection. These peptides contain an aldehyde or a boronic acid at the C-terminus.

= Steinkuhler et al. and Ingallinella et al. have published on NS4A-4B product inhibition (Biochemistry (1998), 37, 8899-8905 and 8906-8914). However, the peptides and peptide analogues presented do not include nor do they lead to the design of the peptides of the present invention.

One advantage of the present invention is that it provides tripeptides that are inhibitory to the NS3 protease of the hepatitis C virus.

A further advantage of one aspect of the present invention resides in the fact that these peptides specifically inhibit the NS3 protease and do not show significant inhibitory activity at concentrations up to 300 M against other serine proteases such as human leukocyte elastase (HLE), porcine pancreatic elastase (PPE), or bovine pancreatic chymotrypsin, or cysteine proteases such as human liver cathepsin B (Cat B).

A further advantage of the present invention is that it provides small peptides of low molecular weight that may be capable of penetrating cell membranes and may be active in cell culture and in vivo with good pharmacokinetic profile.

SUMMARY OF THE INVENTION
Included in the scope of the invention are racemates, diastereoisomers and optical isomers of a compound of formula (I):

B Y N R
I (CH2)14 Y 0:
O ;H OH

P1 (I) wherein B is H, a Ce or C10 aryl, C7_18 aralkyl; Het or (lower alkyl)-Het, all of which optionally substituted with C1.6 alkyl; C1.8 alkoxy; C1.6 alkanoyl; hydroxy;
hydroxyalkyl; halo; haloalkyl; nitro; cyano; cyanoalkyl; amino optionally substituted with C1-6 alkyl; amido; or (lower alkyl)amide;
or B is an acyl derivative of formula R4-C(O)-; a carboxyl of formula R4-O-C(O)-; an amide of formula R4-N(R5)-C(O)-; a thioamide of formula R4-N(R5)-C(S)-; or a sulfonyl of formula R4-S02 wherein R4 is (i) C1_10 alkyl optionally substituted with carboxyl, C1.6 alkanoyl, hydroxy, C1.6alkoxy, amino optionally mono- or di-substituted with C1.6 alkyl, amido, or (lower alkyl) amide;

I I

(ii) C3_7 cycloalkyl, C3_7 cycloalkoxy, or C4_10 alkylcycloalkyl, all optionally substituted with hydroxy, carboxyl, (C1-6alkoxy)carbonyl, amino optionally mono- or di-substituted with C1_6 alkyl, amido, or (lower alkyl) amide;
(iii) amino optionally mono- or di-substituted with C1_6 alkyl; amido; or (lower 5 alkyl)amide;

(iv) C6 or C10 aryl or C7_16 aralkyl, all optionally substituted with C,_6 alkyl, hydroxy, amido, (lower alkyl)amide, or amino optionally mono- or di-substituted with C1_6alkyl; or (v) Het or (lower alkyl)-Het, both optionally substituted with C1.6 alkyl, hydroxy, amido, (lower alkyl) amide, or amino optionally mono- or di-substituted with C1.6 alkyl;

R5 is H or C1.6 alkyl;

with the proviso that when B is an amide or a thioamide, R4 is not (ii) a cycloalkoxy;
and Y is H or C1_6alkyl;

R3 is C1$ alkyl, C3_7 cycloalkyl, or C4.10 alkylcycloalkyl, all optionally substituted with hydroxy, C1.6 alkoxy, C1.6 thioalkyl, amido, (lower alkyl)amido, C6 or C10 aryl, or C7_16 aralkyl;

R2 is CH2-R20, NH-R20, O-R20 or S-R20, wherein R20 is a saturated or unsaturated C3_7 cycloalkyl or C4.10 (alkylcycloalkyl), all of which being optionally mono-, di-or tri-substituted with R21, or R20 is a C6 or C10 aryl or C7.16 aralkyl, all optionally mono-, di- or tri-substituted with R21, or R20 is Het or (lower alkyl)-Het, both optionally mono-, di- or tri-substituted with R21, wherein each R21 is independently C1_6 alkyl; C1_6 alkoxy; lower thioalkyl;
sulfonyl; NO2; OH; SH; halo; haloalkyl; amino optionally mono- or di-substituted with C1_6 alkyl, C6 or C10 aryl, C7_16 aralkyl, Het or (lower alkyl)-Het;

amido optionally mono-substituted with C1.6 alkyl, C6 or C10 aryl, C7_16 aralkyl, Het or (lower alkyl)-Het;
carboxyl; carboxy(lower alkyl); C6 or C10 aryl, C7_16 aralkyl or Het, said aryl, aralkyl or Het being optionally substituted with R22;

wherein R22 is C1_6alkyl; C3_7 cycloalkyl; C1_6 alkoxy; amino optionally mono- or di-substituted with C1_6alkyl; sulfonyl; (lower alkyl)sulfonyl;
NO2; OH; SH; halo; haloalkyl; carboxyl; amide; (lower alkyl)amide; or Het optionally substituted with C1_ alkyl R1 is H, C1_6alkyl, C3_7 cycloalkyl, C2-6alkenyl, or C2_6 alkynyl, all optionally substituted with halogen;

or a pharmaceutically acceptable salt or ester thereof.

Included within the scope of this invention is a pharmaceutical composition comprising an anti-hepatitis C virally effective amount of a compound of formula I, or a therapeutically acceptable salt or ester thereof, in admixture with a pharmaceutically acceptable carrier medium or auxiliary agent.

An important aspect of the invention involves a method of treating a hepatitis C viral infection in a mammal by administering to the mammal an anti-hepatitis C
virally effective amount of the compound of formula I, or a therapeutically acceptable salt or ester thereof or a composition as described above.

Another important aspect involves a method of inhibiting the replication of hepatitis C virus by exposing the virus to a hepatitis C viral NS3 protease inhibiting amount of the compound of formula I, or a therapeutically acceptable salt or ester thereof or a composition as described above.

Still another aspect involves a method of treating a hepatitis C viral infection in a mammal by administering thereto an anti-hepatitis C virally effective amount of a combination of the compound of formula I, or a therapeutically acceptable salt or ester thereof. According to one embodiment, the pharmaceutical compositions of this invention comprise an additional immunomodulatory agent. Examples of additional immunomodulatory agents include but are not limited to, a-, (3-, and S-interferons.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
Definitions As used herein, the following definitions apply unless otherwise noted:
With reference to the instances where (R) or (S) is used to designate the configuration of a substituent, e.g. R' of the compound of formula 1, the designation is done in the context of the compound and not in the context of the substituent alone.

The natural amino acids, with exception of glycine, contain a chiral carbon atom.
Unless otherwise specifically indicated, the compounds containing natural amino acids with the L-configuration are preferred. However, applicants contemplate that when specified, some amino acids of the formula I can be of either D- or L-configuration or can be mixtures of D- and L-isomers, including racemic mixtures.

The designation "P1, P2 and P3" as used herein refer to the position of the amino acid residues starting from the C-terminus end of the peptide analogues and extending towards the N-terminus [i.e. P1 refers to position 1 from the C-terminus, P2: second position from the C-terminus, etc.) (see Berger A. & Schechter I., Transactions of the Royal Society London series (1970), B257, 249-264].

The abbreviations for the a-amino acids used in this application are set forth in Table A.

TABLE A

Amino Acid Symbol 1 -aminocyclopropyl-carboxylic acid Acca Alanine Ala Aspartic acid Asp Cysteine Cys Cyclohexylglycine (also named: 2-amino-2- Chg cyclohexylacetic acid) Glutamic acid Glu Isoleucine Ile Leucine Leu Phenylalanine Phe Proline Pro Amino Acid Symbol Valine Val tert-Butylglycine Tbg As used herein the term "1-aminocyclopropyl-carboxylic acid" (Acca) refers to a compound of formula:

OH
As used herein the term "tent-butylglycine" refers to a compound of formula:
O

OH

The term "residue" with reference to an amino acid or amino acid derivative means a radical derived from the corresponding a-amino acid by eliminating the hydroxyl of the carboxy group and one hydrogen of the a-amino group. For instance, the terms GIn, Ala, Gly, Ile, Arg, Asp, Phe, Ser, Leu, Cys, Asn, Sar and Tyr represent the "residues" of L-glutamine, L-alanine, glycine, L-isoleucine, L-arginine, L-aspartic acid, L-phenylalanine, L-serine, L-leucine, L-cysteine, L-asparagine, sarcosine and L-tyrosine, respectively.

The term "side chain" with reference to an amino acid or amino acid residue means a group attached to the a-carbon atom of the a-amino acid. For example, the R-group side chain for glycine is hydrogen, for alanine it is methyl, for valine it is isopropyl. For the specific R-groups or side chains of the a-amino acids reference is made to A.L. Lehninger's text on Biochemistry (see chapter 4).

The term "halo" as used herein means a halogen substituent selected from bromo, chloro, fluoro or iodo.

The term "C,-6alkyl" or "(lower)alkyl" as used herein, either alone or in combination with another substituent, means acyclic, straight or branched chain alkyl substituents containing from 1 to six carbon atoms and includes, for example, methyl, ethyl, propyl, butyl, tert-butyl, hexyl, 1-methylethyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl.

The term "C3.7 cycloalkyl" as used herein, either alone or in combination with another substituent, means a cycloalkyl substituent containing from three to seven carbon atoms and includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl.
This term also includes "spiro"'-cyclic group such as spiro-cyclopropyl or spiro-cyclobutyl:

or The term "unsaturated cycloalkyl" includes, for example, cyclohexenyl:

( D"- A

The term "C4.10 (alkylcycloalkyl) as used herein means a cycloalkyl radical containing from three to seven carbon atoms linked to an alkyl radical, the linked radicals containing up to ten carbon atoms; for example, cyclopropylmethyl, cyclopentylethyl, cyclohexylmethyl, cyclohexylethyl or cycloheptylethyl.

The term "C2.10 alkenyl" as used herein, either alone or in combination with another radical, means an alkyl radical as defined above containing from 2 to 10 carbon atoms, and further containing at least one double bond. For example alkenyl includes allyl and vinyl.

The term "C,.6 alkanoyl" as used herein, either alone or in combination with another radical, means straight or branched 1 -oxoalkyl radicals containing one to six carbon atoms and includes formyl, acetyl, 1 -oxopropyl (propionyl), 2-methyl-1 -oxopropyl, 1-oxohexyl and the like.

The term "C,.6 alkoxy" as used herein, either alone or in combination with another radical, means the radical -O(C,.6 alkyl) wherein alkyl is as defined above containing up to six carbon atoms. Alkoxy includes methoxy, ethoxy, propoxy, 1 -methylethoxy, butoxy and 1, 1 -dimethylethoxy. The latter radical is known commonly as tent-butoxy.

The term "C3.7 cycloalkoxy" as used herein, either alone or in combination with another radical, means a C3.7 cycloalkyl group linked to an oxygen atom, such as, for example:
cr 5 The term "C6 or C10 aryl" as used herein, either alone or in combination with another radical, means either an aromatic monocyclic group containing 6 carbon atoms or an aromatic bicyclic group containing 10 carbon atoms. For example, aryl includes phenyl, 1 -naphthyl or 2-naphthyl.

The term "C7.16 aralkyl" as used herein, either alone or in combination with another 10 radical, means a C6 or C10 aryl as defined above linked to an alkyl group, wherein alkyl is as defined above containing from 1 to 6 carbon atoms. C7.16 aralkyl includes for example benzyl, butylphenyl, and 1-naphthylmethyi.

The term "amino aralkyl" as used herein, either alone or in combination with another radical, means an amino group substituted with a C7.16 aralkyl group, such as, for example, the amino aralkyl:

C~~NH
The term "(lower alkyl)amide" as used herein, either alone or in combination with another radical, means an amide mono-substituted with a C1.6 alkyl, such as:

H

The term "carboxy(lower)alkyl" as used herein, either alone or in combination with another radical, means a carboxyl group (COOH) linked through a (lower)alkyl group as defined above and includes for example butyric acid.

The term "heterocycle" or "Het" as used herein, either alone or in combination with another radical, means a monovalent radical derived by removal of a hydrogen from a five-, six-, or seven-membered saturated or unsaturated (including aromatic) heterocycle containing from one to four heteroatoms selected from nitrogen, oxygen and sulfur. Furthermore, "Het" as used herein, means a heterocycle as defined above fused to one or more other cycle, be it a heterocycle or any other cycle.
Examples of suitable heterocycles include: pyrrolidine, tetrahydrofuran, thiazolidine, pyrrole, thiophene, diazepine, 1 H-imidazole, isoxazole, thiazole, tetrazole, piperidine, 1,4-dioxane, 4-morpholine, pyridine, pyrimidine, thiazolo[4,5-b]-pyridine, quinoline, or indole, or the following heterocycles:

U N~ \N The term "(lower alkyl)-Het" as used herein, means a heterocyclic radical as defined above linked through a chain or branched alkyl group, wherein alkyl is as defined above containing from 1 to 6 carbon atoms. Examples of (lower alkyl)-Het include:
l0 or The term "pharmaceutically acceptable ester" as used herein, either alone or in combination with another substituent, means esters of the compound of formula I in which any of the carboxyl functions of the molecule, but preferably the carboxy terminus, is replaced by an alkoxycarbonyl function:

O
AOR
in which the R moiety of the ester is selected from alkyl (e.g. methyl, ethyl, n-propyl, t-butyl, n-butyl); alkoxyalkyl (e.g. methoxymethyl); alkoxyacyl (e.g.
acetoxymethyl);
aralkyl (e.g. benzyl); aryloxyalkyl (e.g. phenoxymethyl); aryl (e.g. phenyl), optionally substituted with halogen, C,- alkyl or C1 alkoxy. Other suitable prodrug esters can be found in Design of prodrugs, Bundgaard, H. Ed. Elsevier (1985). Such pharmaceutically acceptable esters are usually hydrolyzed in vivo when injected in a mammal and transformed into the acid form of the compound of formula I.

With regard to the esters described above, unless otherwise specified, any alkyl moiety present advantageously contains 1 to 16 carbon atoms, particularly 1 to carbon atoms. Any aryl moiety present in such esters advantageously comprises a phenyl group.
In particular the esters may be a C1_16 alkyl ester, an unsubstituted benzyl ester or a benzyl ester substituted with at least one halogen, C1-6 alkyl, C1$ alkoxy, nitro or trifluoromethyl.

The term "pharmaceutically acceptable salt" as used herein includes those derived from pharmaceutically acceptable bases. Examples of suitable bases include choline, ethanolamine and ethylenediamine. Na+, K+, and Ca++ salts are also contemplated to be within the scope of the invention (also see Pharmaceutical salts, Birge, S.M. et al., J. Pharm. Sci., (1977), 66, 1-19.

Preferred embodiments Included within the scope of this invention are compounds of formula I wherein Preferably, B is a C6 or C10 aryl or C7_16 aralkyl, all optionally substituted with C1-6 alkyl, C1$ alkoxy, C1_6 alkanoyl, hydroxy, hydroxyalkyl, halo, haloalkyl, nitro, cyano, cyanoalkyl, amido, (lower alkyl)amido, or amino optionally substituted with C1_6 alkyl;
or B is preferably Het or (lower alkyl)-Het, all optionally substituted with C1.6 alkyl, C1-6 alkoxy, C1-6alkanoyl, hydroxy, hydroxyalkyl, halo, haloalkyl, nitro, cyano, cyanoalkyl, amido, (lower alkyl)amido, or amino optionally substituted with C1-6alkyl.

Alternatively, B is preferably R4-SO2 wherein R4 is preferably C1.6 alkyl;
amido;
(lower alkyl)amide; C6 or C10 aryl, C7_14 aralkyl or Het, all optionally substituted with C1_6 alkyl.

Alternatively, B is preferably an acyl derivative of formula R4-C(O)- wherein R4 is preferably (i) C1_10 alkyl optionally substituted with carboxyl, hydroxy or C1-6alkoxy, amido, (lower alkyl)amide, or amino optionally mono- or di-substituted with C1-6alkyl;
(ii) C3_7 cycloalkyl or C4_10 alkylcycloalkyl, both optionally substituted with hydroxy, carboxyl, (C1-6alkoxy)carbonyl, amido, (lower alkyl)amide, or amino optionally mono- or di-substituted with C1-6alkyl;
(iv) C6 or C10 aryl or C7.16 aralkyl, all optionally substituted with C1$
alkyl, hydroxy, amido, (lower alkyl)amide, or amino optionally substituted with C1$ alkyl;
(v) Het or (lower alkyl)-Het, both optionally substituted with C1-6 alkyl, hydroxy, amido, (lower alkyl)amide or amino optionally substituted with C1-6alkyl.
Alternatively, B is preferably a carboxyl of formula R4-O-C(O)-, wherein R4 is preferably (1) C1.10 alkyl optionally substituted with carboxyl, C1.6 alkanoyl, hydroxy, C1.6 alkoxy, amino optionally mono- or di-substituted with C1-6 alkyl, amido or (lower alkyl)amide;
(ii) C3.7 cycloalkyl, C4-1o alkylcycloalkyl, all optionally substituted with carboxyl, (C1.6 alkoxy)carbonyl, amino optionally mono- or di-substituted with Ct.6 alkyl, amido or (lower alkyl)amide;
(iv) C6 or C10 aryl or C7.16 aralkyl optionally substituted with C1.6 alkyl, hydroxy, amido, (lower alkyl)amido, or amino optionally mono- or di-substituted with C1.6 alkyl; or (v) Het or (lower alkyl)-Het, both optionally substituted with C1.6 alkyl, hydroxy, amino optionally mono- or di-substituted with C1.6 alkyl, amido or (lower alkyl)amido.
Alternatively, B is preferably an amide of formula R4-N(R5)-C(O)- wherein R4 is preferably (i) C1.1o alkyl optionally substituted with carboxyl, C1-6 alkanoyl, hydroxy, C1.6 alkoxy, amido, (lower alkyl)amido, or amino optionally mono- or di-substituted with C1.6 alkyl;
(ii) C3.7 cycloalkyl or C4.10 alkylcycloalkyl, all optionally substituted with carboxyl, (C1.6 alkoxy)carbonyl, amido, (lower alkyl)amido, or amino optionally mono- or di-substituted with C1.6 alkyl;
(iii) amino optionally mono- or di-substituted with C1.3 alkyl;
(iv) C6 or C10 aryl or C7-16 aralkyl, all optionally substituted with C1.6 alkyl, hydroxy, amido, (lower alkyl)amide, or amino optionally substituted with C,.6 alkyl; or (v) Het or (lower alkyl)-Het, both optionally substituted with C1.6 alkyl, hydroxy, amino optionally substituted with CI.6 alkyl, amido or (lower alkyl)amide; and R5 is preferably H or methyl.

Alternatively, B is a preferably thioamide of formula R4-NH-C(S)-; wherein R4 is preferably (i) C1_10 alkyl optionally substituted with carboxyl, Cl-6 alkanoyl or C1.6 alkoxy;
(ii) C3.7 cycloalkyl or C4.10 alkylcycloalkyl, all optionally substituted with carboxyl, (C1.6 alkoxy)carbonyl, amino or amido.

More preferably, B is a C6 or C10 aryl optionally substituted with C1.6 alkyl, alkoxy, C1.6 alkanoyl, hydroxy, hydroxyalkyl, halo, haloalkyl, nitro, cyano, cyanoalkyl, amido, (lower alkyl)amide, or amino optionally mono- or di-substituted with C1.6 alkyl, such that B is for example:
i Me I / ON CI

\ I \ I HO
O Me \

NC F N -NC / F \ ~ :xi.
N \~
, OMe 6"'k; Me or or B is more preferably Het optionally substituted with C,.6 alkyl, C,_6 alkoxy, C1.6 alkanoyl, hydroxy, halo, amido, (lower alkyl)amide, or amino optionally mono-or di-substituted with C,.6 alkyl, such that B is for example:

co ~s or Alternatively, B is more preferably R4-S02 wherein R4 is preferably C6 or C10 aryl, a C7_14 aralkyl or Het all optionally substituted with C1.6 alkyl; amido, (lower alkyl)amide, such that B is, for example:

ti 0 N O~~ ii O 0 \ .v O S I \ S S S
~-N
; or Alternatively, B is more preferably an acyl derivative of formula R4-C(O)-wherein R4 is preferably (i) C1 10 alkyl optionally substituted with carboxyl, hydroxy or C,.6 alkoxy;
or (ii) C3.7 cycloalkyl or C4.,o alkylcycloalkyl, both optionally substituted with hydroxy, carboxyl, (Ct_6 alkoxy)carbonyl, such that B is, for example:

HO~
O
I

O
Ho I j o O
0 or O
or R4 is preferably (iv) C6 or C10 aryl or C7.16 aralkyl, all optionally substituted with C1.6 alkyl, hydroxy, 5 such that B is for example:

HO I \ I HO

or ;
or R4 is preferably (v) Het optionally substituted with C1-6alkyl, hydroxy, amido or amino, such that B is for example:

O --k 10 ON Alternatively, B is more preferably a carboxyl of formula R4-O-C(O)-, wherein R4 is preferably (1) C1_10 alkyl optionally substituted with carboxyl, C1-6alkanoyl, hydroxy, C1-6alkoxy or amido, (lower alkyl)amide, amino optionally mono- or di-substituted with C1.6 alkyl;
15 (ii) C3.7 cycloalkyl, C4.10 alkylcycloalkyl, all optionally substituted with carboxyl, (C1_6 alkoxy)carbonyl, amido, (lower alkyl)amide, amino optionally mono- or di-substituted with C1.6 alkyl, such that B is for example:
.ao o~ I
0o ,xl `O
or , or R4 is preferably (iv) C6 or C10 aryl or 07.16 aralkyl, all optionally substituted with C1.6 alkyl, hydroxy, amino optionally substituted with C1.6 alkyl; or (v) Het or (lower alkyl)-Het, both optionally substituted with C1_6 alkyl, hydroxy, amido, or amino optionally mono-substituted with C1.6 alkyl, such that B is for example:

S
0 0 a 0 .
o , or OA

Alternatively, B is more preferably an amide of formula R4-N(R5)-C(O)- wherein R4 is preferably (1) C1.1o alkyl optionally substituted with carboxyl, C1-6alkanoyl, hydroxy, C1.6 alkoxy, amido, (lower alkyl)amide, amino optionally mono- or di-substituted with C1.6 alkyl;
(ii) C3.7 cycloalkyl or C4.10 alkylcycloalkyl, all optionally substituted with carboxyl, (C1.6 alkoxy)carbonyl, amido, (lower alkyl)amide, amino optionally mono- or di-substituted with C1.6 alkyl; and R5 is H or methyl, such that B is for example:
o or R4 is preferably (iii) amino optionally mono- or di-substituted with C1.3 alkyl, such that B is for example:

1o H
or R4 is preferably (iv) C6 or C10 aryl or C7.16 aralkyl, all optionally substituted with C1.6 alkyl, hydroxy, amino or amido optionally substituted with Ct.6 alkyl; or (v) Het optionally substituted with C1.6 alkyl, hydroxy, amino or amido, such that B is for example:

I\ H~ 9 H H H
, ;or Alternatively, B is more preferably a thioamide of formula R4-NH-C(S)-;
wherein R4 is preferably R4 is (i) C1.10 alkyl; or (ii) C3.7 cycloalkyl; such that B is for example:

N aNj"'-, H or Most preferably, B is an amide of formula R4-NH-C(O)- wherein R4 is preferably (i) C1.10 alkyl optionally substituted with carboxyl, C1-6 alkanoyl, hydroxy, C1-6 alkoxy amido, (lower alkyl)amide, amino optionally mono- or di-substituted with C1.6 alkyl;
(ii) C3_7 cycloalkyl or C4_10 alkylcycloalkyl, all optionally substituted with carboxyl, (C1.6 alkoxy)carbonyl, amido, (lower alkyl)amide, amino optionally mono- or di-substituted with C1.6 alkyl;

a\N'Y "k /
~ --J--N~
J
H H H H

O
1X I ~~~ / N~ N~ N ~
H H ~H H
H

O
H0 M80 > HZN` H2N
N `
II If `N
O H
H ; H ; O H ;or or R4 is preferably (iv) C6 or C10 aryl or C7.16 aralkyl optionally substituted with C1.6 alkyl, hydroxy, amino or amido, such that B is for example:

H
H
Even most preferably, B is tert-butoxycarbonyl (Boc) or Preferably, Y is H or methyl. More preferably, Y is H.

Preferably, R3 is C1$ alkyl, C3_7 cycloalkyl, or C4_10 alkylcycloalkyl, all optionally substituted with hydroxy, C1_6 alkoxy, Cl-,, thioalkyl, acetamido, C6 or C10 aryl, or C7_16 aralkyl, such that R3 is for example:

ca' 0 0 o off "'If 0 N
S S
t ;or More preferably, R3 is the side chain of tert-butylglycine (Tbg), Ile, Val, Chg or:
;or Most preferably, R3 is the side chain of Tbg, Chg or Val.

Included within the scope of the invention are compounds of formula I wherein, preferably, R2 is S-R20 or O-R20 wherein R20 is preferably a C6 or C10 aryl, C7_16 aralkyl, Het or -CH2-Het, all optionally mono-, di- or tri-substituted with R21.

Preferably, R21 is C1_6 alkyl; C1_6 alkoxy; lower thioalkyl; amino or amido optionally mono-or di-substituted with C1_6 alkyl, C6 or C10 aryl, C7_16 aralkyl, Het or (lower alkyl)-Het; NO2; OH; halo; trifluoromethyl; carboxyl; C6 or C10 aryl, C7_16 aralkyl, or Het, said aryl, aralkyl or Het being optionally substituted with R22. More preferably, R21 is C1_6 alkyl; C1$ alkoxy; amino; di(lower alkyl)amino; (lower alkyl)amide; C6 or C10 aryl, or Het, said aryl or Het being optionally substituted with R22.

Preferably, R22 is C1$ alkyl; C3_7 cycloalkyl; C1_6 alkoxy; amino; mono-or di-(lower alkyl)amino; (lower alkyl)amide; sulfonylalkyl; NO2; OH;
halo; trifluoromethyl; carboxyl or Het. More preferably, R22 is C1.6 alkyl; C3.7 cycloalkyl; C1.6 alkoxy; amino; mono- or di(lower alkyl)amino; amido; (lower alkyl)amide; halo; trifluoromethyl or Het.
Most preferably, R22 is C1.6 alkyl; C1.6 alkoxy; halo; amino optionally mono- or di-substituted with lower alkyl; amido; (lower alkyl)amide; or Het. Even most preferably, R22 is methyl; ethyl; isopropyl; tert-butyl;
methoxy; chloro; amino optionally mono- or di-substituted with lower alkyl; amido, (lower alkyl)amide; or (lower alkyl) 2-thiazole.

Alternatively, R2 is preferably selected from the group consisting of:

Oy " I \ O\ 1 N
/ i N i O,~
Y
N~ N~ I i N~ / i O l ; ; ; and More preferably, R2 is 1 -naphthylmethoxy; 2-naphthylmethoxy; benzyloxy, 1-naphthyloxy; 2-naphthyloxy; or quinolinoxy unsubstituted , mono- or di-substituted with R2, as defined above. Most preferably, R2 is 1-naphtylmethoxy; or quinolinoxy unsubstituted, mono- or di-substituted with R21 as defined above, such that R2 is for example:

N CFa / I CI N OMe CF N HZN N OMe or Still, more preferably, R2 is :

\

More preferably, R21A is C1-6alkyl such as isopropyl, tert-butyl or cyclohexyl;

Me ^o1 , --~
C1.6 alkoxY such as methoxy, o~ or , lower thioalkyl such as halo such as chloro;

amino optionally mono-substituted with C1$ alkyl; or C6 or C10 aryl, such that R21A is for example: dimethylamino, Ph-N(Me)-;

5 unsubstituted C6 or C10 aryl, C7_18 aralkyl, such as for example phenyl or Pn-~~
or R21A is more preferably Het optionally substituted with R22 wherein R22 is alkyl, C1-6 alkoxy, amido, (lower alkyl)amide, amino optionally mono- or di-substituted with C1-6alkyl, or Het, such that R21A is for example:

Me ~N^ 1N~ O O^

or S C S 1 j N"~ N N

\ / / ~ ~% INIV
10 N , S , , , or Most preferably, R21A is C6, C10 aryl or Het, all optionally substituted with R22 as defined above, such that R21A is for example:

Me Et Me-.N
N
) \\

S N
H
%
:L:Y, ~H2N T N HN N H N N

1 HN~ / . ) * N~ y' S~
s~ s s or `~ s Even most preferably, R2 is:

q(-~ R228 RSA ~'N

O~ or wherein R22A is preferably C1_6 alkyl (such as methyl); C1.6 alkoxy (such as methoxy);
or halo (such as chloro); R22B is preferably C1_6 alkyl, amino optionally mono-substituted with C1.6 alkyl, amido, or (lower alkyl)amide; and R21B is preferably C1.6 alkyl, C1.6 alkoxy, amino, di(lower alkyl)amino, (lower alkyl)amide, NO2, OH, halo, trifluoromethyl, or carboxyl. More preferably, R21B is C1.6 alkoxy, or di(lower alkyl)amino. Most preferably, R21B is methoxy.

As described hereinabove the P1 segment of the compounds of formula I is a cyclobutyl or cyclopropyl ring, both optionally substituted with R1.

Preferably, R1 is H, C1.3 alkyl, C3.5 cycloalkyl, or C2.4 alkenyl optionally substituted with halo. More preferably R1 is ethyl, vinyl, cyclopropyl, 1 or 2-bromoethyl or 1 or 2-bromovinyl. Most preferably, R, is vinyl.

When R1 is not H, then P1 is preferably a cyclopropyl system of formula:
RI

E--NHC' I
O
wherein C1 and C2 each represent an asymmetric carbon atom at positions 1 and of the cyclopropyl ring. Notwithstanding other possible asymmetric centers at other segments of the compounds of formula I, the presence of these two asymmetric centers means that the compounds of formula I can exist as racemic mixtures of diastereoisomers. As illustrated in the examples hereinafter, the racemic mixtures can be prepared and thereafter separated into individual optical isomers, or these optical isomers can be prepared by chiral synthesis.

Hence, the compound of formula I can exist as a racemic mixture of diastereoisomers at carbon 1 but wherein R, at carbon 2 is orientated syn to the carbonyl at position 1, represented by the radical:

'E-N o '`-N and N

O O

or the compound of formula I can exist as a racemic mixture of diastereoisomers wherein R, at position 2 is orientated anti to the carbonyl at position 1, represented by the radical:

R1 R, R1 =~-H or -H .E-H
0 0 and 0 In turn, the racemic mixtures can be separated into individual optical isomers.

A most interesting finding of this invention pertains to the addition of a R, substituent on the carbon 2 as well as the spatial orientation of the P1 segment. The finding concerns the configuration of the asymmetric carbon 1. A preferred embodiment is one wherein R, is not H and carbon 1 has the R configuration.

RorS

N N N
H i H I H I
0 = either of O and 0 More explicitly, the introduction of a substituent (R,) at C2 has an impact on the potency when R, is introduced in a way that C1 has the R configuration. For example compounds 901 (1R,2S and 203 (1R,2R) have activities of 25 and 82 nM
respectively. When compared to the unsubstituted cyclopropyl compound 111 (475 nM), a substantial increase in potency is observed. Moreover, as shown for compounds 901 and 203 when carbon I has the R configuration, HCV NS3 protease inhibition is further enhanced by the configuration of the substituent R, (e.g. alkyl or alkylene) at carbon 2 of the cyclopropyl ring, e.g. the compound that possesses R, "syn" to the carboxyl has greater potency (25 nM) than the "ant?' enantiomer (82 nM). We can see the effect of the R vs. S configuration at C1 by comparing compounds 801(IR,2S) and its corresponding (1 S,2R) isomer which have potencies of 6 nM and >10 M respectively, a difference of over 1500 fold!!
Therefore a most preferred compound is an optical isomer having the R, substituent and the carbonyl in a syn orientation in the following absolute configuration:

H
O
In the case where R, is ethyl, for example, the asymmetric carbon atoms at positions 1 and 2 have the R,R configuration.
Included within the scope of this invention are compounds of formula I wherein B is a C6 or C10 aryl or C7_16 aralkyl, all optionally substituted with C1-6alkyl, C1-alkoxy, C1_6 alkanoyl, hydroxy, hydroxyalkyl, halo, haloalkyl, nitro, cyano, cyanoalkyl, amido, (lower alkyl)amido, or amino optionally substituted with C1.6 alkyl; or Het or (lower alkyl)-Het, all optionally substituted with C1-6alkyl, C1-6alkoxy, C1-6 alkanoyl, hydroxy, hydroxyalkyl, halo, haloalkyl, nitro, cyano, cyanoalkyl, amido, (lower alkyl)amido, or amino optionally substituted with C1$ alkyl,. or B is R4-SO2 wherein R4 is preferably amido; (lower alkyl)amide; C6 or C10 aryl, C7.14 aralkyl or Het, all optionally substituted with C1-6alkyl, or B is an acyl derivative of formula R4-C(O)- wherein R4 is (i) C1_10 alkyl optionally substituted with carboxyl, hydroxy or C1-6alkoxy, amido, (lower alkyl)amide, or amino optionally mono- or di-substituted with C1_6 alkyl;
(ii) C3.7 cycloalkyl or C4_10 alkylcycloalkyl, both optionally substituted with hydroxy, carboxyl, (C1-6alkoxy)carbonyl, amido, (lower alkyl)amide, or amino optionally mono- or di-substituted with C1$ alkyl;
(iv) C6 or C10 aryl or C7_16 aralkyl, all optionally substituted with C1-6alkyl, hydroxy, amido, (lower alkyl)amide, or amino optionally substituted with C1-hydroxy, amido, (lower alkyl)amide, or amino optionally substituted with C1.6 alkyl;
(v) Het or (lower alkyl)-Het, both optionally substituted with C1.6 alkyl, hydroxy, amino optionally substituted with C1.6 alkyl, amido, (lower alkyl)amide, or amino optionally substituted with C1.6 alkyl, or B is a carboxyl of formula R4-O-C(O)-, wherein R4 is (i) C1.10 alkyl optionally substituted with carboxyl, C1.6 alkanoyl, hydroxy, C1.6 alkoxy, amino optionally mono- or di-substituted with C1.6 alkyl, amido or (lower alkyl)amide;
(ii) C3.7 cycloalkyl, C4.10 alkylcycloalkyl, all optionally substituted with carboxyl, (C1.6 alkoxy)carbonyl, amino optionally mono- or di-substituted with C1.6 alkyl, amido or (lower alkyl)amide;
(iv) C6 or C10 aryl or C7-16 aralkyl optionally substituted with C1-6 alkyl, hydroxy, amido, (lower alkyl)amido, or amino optionally mono- or di-substituted with C1.6 alkyl; or (v) Het or (lower alkyl)-Het, both optionally substituted with C1.6 alkyl, hydroxy, amino optionally mono- or di-substituted with C1.6 alkyl, amido or (lower alkyl)amido, or B is an amide of formula R4-N(R5)-C(O)- wherein R4 is (i) C1_10 alkyl optionally substituted with carboxyl, C1.6 alkanoyl, hydroxy, alkoxy, amido, (lower alkyl)amido, or amino optionally mono- or di-substituted with C1.6 alkyl;
(ii) C3.7 cycloalkyl or C4_t0 alkylcycloalkyl, all optionally substituted with carboxyl, (C1.6 alkoxy)carbonyl, amido, (lower alkyl)amido, or amino optionally mono- or di-substituted with C1.6 alkyl;
(iii) amino optionally mono- or di-substituted with C1.3 alkyl;
(iv) C6 or C10 aryl or C7.16 aralkyl, all optionally substituted with C1.6 alkyl, hydroxy, amido, (lower alkyl)amide, or amino optionally substituted with C1.6 alkyl; or (v) Het or (lower alkyl)-Het, both optionally substituted with C1-6 alkyl, hydroxy, amino optionally substituted with C1.6 alkyl, amido or (lower alkyl)amide; and R5 is preferably H or methyl, or B is thioamide of formula R4-NH-C(S)-; wherein R4 is (i) C1.10 alkyl optionally substituted with carboxyl, C1.6 alkanoyl or C1-6alkoxy;
(ii) C3.7 cycloalkyl or C4.10 alkylcycloalkyl, all optionally substituted with carboxyl, (C1.6 alkoxy)carbonyl, amino or amido;

Y is H or methyl;

5 R3 is C1.8 alkyl, C3.7 cycloalkyl, or C4.1o alkylcycloalkyl, all optionally substituted with hydroxy, C1.6 alkoxy, C1.6 thioalkyl, acetamido, C6 or C10 aryl, or C7.16 aralkyl;

R2 is S-R20 or O-R20 wherein R20 is preferably a C6 or C10 aryl, C7.16 aralkyl, Het or -CH2-Het, all optionally mono-, di- or tri-substituted with R21r wherein R2, is C1.6 alkyl; C1.6 alkoxy; lower thioalkyl; amino or amido optionally mono-10 or di-substituted with C1.6 alkyl, C6 or C10 aryl, C7.1B aralkyl, Het or (lower alkyl)-Het; NO2; OH; halo; trifluoromethyl; carboxyl; C6 or C10 aryl, C7.16 aralkyl, or Het, said aryl, aralkyl or Het being optionally substituted with R22, wherein R22 is C1.6 alkyl; C3.7 cycloalkyl; C1.6 alkoxy; amino; mono- or di-(lower 15 alkyl)amino; (lower alkyl)amide; sulfonylalkyl; NO2; OH; halo;
trifluoromethyl; carboxyl or Het; or R2 is selected from the group consisting of:

N N O~ vNYN I aoN NN~ ( r I
Y O

; ; and or R2 is 1-naphthylmethoxy; 2-naphthylmethoxy; benzyloxy, 1 -naphthyloxy; 2-20 naphthyloxy; or quinolinoxy unsubstituted , mono- or di-substituted with R2, as defined above;

the P1 segment is a cyclobutyl or cyclopropyl ring, both optionally substituted with R,, wherein R' is H, C1.3 alkyl, C3.5 cycloalkyl, or C2.4 alkenyl optionally substituted with halo, and said R, at carbon 2 is orientated syn to the carbonyl at position 1, 25 represented by the radical:

RI RI R, o ~--N and H

L H {O O

Included within the scope of this invention are compounds of formula I wherein B is a C6 or C10 aryl optionally substituted with C1.6 alkyl, C1.6 alkoxy, C1-6alkanoyl, hydroxy, hydroxyalkyl, halo, haloalkyl, nitro, cyano, cyanoalkyl, amido, (lower alkyl)amide, or amino optionally mono- or di-substituted with C1.6 alkyl; or B is Het optionally substituted with C1 .6 alkyl, C1.6 alkoxy, C1.6 alkanoyl, hydroxy, halo, amido, (lower alkyl)amide, or amino optionally mono- or di-substituted with C1.6 alkyl; or B
is R4-SO2 wherein R4 is C6 or C10 aryl, a C7.14 aralkyl or Het all optionally substituted with C1.6 alkyl; amido, (lower alkyl)amide; or B is an acyl derivative of formula R4-C(O)-wherein R4 is (i) C1.10 alkyl optionally substituted with carboxyl, hydroxy or C1.6 alkoxy;
or (ii) C3_7 cycloalkyl or C4.10 alkylcycloalkyl, both optionally substituted with hydroxy, carboxyl, (C1. alkoxy)carbonyl; or (iv) C6 or C10 aryl or C7.16 aralkyl, all optionally substituted with C1.
alkyl, hydroxy;or (v) Het optionally substituted with C1.6 alkyl, hydroxy, amido or amino;
or B is a carboxyl of formula R4-O-C(O)-, wherein R4 is (i) C1.10 alkyl optionally substituted with carboxyl, C1.6 alkanoyl, hydroxy, C1.6 alkoxy or amido, (lower alkyl)amide, amino optionally mono- or di-substituted with C1.6 alkyl;
(ii) C3.7 cycloalkyl, C4.10 alkylcycloalkyl, all optionally substituted with carboxyl, (C1.6 alkoxy)carbonyl, amido, (lower alkyl)amide, amino optionally mono- or di-substituted with C1.6 alkyl; or (iv) C6 or C10 aryl or C7.16 aralkyl, all optionally substituted with C1.6 alkyl, hydroxy, amino optionally substituted with C1.6 alkyl; or (v) Het or (lower alkyl)-Het, both optionally substituted with C1.6 alkyl, hydroxy, amido, or amino optionally mono-substituted with C1.6 alkyl;

or B is an amide of formula R4-N(R5)-C(O)- wherein R4 is (i) C1_10 alkyl optionally substituted with carboxyl, C1-6 alkanoyl, hydroxy, alkoxy, amido, (lower alkyl)amide, amino optionally mono- or di-substituted with C1-6alkyl;
(ii) C3_7 cycloalkyl or C4_10 alkylcycloalkyl, all optionally substituted with carboxyl, (C1-6alkoxy)carbonyl, amido, (lower alkyl)amide, amino optionally mono- or di-substituted with C,_6 alkyl; R4 is (iii) amino optionally mono- or di-substituted with C1_3 alkyl; or (iv) C6 or C10 aryl or C7_16 aralkyl, all optionally substituted with C1-6alkyl, hydroxy, amino or amido optionally substituted with C1-6alkyl; or (v) Het optionally substituted with C1-6alkyl, hydroxy, amino or amido; or and R5 is H or methyl; or B is a thioamide of formula R4-NH-C(S)-; wherein R4 is:
(i) C1_10 alkyl; or (ii) C3_7 cycloalkyl; or B is an amide of formula R4-NH-C(O)- wherein R4 is i) Ct_10 alkyl optionally substituted with carboxyl, C1-6alkanoyl, hydroxy, C1_6 alkoxy amido, (lower alkyl)amide, amino optionally mono- or di-substituted with C1-6 alkyl;
(ii) C3_7 cycloalkyl or C4_10 alkylcycloalkyl, all optionally substituted with carboxyl, (C1_6 alkoxy)carbonyl, amido, (lower alkyl)amide, amino optionally mono- or di-substituted with C1_6 alkyl;
(iv) C6 or C10 aryl or C7_16 aralkyl optionally substituted with C1-6alkyl, hydroxy, amino or amido;

Y is H.;

R3 is the side chain of tent-butylglycine (Tbg), Ile, Val, Chg or:
or ;
R2 is 1-naphtylmethoxy; or quinolinoxy unsubstituted, mono- or di-substituted with R21 as defined above, or R2 is:

wherein R21A is C1$ alkyl; C1_6 alkoxy; C6, C10 aryl or Het; lower thioalkyl;
halo; amino optionally mono-substituted with C1_6 alkyl; or C6,C1o aryl, C7_16 aralkyl or Het, optionally substituted with R22 wherein R22 is C1$ alkyl, C1-6 alkoxy, amido, (lower alkyl)amide, amino optionally mono- or di-substituted with C1-6 alkyl, or Het;
P1 is a cyclopropyl ring wherein carbon 1 has the R configuration, Rl' R1 R1 RorS

.F-N ~-- N .E- N
H H O H O 11 O either of and and R1 is ethyl, vinyl, cyclopropyl, 1 or 2-bromoethyl or 1 or 2-bromovinyl.

Further included in the scope of the invention are compounds of formula I
wherein:

B is tert-butoxycarbonyl (Boc) or R3 is the side chain of Tbg, Chg or Val;
R2 is:

Reza N

O~ or wherein R22A is C1_6 alkyl (such as methyl); C1_6 alkoxy (such as methoxy); or halo (such as chloro); R22B is C1$ alkyl, amino optionally mono-substituted with C1.6 alkyl, amido, or (lower alkyl)amide; and R21B is C1$ alkyl, C1_6 alkoxy, amino, di(lower alkyl)amino, (lower alkyl)amide, NO2, OH, halo, trifluoromethyl, or carboxyl;

I I~

and P1 is:

;S
.F-H I
O
Finally, included within the scope of this invention is each compound of formula I as presented in Tables 1 to 10.

According to an alternate embodiment, the pharmaceutical compositions of this invention may additionally comprise another anti-HCV agent. Examples of anti-HCV
agents include, a- or R-interferon, ribavirin and amantadine.

According to another alternate embodiment, the pharmaceutical compositions of this invention may additionally comprise other inhibitors of HCV protease.

According to yet another alternate embodiment, the pharmaceutical compositions of this invention may additionally comprise an inhibitor of other targets in the HCV life cycle, including but not limited to, helicase, polymerase, metalloprotease or internal ribosome entry site (IRES).

The pharmaceutical compositions of this invention may be administered orally, parenterally or via an implanted reservoir. Oral administration or administration by injection is preferred. The pharmaceutical compositions of this invention may contain any conventional non-toxic pharmaceutically-acceptable carriers, adjuvants or vehicles. In some cases, the pH of the formulation may be adjusted with pharmaceutically acceptable acids, bases or buffers to enhance the stability of the formulated compound or its delivery form. The term parenteral as used herein includes subcutaneous, intracutaneous, intravenous, intramuscular, intra-articular, intrasynovial, intrasternal, intrathecal, and intralesional injection or infusion techniques.

The pharmaceutical compositions may be in the form of a sterile injectable preparation, for example, as a sterile injectable aqueous or oleaginous suspension.
This suspension may be formulated according to techniques known in the art using suitable dispersing or wetting agents (such as, for example Tween 80) and suspending agents.

The pharmaceutical compositions of this invention may be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, and aqueous suspensions and solutions. In the case of tablets for oral use, carriers which are commonly used include lactose and corn starch. Lubricating agents, such 5 as magnesium stearate, are also typically added. For oral administration in a capsule form, useful diluents include lactose and dried corn starch. When aqueous suspensions are administered orally, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening and/or flavoring and/or coloring agents may be added.

10 Other suitable vehicles or carriers for the above noted formulations and compositions can be found in standard pharmaceutical texts, e.g. in "Remington's Pharmaceutical Sciences", The Science and Practice of Pharmacy, 19th Ed. Mack Publishing Company, Easton, Penn., (1995).

Dosage levels of between about 0.01 and about 100 mg/kg body weight per day, 15 preferably between about 0.5 and about 75 mg/kg body weight per day of the protease inhibitor compounds described herein are useful in a monotherapy for the prevention and treatment of HCV mediated disease. Typically, the pharmaceutical compositions of this invention will be administered from about 1 to about 5 times per day or alternatively, as a continuous infusion. Such administration can be used as a 20 chronic or acute therapy. The amount of active ingredient that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. A typical preparation will contain from about 5% to about 95% active compound (w/w). Preferably, such preparations contain from about 20% to about 80% active compound.

25 As the skilled artisan will appreciate, lower or higher doses than those recited above may be required. Specific dosage and treatment regimens for any particular patient will depend upon a variety of factors, including the activity of the specific compound employed, the age, body weight, general health status, sex, diet, time of administration, rate of excretion, drug combination, the severity and course of the 30 infection, the patient's disposition to the infection and the judgment of the treating physician. Generally, treatment is initiated with small dosages substantially less than the optimum dose of the peptide. Thereafter, the dosage is increased by small increments until the optimum effect under the circumstances is reached. In general, the compound is most desirably administered at a concentration level that will generally afford antivirally effective results without causing any harmful or deleterious side effects.

When the compositions of this invention comprise a combination of a compound of formula I and one or more additional therapeutic or prophylactic agent, both the compound and the additional agent should be present at dosage levels of between about 10 to 100%, and more preferably between about 10 and 80% of the dosage normally administered in a monotherapy regimen.

When these compounds or their pharmaceutically acceptable salts are formulated together with a pharmaceutically acceptable carrier, the resulting composition may be administered in vivo to mammals, such as man, to inhibit HCV NS3 protease or to treat or prevent HCV virus infection. Such treatment may also be achieved using the compounds of this invention in combination with agents which include, but are not limited to: immunomodulatory agents, such as a-, R-, or y-interferons; other antiviral agents such as ribavirin, amantadine; other inhibitors of HCV NS3 protease;
inhibitors of other targets in the HCV life cycle, which include but not limited to, helicase, polymerase, metalloprotease, or internal ribosome entry site (IRES);
or combinations thereof. The additional agents may be combined with the compounds of this invention to create a single dosage form. Alternatively these additional agents may be separately administered to a mammal as part of a multiple dosage form.

Accordingly, another embodiment of this invention provides methods of inhibiting HCV NS3 protease activity in mammals by administering a compound of the formula I, wherein the substituents are as defined above.

In a preferred embodiment, these methods are useful in decreasing HCV NS3 protease activity in a mammal. If the pharmaceutical composition comprises only a compound of this invention as the active component, such methods may additionally comprise the step of administering to said mammal an agent selected from an immunomodulatory agent, an antiviral agent, a HCV protease inhibitor, or an inhibitor of other targets in the HCV life cycle such as helicase, polymerase, or metallo protease or IRES. Such additional agent may be administered to the mammal prior to, concurrently with, or following the administration of the compositions of this invention.

In an alternate preferred embodiment, these methods are useful for inhibiting viral replication in a mammal. Such methods are useful in treating or preventing HCV

disease. If the pharmaceutical composition comprises only a compound of this invention as the active component, such methods may additionally comprise the step of administering to said mammal an agent selected from an immunomodulatory agent, an antiviral agent, a HCV protease inhibitor, or an inhibitor of other targets in the HCV life cycle. Such additional agent may be administered to the mammal prior to, concurrently with, or following the administration of the composition according to this invention.

The compounds set forth herein may also be used as laboratory reagents. The compounds of this invention may also be used to treat or prevent viral contamination of materials and therefore reduce the risk of viral infection of laboratory or medical personnel or patients who come in contact with such materials (e.g. blood, tissue, surgical instruments and garments, laboratory instruments and garments, and blood collection apparatuses and materials).

The compounds set forth herein may also be used as research reagents. The compounds of this invention may also be used as positive control to validate surrogate cell-based assays or in vitro or in vivo viral replication assays.
PROCESS

The compounds of the present invention were synthesized according to a general process as illustrated in scheme I (wherein CPG is a carboxyl protecting group and APG is an amino protecting group):

SCHEMEI
a P1 -w P1-CPG + APG-P2 APG-P2-P1-CPG

b P2-PI-CPG + APG-P3 c d Briefly, the P1, P2, and P3 can be linked by well known peptide coupling techniques.
The P1, P2, and P3 groups may be linked together in any order as long as the final compound corresponds to peptides of Formula I. For example, P3 can be linked to P2-P1 ; or P1 linked to P3-P2.
Generally, peptides are elongated by deprotecting the a-amino group of the N-terminal residue and coupling the unprotected carboxyl group of the next suitably N-protected amino acid through a peptide linkage using the methods described.
This deprotection and coupling procedure is repeated until the desired sequence is obtained. This coupling can be performed with the constituent amino acids in stepwise fashion, as depicted in Scheme I, or by solid phase peptide synthesis according to the method originally described in Merrifield, J. Am. Chem. Soc., (1963), 85, 2149-2154.
Coupling between two amino acids, an amino acid and a peptide, or two peptide fragments can be carried out using standard coupling procedures such as the azide method, mixed carbonic-carboxylic acid anhydride (isobutyl chloroformate) method, carbodiimide (dicyclohexylcarbodiimide, diisopropylcarbodiimide, or water-soluble carbodiimide) method, active ester (p-nitrophenyl ester, N-hydroxysuccinic imido ester) method, Woodward reagent K-method, carbonyldiimidazole method, phosphorus reagents or oxidation-reduction methods. Some of these methods (especially the carbodiimide method) can be enhanced by adding 1-hydroxybenzotriazole. These coupling reactions can be performed in either solution (liquid phase) or solid phase.

More explicitly, the coupling step involves the dehydrative coupling of a free carboxyl of one reactant with the free amino group of the other reactant in the presence of a coupling agent to form a linking amide bond. Descriptions of such coupling agents are found in general textbooks on peptide chemistry, for example, M. Bodanszky, "Peptide Chemistry", 2nd rev ed., Springer-Verlag, Berlin, Germany, (1993). Examples of suitable coupling agents are N,N=dicyclohexylcarbodiimide, hydroxybenzotriazole in the presence of N,N-dicyclohexylcarbodiimide or N-ethyl-N' [(3-dimethylamino)propyl]carbodiimide. A practical and useful coupling agent is the commercially available (benzotriazol-1-yloxy)tris-(dimethylamino)phosphonium hexafluorophosphate, either by itself or in the presence of 1-hydroxybenzotriazole.
Another practical and useful coupling agent is commercially available 2-(1 H-benzotriazol-1-yl)-N, N, N', N-tetramethyluronium tetrafluoroborate. Still another practical and useful coupling agent is commercially available O-(7-azabenzotriazol-1-yl)-N,N,N',N'tetramethyluronium hexafluorophosphate.

The coupling reaction is conducted in an inert solvent, e.g. dichloromethane, acetonitrile or dimethylformamide. An excess of a tertiary amine, e.g.
diisopropylethylamine, N-methylmorpholine or N-methylpyrrolidine, is added to maintain the reaction mixture at a pH of about 8. The reaction temperature usually ranges between 0 C and 50 C and the reaction time usually ranges between 15 min and 24 h.

When a solid phase synthetic approach is employed, the C-terminal carboxylic acid is attached to an insoluble carrier (usually polystyrene). These insoluble carriers contain a group that will react with the carboxylic group to form a bond that is stable to the elongation conditions but readily cleaved later. Examples of which are:
chloro- or bromomethyl resin, hydroxymethyl resin, trytil resin and 2-methoxy-alkoxy-benzylalcohol resin.

Many of these resins are commercially available with the desired C-terminal amino acid already incorporated. Alternatively, the amino acid can be incorporated on the solid support by known methods (Wang, S.-S., J. Am. Chem. Soc., (1973), 95, 1328;
Atherton, E.; Shepard, R.C. "Solid-phase peptide synthesis; a practical approach"
IRL Press: Oxford, (1989); 131-148). In addition to the foregoing, other methods of peptide synthesis are described in Stewart and Young, "Solid Phase Peptide Synthesis", 2"d ed., Pierce Chemical Co., Rockford, IL (1984); Gross, Meienhofer, Udenfriend, Eds., "The Peptides: Analysis, Synthesis, Biology", Vol. 1, 2, 3, 5, and 9, Academic Press, New-York, (1980-1987); Bodansky et al., "The Practice of Peptide Synthesis" Springer-Verlag, New-York (1984).

The functional groups of the constituent amino acids generally must be protected during the coupling reactions to avoid formation of undesired bonds. The protecting groups that can be used are listed in Greene, "Protective Groups in Organic Chemistry", John Wiley & Sons, New York (1981) and "The Peptides: Analysis, Synthesis, Biology", Vol. 3, Academic Press, New York (1981).
The a-carboxyl group of the C-terminal residue is usually protected as an ester (CPG) that can be cleaved to give the carboxylic acid. Protecting groups that can be used include: 1) alkyl esters such as methyl, trimethylsilylethyl and t-butyl, 2) aralkyl esters such as benzyl and substituted benzyl, or 3) esters that can be cleaved by mild base treatment or mild reductive means such as trichloroethyl and phenacyl esters.

The a-amino group of each amino acid to be coupled to the growing peptide chain must be protected (APG). Any protecting group known in the art can be used.
5 Examples of such groups include: 1) acyl groups such as formyl, trifluoroacetyl, phthalyl, and p-toluenesulfonyl; 2) aromatic carbamate groups such as benzyloxycarbonyl (Cbz or Z) and substituted benzyloxycarbonyls, and 9-fluorenylmethyloxycarbonyl (Fmoc); 3) aliphatic carbamate groups such as tert-butyloxycarbonyl (Boc), ethoxycarbonyl, diisopropylmethoxycarbonyl, and 10 allyloxycarbonyl; 4) cyclic alkyl carbamate groups such as cyclopentyloxycarbonyl and adamantyloxycarbonyl; 5) alkyl groups such as triphenylmethyl and benzyl;
6) trialkylsilyl such as trimethylsilyl; and 7) thiol containing groups such as phenyithiocarbonyl and dithiasuccinoyl. The preferred a-amino protecting group is either Boc or Fmoc. Many amino acid derivatives suitably protected for peptide 15 synthesis are commercially available.

The a-amino protecting group of the newly added amino acid residue is cleaved prior to the coupling of the next amino acid. When the Boc group is used, the methods of choice are trifluoroacetic acid, neat or in dichloromethane, or HCI in dioxane or in ethyl acetate. The resulting ammonium salt is then neutralized either prior to the 20 coupling or in situ with basic solutions such as aqueous buffers, or tertiary amines in dichloromethane or acetonitrile or dimethylformamide. When the Fmoc group is used, the reagents of choice are piperidine or substituted piperidine in dimethylformamide, but any secondary amine can be used. The deprotection is carried out at a temperature between 0 C and room temperature (RT) usually 20 -25 22 C.

Any of the amino acids having side chain functionalities must be protected during the preparation of the peptide using any of the above-described groups. Those skilled in the art will appreciate that the selection and use of appropriate protecting groups for these side chain functionalities depend upon the amino acid and presence of other 30 protecting groups in the peptide. The selection of such protecting groups is important in that the group must not be removed during the deprotection and coupling of the a-amino group.

For example, when Boc is used as the a-amino protecting group, the following side chain protecting group are suitable: p-toluenesulfonyl (tosyl) moieties can be used to protect the amino side chain of amino acids such as Lys and Arg;
acetamidomethyl, benzyl (Bn), or t-butylsulfonyl moieties can be used to protect the sulfide containing side chain of cysteine; benzyl (Bn) ethers can be used to protect the hydroxy containing side chains of serine, threonine or hydroxyproline; and benzyl esters can be used to protect the carboxy containing side chains of aspartic acid and glutamic acid.

When Fmoc is chosen for the a-amine protection, usually tent butyl based protecting groups are acceptable. For instance, Boc can be used for lysine and arginine, tert-butyl ether for serine, threonine and hydroxyproline, and tert-butyl ester for aspartic acid and glutamic acid. Triphenylmethyl (Trityl) moiety can be used to protect the thiol containing side chain of cysteine.

Once the elongation of the peptide is completed all of the protecting groups are removed. When a liquid phase synthesis is used, the protecting groups are removed in whatever manner is dictated by the choice of protecting groups.
These procedures are well known to those skilled in the art.

When a solid phase synthesis is used, the peptide is cleaved from the resin simultaneously with the removal of the protecting groups. When the Boc protection method is used in the synthesis, treatment with anhydrous HF containing additives such as dimethyl sulfide, anisole, thioanisole, or p-cresol at 0 C is the preferred method for cleaving the peptide from the resin. The cleavage of the peptide can also be accomplished by other acid reagents such as trifluoromethanesulfonic acid/trifluoroacetic acid mixtures. If the Fmoc protection method is used, the N-terminal Fmoc group is cleaved with reagents described earlier. The other protecting groups and the peptide are cleaved from the resin using solution of trifluoroacetic acid and various additives such as anisole, etc.

1. Synthesis of capping group B

Different capping groups B are introduced in the following manner:

1 1) When B is an aryl, aralkvl: the arvlated amino acids were prepared by one of the three methods below:

a) Direct nucleophilic displacement on a fluoro-nitro aryl moiety:

F3C ( - A F3C R3 F H2N lj~ COOH N' COOH

(a) (b) (c) Briefly, 4-fluoro-3-nitrobenzotrifluoride (a) was reacted with L-amino acid (b) in the presence of a base such as potassium carbonate at 80 C to yield the desired N-aryl amino acid (c);

b) Copper catalyzed couplings according to Ma et al. (J. Am. Chem. Soc.
1998, 120, 12459-12467):

F F
%~
Br H2N COOH H COOH
(d) (b) (e) Briefly, bromo-4-fluorobenzene (d) was reacted with L-amino acid (b) in the presence of a base such as potassium carbonate and a catalytic amount of copper iodide at 90 C to yield the desired N-aryl amino acid (e); or c) Nucleophilic displacement of a triflate by an aniline:

R3 R,3 R3 cNH2 + TfOCOOBn NCOOH
W. H COOBn H

(f) (9) , O (h) (I) Briefly, o-anisidine (f) was reacted with trif late (g) in the presence of a base such as 2,6-lutidine at 90 C to give benzyl ester (h). Hydrogenation with 10%
Pd/C yielded the desired N-aryl amino acid (i).

1.2) When B is an aminothiazole derivative:

a) Fmoc-N=C=S
H2N-P3 [PZ P1]-COOMe - Fmoc-NH-C(S)-HN-P3 [P2 P,]-000Me b) DBU, DMF

Br R2 LNH-C(S)-HN-P3 [P2 P,]-COOMe Al OH

a) The Fmoc-thiocyanate prepared according to Kearney et al., 1998, J. Org.
Chem, 63, 196, was reacted with a protected P3 residue or the whole peptide or a peptide segment to provide the thiourea.

b) The thiourea derivative is reacted with an appropriate bromoketone to provide the corresponding thiazole derivative.

1.3) When B is R4-C(O)-. R4-S(O)2:

Protected P3 or the whole peptide or a peptide segment is coupled to an appropriate acyl chloride or sulfonyl chloride respectively, that is either commercially available or for which the synthesis is well known in the art.

1.4) When B is R40-C(O)-:

Protected P3 or the whole peptide or a peptide segment is coupled to an appropriate chloroformate that is either commercially available or for which the synthesis is well known in the art. For Boc- derivatives (130020 is used.

For example:

0 q O + H2N-P3 [PZ P,]-000Et OH OA
CI

O
HN-P3 [Pz P1]-000Et a) Cyclobutanol is treated with phosgene to furnish the corresponding chloroformate.

b) The chloroformate is treated with the desired NH2-tripeptide in the presence of a base such as triethylamine to afford the cyclobutylcarbamate.

1.5) When B is R4-N(R5)-C(O)-, or R4-NH-C(S)-, protected P3 or the whole peptide or a peptide segment is treated with phosgene followed by amine as described in SynLett. Feb 1995; (2); 142-144 2. Synthesis of P2 moieties.
2.1 Synthesis of precursors:

A) Synthesis of haloarylmethane derivatives.

The preparation of halomethyl-8-quinoline lid was done according to the procedure of K.N. Campbell et at., J. Amer. Chem. Soc., (1946), 68, 1844.
SCHEME II

N N N N
0 OH 0 halo OH halo Ila lib tic Ild Briefly, 8-quinoline carboxylic acid Ila was converted to the corresponding alcohol Ilc by reduction of the corresponding acyl halide lib with a reducing agent such as lithium aluminium hydride. Treatment of alcohol Ilb with the appropriate hydrohaloacid gives the desired halo derivative lid. A specific embodiments of this process is presented in Example 1.

B) Synthesis of aryl alcohol derivatives:

2-phenyl-4-hydroxyquinoline derivatives Illc were prepared according to Giardina et at. (J. Med. Chem., (1997), 40, 1794-1807).

SCHEME III

mb R22 uio R2 ula \ I NH2 3 N

O O
OH
R22 & R21B = alkyl, OH, SH, halo, NH2, NO2.

Briefly, benzoylacetamide (Ilia) was condensed with the appropriate aniline (illb) and the imine obtained was cyclized with polyphosphoric acid to give the corresponding 2-phenyl-4- hydroxyquino line (Ilic). A specific embodiment of this process is presented in Example 2.

5 Or alternatively, the process can be carried out in a different manner:
Benzoylethyl ester (ilia) was condensed with the appropriate aniline (111b) in the presence of acid and the imine obtained was cyclized by heating at 260-280 C to give the corresponding 2-phenyl-4-hydroxyquinoline (Illc). A
specific embodiments of this process is presented in Example 3 (compound 10 3e).

2.2. Synthesis of P2:

A) The synthesis of 4-substituted proline (wherein R2 is attached to the ring via a carbon atom) (with the stereochemistry as shown):

Boc COOH
15 is done as shown in Scheme IV according to the procedures described by J.
Ezquerra et at. (Tetrahedron, (1993), 38, 8665-8678) and C. Pedregal et al.
(Tetrahedron Lett., (1994), 35, 2053-2056).

SCHEME IV

N N N
Boc Boc " Boc COOH COOBn COOBn IVa IVb IVc `R2 R2 -3110 N -~ N
Boc ~ Boc ~
COOBn COOH
IVd We 20 Briefly, Boc-pyroglutamic acid is protected as a benzyl ester. Treatment with a strong base such as lithium diisopropylamide followed by addition of an alkylating agent (Br-R20 or I-R20) gives the desired compounds We after reduction of the amide and deprotection of the ester.

B) The synthesis of O-substituted-4-(R)-hydroxyproline:
`O_R2 N
Boc "
COOH
may be carried out using the different processes described below.

1) When R20 is aralkyl or (lower alkyl)-Het, the process can be carried out according to the procedure described by E.M. Smith et al. (J. Med. Chem.
(1988), 31, 875-885). Briefly, commercially available Boc-4(R)-hydroxyproline is treated with a base such as sodium hydride or potassium tert-butoxide and the resulting alkoxide reacted with halo-R20 (Br-R20, I-R20, etc..) to give the desired compounds. Specific embodiments of this process are presented in Examples 4, 5 and 7.

2) When R20 is aryl or Het, the compounds are prepared via a Mitsunobu reaction (Mitsunobu (1981), Synthesis, January, 1-28; Rano etal., (1995), Tet. Left. 36(22), 3779-3792; Krchnak et al., (1995), Tet. Lett. 36(5), 62193-6196; Richter et al., (1994), Tet. Left. 35(27), 4705-4706). Briefly, commercially available Boc-4(S)-hydroxyproline methyl ester is treated with the appropriate aryl alcohol or thiol in the presence of triphenylphosphine and diethylazodicarboxylate (DEAD) and the resulting ester is hydrolyzed to the acid. Specific embodiments of this process are presented in Examples 6 and 8.

SCHEME V

Ar OH X
^
Ar-OH
or ;~ XOorS
/ N Ar-SH ,/ N

Va Vb Alternatively, the Mitsunobu reaction can be carried out in solid phase (Scheme V).
The 96-well block of the Model 396 synthesizer (Advanced ChemTech) is provided with aliquots of resin-bound compound (Va) and a variety of aryl alcohols or thiols and appropriate reagents are added. After incubation, each resin-bound product (Vb) is washed, dried, and cleaved from the resin.

A Suzuki reaction (Miyaura et al., (1981), Synth. Comm. 11, 513; Sato at al., (1989), Chem. Left., 1405; Watanabe et al., (1992), Synlett., 207; Takayuki et al., (1993), J. Org. Chem. 58, 2201; Frenette et al., (1994), Tet. Lett.
35(49), 9177-9180; Guiles at al., (1996), J. Org. Chem. 61, 5169-5171) can also be used to further functionalize the aryl substituent.

3. Synthesis of P1 moieties.

3.1 Synthesis of the 4 possible isomers of 2-substituted 1-aminocvclopronvl carboxylic acid The synthesis was done according to scheme VI.
SCHEME VI
/R' + halo 7 (halo R' P02C-~co2P VIb a) or NNW
11"~ POZC COZP
Vla O
VId O,SO

Vic b) Vie RI is "syn" to the ester C) or ZR' R
ROH C02P P*COO vICOOP
Vif 9 R+ syn to ester I e) R $ R +
O ~
P*COO N-~ P*COO n OOH
vIi R vi H
R+ anti to ester P*

a) Briefly, di-protected malonate Via and 1,2-dihaloalkane Vlb or cyclic sulfate Vic (synthesized according to K. Burgess and Chun-Yen KE (Synthesis, (1996), 1463-1467) are reacted under basic conditions to give the diester Vid.

b) A regioselective hydrolysis of the less hindered ester is performed to give the acid Vie.

c) This acid Vie is subjected to a Curtius rearrangement to give a racemic mixture of 1-aminocyciopropylcarboxylic acid derivatives VIf with R' being syn to the carboxyl group. A specific embodiment for this synthesis is presented in Example 9.

d, e) Alternatively, selective ester formation from the acid Vie with an appropriate halide (P*Cl) or alcohol (P*OH) forms diester VIg in which the P* ester is compatible with the selective hydrolysis of the P ester. Hydrolysis of P ester provides acid VIh.
f) A Curtius rearrangement on Vih gives a racemic mixture of 1-aminocyciopropylcarboxylic acid derivatives Vli with R1 group being anti to the carboxyl group. A specific embodiment for this synthesis is presented in Example 14.

An alternative synthesis for the preparation of derivatives Vllf (when R' is vinyl and syn to the carboxyl group) is described below.

SCHEME VII

+ halo a R
Ph N CO2P /`--N CO P
Ph Vllc 2 Vila Vllb vinyl syn to the ester R = H, alkyl, aryl HCl- b, c, d H2N Vild CO2P
vinyl syn to the ester Treatment of commercially available or easily obtainable imines Vila with 1,4-dihalobutene Vllb in presence of a base produces, after hydrolysis of the resulting imine Vllc, Vild having the allyl substituent syn to the carboxyl group.
Specific embodiments of this process are presented in Example 15 and 19.

Resolution of all of the above enantiomeric mixtures at carbon 1 (Vie and Vlld) can be carried out via:
1) enzymatic separation (Examples 13, 17 and 20);
2) crystallization with a chiral acid (Example 18); or 3) chemical derivatization (Example 10).

Following resolution, determination of the absolute stereochemistry can be carried out as presented in Example 11.

Enantiomeric resolution and stereochemistry determination can be carried out in the same manner for the enantiomeric mixtures at carbon 1 wherein the substituent at C2 is anti to the carboxyl group (Vli).

3.2 Synthesis of 1 -aminocyclobutyl carboxylic acid The synthesis of 1,1 -aminocyclobutanecarboxylic acid is carried out according to "Kavin Douglas ; Ramaligam Kondareddiar ; Woodard Ronald, Synth. Commun.
(1985), 15 (4) , 267-72.

SCHEME VIII

A N
30. 0~ 0 v I
X~~X B 0<70-H

Villa Villb Villc Vllld HCI salt X = halo Briefly, treatment of compound Villa with a base in the presence of Villb gives the corresponding cyclobutyl derivative VIIIc. Hydrolysis of the isocyanate and ester 5 groups of Vilic under acidic conditions (HCI) yields the hydrochloride salt of the 1-amino-cyclobutylcarboxylic acid Vllid. The carboxylic acid is later esterified under methanol in HCI. A specific embodiment of this esterification is described in Example 21.

3.3 Synthesis of 2-substituted 1 -aminocyclobutyl carboxylic acid Q5..~R b) / C02R deprotectioXP 2. activation IXb IXa lXc OP lXd x 1 base H2N C02R d) H2 1-12N C02R
2. hydrolysis 3. neutralization We IXf a) A protected glycine ester derivative such as imine IXa is alkylated with an homoallylic electrophile lXb using an appropriate base such as a metal hydride, hydroxide or alkoxide. Useful leaving groups in IXb include halogens (X = Cl, Br, I) 15 or sulfonate esters (mesylate, tosylate or triflate). The allylic alcohol functionality in IXb is protected with hydroxyl protecting groups well known in the art (e.g.
acetate, silyl, acetals).

b) In a second step, the hydroxyl function of monoalkylated derivative IXc is de-protected and converted to a suitable electrophilic function X such as described 20 above for compound lXb.

c) Cyclization of IXd to cyclobutane derivative We is carried out by treatment with a base (metal hydrides, alkoxides), followed by hydrolysis using aqueous mineral acids and neutralization with a mild base. At this stage, syn and anti-isomers of We can be separated by flash chromatography.

d) Optionally, the double bond in IXe can also be hydrogenated under standard conditions to yield the corresponding saturated derivative IXf.

The invention further comprises a process for the preparation of a peptide analog of formula (I) wherein P1 is a substituted aminocyclopropyl carboxylic acid residue, comprising the step of:

^ coupling a peptide selected from the group consisting of: APG-P3-P2; or APG-P2;

^ with a P1 intermediate of formula:

RorS S
O-CPG O-CPG CPG ~
H2N H2N R H2N ~ H2N R
O O O or O
wherein R, is C1.6 alkyl, cycloalkyl or C2-6 alkenyl, all optionally substituted with halogen, CPG is a carboxyl protecting group and APG is an amino protecting group and P3 and P2 are as defined above.

The invention further comprises a process for the preparation of: 1)a serine protease inhibitor peptide analog, or 2) a HCV NS3 protease inhibitor peptide analog, this process comprising the step of:

= coupling a (suitably protected) amino acid, peptide or peptide fragment with a P1 intermediate of formula:

Ror S S
O-CPG O-CPG CPG O-CPG

O O O or O
wherein R, is C1 .6 alkyl, C3.7 cycloalkyl or C2.6 alkenyl, all optionally substituted with halogen, and CPG is a carboxyl protecting group.

The invention therefore comprises a process for the preparation of: 1) a protease inhibitor peptide analog, or 2) a serine protease inhibitor peptide analog, this process comprising the step of:

^ coupling a (suitably protected) amino acid, peptide or peptide fragment with an intermediate of formula:

s R O-CPG

wherein CPG is a carboxyl protecting group.

The invention also comprises the use of a P1 intermediate of formula:
R1 R, Rors ;S
O-CPG O-CPG CPG O-CPG

O O O or O
wherein R, is C1.6 alkyl, cycloalkyl or C2-6 alkenyl, all optionally substituted with halogen, for the preparation of: 1)a serine protease inhibitor peptide analog, or 2) a HCV NS3 protease inhibitor peptide analog.

The invention also comprises the use of an intermediate of formula:

SS
O
wherein CPG is a carboxyl protecting group, for the preparation of: 1) a protease inhibitor peptide analog, or 2) a serine protease inhibitor peptide analog.
The invention also comprises the use of a P1 intermediate of formula:
RI R, RorS S
O-CPG O-CPG CPG O-CPG

O O O or O
wherein R, is C1.6 alkyl, cycloalkyl or C2.6 alkenyl, all optionally substituted with halogen, for the preparation of a compound of formula I as defined above.
Finally, the invention also comprises the use of a proline analog of formula:

(TR2lB
O

HN
O OH

wherein R21A is C1.6 alkyl; C1$ alkoxy; lower thioalkyl; halo; amino optionally mono-substituted with C1.6 alkyl; C6, C10 aryl, C7.16 aralkyl or Het, said aryl, aralkyl or Het optionally substituted with R22 wherein R22 is C1.6 alkyl, C1$ alkoxy, amido, (lower alkyl)amide, amino optionally mono- or di-substituted with C1_6 alkyl, or Het, and R21B is C1.6 alkyl, C1.6 alkoxy, amino, di(lower alkyl)amino, (lower alkyl)amide, NO2, OH, halo, trifluoromethyl, or carboxyl;

for the synthesis of 1) a serine protease inhibitor peptide analog, 2) a HCV

protease inhibitor peptide analog, or 3) a peptide analog of formula I as defined above.

EXAMPLES
The present invention is illustrated in further detail by the following non-limiting examples.

Temperatures are given in degrees Celsius. Solution percentages express a weight to volume relationship, and solution ratios express a volume to volume relationship, unless stated otherwise. Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker 400 MHz spectrometer; the chemical shifts (S) are reported in parts per million. Flash chromatography was carried out on silica gel (SiO2) according to Still's flash chromatography technique (W.C. Still et al., J.
Org. Chem., (1978), 43, 2923).

Abbreviations used in the examples include Bn: benzyl; Boc: tert-butyloxycarbonyl {Me3000(O)}; BSA: bovine serum albumin; CHAPS: 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate; DBU: 1,8-diazabicyclo[5.4.0]undec-7-ene;

CH2CI2= DCM: methylene chloride; DEAD: diethylazodicarboxylate; DIAD:
diisopropylazodicarboxylate; DIEA: diisopropylethylamine; DIPEA:
diisopropylethylamine; DMAP: dimethylaminopyridine; DCC: 1,3-dicyclohexylcarbodiimide; DME: 1,2-dimethyoxyethane; DMF: dimethylformamide;
DMSO: dimethylsulfoxide; DTT: dithiothreitol or threo-1,4-dimercapto-2,3-butanediol;
DPPA: diphenyiphosphoryl azide; EDTA: ethylenediaminetetraacetic acid; Et ethyl;
EtOH: ethanol; EtOAc: ethyl acetate; Et2O: diethyl ether; HATU: [0-7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate]; HPLC:
high performance liquid chromatography; MS: mass spectrometry (MALDI-TOF: Matrix Assisted Laser Disorption Ionization-Time of Flight, FAB: Fast Atom Bombardment);
LAH: lithium aluminum hydride; Me: methyl; MeOH: methanol; MES: (2-(N-morpholino)ethane-sulfonic acid); NaHMDS: sodium bis(trimethylsilyl)amide;
NMM:
N-methylmorpholine; NMP: N-methylpyrrolidine; Pr: propyl; Succ: 3-carboxypropanoyl; PNA: 4-nitrophenylamino or p-nitroanilide; TBAF: tetra-n-butylammonium fluoride; TBTU: 2-(1 H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate; TCEP: tris(2-carboxyethyl) phosphine hydrochloride; TFA: trifluoroacetic acid; THF: tetrahydrofuran; TIS:
triisopropylsilane;
TLC: thin layer chromatography; TMSE: trimethylsilylethyl; Tris/HCI:
tris(hydroxymethyl)aminomethane hydrochloride.

Synthesis of bromomethyl-8-quinoline (1):
I
Br (1) To commercially available 8-quinoline carboxylic acid (2.5 g, 14.4 mmol) was added neat thionyl chloride (10 ml, 144 mmol). This mixture was heated at 80 C for 1 h before the excess thionyl chloride was distilled off under reduced pressure.
To the resulting brownish solid was added absolute EtOH (15 mL) which was heated at 80 C for 1 h before being concentrated in vacuo. The residue was partitioned between EtOAc and saturated aqueous NaHCO3, and the organic phase dried (MgSO4), filtered and concentrated to give a brownish oil (2.8 g). This material (ca.

14.4 mmol) was added dropwise over 35 min to a LAH (0.76 g, 20.2 mmol)/Et2O
suspension which was cooled to -60 C. The reaction mixture was slowly warmed to -35 C over 1.5 h before the reaction was complete. The reaction was quenched with MgSO4.10H20 slowly over 30 min and then wet THF. The mixture was partitioned 5 between Et20 and 10% aqueous NaHCO3.The organic phase was dried (MgSO4), filtered and concentrated to give a yellowish solid (2.31 g, 80% over 2 steps) corresponding to the alcohol. The alcohol (2.3 g, 11.44 mmol) was dissolved in AcOH/HBr (20 mL, 30% solution from Aldrich) and heated at 70 C for 2.5 h. The mixture was concentrated in vacuo to dryness, partitioned between EtOAc (100 mL) 10 and saturated aqueous NaHCO3 before being dried (MgSO4), filtered and concentrated to give the desired compound (1) as a brownish solid (2.54 g, 100%).

Synthesis of 2-phenyl-4-hydroxyquinoline (2):
C;N) OH (2) 15 Commercially available ethyl benzoylacetate (6.00 g, 31.2 mmol) was heated at 85 C
(sealed tube) in 75 mL of 30% NH4OH for 2 hours. The solid formed upon cooling was filtered and refluxed in water for 2 hours. The solution was extracted three times with CH2CI2. The organic layers were combined, dried over MgSO4, filtered and concentrated. The yellow residue was flash chromatographed on silica gel, 20 eluting with EtOAc:hexane (3:7), to give the corresponding amide as a white solid, 1.60 g, 31 % yield.

This amide (250 mg, 1.53 mmol) was refluxed using a Dean-Stark apparatus with aniline (143 mg, 1.53 mmol) and aniline=HCI (10 mg, 0.08 mmol) in toluene (10 mL) for 16 h. The solution was concentrated to aff ord a brown oil that was mixed with 25 polyphosphoric acid (2 g) and heated at 135 C for 20 min. The reaction mixture was poured into water and adjusted to pH 8 with 5 M NaOH. The aqueous suspension was extracted twice with ethyl acetate. The organic layers were combined, washed with brine, dried over MgSO4i filtered and concentrated. The residue was flash chromatographed on silica gel, eluting with 3% MeOH in ethyl acetate, to give phenyl-4-hydroxyquinoline (2), 67 mg, 20% yield.

'H NMR (DMSO-d6) 6 8.11 (d, J = 7 Hz, 1 H), 7.86-7.83 (m, 2 H), 7.77 (d, J = 8 Hz, 1 H), 7.68 (dd, J = 8, 7 Hz, 1 H), 7.61-7.58 (m, 3 H), 7.35 (dd, J = 8, 7 Hz, 1 H), 6.34 (s, 1 H).

Synthesis of 4-hydroxy-2-phenyl -7-methoxyquinoline (3) OEt 0 NHAr i O O toluen O
e \ + ~J Dean-Sta`
! +
MeO,aNH Ph OEt MOO" N Ph s Me0 H Ph H
3a 3b 3c 3d neat OH
0__~N OMe POC13 D / e-N'Ph Me0 CI 3e 4-hydroxy-2-phenyl -7-methoxyquinoline (e):

A solution of ethyl benzoylacetate (b) (100.0 g, 0.52 mol), m-anisidine (a) (128.1 g, 1.04 mol) and 4 N HCI / dioxane (5.2 mL) in toluene (1.0 L) was refluxed for 6.25 h in a Dean-Stark apparatus. The cooled toluene solution was successively washed with aqueous 10% HCI (2 x 300 mL), 1 N NaOH (2 x 300 mL), H2O (300 mL) and brine (150 mL). The toluene phase was dried (MgSO4), filtered and concentrated under reduced pressure to give a 1.2:1.0 mixture of ester c and amide d (144.6 g, 45% /
38% crude yield) as a dark brown oil. The crude oil was heated to 280 C for 80 min while distilling generated EtOH. The cooled dark solid obtained was triturated with CH2CI2 (200 mL). The suspension was filtered and the resulting solid washed with CH2CI2 to give e (22.6 g, 17% from a) as a beige solid: 'H NMR (DMSO-d6) 6 8.00 (d, J = 9.0 Hz, 1 H), 7.81-7.82 (m, 2H), 7.57-7.59 (m, 3H), 7.20 (d, J = 2.2 Hz, 1 H), 6.94 (dd, J = 9.0, 2.2 Hz, 1 H), 6.26 (s, 1 H), 3.87 (s, 3H).
4-Chloro-2-phenyl-7-methoxyquinoline (3):

A suspension of e (8.31 g, 33.1 mmol) in POCI3 (90 mL) was heated to reflux for 2 h (clear solution obtained upon heating). The reaction mixture was concentrated under reduced pressure. The residue was partitioned between 1 N NaOH
(exothermic, 10 N NaOH added to maintain high pH) and EtOAc (500 mL). The organic layer was washed with H2O (100 ml-) and brine (100 ml-) then was dried (MgSO4), filtered and concentrated under reduced pressure to give 3 (8.60 g, 96%) as a pale yellow solid: 'H NMR (DMSO-d6) b 8.28-8.30 (m, 2H), 8.20 (s, 1 H), 8.10 (d, J = 9.1 Hz, 1 H), 7.54-7.58 (m, 3H), 7.52 (d, J = 2.5 Hz, 1 H), 7.38 (dd, J =
9.1, 2.5 Hz, 1 H), 3.98 (s, 3H). This reaction was repeated three times and gave always 96-98%
yield which is significantly higher that the 68% yield reported in J. Med.
Chem. 1997, 40, 1794.

Synthesis of Boc-4(R)-(naphthalen-1-ylmethoxy) proline (4):
N ~ I
Boc COON (4) Commercially available Boc-4(R)-hydroxyproline (5.00 g, 21.6 mmol) was dissolved in THE (100 ml-) and cooled to 0 C. Sodium hydride (60% dispersion in oil, 1.85 g, 45.4 mmol) was added portionwise over 10 minutes and the suspension was stirred at RT for 1 h. Then, 1-(bromomethyl)naphthalene (8.00 g, 36.2 mmol) (prepared as described in E.A. Dixon et al. Can. J. Chem., (1981), 59, 2629-2641) was added and the mixture was heated at reflux for 18 h. The mixture was poured into water (300 ml-) and washed with hexane. The aqueous layer was acidified with 10% aqueous HCI and extracted twice with ethyl acetate. The organic layers were combined and washed with brine, dried (MgSO4), filtered and concentrated. The residue was purified by flash chromatography (49:49:2 hexane: ethyl acetate: acetic acid) to give the title compound as a colorless oil (4.51 g, 56% yield). 'H NMR (DMSO-d6) indicated the presence of two rotamers: S 8.05 (m, 1 H), 7.94 (m, 1 H), 7.29 (d, J=14 Hz, 1 H), 7.55-7.45 (m, 4H), 4.96 (m, 2H), 4.26 (br. s, 1 H), 4.12 (dd, J=J=8 Hz, 1 H), 3.54-3.42 (m, 2H), 2.45-2.34 (m, 1 H), 2.07-1.98 (m, 1 H) 1.36 (s, (3/9) 9H), 1.34 (s, (6/9) 9H).

Synthesis of Boc-4(R)-(8-quinoline-methoxy) proline (5):
O N

N
OX

O 0 OH (5) Boc-4(R)-hydroxyproline (1.96 g, 8.5 mmol) in anhydrous THE (20 ml-) was added to a suspension of NaH (1.4 g, 60% in oil, 34 mmol) in THE (100 mL). This mixture was stirred 30 min before bromomethyl-8-quinoline from Example 1 (2.54 g, 11.44 mmol) was added in THE (30 mL). The reaction mixture was heated at 70 C (5 h) before the excess NaH was destroyed carefully with wet THF. The reaction was concentrated in vacuo and the resulting material was dissolved in EtOAc and The basic aqueous phase was separated and acidified with 10% aqueous HCI to pH
-5 before being extracted with EtOAc (150 mL). The organic phase was dried (MgSO4), filtered and concentrated to give a brown oil. Purification by flash chromatography (eluent: 10% MeOH/CHCI3) gave the desired compound (5) as a pale yellow solid (2.73 g, 86%). HPLC (97.5%); 'H-NMR (DMSO-d6) shows rotamer populations in a 6:4 ratio, S 12-11.4 (bs, 1 H), 8.92 (2 x d, J = 4.14 and 4.14 Hz, 1 H), 8.38 (2 x d, J = 8.27 and 8.27 Hz, 1 H), 7.91 (d, J = 7.94 Hz, 1 H), 7.77 (d, J = 7.0 Hz, 1 H), 7.63-7.54 (m, 2H), 5.14 (2 x s, 2H), 4.32-4.29 (m, 1 H), 4.14-4.07 (m, 1 H), 3.52-3.44 (m, 2H), 2.43-2.27 (m, 1 H), 2.13-2.04 (m, 1 H), 1.36 and 1.34 (2 x s, 9H).

Preparation of Boc-4(R)-(7-chloroquinoline-4-oxo)proline (6):
CI

O
OY N
0 0 OH (6) Commercially available Boc-4(S)-hydroxyproline methyl ester (500 mg, 2.04 mmol) and 7-chloro-4-hydroxyquinoline (440 mg, 2.45 mmol) were placed in dry THE (10 ml-) at 0 C. Triphenylphosphine (641 mg, 2.95 mmol) was added, followed by slow addition of DIAD (426 mg, 2.45 mmol). The mixture was stirred at RT for 20 h.
The reaction mixture was then concentrated, taken up in ethyl acetate and extracted three times with HCI 1 N. The aqueous phase was basified with Na2CO3 and extracted twice with ethyl acetate. The organic layers were combined, dried over MgSO4, filtered and concentrated to give a yellow oil. The oil was purified by flash chromatography to give the methyl ester as a white solid, 498 mg, 58% yield.

This methyl ester (400 mg, 0.986 mmol) was hydrolyzed with 1 M aqueous sodium hydroxide (1.7 mL, 1.7 mmol) in methanol (4 mL), at 0 C, for 3 h. The solution was concentrated to remove the methanol and neutralized with 1 M aqueous HCl. The suspension was concentrated to dryness and taken up in methanol (20 mL), the salts were filtered off and the filtrate concentrated to give the desired compound (6) as a white solid, 387 mg, quant. yield.

'H NMR (DMSO-d6) (ca. 1:1 mixture of rotamers) 8 8.74 (d, J = 5 Hz, 1 H), 8.13-8.09 (m, 1 H), 7.99 and 7.98 (s, 1 H), 7.58 (d, J = 9 Hz, 1 H), 7.02 (d, J = 5 Hz, 1 H), 5.26-5.20 (m, 1 H), 4.10- 4.01 (m, 1 H), 3.81-3.72 (m, 1 H), 3.59 (dd, J = 12, 10 Hz, 1 H), 2.41-2.31 (m, 2 H), 1.34 and 1.31 (s, 9H).

Synthesis of Boc-4(R)-(2-phenyl-7-methoxyquinoline-4-oxo) proline (7):
Me0 / N

O
"OuN

(7) Boc-4(R)-(2-phenyl-7-methoxyquinoline-4-oxo) proline (7):

Potassium tert-butoxide (8.16 g, 72.7 mmol) was added in small portions, over min, to a solution of Boc-4(R)-hydroxy proline (6.73 g, 29.1 mmol) in DMSO (83 ml-) maintained at 25 C. The mixture was stirred at 25 C for 1.5 h. Chloro-2-phenyl-7-methoxyquinoline 3 (8.61 g, 32.0 mmol) was added in 4 portions over 15 min to the reaction mixture. The reaction mixture was stirred at 25 C for 19 h. The resulting suspension was poured in H2O (650 ml-) and the mixture was washed with Et2O (3 x 150 ml-) to remove excess chloroquinoline (EtOAc was later found to be more 5 efficient). The aqueous layer was acidified with aqueous 1 N HCI (38 mL of calculated 1.5 equiv. required, 43.6 ml-) to pH 4 - 5. The white solid that precipitated was recovered by filtration. The moist solid was dried under reduced pressure over P205 to give the proline derivative 7 (12.6 g, 91 %, contains 2.3% w/w of DMSO) as a beige solid:

10 'H NMR (DMSO-d6) 5 (2:1 mixture of rotamers) 8.27 (d, J = 7.0 Hz, 2H), 8.00, 7.98 (2d, J = 9.2, -9.2 Hz, 1 H), 7.48-7.56 (m, 3H), 7.45, 7.43 (2s, 1 H), 7.39 (d, J = 2.5 Hz, 1 H), 7.17 (dd, J = 9.2, 2.5 Hz, 1 H), 5.53-5.59 (m, 1 H), 4.34-4.41 (m, 1 H), 3.93 (s, 3H), 3.76 (broad s, 2H), 2.63-2.73 (m, 1 H), 2.32-2.43 (m, 1 H), 1.36, 1.33 (2s, 9H).

15 Synthesis of Boc-4(R)-(2-phenyl-6-nitroquinoline-4-oxo) proline (8):

Y N

BocN

O OH (8) Diethyl azodicarboxylate (0.77 mL, 4.89 mmol) was added dropwise to a stirred solution of triphenylphosphine (1.28 g, 4.88 mmol) in 15 ml- of tetrahydrofuran at 0 C. After 30 min. of stirring under nitrogen a solution of Boc-4(S)-hydroxyproline 20 methyl ester (1.00 g, 4.08 mmol) was added in 5 ml- of tetrahydrofuran followed by a suspension of commercially available 6-nitro-2-phenyl-4-quinolinol (1.30 g, 4.88 mmol) in 10 mL of the same solvent. The red mixture was stirred for 15 min. at and at RT overnight. The solvent was evaporated in vacuo. The remaining oil was diluted in ethyl acetate and washed twice with sodium bicarbonate, once with water 25 and once with brine. The organic layer was dried (MgS04), filtered and evaporated in vacuo. The residue was chromatographed over silica gel (70:30 v/v, hexanes-i d ethyl acetate) affording the desired methyl ester as a light yellow solid (1.70 g, 85%).
'H NMR(CDCI3) rotamers = 3:7 8 9.03 (d, J = 2.5 Hz, 1H), 8.46 (dd, J = 9, 2.5 Hz, 1 H), 8.18 (d, J = 9 Hz, 1 H), 8.14-8.07 (m, 2H), 7.59-7.50 (m, 3H), 7.19 (s, 1 H), 5.39-5.30 (m, 1 H), 4.67 (t, J = 8 Hz, 0.3H), 4.61 (t, J = 8 Hz, 0.7H), 4.07-4.01 (m, 2H), 3.81 (s, 3H), 2.89-2.73 (m, 1 H), 2.55-2.47 (m, 1 H), 1.49 (s, 2.7H), 1.45 (s, 6.3H).
To a solution of the methyl ester (503 mg, 1.02 mmol) in a mixture of THF: H2O
(10:4 ml-) was added lithium hydroxide monohydrate (85 mg, 2.05 mmol). 2 mL of MeOH was added in order to get an homogeneous solution. A white precipitate resulted within 30 min. The resulting suspension was stirred at RT for an additional 6 h. The reaction mixture was diluted with an aqueous solution of citric acid 10%
and extracted with ethyl acetate. The organic layer was dried (MgSO4), filtered and evaporated in vacuo to afford 416 mg (85%) of the desired acid (8).

'H NMR (DMSO-d6): 8 8.92-8.87 (m, 1 H), 8.47 (dd, J = 9, 3Hz, 1 H), 8.38-8.32 (m, 2H), 8.19 (d, J = 9 Hz, 1 H), 7.77 (s, 1 H), 7.62-7.55 (m, 3H), 5.73-5.66 (m, 1 H), 4.41 (t, J = 8 Hz, 1 H), 3.89-3.76 (m, 2H), 2.83-2.72 (m, 1 H), 2.47-2.35 (m, 1 H), 1.38 (s, 9H).

A) Synthesis of mixture of (9R, 2R)/(9S, 2S) 1-amino-2-ethylcyclopropyl carboxylic acid ButO 2 C co 2 tBu Br~ a) 50% aq. NaOH
+ ' Br BnEt3NCI ButO2C CO2tBu 9a 9b 9c c) Et3N, DPPA benzene then 2-trimettylsiylelhand 0 b) tBuOK, H2O
7:
Et20 HO C CO tBu reflux N co tBu 0 C to RT syn to the ester Me3S1~10 H 2 ethyl ii d) 1.0 M TBAF

THE H2N C02tBu RT to reflux 9f ethyl syn to ester mixture (RR)/(SS) a) To a suspension of benzyltriethylammonium chloride (21.0 g, 92.19 mmol) in a 50% aqueous NaOH solution (92.4 g in 185 mL H2O) were successively added di-tert-butylmalonate (20.0 g, 92.47 mmol) and 1,2-dibromobutane (30.0 g, 138.93 mmol). The reaction mixture was vigorously stirred overnight at RT, a mixture of ice and water was then added. The crude product was extracted with CH2CI2 (3x) and sequentially washed with water (3x) and brine. The organic layer was dried (MgSO4), filtered and concentrated. The residue was flash chromatographed (7 cm, 2 to 4 % Et2O in hexane) to afford the desired cyclopropane derivative 9c (19.1 g, 70.7 mmol, 76% yield). 'H NMR (CDCl3) 5 1.78-1.70 (m, 1H), 1.47 (s, 9H), 1.46 (s, 9H), 1.44-1.39 (m, 1 H), 1.26-1.64 (m, 3H), 1.02 (t, 3H, J= 7.6 Hz).

b) To a suspension of potassium tert-butoxide (6.718, 59.79 mmol, 4.4 eq.) in dry ether (100 mL) at 0 C was added H2O (270 L, 15.00 mmol, 1.1 eq.). After 5 min diester 9c (3.675 g, 13.59 mmol) in ether (10 mL) was added to the suspension.
The reaction mixture was stirred overnight at RT, then poured in a mixture of ice and water and washed with ether (3x). The aqueous layer was acidified with a 10%
aq.
citric acid solution at 0 C and extracted with AcOEt (3x). The combined organic layer was successively washed with water (2x) and brine. After the usual treatment (Na2SO4, filtration, concentration), the desired acid 9d was isolated as a pale yellow oil (1.86g, 8.68 mmol, 64% yield). 'H NMR (CDCI3) 6 2.09-2.01 (m, 1 H), 1.98 (dd, J=
3.8, 9.2 Hz, 1 H), 1.81- 1.70 (m, 1 H), 1.66 (dd, J= 3.0, J= 8.2 Hz, 1 H), 1.63-1.56 (m, 1 H), 1.51 (s, 9H), 1.0 (t, J= 7.3 Hz, 3H).

c) To the acid 9d (2.017 g, 9.414 mmol) in dry benzene (32 mL) were successively added Et3N (1.50 mL, 10.76 mmol, 1.14 eq.) and DPPA (2.20 mL, 10.21 mmol, 1.08 eq.). The reaction mixture was refluxed for 3.5 h then 2-trimethylsilylethanol (2.70 mL, 18.84 mmol, 2.0 eq.) was added. The reflux was maintained overnight then the reaction mixture was diluted with Et2O and successively washed with a 10 %
aqueous citric acid solution, water, saturated aqueous NaHCO3, water (2x) and brine. After the usual treatment (MgSO4, filtration, concentration) the residue was purified by flash chromatography (5 cm, 10% AcOEt- hexane) to afford the desired carbamate 9e (2.60 g, 7.88 mmol, 84% yield) as a pale yellow oil. MS (FAB) 330 (MH+); 1H NMR (CDCI3) 8 5.1 (bs, 1H), 4.18-4.13 (m, 2H), 1.68-1.38 (m, 4H), 1.45 (s, 9H), 1.24-1.18 (m, 1 H), 1.00-0.96 (m, 5H), 0.03 (s, 9H).

d) To carbamate 9e (258 mg, 0.783 mmol) was added a 1.0 M TBAF solution in THE
(940 L, 0.94 mmol, 1.2 eq.). After 4.5 h an additional amount of 1.0 M TBAF
was added (626 p.L, 0.63 mmol, 0.8 eq.). The reaction mixture was stirred overnight at RT, refluxed for 30 min and then diluted with AcOEt. The solution was successively washed with water (2x) and brine. After the usual treatment (MgSO4, filtration and concentration) the desired amine 9f was isolated (84 mg, 0.453 mmol, 58 %
yield) as a pale yellow liquid. 1H NMR (CDCI3) 61.96 (bs, 2H), 1.60-1.40 (m, 2H), 1.47 (s, 9H), 1.31-1.20 (m, 1 H), 1.14 (dd, J= 4.1, 7.3 Hz, 1 H), 1.02 (dd, J= 4.1, 9.2 Hz, 1 H), 0.94 (t, J= 7.3 Hz, 3H).

Chemical resolution of t-butyl-(1R, 2R)I(IS, 2S) 1-amino-2-ethylcyclopropyl carboxylate (from Example 9):

o - o O Boc- N Boc~N
H O + O
se O H O H
mixture of O 0 (R,R)/(S,S) 10a 10b Isomers separated by column chromatography.
RR Isomer SS Isomer Compound 9e from Example 9 (8.50 g , 25.86 mmol) was treated with 1 M
TBAF/THF (26 mL) at reflux for 45 min. The cooled reaction mixture was diluted with EtOAc, washed with water (3x) and brine (1x), then, dried (MgSO4), filtered and evaporated to provide the free amine as a light yellow oil. The free amine was dissolved in anhydrous CH2CI2 (120 mL), NMM (8.5 mL, 77.57 mmol), compound 4 (Example 4) (10.08 g, 27.15 mmol) and HATU (11.79 g , 31.03 mmol) were added successively. The reaction mixture was stirred at RT overnight, then worked up as described previously. The crude diastereomeric mixture was separated by flash chromatography (eluent - hexane : Et20 ; 25 : 75) to provide the dipeptide 10a (the less polar eluting spot) as a white foam (4.42 g ; 64% of the theoretical yield) and 10b (the more polar eluting spot) as an ivory foam (4 g., 57% of theoretical yield). At this time both isomers were separated but the absolute stereochemistry was still not known.

EXAMPLEII
Determination of the absolute stereochemistry of compounds 10a and 10b by correlation with known t-butyl (I R-amino-2R-ethylcyclopropyl carboxylate O NH
R O --i HCl . H
z O
11a 11b published compound Boc-N Boc-N

5 O H ,fl 0~ O H 0~

11c 10a Direct comparison by TLC, HPLC and NMR

Prof . A. Charette , from the University of Montreal , provided compound 11a having the absolute stereochemistry as shown, which was determined by X-ray crystallography (J. Am. Chem. Soc., 1995, 117, 12721) . Compound 11 a (13.2 mg, 0.046 mmol) was dissolved in 1 M HCI/EtOAc (240 L) and stirred approximately hours. The mixture was evaporated to dryness to provide compound 11 b as a light yellow paste and was coupled to compound 4 (18 mg , 0.049 mmol) as described in Example 10, using NMM (20.3 ltL, 0.185 mmol) and HATU (21.1 mg, 0.056 mmol) in CH2CI2. The crude material was purified by flash chromatography ( eluent -hexane : Et2O ; 50:50) to provide the dipeptide 11 c as an oil (7.7 mg ; 31 %). By TLC, HPLC and NMR comparison, dipeptide 11c, was found to be identical to the less polar compound 10a obtained in Example 10, thus identifying the absolute stereochemistry of 10a as (IR,2R).

Preparation of (1R, 2R)I(1S, 2S) 1-Boc-amino-2-ethylcyclopropylcarboxylic acid: (12a) O 1.TFA,0 C O
O~N CO2tBu 2. aq. NaOH, THE O~N CO2H
Me Sip/, H H
s (130020 5 9e 12a The carbamate 9e from Example 9 (2.6 g, 7.88 mmol) was stirred for 40 min in TFA
at 0 C. The mixture was then concentrated and diluted with THE (10 mL). An aqueous NaOH solution (700 mg, 17.5 mmol in 8.8 mL of H2O) was added followed by a THE (13 mL) solution of (Boc)20 (2.06 g, 9.44 mmol, 1.2 eq.). The reaction 10 mixture was stirred overnight at RT(the pH was maintained at 8 by adding a 10 %
aqueous NaOH solution when needed), then diluted with H2O, washed with Et2O
(3X) and acidified at 0 C with a 10 % aq. citric acid solution. The aqueous layer was extracted with EtOAc (3X) and successively washed with H2O (2X) and brine.
After the usual treatment (MgSO4, filtration and concentration) the desired Boc-protected 15 amino acid (12a) (788 mg, 3.44 mmol, 44 % yield) was isolated. 'H NMR
(CDCI3) b 5.18 (bs, 1 H), 1.64-1.58 (m, 2H), 1.55-1.42 (m, 2H), 1.45 (s, 9H), 1.32-1.25 (m, 1 H), 0.99 (t, 3H, J= 7.3 Hz).

Preparation of (1R, 2R)I(1S, 2S)-1-Boc-amino-2-ethylcyclopropylcarboxylic acid methyl ester: (12b) O CH2N2/Et20 0 LA
N CO2H Et20 N CO2Me 20 12a 12b The Boc derivative 12a (0.30 g, 1.31 mmol) was dissolved in Et20 (10 mL) and treated with freshly prepared diazomethane in Et20 at 0 C until the yellow color of a slight excess of diazomethane remained. After stirring for 20 min at RT the reaction 25 mixture was concentrated to dryness to give 12b as a clear colorless oil (0.32 g, I i 100%).'H NMR (CDCI3) 8 5.1 (bs, 1H), 3.71 (s, 3H), 1.62-1.57 (m, 2H), 1.55 (s, 9H), 1.53-1.43 (m, 1 H), 1.28-1.21 (m, 2H), 0.95 (t, J = 7.3 Hz, 3H).

Enzymatic resolution of methyl (1R, 2R)I(1S, 2S) Boc-1-amino-2-ethylcyclopropyl carboxylate:

>L O a) Alcalase O O
0 N OMe > O k N 0H + O X N OMe H NaOH H O H O
12b mixture of 13a (S,S) 13c (RR)*
(S,S)/(R,R) /b) CH2N2 O
~OxN OMe 13b (S,S)*
*Analysis by HPLC using Chiralcel OD-H column ** Other esters also acceptable (eg. Et) a) The enantiomeric mixture of (IS, 2S)/(1R, 2R) 1-Boc-amino-2-ethylcarboxylic acid methyl ester of Example 10 (0.31 g, 1.27 mmol) was dissolved in acetone (3 ml-) and then diluted with water (7 ml-) while being rapidly stirred. The pH
of the solution was adjusted to 7.5 with 0.05M aqueous NaOH before Alcalase [2.4L
extract from Novo Nordisk Industrials] (300 mg) was added. During incubation pH
was stabilized with NaOH and a pH stat was set up to monitor the addition of the NaOH solution. After 40 h the mixture was diluted with EtOAc and H2O (with 5 mL
sat. NaHCO3) and the phases separated. The aqueous phase was acidified with 10% aqueous HCI and extracted with EtOAc, dried (MgSO4), filtered and concentrated to give acid 13a (48.5 mg). The absolute stereochemistry was determined using the correlation described in Examples 10 and 11.

b) Treatment of an aliquot of acid 13a with diazomethane in Et2O to give the methyl ester followed by analysis by HPLC using a chiral column [Chiralcel OD-H, 2.5%
Isopropanol/hexane, isocratic] showed a 51:1 ratio of the (S,S) isomer.

Synthesis of (1R, 2S)/(1S, 2R)1-amino-2-ethylcyclopropyl carboxylic acid:

c) DBU, Bra HO2C CO2tBu CH3CN aIIyIO2C CO2tBu 9d RT 14a ethyl syn to the ester e) 83N, DPPA, benzene d) TFA, CH2a2 then 2-trimethylsilylethard r-~
so 1W
RT allylOOC C02H "~`D` all4000 N 14b 14c ~,Sj f)1.0 M TBAF

THE allylOOC NH2 RT to reflux 14d ethyl anti to the acid (RS) / (SR) Starting from acid 9d described in Example 9:

c) To 9d (1.023 g, 4.77 mmol) in CH3CN (25 mL) were successively added DBU
(860 L, 5.75 mmol, 1.2 eq.) and allyl bromide (620 L, 7.16 mmol, 1.5 eq.).
The reaction mixture was stirred for 4 h at RT and then concentrated. The residue was diluted with Et2O and successively washed with a 10 % aq. citric acid solution (2x), H2O, saturated aqueous NaHCO3, H20 (2x) and brine. After the usual treatment (MgSO4, filtration and concentration) the desired ester 14a was isolated (1.106 g, 3.35 mmol, 91 % yield) as a colorless oil. MS (FAB) 255 (MH+); 1H NMR (CDCI3) 5.96-5.86 (m, 1 H), 5.37-5.22 (m, 2H), 4.70-4.65 (m, 1 H), 4.57-4.52 (m, 1 H), 1.87-1.79 (m, 1 H), 1.47 (s, 9H), 1.45-1.40 (m, 1 H), 1.33-1.24 (m, 3H), 1.03 (t, J=7.3 Hz, 3H).

d) To ester 14a (1.106 g, 4.349 mmol) in dry CH2CI2 (5 mL) at RT was added TFA
(5 mL). The reaction mixture was stirred for 1.5 h and then concentrated to afford 14b (854 mg, 4.308 mmol, 99 % yield). MS (FAB) 199 (MH+); 'H NMR (CDCI3) 8 5.99-5.79 (m, 1 H),. 5.40-5.30 (m, 2H), 4.71-4.62 (m, 2H), 2.22-2.00 (m, 2H), 1.95-1.88 (m, 1 H), 1.84-1.57 (m, 2H), 0.98 (t, J= 7.3 Hz, 3H).

e) To acid 14b (853 mg, 4.30 mmol) in dry benzene (14.8 mL) were successively added Et3N (684 L, 4.91 mmol, 1.14 eq.) and DPPA (992 L, 4.60 mmol, 1.07 eq.).
The reaction mixture was refluxed for 4.5 h then 2-trimethylsilylethanol (1.23 mL, 8.58 mmol, 2.0 eq.) was added. The reflux was maintained overnight then the reaction mixture was diluted with Et2O and successively washed with a 10 %
aqueous citric acid solution, water, saturated aq. NaHCO3, water (2x) and brine.
After the usual treatment (MgSO4, filtration, concentration) the residue was flash chromatographed (5 cm, 10 to 15 % AcOEt- hexane) to afford carbamate 14c (1.212g, 3.866 mmol, 90 % yield) as a pale yellow oil. MS (FAB) 314 (MH+); 'H
NMR
(CDCI3) 6 5.93-5.84 (m, 1 H), 5.32-5.20 (m, 2H), 5.05 (bs, 1 H), 4.60-4.56 (m, 2H), 4.20-4.11 (m, 2H), 1.71-1.60 (m, 3H), 1.39-1.22 (m, 1 H), 1.03 (t, J= 7.6 Hz, 3H), 0.96-0.86 (m, 1 H), 0.04 (s, 9H).

f) To carbamate 14c (267 mg, 0.810 mmol) was added a 1.0 M TBAF solution in THE (1.62 mL, 1.62 mmol, 2.0 eq.). The reaction mixture was stirred overnight at RT, refluxed for 30 min and then diluted with AcOEt. The solution was successively washed with water (2x) and brine. After the usual treatment (MgSO4, filtration and concentration) the desired amine 14d was isolated (122 mg, 0.721 mmol, 89 %
yield) as a pale yellow liquid. 'H NMR (CDCI3) 6 5.94-5.86 (m,1H), 5.31-5.22 (m, 2H), 4.58 (d, J= 5.7 Hz, 2H), 1.75 (bs, 2H), 1.61-1.53 (m, 2H), 1.51-1.42 (m, 2H), 1.00 (t, J= 7.3 Hz, 3H), 0.70-0.62 (m, 1 H).

Synthesis of ethyl-(1R,2S)/(1S,2R)-1-amino-2-vinylcyclopropyl carboxylate:
Ph i Br a) tBuOK Ph Ph \N C02Et Br/ THE -- 71'~
/ N CO2Et 15a 15b -78 C to 0 C Ph 15C
b)1 N aq. HCI
Et20 c) NaHC03 d) 4N HCI/dioxane HCI- H2N C02Et 15d vinyl syn to ester a) To a THE solution (180 mL) of potassium tert-butoxide (4.62 g, 41.17 mmol, 1.1 eq.) at -78 C was added commercially available imine 15a (10.0 g, 37.41 mmol) in THE (45 mL). The reaction mixture was warmed to 0 C and stirred at this temperature for 40 min. The mixture was then cooled back to -78 C for the addition of 1,4-dibromobutene 15b (8.0 g, 37.40 mmol) and then stirred at 0 C for 1 h and cooled back to -78 C for the addition of potassium tert-butoxide (4.62 g, 41.17 mmol, 1.1 eq.). The reaction mixture was finally stirred one more hour at 0 C
and concentrated to yield compound 15c.

b, c, d) 15c was taken up in Et20 (265 mL) and treated with a 1 N aq. HCI
solution (106 mL). After 3.5 h at RT, the layers were separated and the aqueous layer was washed with Et20 (2x) and basified with a saturated aq. NaHCO3 solution. The desired amine was extracted with Et20 (3x) and the combined organic extract was washed with brine. After the usual treatment (MgSO4, filtration and concentration) the residue was treated with a 4N HCI solution in dioxane (187 mL, 748 mmol).
After concentration, hydrochloride salt 15d was isolated as a brown solid (2.467 g, 12.87 mmol, 34 % yield). 1H NMR (CDCI3) 8 9.17 (bs, 3H), 5.75-5.66 (m, 1 H), 5.39 (d, J=
17.2 Hz, 1 H), 5.21 (d, J= 10.2 Hz, 1 H), 4.35-4.21 (m, 2H), 2.77-2.70 (m, 1 H), 2.05 (dd, J= 6.4, 10.2 Hz, 1 H), 1.75 (dd, J= 6.4, 8.3 Hz, 1 H),1.33 (t, J= 7.0 Hz, 3H).

Preparation of (IR,2S/IS,2R)-1-Boc-amino-2-vinylcyclopropyl carboxylic acid ethyl ester:

Z"~ (Boc)20 Cl H3N+ CO2Et DIPEA 0~N C02Et DMAP H
15d THE 16a vinyl syn to ester The hydrochloride salt 15d (1.0 g, 5.2 mmol) and (Boc)20 (1.2 g, 5.7 mmol) were dissolved in THE (30 mL) and treated with DMAP (0.13 g, 1.04 mmol, 0.2 equiv.) and diisopropylethylamine (2.8 mL, 15.6 mmol). The reaction mixture was stirred 24=
h before being diluted with EtOAc (40 mL) and washed successively with sat.
NaHCO3 (aq), 5% aqueous HCI, and sat. brine. The organic phase was dried (MgSO4), filtered and concentrated to give after purification by flash chromatography (15% EtOAc/hexane), 16a (0.29 g, 23%). 1H NMR (CDCI3) 8 5.80-5.72 (m, 1H), 5.29-5.25 (dd, J = 17.2, 17.2 Hz, 1 H), 5.24-5.1 (bs, 1 H), 5.10 (dd, J = 9.2, 9.2 Hz, 1 H), 4.22-4.13 (m, 2H), 2.15-2.04 (m, 1 H), 1.85-1.73 (bs, 1 H), 1.55-1.5 (m, 1 H), 1.49 (s, 9H), 1.26 (t, J = 7.3 Hz, 3H).

Enzymatic resolution of ethyl (1R,2S)/(1S,2R) 1-amino-2-vinylcyclopropyl carboxylate:

a) Alcalase OX N OEt >L O A N OH + O 11 N OEt H NaOH H O H O
16a vinyl syn to ester 17a (S,R) 17c (R,S)*
*Analysis by HPLC using Chiralcel OD-H column 5 a) Racemic derivative 17a (0.29 g, 1.14 mmol) was dissolved in acetone (5 ml-) and diluted with H2O (10 mL). The pH was adjusted with 0.2N aqueous NaOH to 7.2 before Alcalase was added (300 mg). To keep the pH constant during incubation, a NaOH solution was added by a pH stat titrator over 9 days until the theoretical amount of base had been added. Following acid/base extraction as described in 10 Example 13, the unhydrolyzed ester (0.15 g, 100%) and the hydrolyzed material (0.139 g, 95%) were isolated. Analysis of the unhydrolyzed ester by HPLC using a chiral column showed a ratio of 43:1 of the desired compound 17c that was assigned the (R,S) stereochemistry based on chemical correlation as described in Examples 10 and 11.

15 Conditions for HPLC analysis: Chiralcel OD-H (4.6 mm x 25 cm), isocratic conditions using a mobile phase of 2.5% isopropanol/hexane.

Resolution of (1R,2S)/(lS,2R) 1-amino-2-vinylcyclopropyl carboxylate by crystallization with dibenzoyl-D-tartaric acid HCLH2N OEt 20 O (18) To a solution of crude racemic (1 S,2R and 1 R, 2S) ethyl 1 -amino-2-vinylcyclopropyl carboxylate [obtained from N-(diphenylmethylene)glycine ethyl ester (25.0 g, 93.5 mol) as described in Example 15] in EtOAc (800 ml-) was added dibenzoyl-D-tartaric acid (33.5 g, 93.5 mol). The mixture was heated to reflux, left at RT for 15 min then it cooled to 0 C. A white solid was obtained after 30 min. The solid was filtered, washed with EtOAc (100 ml-) and air-dried. The solid was suspended in acetone (70 mL), sonicated and filtered (3x). The solid was next recrystallized twice in hot acetone (crop A). The mother liquors were concentrated and the residue was recrystallized three times in hot acetone (crop B). The two crops of the amorphous white solids of dibenzoyl-D-tartaric acid salt were combined (5.53 g) and suspended in a mixture of Et20 (250 mL) and saturated NaHCO3 solution (150 mL). The organic layer was washed with brine, dried (MgSO4) and filtered. The filtrate was diluted with 1 N HCI/Et20 (100 mL) and concentrated under reduced pressure.
The oily residue was evaporated with CCI4 to afford ethyl 1(R)-amino-2(S)-vinyl cyclopropanecarboxylate hydrochloride (940 mg, 11 % yield) as a white hygroscopic solid: [a] 2 +39.5 C (c 1.14 MeOH); [a] 215 +88.5 C (c 1.14 MeOH); 11-1 NMR
(DMSO-de) 8 9.07 (broad s, 2H), 5.64 (ddd, J=17.2, 10.4, 8.7 Hz, 1 H), 5.36 (dd, J=17.2, 1.6 Hz, 1 H), 5.19 (dd, J=10.4, 1.6 Hz, 1 H), 4.24-4.16 (m, 2H), 2.51-2.45 (m, peaks hindered by DMSO, 11-1), 1.84 (dd, J=10.0, 6.0 Hz, 11-1), 1.64 (dd, J=8.3, 6.0 Hz, 1 H), 1.23 (t, J=7.1 Hz, 3H); MS (ESI) m/z 156 (MH)+; the enantiomeric purity was determined to be 91% ee by HPLC analysis (CHIRALPAK AS column, Hex:i-PrOH) of the Boc derivative.

Preparation of (IR,2S)/(1S, 2R)-1-amino-2-vinylcyclopropane carboxylic acid methyl-ester hydrochloride (19f) H3N+1CO2Et HCl .19c CHO 19a I N N CO2Et Br~~ Br Na SO / TBME
z a LiOtBu (2.1 equiv) Et3N 19b toluene / RT
then H3O+, then NaOH

H2N~7~~ 2-t BO BocHN~ CO Et NaOMe BocHN~ CO Me IIZZ~ TBME MeOH
19d 19e 19f Preparation of imine 19b Glycine ethyl ester hydrochloride 19a (1519.2 g, 10.88 mole, 1.0 equiv) was 25 suspended in tert-butylmethyl ether (8 L). Benzaldehyde (1155 g, 10.88 mole, 1 equiv) and anhydrous sodium sulfate (773 g, 5.44 mole, 05 equiv) were added and the mixture cooled to 5 C in an ice-water bath. Triethylamine (2275 mL, 16.32 mole, 1.5 equiv) was added dropwise over 15 min (use 0.5 L of tert-butylmethyl ether for rinses) and the mixture stirred for 40 h at room temperature. The reaction was then quenched by addition of ice-cold water (5 L) and the organic layer was separated. The aqueous phase was extracted with tert-butylmethyl ether (1 L) and the combined organic phases washed with a mixture of saturated NaHCO3 (400 mL) and water (1.6 L), and then brine. The solution was dried over MgSO4, concentrated under reduced pressure and the residual yellow oil dried to constant weight under vacuum. Imine 19b was obtained as a thick yellow oil that solidifies at -20 C
(2001 g, 96% yield): 1H NMR (CDCI3, 400 MHz) 6 8.30 (s, 1 H), 7.79 (m, 2H), 7.48-7.39 (m, 3H), 4.40 (d, J = 1.3 Hz, 2H), 4.24 (q, J = 7Hz, 2H), 1.31 (t,J=7Hz, 3H).
Preparation of racemic N-Boc-(1 R,2S)/(1 S, 2R)-1-amino-2-vinylcyclopropane carboxylic acid ethyl-ester hydrochloride 19e:
Lithium tert-butoxide (4.203 g, 52.5 mmol, 2.1 equiv) was suspended in dry toluene (60 mL). Imine 19b (5.020 g, 26.3 mmol, 1.05 equiv) and dibromide 19c (5.348 g, mmol, 1 equiv) were dissolved in dry toluene (30 mL) and this solution added dropwise over 30 min to the stirred solution of LiOtBu at room temperature.
After completion, the deep red mixture was stirred for an additional 10 min and quenched by addition of water (50 mL) and tert-butylmethyl ether (TBME, 50 mL). The 20 aqueous phase was separated and extracted a second time with TBME (50 mL).
The organic phases were combined, 1 N HCI (60 mL) was added and the mixture stirred at room temperature for 2 h. The organic phase was separated and extracted with water (40 mL). The aqueous phases were then combined, saturated with salt (35 g) and TBME (50 mL) was added. The stirred mixture was then basified to pH
25 13-14 by careful addition of 10 N NaOH. The organic layer was separated and the aqueous phase extracted with TBME (2 x 50 mL). The organic extracts containing free amine 19d were combined and ditertbutyldicarbonate (5.46 g, 25 mmol, 1 equiv) was added. After stirring overnight at room temperature, TLC showed some unreacted free amine. Additional ditertbutyldicarbonate (1.09 g, 5 mmol, 0.2 equiv) was added and the mixture refluxed for 2 h, at which point, TLC analysis indicated complete conversion of 19d to carbamate 19e. The solution was cooled to room temperature, dried over MgSO4 and concentrated under reduced pressure. The residue was purified by flash chromatography using 10% then 20% EtOAc / hexane as eluent. Purified 19e was obtained as a clear yellow oil which slowly solidifies under vacuum (4.014 g, 63% yield).

'H NMR (CDCI3, 400 MHz) 8 5.77 (ddd, J = 17, 10, 9 Hz, 1 H), 5.28 (dd, J = 17, 1.5 Hz, 1 H), 5.18 (broad s, 1 H), 5.11 (dd J = 10, 1.5 Hz, 1 H), 4.24-4.09 (m, 2H), 2.13 (q, J = 8.5 Hz, 1 H), 1.79 (broad m, 1 H), 1.46 (m, 1 H), 1.45 (s, 9H), 1.26 (t, J
= 7 Hz, 3H).

Preparation of title compound 19f via trans-esterification of 19e :
Ethyl ester 19e (10.807 g, 42.35 mmol) was dissolved in dry methanol (50 mL) and a solution of sodium methoxide in MeOH (25 % w/w, 9.7 mL, 42 mmol, 1 equivalent) was added. The mixture was heated at 50 C for 2 h, at which point TLC
analysis indicated complete trans-esterification (19e Rf 0.38, 19f Rf 0.34 in 20%
EtOAc/hexane). The reaction mixture was cooled to room temperature and acidified to pH 4 using 4N HCI in dioxane. Precipitated NaCI was removed by filtration (use tert-butylmethyl ether for washings) and volatiles removed under reduced pressure.
Tert-butylmethyl ether (100 mL) was added to the residue and solids removed by filtration. Evaporation of the filtrate under reduced pressure and drying under vacuum gave pure methyl ester 19f (10.11 g, 99% yield).

'H NMR (CDCI3, 400 MHz) 8 5.75 (ddd, J = 17, 10, 9 Hz, 1 H), 5.28 (dd, J = 17, 1 Hz, 1 H), 5.18 (broad s, 1 H), 5.11 (ddd, J = 10, 1.5, 0.5 Hz, 1 H), 3.71 (s, 3H), 2.14 (q, J =
9 Hz, 1 H), 1.79 (broad m, 1 H), 1.50 (broad m, 1 H), 1.46 (s, 9H).

Enzymatic resolution of (1R,2S)/(1 S,2R)-1-amino-2-vinylcyclopropane carboxylic acid methyl-ester hydrochloride BocHN C02Me Alcalase 2.4L BocHN CO2Me 19f pH 8.2-8.5 20a 4N HCI-dioxane HCI
H2N CO2Me 20b (1 R,2S) Preparation of N-Boc-(1 R,2S)-1-amino-2-vinylcyclopropane carboxylic acid methyl ester 20a:
Racemic ester 19f (0.200 g, 0.83 mmol) was dissolved in acetone (3 mL) and water (7 mL) was added. 0.05 M NaOH (1 drop) was added to bring the pH of the solution to -8 and then Alcalase 2.4L (Novo Nordisk Biochem, 0.3 g in one mL of water) was added. The mixture was stirred vigorously at room temperature, maintaining the pH of the solution at 8 using an automatic titrator. At beginning of day 4 and 5 of stirring at pH 8, additional enzyme solution was added (2 x 0.3 g). After a total of 5 days, a total of 8.3 mL of 0.05 M NaOH was consumed. The reaction mixture was diluted with EtOAc and water and the organic phase separated. After washing with brine, the organic extract was dried (MgSO4) and concentrated under vacuum.
Compound 20a (0.059 g, 30% yield) was obtained as a clear oil: 'H NMR
identical to that of compound 19f. HPLC (Chiralcel ODH, 4.6 x 250 mm, isocratic 1% EtOH in hexane, 0.8 mUmin flow rate): (1 R,2S)-2 Rt 19.3 min (97%); (1 S,2R)-2 R, 17.0 min (3%).

Preparation of (1 R,2S)-1-amino-2-vinylcyclopropane carboxylic acid methyl ester hydrochloride 20b:
Compound 20a (39.96 g, 165.7 mmol) was dissolved in dioxane (25 mL) and the solution added dropwise with stirring to 4 N HCI in dioxane (Aldrich, 250 mL).
After 45 min, TLC analysis indicated complete deprotection. Volatiles were removed under reduced pressure, and the residue co-evaporated twice with MeOH (2 x 100 mL). Ether (300 mL) and MeOH (10 mL) were added to the brown, oily residue and the mixture stirred overnight at room temperature resulting in the precipitation of a semi-solid. Additional MeOH (15 mL) was added and stirring continued for 6 h, at which point a yellowish solid was collected by filtration. The product was washed with 5% MeOH in ether (50 mL) and ether (2 x 50 mL), and dried in vacuo to give compound 20b as a yellowish solid (22.60 g, 76% yield). Filtrates (including washings) were evaporated in vacuum to give additional 20b as a brown oil (7.82 g, 26% yield). Both fractions were pure enough for use in the synthesis of HCV
protease inhibitors: [aID25 +38.2 (c 1.0, MeOH).

'H NMR (400 MHz, DMSO-d6) 5 9.15 (broad s, 3H), 5.65 (ddd, J = 17, 10, 9 Hz, 1H), 5.36 (dd, J = 17, 1.5 Hz, 1 H), 5.19 (dd, J = 10, 1.5 Hz, 1 H), 3.74 (s, 3H), 2.50 (q, overlap with DMSO signal, J = 9 Hz, 1 H), 1.86 (dd, J = 10, 6 Hz, 1 H), 1.64 (dd, J = 8, 6 Hz, 1 H).

Synthesis of 1-aminocyclobutyl carboxylic acid methyl ester p OMe HCI salt 21b 21a 1, 1 -aminocyciobutanecarboxylic acid was prepared according to Kavin Douglas ;
5 Ramaligam Kondareddiar ; Woodard Ronald, Synth. Commun. (1985), 15 (4), 267-72. The amino acid salt (21a) (1.00 g. , 6.6 mmoles) was stirred in dry methanol (40 ml) at -20 C and mixture saturated with dry hydrogen chloride to yield (21 b).
Stirring of this mixture was continued for 4 h. The hot solution was filtered and filtrate concentrated (Rotavap, 30 C ) to leave a residue which upon trituration in ethyl ether 10 afforded a white powder ( 0.907 g. , 83%) after filtration and drying. 1H
NMR
(400MHz, D2) 5 CH3O (3H, s, 3.97 ppm) ; CH2 (2H, m, 2.70-2.77 ppm); CH2 (2H, m, 2.45-2.53 ppm) and CH2 (2H, m, 2.14-2.29 ppm).

TRIPEPTIDES

15 General procedure for coupling reactions done on solid support.

The synthesis was done on a parallel synthesizer model ACT396 from Advanced ChemTech with the 96 well block. Typically, 24 peptides were synthesized in parallel using standard solid-phase techniques. The starting (Fmoc-amino)cyclopropane (optionally substituted) carboxylic acid-Wang resin were 20 prepared by the DCC/DMAP coupling method (Atherton, E; Scheppard, R.C.
Solid Phase Peptide Synthesis, a Practical Approach; IRL Press: Oxford (1989); pp 148).

Each well was loaded with 100 mg of the starting resin (approximately 0.05 mmol).
The resins were washed successively with 1.5 mL portions of NMP (1 X) and DMF
(3 25 X). The Fmoc protecting group was removed by treatment with 1.5 mL of a 25%
v/v solution of piperidine in DMF for 20 minutes. The resins were washed with 1.5 mL
portions of DMF (4 X), MeOH (3 X) and DMF (3 X). The coupling was done in DMF

(350 L), using 400 L (0.2 mmol) of a 0.5M solution of Fmoc-amino acid/HOBt hydrate in DMF, 400 L (0.4 mmol) of a 1 M solution of DIPEA in DMF and 400 L
(0.2 mmol) of a 0.5M solution of TBTU in DMF. After shaking for 1 hour, the wells were drained, the resins were washed with 1.5 mL of DMF and the coupling was repeated once more under the same conditions. The resins were then washed as described above and the cycle was repeated with the next amino acid.

The capping groups were introduced in two ways:

1. In the form of a carboxylic acid using the protocol described above (for example acetic acid) or, 2. As an acylating agent such as an anhydride or an acid chloride. The following example illustrates the capping with succinic anhydride: After the Fmoc deprotection and subsequent washing protocol, DMF was added (350 L), followed by 400 L
each of a DMF solution of succinic anhydride (0.5 M, 0.2 mmol) and DIPEA (1.0 M, 0.4 mmol). The resins were stirred for 2 h and a recoupling step was performed. At the end of the synthesis the resin was washed with 1.5 mL portions of DCM
(3x), MeOH (3x), DCM (3x), and were dried under vacuum for 2 h. The cleavage from the resin and concomitant side chain deprotection was effected by the addition of 1.5 mL
of a mixture of TFA, H2O, DTT and TIS (92.5: 2.5: 2.5: 2.5). After shaking for 2.5 h, the resin was filtered and washed with 1.5 mL of DCM. The filtrates were combined and concentrated by vacuum centrifugation. Each compound was purified by preparative reversed phase HPLC using a C18 column (22 mm by 500 mm). The product-containing fractions were identified by MALDI-TOF mass spectrometry, combined and lyophilized.

General procedure for coupling reactions done in solution (See also R. Knorr et al., Tetrahedron Letters, (1989), 30,1927.) The reactants, i.e. a free amine (1 eq.) (or its hydrochloride salt) and the free carboxylic acid (1 eq.) were dissolved in CH2CI2i CH3CN or DMF. Under a nitrogen atmosphere, four equivalents of N-methylmorpholine and 1.05 equivalents of the coupling agent were added to the stirred solution. After 20 min, one equivalent of the second reactant, i.e. a free carboxylic acid was added. (Practical and efficient coupling reagents for this purpose are (benzotriazol-1 -yloxy)tris-(dimethylamino)phosphonium hexafluorophosphate (HOBT) or preferably 2-(1 H -benzotriazol-l-yl)-N,N, N, N'tetramethyluronium tetrafluoroborate (TBTU) or O-(7-azabenzotriazol-1-yl)-N,N,N',N'tetramethyluronium tetrafluoroborate (HATU).
The reaction was monitored by TLC. After completion of the reaction, the solvent was evaporated under reduced pressure. The residue was dissolved in EtOAc. The solution was washed successively with 10% aqueous citric acid, saturated aqueous NaHCO3 and brine. The organic phase was dried (MgSO4), filtered and concentrated under reduced pressure. When the residue was purified, it was done by flash chromatography as defined above.

Synthesis of compound 304 O N ) O N
}' ONN a 0VN b li O
(5) = 24a 24b P%
0 c) UGH 0 K N - J~ N
O H 0 O N t O` McOH/rHF/H20 0 H O O N OH
24c H O H O
compound 304 a) The (R,R) isomer of Boc-Et-Acca-OMe 13c (0.12 g, 0.49 mmol) obtained from enzymatic resolution (Example 13) was treated with 4N HCI/dioxane (45 min) before being concentrated in vacuo to give a white solid. To this HCl salt (ca. 0.49 mmol) was added TBTU (0.17 g, 0.54 mmol), the Boc-4(R)-(8-quinoline-methyloxy) proline 5 (from Example 5) (0.18 g, 0.49 mmol) and DIPEA (0.3 mL, 1.7 mmol) in MeCN
(10 mL). The mixture was stirred at RT for 3.5 h before being concentrated in vacuo.
The resulting material was dissolved in EtOAc and washed sequentially with saturated aqueous NaHCO3 and brine. Dried (MgSO4), filtered and concentrated to give 24b a white solid (0.122 g, 50%).

b) 24b (0.12 g, 0.25 mmol) was treated at RT with 4N HCI/dioxane (30 min) before being concentrated in vacuo. The resulting hydrochloride salt (ca. 0.25 mmol) was treated with Boc-Chg-OH=H20 (75 mg, 0.27 mmol), TBTU (87 mg, 0.27 mmol) in MeCN (10 mL) and finally at 0 C with DIPEA (0.15 mL, 0.87 mmol). The residue was diluted with EtOAc, sequentially washed with saturated aqueous NaHCO3, and brine, dried (MgS04), filtered and concentrated to give 24c as an off white solid (0.2 g).
This material (0.14 g) was dissolved in DMSO and purified by preparative HPLC
to give 24c as a white solid after Iyophilization (35 mg, 33%). HPLC (98%); MS
(FAB) m/z: 637.3 (MH+); HAMS calcd for C35H48N407 (MH+) 637.36011: found 637.36250;
'H-NMR (DMSO-d6) shows a rotamer population, 8 8.91 (2 x d, J = 4.1 and 4.1 Hz, 1 H), 8.40-8.36 (m, 2H), 7.90 (d, J = 7.6 Hz, 1 H), 7.77 (d, J = 7.0 Hz, 1 H), 7.6-7.54 (m, 2H), 6.80 (d, J = 8.6 Hz, 1 H), 5.18 and 5.16 (2 x s, 2H), 4.40 (bs, 1 H), 4.31 (t, J =
8.3 Hz, 1 H), 4.12 (d, J = 11.44 Hz, 1 H), 4.03 (t, J = 7.9 Hz, 1 H), 3.78-3.72 (m, 1 H), 3.56 (s, 3H), 2.35-2.27 (m, 1 H), 2.06-1.97 (m, 1 H), 1.71-1.55 (m, 1 OH), 1.53-1.38 (m, 2H), 1.26 (s, 9H), 1.18-1.06 (m, 2H), 1.02-0.93 (m, 2H), 0.89 (t, J = 7.3 Hz, 3H).

compound 304:

c) To 24c (30 mg, ca. 0.047 mmol) was added MeOH (1 mL), THE (1 mL), and lithium hydroxide monohydrate (12 mg, 0.29 mmol) in H20(1 mL). The clear solution was stirred rapidly for 48 h before being concentrated in vacuo. The crude peptide was dissolved in DMSO and purified by preparative HPLC to give compound 304 as a white solid after Iyophilization (21 mg, 72%). HPLC (99%); MS (FAB) m/z:
(MH+) 623.3; HAMS calcd for C34H46N4O7 (MH+) 623.34448, found: 623.34630,'HNMR
(DMSO-d6) shows a rotamer population of 1:1, 8 8.90 (2 x d, J = 4.1 Hz, 1 H), 8.37 (d, J = 8.3 Hz, 1 H), 8.26 (s, 1 H), 7.89 (d, J = 8.3 Hz, 1 H), 7.77 (d, J = 6.7 Hz, 1 H), 7.6-7.53 (m, 2H), 6.88 and 6.79 (2 x d, J = 8.6 and 7.9 Hz, 1 H), 5.17 and 5.16 (2 x s, 2H), 4.43-4.35 (bs, 1 H), 4.29 (t, J = 8.3 Hz, 1 H), 3.82-3.71 (m, 1 H), 2.35-2.27 (m, 1 H), 2.06-1.97 (m, 1 H), 1.72-1.53 (m, 1 OH), 1.52-1.44 (m, 2H), 1.37 and 1.29 (2 x s, 9H), 1.18-1.05 (m, 3H), 1.0-0.94 (m,1 H), 0.91 (t, J = 7.3 Hz, 3H).

Synthesis of compound 301 p OIkH OH a O p 12a = 25a 25b O - O -Boc-N I ^' Boc-Chg-N 4 O
O H O H
25C 0\ 25d d --~ Boc-Chg-N
OH
OH

compound 301 a) Compound 25a (=12a) (282 mg , 1.23 mmol) was suspended in anhydrous CH3CN (6 mL). DBU (221 L, 1.48 mmol) and benzylbromide (161 AL, 1.35 mmol) were added successively and the reaction mixture was stirred overnight at RT.
The mixture was concentrated, the resulting oil was diluted with EtOAc and 10% aq.
citric acid and successively washed with 10% citric acid (2x) , saturated aq. NaHCO3 (2x), water (2x) and brine (1 x) . The EtOAc layer was dried (MgSO4), filtered and evaporated to dryness. The crude colorless oil was purified by flash chromatography (eluent - hexane : EtOAc ; 95:5 to 90:10) to provide the benzylated product 25b as a colorless oil (368mg; 93%).
MS (FAB) 318.2 MH- 320.2 MH+ 342.2 (M+Na)+
'H NMR (CDCl3) S 7.37-7.28 (m, 5H), 5.22-5.10 (m, 1 H), 5.19 (d, J= 12 Hz, 1 H), 5.16 (d, J= 12 Hz, 1 H), 1.60-1.40 (m, 4H), 1.39 (s, 9H), 1.31-1.22 (m, 1 H), 0.91 (t, J=
7.5, 14.5 Hz, 3H).

b) Compound 25b (368 mg , 1.15 mmol) was treated with 4N HCI/dioxane (6 mL) as described previously. The crude hydrochloride salt was coupled to compound 4 (from Example 4) (470.8 mg, 1.27 mmol) with NMM (507 L, 4.61 mmol) and HATU
(instead of TBTU, 525.6 mg, 1.38 mmol) in CH2CI2 (6 mL) as described in Example 22 to yield the crude racemic dipeptide as an orange oil. The crude material was purified by flash chromatography ( eluent - hexane : Et2O ; 50:50) to provide the pure dipeptide 25c (the less polar eluting spot) as a white foam (223mg ; 68 %
of the theoretical yield).
MS 571.4 MH" 573.3 MH+ 595.3 (M+Na)i 5 'H NMR (CDCI3), ca.1:1 mixture of rotamers, 6 8.03 (b d, J= 8 Hz, 1 H), 7.86 (b d, J= 7.5 Hz, 1 H), 7.82 (b d, J= 6.5 Hz, 1 H), 7.61 (b s, 0.5H), 7.57-7.40(m, 4H), 7.31-7.21 (m, 5H), 6.48 (b s, 0.5H), 5.22-5.11 (m, 1 H), 5.08-4.81 (m, 3H), 4.41-3.74 (m, 3H), 3.49-3.18 (m, 1 H), 2.76-1.90 (m, 2H), 1.69-1.48 (m, 3H), 1.40 (s, 9H), 1.40-1.23 (m, 2H), 0.92 (t, J= 7.5, 15 Hz, 3H).

10 c) The dipeptide 25c (170.1 mg , 0.297 mmol) was treated with 4N
HCI/dioxane (2mL) as described previously. The crude hydrochloride salt was coupled to Boc-Chg-OH (84.1 mg ,0.327 mm0l) with NMM (130.7 .tL , 1.19 mmol) and HATU
(instead of TBTU, 135.5mg; 0.356 mmol) in CH2CI2 (2mL) for 2.75 h at RT then worked up as described previously to provide the crude tripeptide 25d as an ivory 15 foam (ca. 211.4 mg ; 100%).
MS (FAB) 712.5 MH+
compound 301:
d) The crude tripeptide 25d (ca.15.4 mg , 0.022 mmol) was dissolved in absolute ethanol (2 ml-) and an estimated amount (tip of spatula) of both 10% Pd/C
catalyst 20 and ammonium acetate were added. The mixture was hydrogenated overnight under a hydrogen filled balloon at RT and atmospheric pressure. The reaction mixture was filtered through a 0.45 m Millex filter, evaporated to dryness then diluted with EtOAc and 10% aqueous citric acid, and washed again with 10%
aqueous citric acid (U), water (2x) and brine (U). The organic layer was dried 25 (MgSO4), filtered, evaporated to dryness and lyophilized to provide the tripeptide 301 as a white amorphous solid (11.0 mg ; 82%).
MS (FAB) 622.5 MH+ 644.5 (M+Na)+
'H NMR (DMSO), ca.1:4 mixture of rotamers, 8 8.54 & 8.27 (s, 1H),8.06-7.99 (m, 1 H), 7.96-7.91 (m, 1 H), 7.87 (d, J= 8Hz, 1 H), 7.57-7.42 (m, 4H), 6.81 (d, J= 8Hz, 30 1 H), 4.99 (d, J= 12Hz, 1 H), 4.88 (d, J= 12Hz, 1 H), 4.46-4.19 (m, 2H), 4.17-4.02 (m, 2H), 3.88-3.67 (m, 1 H), 2.28-2.19 (m, 1 H), 2.05-1.93 (m, 1 H), 1.73-1.43 (m, 8H), 1.32-1.07 (m, 6H), 1.28 (s, 9H), 1.03-0.85 (m, 2H), 0.91 (t, J= 7.5, 15Hz, 3H) Synthesis of compound 306 aN

O \
O
CI- a) TBTU

,N
O OH + HsN O CHI-----~ ON H 0"~
3;C12 26a 26b = 15d 0 26c b) HCI 4N

c) Boc-CHG-OH
TBTU

SIN ~I
I
gg O d) UGH 0 0 H N N `- OH H N N 0"/

compound 306 26d a) The acid 26a (180 mg, 0.500 mmol) and the amine 15d (96 mg, 0.500 mmole) were coupled using TBTU (192 mg, 0.600 mmol) and DIPEA (226 mg, 1.75 mmol) in CH2CI2 (10 mL) for 20 h. The reaction mixture was concentrated, taken up in ethyl acetate, washed twice with sat. NaHCO3 and once with brine. The organic layer was dried on MgSO4, filtered and concentrated to give 26c as a brown oil, used without purification in the next step.

b, c) The crude compound 26c (ca. 0.500 mmol) was stirred for 30 min in HCI
4N/dioxane (4 mL) and concentrated to dryness. The solid was taken up in (10 ml-) and DIPEA (226 mg, 1.75 mmol) was added followed by Boc-Chg-OH
monohydrate (138 mg, 0.500 mmol) and TBTU (192 mg, 0.600 mmol). The solution was stirred at RT for 5 h. The reaction mixture was concentrated, taken up in ethyl acetate, washed twice with sat. NaHCO3 and once with brine. The organic layer was dried on MgSO4, filtered and concentrated to give a brown oil, purified by flash chromatography to give 26d as a yellow oil, 204 mg, 64% over two couplings.
'H NMR (CDCI3) S 8.77-8.74 (m, 1 H), 8.14 (d, J = 8 Hz, 1 H), 8.02 (d, J = 9 Hz, 1 H), 7.69 (dd, J = 9, 7 Hz, 1 H), 7.52 (d, J = 5 Hz, 1 H), 7.47 (dd, J = 8, 7 Hz, 1 H), 6.78 (d, J = 5 Hz, 1 H), 5.80-5.70 (m, 1 H), 5.35-5.27 (m, 2 H), 5.14-5.07 (m, 2 H), 4.89-4.83 (m, 1 H), 4.39-4.32 (m, 1 H), 4.30-4.24 (m, 1 H), 4.20-4.07 (m, 2 H), 4.00-3.92 (m, 1 H), 3.04-2.92 (m, 1 H), 2.39-2.29 (m, 1 H), 2.16-2.04 (m, 1 H), 1.91-1.83 (m, 1 H), 1.82-1.62 (m, 7 H), 1.45-1.35 (m, 9 H), 1.27-1.07 (m, 8 H).

d) 26d (136 mg, 0.214 mmole) was dissolved in THE (4 ml-) and MeOH (2 mL). An aqueous solution (2 ml-) of LiOH hydrate (72 mg, 1.72 mmol) was added and the reaction mixture was stirred at RT for 20 h. The solution was concentrated and purified by preparative HPLC to give compound 306 (the less polar isomer) as a white solid (25 mg).
compound 306: MS(FAB) 607.4 (MH+) 'H NMR (DMSO-d6) S 9.16 (d, J = 6 Hz, 1 H), 8.55 (s, 1 H), 8.35 (d, J = 8 Hz, 1 H), 8.12 (d,J=9Hz,1 H), 8.05 (dd, J = 8, 7 Hz, 1 H), 7.76 (dd, J = 8, 7 Hz, 1 H), 7.59 (d,J=6Hz, 1 H), 7.02 (d,J=8Hz,1 H), 5.75-5.66 (m, 2 H), 5.19 (d, J = 18 Hz, 1 H), 5.07 (d, J = 10 Hz, 1 H), 4.55 (d, J = 12 Hz, 1 H), 4.43 (dd, J = 10, 8 Hz, 1 H), 4.03 (d, J = 10 Hz, 1 H), 3.87-3.83 (m, 1 H), 2.66-2.59 (m, 1 H), 2.36-2.30 (m, 1 H), 1.98 (dd, J = 18, 9 Hz, 1 H), 1.75-1.56 (m, 8 H), 1.38-1.35 (m, 1 H), 1.25-1.22 (m, 1 H), 1.09 (s, 9 H), 1.12-0.95 (m, 3 H).

Synthesis of compound 307 O
OEt c) TBTU
27a + HCLH2N NMM BocN -BocN

R.T. TIN OR

27c II

d) I ,4dioxane R.T.
N

O O

O e) BocChgOH.H20 TBTU, NMM
HCLHN CH3CN, R.T.
Et O
O H
O
27d \ N \

\ I / N02 NO2 ,O t7LiO O
o T:HZO
/~J\ N Me OH p~ N
N
O N R.T. H
H O OEt O OH
O H N H
O O
27e 0 compound 307 c) A solution of the acid (8) from Example 8 (505 mg, 105 mmol) in 5 mL of dichloromethane was treated with TBTU (376 mg, 1.17 mmol). The HCI salt of the (R,S) vinyl AccaOEt (18) (from Example 18) (279 mg, 1.46 mmol), in 7 mL of dichloromethane containing (0.60 mL, 5.46 mmol) of N-methyl morpholine, was added to the previous solution of the activated ester. The resulting solution was stirred at RT overnight. The solvent was evaporated in vacuo. The residue diluted with ethyl acetate, was washed twice with a saturated solution of sodium bicarbonate and once with brine. The organic layer was dried (MgSO4) filtered and evaporated in vacuo. The residue was chromatographed over silica gel (60:40 v/v, hexanes-ethyl acetate) to afford 173 mg (27%) of the dipeptide 27c.

d, e) A solution of the dipeptide 27c (70 mg, 0.114 mmol) in 3 mL of hydrogen chloride 4.0 M solution in 1,4-dioxane was stirred at RT for 1 h (a precipitated came out from the reaction after 10 min). The solvent was removed in vacuo. The amine hydrochloride salt 27d (0.114 mmol), diluted in 1.5 mL of acetonitrile, was neutralized by addition of 65 L (0.591 mmol) of N-methyl morpholine. A
solution of II

the Boc ChgOH=H20 (39 mg, 0.142 mmol) in 1.5 mL of acetonitrile was treated with TBTU (46 mg, 0.143 mmol) and then added to the previous solution of the amine.
The resulting solution was stirred at RT (for 2 days). The solvent was removed in vacuo. The residue, diluted with ethyl acetate, was washed twice with a saturated solution of sodium bicarbonate and once with brine. The organic layer was dried (MgSO4), filtered and evaporated in vacuo. 86 mg (100%) of tripeptide 27e was obtained. This crude compound was used in the next reaction without further purification.

f) To a solution of tripeptide 27e (86 mg, 0.114 mmol) in 5 mL of a mixture THF:H20 (2.5:1) was added lithium hydroxide monohydrate (22 mg, 0.524 mmol). An additional 0.25 mL of MeOH was added in order to get an homogeneous solution.
The resulting solution was stirred at RT overnight before the solvent was evaporated in vacuo. The residue was partitioned between water and EtOAc. The aqueous layer was acidified with 1 M HCI and then extracted twice with ethyl acetate.
The desired compound has been found in the ethyl acetate coming from the first basic extraction. This organic layer was dried (MgSO4), filtered and evaporated in vacuo to afford 69 mg of the crude acid, which was purified by preparatory HPLC. The compound was dissolved in MeOH (4 mL) and injected onto an equilibrated Whatman Partisil 10-ODS-3 (2.2 x 50cm) C18 reverse phase column. (?, = 230nm, solvent A = 0.06% TFA/H2O, solvent B=0.06% TFA/CH3CN). Purification program:
20% to 70% of solvent B in 60 min. Fractions were analyzed by analytical HPLC.
Appropriate fractions were collected and lyophilized to provide 50 mg (60%) of the desired tripeptide 307 as a white amorphous solid.

compound 307: 'H NMR (DMSO-d6) rotamers - 2:8 8 8.86 (d, J = 2.5 Hz, 1 H), 8.85 (s, 0.2H), 8.64 (s, 0.8H), 8.49 (dd, J = 9.5, 3 Hz, 0.2H), 8.45 (dd, J = 9.2 Hz, 0.8H), 8.39-8.33 (m, 2H), 8.20 (d, J = 9.5 Hz, 0.2H), 8.18 (d, J = 9.5 Hz, 0.8H), 7.81 (s, 0.2H), 7.78 (s, 0.8H), 7.64-7.56 (m, 3H), 6.87 (d, J = 8 Hz, 0.8H), 6.36 (d, J
= 9 Hz, 0.2H), 5.82-5.67 (m, 2H), 5.27-5.17 (m, 1 H), 5.09-5.03 (m, 1 H), 4.73 (t, J =
8 Hz, 0.2H), 4.55 (dd, J = 10, 7.5 Hz, 0.8H), 4.49-4.40 (m, 1 H), 4.00-3.95 (m, 1 H), 3.83-3.76 (m, 1 H), 2.87-2.80 (m, 0.2H), 2.69-2.62 (m, 0.8H), 2.39-2.26 (m, I H), 2.08-2.00 (m, 1 H), 1.75-1.41 (m, 7H), 1.37 (s, 1.8H), 1.32-1.27 (m, 1 H), 1.17-0.82 (m, 5H), 0.94 (s, 7.2H).

Synthesis of compound 311 N
O

0 H N H 0"-- NN: O O O

compound 311 Compound 311 was prepared using the process described in Example 24 but using 5 the appropriate building blocks.
Compound 311 1H NMR (DMSO-d6) 8 8.98 (d, J = 6 Hz, 1 H), 8.52 (s, 1 H), 8.24 (d, J = 9 Hz, 1 H), 8.08 (d, J = 2 Hz, 1 H), 7.63 (d,J=9Hz, 1 H), 7.37 (d,J=6Hz, 1 H), 6.98 (d, J = 8 Hz, 1 H), 5.75-5.66 (m, 1 H), 5.57 (br s, 1 H), 5.24-5.19 (m, 1 H), 5.08-5.01 (m, 1 H), 4.57-4.40 (m, 2 H), 4.00-3.96 (m, 1 H), 3.82 (dd, J = 9, 8 Hz, 1 10 H), 2.59-2.54 (m, 1 H), 2.32-2.26 (m, 1 H), 1.99 (dd, J = 17, 9Hz, 1 H), 1.74-1.55 (m, 8 H), 1.37 (s, 1 H), 1.26-1.22 (m, 1 H), 1.14-1.08 (m, 9 H), 1.02-0.91 (m, 3 H).

Synthesis of compound 302 \ \

N Y- OH
N H

15 Compound 302 was prepared using the process described in Example 27 but using the appropriate building blocks.
1H NMR (DMSO-d6) b 8.34 (s, 1 H), 8.04-8.01 (m, 1 H), 7.94-7.92 (m, 1 H), 7.87 (d, J = 8 Hz, 1 H), 7.54-7.50 (m, 3 H), 7.45 (dd, J = 17,8 Hz, 1 H), 7.22 (d, J= 8 Hz, 1 H), 4.94 (dd, J = 55, 12 Hz, 2 H), 4.34 (s, 1 H), 4.27 (dd, J = 8,8 Hz, 1 H), 4.16 (d, J =
20 11 Hz, 1 H), 4.07 (dd, J = 8,8 Hz, 1 H), 3.72-3.65 (m, 2 H), 3.59-3.54 (m, 1 H), 2.24-2.18 (m, 1 H), 2.02-1.95 (m, 2 H), 1.75-1.70 (m, 1 H), 1.53-1.44 (m, 2 H), 1.32-1.27 (m, 1 H), 1.21-1.17 (m, 1 H), 0.96-0.85 (m, 10 H), 0.80-0.77 (m, 5 H), 0.62-0.57 (m, 1 H).

Synthesis of compound 308 O~N N H OH
`

Compound 308 was prepared using the process described in Example 27 but using the appropriate building blocks.
1H NMR (DMSO-d6) rotamers - 2:8 8 8.77 (s, 0.2H), 8.45 (s, 0.8H), 8.13 (d, J =
8.5 Hz, 0.8H), 8.03 (d, J = 8.5 Hz, 0.2H), 7.89-7.83 (m, 1 H), 7.55-7.37 (m, 4H), 7.05-6.59 (m, 1 H), 6.95 (d, J = 8 Hz, 0.8H), 6.26 (d, J = 8.5 Hz, 0.2H), 5.81-5.64 (m, 1 H), 5.33-5.28 (m, 1 H), 5.26-5.15 (m, 1 H), 5.08-5.02 (m, 1 H), 4.60 (t, J = 7.5 Hz, 0.2H), 4.38-4.27 (m, 1.8H), 4.09-3.91 (m, 1.8H), 3.74 (dd, J = 12.5, 4 Hz, 0.2H), 2.69-2.60 (m, 0.2H), 2.50-2.40 (m, 1 H), 2.36-2.28 (m, 0.2H), 2.23-2.14 (m, 0.8H), 2.05-1.97 (m, 0.8H), 1.76-1.44 (m, 7H), 1.37 (s, 1.8H), 1.29 (s, 7.2H), 1.28-1.20 (m, 1H), 1.16-0.88 (m, 5H).

Synthesis of compound 309 O

Compound 309 was prepared using the process described in Example 27 but using the appropriate building blocks.

'H NMR (DMSO-d6) rotamers = 2:8 8 8.75 (s, 0.2H), 8.50 (s, 0.8H), 7.89-7.78 (m, 3H), 7.50-7.44 (m, 1 H), 7.42-7.32 (m, 2H), 7.17-7.09 (m, 0.8H) 7.08-7.03 (m, 0.2H), 6.79 (d, J = 8.5 Hz, 0.8H), 6.33 (d, J = 9 Hz, 0.2H), 5.81-5.65 (m, 1 H), 5.30-5.16 (m, 2H), 5.10-5.02 (m, 1 H), 4.56 (t, J = 7.5 Hz, 0.2H), 4.33 (t, J = 8 Hz, 0.8H), 4.10-3.90 (m, 2.8H), 3.74-3.68 (m, 0.2H), 2.45-2.37 (m, 1 H), 2.34-2.17 (m, 1 H), 2.05-1.97 (m, 1H), 1.76-1.48 (m, 7H), 1.37 (s, 1.8H), 1.23 (s, 7.2H), 1.21-0.88 (m, 6H).

Synthesis of compound 305 N j --O O

Compound 305 was prepared using the process described in Example 27 but using the appropriate building blocks.
1H.NMR (DMSO-de) rotamers (1:9) 8 8.68 (s, 0.1H), 8.43 (s, 0.9H), 8.04-8.00 (m, 1 H), 7.95-7.91 (m, 1 H), 7.87 (d, J = 8.5 Hz, 1 H), 7.57-7.49 (m, 3H), 7.47-7.42 (m, 1 H), 6.82 (d, J = 8.5 Hz, 0.9H), 6.21 (d, J = 8.5 Hz, 0.1 H), 5.80-5.64 (m, 1 H), 5.21 (dd, J = 17, 2 Hz, 0.1 H), 5.18 (dd, J = 17, 2 Hz, 0.9H), 5.06 (dd, J = 10.5, 2 Hz, 1 H), 5.02-4.85 (m, 2H), 4.43 (t, J = 7.5 Hz, 0.1 H), 4.34 (br s, 1 H), 4.23 (t, J =
8.5 Hz, 0.91-1), 4.16-4.05 (m, 1.8H), 3.89-3.82 (m, 0.2H), 3.74 (dd, J = 11, 3.5 Hz, 0.9H), 3.53 (dd, J = 12.5, 4 Hz, 0.1 H), 2.30-2.21 (m, 1 H), 2.02-1.94 (m, 2H), 1.74-1.38 (m, 7H), 1.36 (s, 0.9H), 1.28 (s, 8.11-1), 1.25-0.87 (m, 6H).

Synthesis of compound 303 OH NN O H N H
p O

Compound 303 was prepared using the process described in Example 27 but using the appropriate building blocks.
'H NMR (DMSO-d6) 8 8.29 (s, 1 H), 8.04-8.01 (m, 1 H), 7.94-7.92 (m, 1 H), 7.87 (d, J = 8 Hz, 1 H), 7.56-7.52 (m, 3 H), 7.46 (dd, J = 8, 7 Hz, 1 H), 7.19 (d, J =
9 Hz, 1 H), 5.01 (d, J = 12 Hz, 1 H), 4.86 (d, J = 12 Hz, 1 H), 4.34 (br. s, 1 H), 4.24 (t, J = 8 Hz, 1 H), 4.18-4.09 (m, 2 H), 3.74-3.53 (m, 3 H), 2.24-2.18 (m, I H), 2.04-1.95 (m, 1 H), 1.74-1.45 (m, 10 H), 1.31-1.13 (m, 4 H), 0.96-0.86 (m, 7 H), 0.79-0.76 (m, 5 H).

Synthesis of compound 403 O~ O~
0-~N_ 1 1. LIOHavu=
O CH30Haau.

2. TBTU 4 -0 0 "0 O DIEA (19e) O
O-(34a) 4NH2.HCI HN
CO2CH3 p DMF (34b) a) Coupling of P2 with P1 The methyl ester derivative of 7 (34a) (170 mg , 0.355mmole) was stirred in 50%
THF-methanol (4 ml) and aqueous LiOH (1 M, 1 ml) at RT for I h. The solution was concentrated (Rotavap, 30 C) and residue acidified to pH 6 and solution lyophilized.
The resulting powder was stirred in dry DMF (3 ml) in the presence of DIEA
(0.4 ml) followed by the successive addition of 1,1-aminocyclobutylcarboxylic acid methyl ester hydrochloride (34b) (140 mg, 0.845 mmole) and TBTU (134 mg, 0.417mmole).
After stirring for 18 h at RT , the mixture was purified by flash chromatography on silica gel (230-400 Mesh) using 1:2 ethyl acetate-hexane to afford an orange oil (98 mg, 90% purity by HPLC).

b) Coupling of P1-P2 with P3 1. HCI / dioxane 2. Boc-NH~CO2H \ /

TBTU / DIEA /DMF
O~ N t H' 3. KOHAau, N N
O O N O CH,OH O-O O N O.H
' ~y H 0 4. TFA ~, O

(34b) 403 The dipeptide 34b (97 mg, 90%, 0.155 mmole) was stirred in 4N HCI-dioxane (5 ml) during 1 h at RT . The solution was then concentrated to dryness (Rotavap, high vacuum) to afford a beige solid. This material was stirred in dry DMF (2 ml) at RT in the presence of DIEA (0.4 ml) followed by addition of L-Boc-Tbg (80 mg, 0.35 mmole) and TBTU (112 mg, 0.35 mmole) . After stirring 2 days at AT, the solution was poured in ethyl acetate to generate the free base using 5% aqueous potassium carbonate. The organic phase was worked up to give a yellow oily residue. The material was purified by flash chromatography on silica gel column (230-400 Mesh) using 1:2 & 3: 1 v/v ethyl acetate: hexane to afford 40 mg of an oil, homogeneous by HPLC.
The methyl ester (40 mg) was finally saponified in 1 N potassium hydroxide (2 ml) in methanol (4 ml) by stirring at RT during 3h. The mixture was concentrated (Rotavap, 30 C) and acidified to pH 4 with 2N hydrochloric acid. This mixture was purified by preparative HPLC on C18 column using a gradient of 0-50% aqueous acetonitrile (0.1 % TFA) at 220 nm The fractions were pooled, concentrated to half volume and lyophilized to afford 403 as a white fluffy solid (10 mg).
'H NMR (400 MHz, DMSO-d6) 6 Mixture of rotamers : NH+ (1H, s, 8.6 ppm), CH
(3H, m, 8.2 ppm), Ph (5H, broad s, 7.66 & 7.53 ppm), CH (1 H, broad, 7.22ppm), NH
(1 H, d, J= 7.6 Hz, 6.71 ppm), CHO (1 H, broad s, 5.76 ppm), CH (2H, m, 4.58-4.49 ppm), CH (1 H, m, 4.04 ppm), CH3O (3H, s, 3.97 ppm), CH (1 H, d, 3.86 ppm), CH
(7H, very broad, 1.8-2.6 ppm), Boc group (9H, s, 1.25 ppm) and t-butyl group (9H, s, 0.97 ppm).
MS. showed M+H + at We 675 ( 100% ).

HPLC peak 98% at 18.9 min.

Synthesis of compound 333 (Table 3) CO2Me H
Me0 NH2 Ii McOH e0 I \ N I OMe Reflex / H
CO2Me MeO2C

(35a) (35b) (35c) A solution of m-anisidine (35a) (9.15 mL, 81.4 mmoles) and dimethylacetylene-5 dicarboxylate (35b) (10.0 mL, 81.3 mmoles) in 160 mL of methanol is heated under reflux for 2 h. The solvent is removed in vacuo and the residue purified by a flash column chromatography (90:10 hexanes-ethyl acetate). Compound 35c (17.0 g, 79% yield) is obtained as an orange oil.

'H NMR (CDCI3) S 9.62 (broad s, 1 H), 7.17 (dd, J = 7 and 8.5 Hz, 1 H), 6.66 -6.62 10 (m, 1 H), 6.49-6.45 (m, 2H), 5.38 (s, 1 H), 3.77 (s, 3H), 3.74 (s, 3H), 3.71 (s, 3H).

H
Me0 N OMe Ph O MeO \ OMe Me02C
HO
(35c) (35d) Diphenylether (50 mL) is heated in a sand bath up to an internal temperature of X250 . Diester adduct (35c) (7.5 g, 28.3 mmoles), dissolved in 5 mL of diphenyl ether, is added within 2 min to the boiling solvent. The heating is maintained for 5 15 min and the reaction mixture is then allowed to cool down to room temperature.
Rapidly a beige solid precipitated out. The solid is filtered and then triturated with methanol. To yield 4.1 g (62% yield) of the desired compound 35d.

'H NMR (DMSO-d6) 8 7.97 (d, J = 9 Hz, 1 H), 7.40 (d, J = 2 Hz, 1 H), 6.96 (dd, J = 9 and 2Hz, 1 H), 6.55 (s, 1 H), 3.95 (s, 3H), 3.84 (s, 3H).

Me02C N OMe Me02C N~ OMe BocN + BocN
PPh3, DEAD
O OBn HO THE 0 0 - RT OBn (35e) (35f) (35 ) A solution of cis-4-hydroxy-L-proline derivative (35e) (1.71 g, 5.33 mmoles), hydroxyquinoline derivative (35f) (1.25 g, 5.36 mmoles) and triphenyiphosphine (2.80 g, 10.68 mmoles) in 75 mL of THE is cooled down to 00 for the addition drop to drop (-- 1h) of DEAD (1.70 mL, 10.80 mmoles). The reaction mixture was then allowed to warm up slowly to room temperature and the stirring was continued overnight. The solvent is removed in vacuo and the residue purified by a flash column chromatography (70:30 ehtylacetate-hexanes). Compound 35g (0.7 g of pure compound 35g, and 1.8 g of compound 35g contaminated with ;%150% of triphenylphosphate oxide) is obtained as a white solid.

1H NMR (CDCI3) rotamers (4:6) 8 8.04 (d, J = 9 Hz, 1 H), 7.54 (d, J = 2.5 Hz, 1 H), 7.40-7.32 (m, 6H), 7.23 (dd, J = 9 and 2.5 Hz, 1 H), 5.33-5.13 (m, 3H), 4.66 (t, J =
7.5 Hz, 0.4 H), 4.54 (t, J = 8 Hz, 0.6 H), 4.07 (s, 3H), 3.94 (s, 3H), 4.04=3.80 (m, 2H), 2.78-2.65 (m, 1 H), 2.47-2.34 (m, 1 H), 1.45 (s, 3.6H), 1.37 (s, 5.4H).

Me02C N OMe McO2C N OMe H2; 10% Pd/C
BocN BocN
MeOH-AcOEt 0 OBn 0 OH
(35g) (35h) To praline benzyl ester derivative (35g) (0.70 g, 1.31 mmoles) in solution in a mixture of methanol-ethyl acetate (10 mL-10 mL) is added 100 mg of 10% Pd/C.
The resulting suspension is stirred at room temperature under hydrogen atmosphere for 1 %2 h. The catalyst is then filtered on a Millex-HV Millipore (0.45 m filter unit) and the solvents are evaporated in vacuo. Quantitative yield of the desired acid 35h (0.59 g) is obtained.

'H NMR: (CDCI3) rotamers 70:30 5 8.06 (d, J = 9.5 Hz, 0.3 H), 8.01 (d, J = 9 Hz, 0.7 H), 7.56 (d, J = 2 Hz, 1 H), 7.44 (broad s, 0.7 H), 7.41 (broad s, 0.3 H), 7.24 (dd, J = 9 and 2.5 Hz, 1 H), 5.31-5.25 (m, 1 H), 4.67 (t, J = 7.5 Hz, 0.7 H), 4.55 (t, J
= 7.5 Hz, 0.3 H), 4.08 (s, 3H), 3.95 (s, 3H), 4.04-3.80 (m, 2H), 2.83-2.72 (m, 1 H), 2.71-2.47 (m, 1H), 1.46 (s, 9H).

Me02C \ OMe Meo2C N OMe TBTU
DIEA
O HCI 0 CH,CN

+ H2N
BocN OMe ~ BocN

0 OH 0 OMe H

(35h) (35i) (35j) The salt of the amine 35i (215 mg, 1.21 mmoles) in 7 mL of acetonitrile is treated with 0.95 mL of DIEA (5.45 mmoles). This solution is then added to a solution of acid 35h (590 mg, 1.32 mmoles) and TBTU (389 mg, 1.21 mmoles) in 5 mL of CH3CN the resulting solution is stirred at room temperature overnight. The solvent is removed in vacuo and the residue is diluted with ethylacetate and washed twice with a saturated solution of sodium bicarbonate once with brine and dried over MgSO4.
The solvent is removed in vacuo and the residue is purified by flash column chromatography (75:25 AcOEt-hexanes) to afford 527 mg (70% yield) of the desired dipeptide (35j).

'H NMR: (CDCI3) 5 8.01 (d, J = 9 Hz, 1 H), 7.55 (d, J = 2.5 Hz, 1 H), 7.45 (s, 1 H), 7.22 (dd, J = 9 and 2.5 Hz, 1 H), 5.81-5.71 (m, 1 H), 5.36-5.28 (m, 2H), 5.18-5.12 (m, 1 H), 4.61-4.45 (m, 1 H), 4.07 (s, 3H), 3.94 (s, 3H), 3.91-3.74 (m, 2H), 3.72 (s, 3H), 2.99-2.84 (m, 1 H), 2.49-2.34 (m, 1 H), 2.20-2.08 (m, 1 H), 1.97-1.84 (m, 1 H), 1.58-1.52 (m, 1 H), 1.44 (s, 9H).

McO2C N \ OMe H02C \ OMe O NaOH 1 M
THF: MeOH
BocN 0 BocN
O N ' OMe O OMe H N
O H
O
(35j) (35k) The diester 35j (716 mg, 1.25 mmoles) in solution in a mixture of THF:MeOH
(1.5 mL-1.5 mL) is cooled to 00 before being treated with an aqueous solution of NaOH
1 M (1.25 mL, 1.25 mmoles). After 1 h of stirring at 0 , 3 drops of glacial acetic acid are added to neutralize the NaOH. The solvents are removed in vacuo and the compound is dried on the pump for a few hours.

H02C N OMe 'N2 \ OMe O

CI/ O-"-T--~t9N, THF, 0 O O
2. CH2N2I ether BocN 0 -RT BocN
O N OMe 0 N OMe H H
O
(35k) (351) A solution of the acid 35k sodium salt (1.25 mmoles) and Et3N (0.19 mL, 1.36 mmoles) in 8 mL of THF is cooled to 0 and isobutyl chloroformate (0.18 mL, 1.39 mmoles) is added. After 40 min diazomethane (9 mL, 6.30 mmoles) is added and the resulting solution is stirred at 0 for 30 min and at room temperature for 2 h. The solvents are removed in vacuo. The residue, diluted with ethyl acetate, is washed twice with a saturated solution of NaHCO3 once with brine and dried over MgSO4, the solvent is evaporated under vacuo and the residue is purified by flash column chromatography (50:50 Hexanes/AcOEt) to afford 378 mg (52% yield) of the expected diazoketone 351.

'H NMR: (CDCl3) 6 8.00 (d, J =9 Hz, 1 H), 7.42 (s, 1 H), 7.35 (d, J = 2.5 Hz, 1 H), 7.20 (dd, J = 9 and 2.5 Hz, 1 H), 6.92 (s, 1 H), 5.81-5.71 (m, 1 H), 5.35-5.28 (m, 3H), 5.17-5.13 (m, 1 H), 4.61-4.40 (m, 1 H), 3.97 (s, 3H), 3.96-3.74 (m, 2H), 3.72 (s, 3H), 2.94-2.38 (m, 2H), 2.18-2.06 (m, 1H), 1.98-1.84 (m, 1H), 1.57-1.52 (m, 1H), 1.42 (s, 9H).
O o N,HC - OMe Br \ OMe O HBr 48%. 0 BocN BocN
O OMe oMe N O N
H H
O O
(351) (35m) To a cooled (00) solution of the diazoketone 351 (0.37 g, 0.642 mmoles) in 15 mL of THE is added 0.25 mL of HBr 48%. The resulting yellow solution is stirred at 00 for 1 h. The reaction mixture is partitioned between ethyl acetate and a saturated solution of NaHCO3. The organic phase is washed one more time with NaHCO3 and dried with NaSO4. After evaporation of the solvents in vacuo, 0.36 g (90% yield) of the a-bromoketone 35m is isolated.

)- NH
O /\-- N
Br \ OMe S \ OMe N NHZ
O H ~ O
isopropanol BoCN 75"
BocN
O N OMe O OMe H N
O H
O
(35m) (35n) The a-bromoketone 35m (170 mg, 0.271 mmoles) in 10 mL of isopropanol is treated with 1-acetyl-2-thiourea (64 mg, 0.542 mmoles). The resulting solution is heated at 75 for 1 h. The solvent is removed in vacuo. The residue is diluted with ethyl acetate and washed twice with a saturated solution of NaHCO3i once with brine and dried with MgSO4. Evaporation of the solvent in vacuo afforded 182 mg (> 100%) of crude material 35n.

~--NH /-NH
O >N O - N
s OMe S'' oMe N HC14M

dioxane RT
,.O
Booty HCI.HN

O N OMe O N OMe H H
O O
(35n) (35o) 0 >_NH
BocNH. --OH HATU 0 N
DIEA s CH,CN-CH2C12 N -;z OMe RT

O
BocNH c O OMe O N
H
(35p) 0 The dipeptide 35n (145 mg, 0.223 mmoles) is treated with 3 mL of a 4M solution of HCI in dioxane. The resulting solution is stirred at room temperature for 1 h.
The solvents are removed in vacuo and the residue is dried over the pump.

5 The salt of the amine 35o in 5 mL of CH3CN is treated with 195 L (1,12 mmoles) of DIEA. This solution is then added to the solution of the Boc-tert-butylglycine (103 mg, 0.446 mmoles) and HATU (186 mg, 0.489 mmoles) in 3 mL of CH3CN. The reaction mixture is stirred at room temperature overnight. The CH3CN is evaporated in vacuo. The residue diluted with ethyl acetate is washed twice with a saturated 10 solution of NaHCO3, once with brine and dried with MgSO4. After removal of the solvent, 274 mg of the crude tripeptide 35p is obtained (> 100%).

N~-NH
O ~,- N
S N We Me NHZ.HCt O HC 14M C13CO OCCl3 ---->
O dioxane DIFJA
O N RT CH2Ct21 0 H
O OMe (35p) O H
O
"IrH
O ~-- N

Me O ,.O
N''N N
H H
OMe O H
(35q) 0 The tripeptide 35p (56 mg, 0.0733 mmoles), in 4 mL of a 4M solution of HCI in dioxane, is stirred at room temperature for 2 h. The solvent is removed in vacuo and the residue dried over the pump.

The salt of the amine obtained is dissolved in 4 mL of CH2CI2 and treated with 0.13 mL of DIEA (0.746 mmoles) followed by 26 mg of triphosgene (0.0876 mmoles).
After 3 h incubation, 1,2,2-trimethylpropylamine (20 mg, 0.146 mmoles) is added (synthesized as described in Moss N., Gauthier J., Ferland J.M., Feb. 1995, SynLett. (2), 142-144). The ice bath is removed and the reaction mixture is stirred at room temperature overnight. The CH2CI2 is evaporated in vacuo. The residue, diluted with ethyl acetate is washed twice with a saturated solution of NaHCO3, once with brine and dried with MgSO4 to afford 60 mg (ft 100%) of the desired urea 35q.

)r NH
0 N ~NH
N; OMe / S N\ OMe Me fO '0 N IV-.
)AHRH THF:H2O Nx- `N N
O OMe McOH H H

0 H N Kr compound 333 O

A solution of methyl ester 35q (57 mg, 0.0721 mmoles) in a mixture of THF:H20 (2.5 mL:lmL) is treated with solid LiOH=H20 (25 mg, 0.595 mmoles) and 1 mL of MeOH
is added in order to clarify the solution. After stirring for 4 h at room temperature, the reaction is neutralized by addition of a 1 M solution of HCI. The solvents are removed in vacuo and the residue is purified by a preparative chromatography.
The compound dissolved in 2.5 mL of MeOH, is injected into an equilibrated Whatman Partisil 10-ODS-3 (2.2 x 50 cm) C18 reverse phase column. Purification program:
Linear Gradient at 20 mUnm, X 220 nm, inject at 10% A up to 60% A in 60 min.
A:0.06% TFA/CH3CN; 8:0.06%; TFA/H20. Fractions were analyzed by analytical HPLC. The product collected was lyophilized to provide 15 mg of compound 333 as an off white solid (27% yield).

1H NMR: (DMSO-d6) 6 8.88 (s, 0.2H), 8.84 (d, J=4.5 Hz, 0.2H), 8.68 (d, J = 8.5 Hz, 0. H), 8.56 (s, 0.8H), 8.40-8.13 (m, 1,5H), 7.96 (d, J = 9.0 Hz, 0.2H), 7.72-7.44 (m, 2.4H), 7.35-7.09 (m, 1.2H), 6.98 (d, J = 9 Hz, 0.2H), 6.15 (d, J = 9Hz, 0.2H), 6.06 (d, J = 9Hz, 0.8H), 5.93 (d, J = 9.5 Hz, 0.24H), 5.86 (d, J = 9Hz, 0.8H), 5.79-5.67 (m, 1 H), 5.69-5.44 (m, 1 H), 5.24-5.14 (m, 1 H), 5.09-5.01 (m, 1 H), 4.50-4.35 (m, 2H), 4.24 (d, J = 9.0Hz, 0.2H), 4.20 (d, J = 9.0 Hz, 0.8H), 4.06-3.98 (m, 2H), 3.95 (s, 3H), 3.77-3.60 (m, 2H), 2.58-2.50 (m, 1 H), 2.33-2.28 (m, 1 H), 2.22 (s, 2.4H), 2.21 (s, 0.6H), 2.02 (q, J - 9Hz, 1 H), 1.56-1.38 (m, 1 H), 1.28-1.22 (m, 1 H), 0.97 (s, 9H), 0.83 (d, J = 6Hz, 3H), 0.72 (s, 9H).

MS(FAB) 778.3 (m + H)+, 776.3 (M - H) Cloning, expression and purification of the recombinant HCV NS3 protease type 1 b.

Serum from an HCV-infected patient was obtained through an external collaboration (Bernard Willems MD, Hopital St-Luc, Montreal, Canada and Dr. Donald Murphy, Laboratoire de Sant6 Publique du Quebec, Ste-Anne de Bellevue, Canada). An engineered full-length cDNA template of the HCV genome was constructed from DNA fragments obtained by reverse transcription-PCR (RT-PCR) of serum RNA and using specific primers selected on the basis of homology between other genotype 1 b strains. From the determination of the entire genomic sequence, a genotype 1 b was assigned to the HCV isolate according to the classification of Simmonds et al.
(J. Clin. Microbiol., (1993), 31, p.1493-1503). The amino acid sequence of the non-structural region, NS2-NS4B, was shown to be greater than 93% identical to HCV
genotype 1 b (BK, JK and 483 isolates) and 88% identical to HCV genotype 1 a (HCV-1 isolate). A DNA fragment encoding the polyprotein precursor (NS3/NS4A/NS4B/NS5A/NS5B) was generated by PCR and introduced into eukaryotic expression vectors. After transient transfection, the polyprotein processing mediated by the HCV NS3 protease was demonstrated by the presence of the mature NS3 protein using Western blot analysis. The mature NS3 protein was not observed with expression of a polyprotein precursor containing the mutation S1 165A, which inactivates the NS3 protease, confirming the functionality of the HCV
NS3 protease.

The DNA fragment encoding the recombinant HCV NS3 protease (amino acid 1027 to 1206) was cloned in the pET11d bacterial expression vector. The NS3 protease expression in E. coli BL21(DE3)pLysS was induced by incubation with 1 mM IPTG
for 3 h at 22 C. A typical fermentation (18 L) yielded approximately 100 g of wet cell paste. The cells were resuspended in lysis buffer (3.0 mUg) consisting of 25 mM
sodium phosphate, pH 7.5, 10% glycerol (v/v), 1 mM EDTA, 0.01 % NP-40 and stored at -80 C. Cells were thawed and homogenized following the addition of 5 mM DTT. Magnesium chloride and DNase were then added to the homogenate at final concentrations of 20 mM and 20 g/mL respectively. After a 25 min incubation at 4 C, the homogenate was sonicated and centrifuged at 15000 x g for 30 min at 4 C. The pH of the supernatant was then adjusted to 6.5 using a 1 M sodium phosphate solution.

An additional gel filtration chromatography step was added to the 2 step purification procedure described in WO 95/22985. Briefly, the supernatant from the bacterial extract was loaded on a SP HiTrap column (Pharmacia) previously equilibrated at a flow rate of 2 mUmin in buffer A (50 mM
sodium phosphate, pH 6.5, 10% glycerol, 1 mM EDTA, 5 mM DTT, 0.01% NP-40).
The column was then washed with buffer A containing 0.15 M NaCl and the protease eluted by applying 10 column volumes of a linear 0.15 to 0.3 M NaCl gradient.

protease-containing fractions were pooled and diluted to a final NaCI
concentration of 0.1 M. The enzyme was further purified on a HiTrap Heparin column (Pharmacia) equilibrated in buffer B (25 mM sodium phosphate, pH 7.5, 10% glycerol, 5 mM
DTT, 0.01% NP-40). The sample was loaded at a flow rate of 3 mUmin. The column was then washed with buffer B containing 0.15 M NaCl at a flow rate of 1.5 mUmin.
Two step washes were performed in the presence of buffer B containing 0.3 or 1 M
NaCl.
The protease was recovered in the 0.3M NaCl wash, diluted 3-fold with buffer B, reapplied on the HiTrap Heparin column and eluted with buffer B containing 0.4 M
NaCl. Finally, the NS3 protease-containing fractions were applied on a Superdex 75 HiLoad 16/60 column (Pharmacia) equilibrated in buffer B containing 0.3 M
NaCl.
The purity of the HCV NS3 protease obtained from the pooled fractions was judged to be greater than 95% by SDS-PAGE followed by densitometry analysis.

The enzyme was stored at -80 C and was thawed on ice and diluted just prior to use.

Recombinant HCV NS3 protease/NS4A cofactor peptide radiometric assay.
The enzyme was cloned, expressed and prepared according to the protocol described in Example 36. The enzyme was stored at -80 C, thawed on ice and diluted just prior to use in the assay buffer containing the NS4A cofactor peptide.
The substrate used for the NS3 protease/ NS4A cofactor peptide radiometric assay, DDIVPC-SMSYTW, is cleaved between the cysteine and the serine residues by the enzyme. The sequence DDIVPC-SMSYTW corresponds to the NS5A/NS5B natural cleavage site in which the cysteine residue in P2 has been substituted for a proline.
The peptide substrate DDIVPC-SMSYTW and the tracer biotin-DDIVPC-SMS[1251-Y]TW are incubated with the recombinant NS3 protease and the NS4A peptide cofactor KKGSVVIVGRIILSGRK (molar ratio enzyme: cofactor 1:100) in the absence or presence of inhibitors. The separation of substrate from products is performed by adding avidin-coated agarose beads to the assay mixture followed by filtration. The amount of SMS[1251-Y]TW product found in the filtrate allows for the calculation of the percentage of substrate conversion and of the percentage of inhibition.

A. Reagents Tris and Tris-HCI (UltraPure) were obtained from Gibco-BRL. Glycerol (UltraPure), MES and BSA were purchased from Sigma. TCEP was obtained from Pierce, DMSO
5 from Aldrich and NaOH from Anachemia.

Assay buffer: 50 mM Tris HCI, pH 7.5, 30% (w/v) glycerol, 1 mg/mL BSA, 1 mM
TCEP (TCEP added just prior to use from a 1 M stock solution in water).

Substrate: DDIVPCSMSYTW, 25 pM final concentration (from a 2 mM stock solution in DMSO stored at -20 C to avoid oxidation).

10 Tracer: reduced mono iodinated substrate biotin DDIVPC SMS[125I YJTW (-1 nM
final concentration).

HCV NS3 protease type 1 b, 25 nM final concentration (from a stock solution in mM sodium phosphate, pH 7.5, 10% glycerol, 300 mM NaCl, 5 mM DTT, 0.01 % NP-40).

15 NS4A Cofactor peptide: KKGSVVIVGRIILSGRK, 2.5 pM final concentration (from a 2 mM stock solution in DMSO stored at -20 C).

B. Protocol The assay was performed in a 96-well polystyrene plate from Costar. Each well contained:

20 20 L substrate/tracer in assay buffer;

10 L inhibitor in 20% DMSO/assay buffer;

10 L NS3 protease 1b/NS4 cofactor peptide (molar ratio 1:100).

Blank (no inhibitor and no enzyme) and control (no inhibitor) were also prepared on the same assay plate.

25 The enzymatic reaction was initiated by the addition of the enzyme/NS4A
peptide solution and the assay mixture was incubated for 40 min at 23 C under gentle agitation. Ten (10) L of 0.5N NaOH were added and 10 L 1 M MES, pH 5.8 were added to quench the enzymatic reaction.

Twenty (20) L of avidin-coated agarose beads (purchased from Pierce) were added ii added in a Millipore MADP N65 filtration plate. The quenched assay mixture was transferred to the filtration plate, and incubated for 60 min at 23 C under gentle agitation.

The plates were filtered using a Millipore MultiScreen Vacuum Manifold Filtration apparatus, and 40 .tL of the filtrate was transferred in an opaque 96-well plate containing 60 L of scintillation fluid per well.

The filtrates were counted on a Packard TopCount instrument using a 1251-liquid protocol for 1 minute.

The % inhibition was calculated with the following equation:

100 - [(countsinh-countsblank)/(countscti-countSblank)X 100]

A non-linear curve fit with the Hill model was applied to the inhibition-concentration data, and the 50% effective concentration (IC50) was calculated by the use of SAS
software (Statistical Software System; SAS Institute, Inc. Cary, N.C.).

Full-length NS3-NS4A heterodimer protein assay The NS2-NS5B-3' non coding region was cloned by RT-PCR into the pCR 3 vector (Invitrogen) using RNA extracted from the serum of an HCV genotype 1 b infected individual (provided by Dr. Bernard Willems, H6pital St-Luc, Montreal, Quebec, Canada). The NS3-NS4A DNA region was then subcloned by PCR into the pFastBacTM HTa baculovirus expression vector (Gibco/BRL). The vector sequence includes a region encoding a 28-residue N-terminal sequence which contains a hexahistidine tag. The Bac-to-BaCTM baculovirus expression system (Gibco/BRL) was used to produce the recombinant baculovirus. The full length mature NS3 and NS4A heterodimer protein (His-NS3-NS4AFL) was expressed by infecting 106 Sf21 cells/mL with the recombinant baculovirus at a multiplicity of infection of 0.1-0.2 at 27 C. The infected culture was harvested 48 to 64 h later by centrifugation at 4 C.
The cell pellet was homogenized in 50mM NaPO4, pH 7.5, 40% glycerol (w/v), 2mM
3-mercaptoethanol, in presence of a cocktail of protease inhibitors. His-NS3-NS4AFL was then extracted from the cell lysate with 1.5% NP-40, 0.5% Triton X-100, 0.5M NaCl, and a DNase treatment. After ultracentrifugation, the soluble extract was diluted 4-fold and bound on a Pharmacia Hi-Trap Ni-chelating column.
The His-NS3-NS4AFL was eluted in a >90% pure form (as judged by SDS-PAGE), using a 50 to 400 mM imidazole gradient. The His-NS3-NS4AFL was stored at -80 C in 50 mM sodium phosphate, pH 7.5, 10% (w/v) glycerol, 0.5 M NaCl, 0.25 M imidazole, 0.1% NP-40. It was thawed on ice and diluted just prior to use.

The protease activity of His-NS3-NS4AFL was assayed in 50 mM Tris-HCI, pH 8.0, 0.25 M sodium citrate, 0.01% (w/v) n-dodecyl-R-D-maltoside, 1 mM TCEP. Five (5) pM of the internally quenched substrate anthranilyl-DDIVPAbu[C(O)-O)-AMY(3-N02)TW-OH in presence of various concentrations of inhibitor were incubated with 1.5 nM of His-NS3-NS4AFL for 45 min at 23 C. The final DMSO concentration did not exceed 5.25%. The reaction was terminated with the addition of 1 M MES, pH
5.8. Fluorescence of the N-terminal product was monitored on a Perkin-Elmer LS-50B fluorometer equipped with a 96-well plate reader (excitation wavelength:

nm; emission wavelength: 423 nm).

The % inhibition was calculated with the following equation:

100 - [(counts;flh-countsb,ask)/(counts n-countsb,ank)x 1001 A non-linear curve fit with the Hill model was applied to the inhibition-concentration data, and the 50% effective concentration (IC50) was calculated by the use of SAS
software (Statistical Software System; SAS Institute, Inc. Cary, N.C.).

NS3 Protease Cell-based assay This assay was done with Huh-7 cells, a human cell line derived from a hepatoma, co-transfected with 2 DNA constructs:

- one expressing a polyprotein comprising the HCV non-structural proteins fused to tTA in the following order: NS3-NS4A-NS4B-NS5A-tTA (called NS3);

- the other expressing the reporter protein, secreted alkaline phosphatase, under the control of tTA (called SEAP).

The polyprotein must be cleaved by the NS3 protease for the mature proteins to be released. Upon release of the mature proteins, it is believed that the viral proteins will form a complex at the membrane of the endoplasmic reticulum while tTA
will migrate to the nucleus and transactivate the SEAP gene. Therefore, reduction of NS3 proteolytic activity should lead to reduction of mature tTA levels and concomitant decrease in SEAP activity.

To control for other effects of the compounds, a parallel transfection was done where a construct expressing tTA alone (called tTA) was co-transfected with the SEAP construct such that SEAP activity is independent of NS3 proteolytic activity.

Protocol of the assay: Huh-7 cells, grown in CHO-SFMII + 10% FCS (fetal calf serum), were co-transfected with either NS3 and SEAP or tTA and SEAP, using the FuGene protocol (Boehringer Mannheim). After 5 h at 370, the cells were washed, trypsinized and plated (at 80 000 cells/well) in 96-well plates containing a range of concentrations of the compounds to be tested. After a 24-h incubation period, an aliquot of the medium was drawn and the SEAP activity in this aliquot was measured with the Phospha-Light kit (Tropix).

Analysis of the percent inhibition of SEAP activity with respect to compound concentration was performed with the SAS software to obtain the EC56.

The toxicity of the compound (TC50) was then assessed using the MTT assay as follows:
L of a MTT solution (5mg/ml medium) was added per well and incubated at 37 for 4 hrs;
the medium was removed and 50 l of 0.01 N HCI + 10% Triton X-1 00 was added;
after shaking at RT for at least 1 hr, the OD of each well was read at 595 nm 20 wavelength.
The TC50 was calculated in the same way as the EC50.

Specificity assays The specificity of the compounds was determined against a variety of serine proteases: human leukocyte elastase, porcine pancreatic elastase and bovine pancreatic a-chymotrypsin and one cysteine protease: human liver cathepsin B.
In all cases a 96-well plate format protocol using a colorimetric p-nitroaniline (pNA) substrate specific for each enzyme was used. Each assay included a 1 h enzyme-inhibitor pre-incubation at 30 C followed by addition of substrate and hydrolysis to .-30% conversion as measured on a UV Thermomax microplate reader. Substrate concentrations were kept as low as possible compared to K,,,, to reduce substrate competition. Compound concentrations varied from 300 to 0.06 p.M depending on their potency.
The final conditions for each assay were as follows:

= 50mM Tris-HCI pH 8, 0.5 M Na2SO4, 50 mM NaCl, 0.1 mM EDTA, 3% DMSO, 0.01 % Tween -20 with;

= [100 M Succ-AAPF-pNA and 250 pM a-chymotrypsin], (133 M Succ-AAA-pNA
and 8 nM porcine elastase], [133 M Succ-AAV-pNA and 8 nM leukocyte elastase]; or = [100 mM NaHPO4 pH 6, 0.1 mM EDTA, 3% DMSO, 1mM TCEP, 0.01%
Tween -20, 30 M Z-FR-pNA and 5 nM cathepsin B (the stock enzyme was activated in buffer containing 20 mM TCEP before use)].

A representative example is summarized below for porcine pancreatic elastase:
In a polystyrene flat-bottom 96-well plate were added using a Biomek liquid handler (Beckman):

= 40 L of assay buffer (50 mM Tris-HCI pH 8, 50 mM NaCl, 0.1 mM EDTA);

= 20 L of enzyme solution (50 mM Tris-HCI pH 8, 50 mM NaCl, 0.1 mM EDTA, 0.02% Tween -20, 40 nM porcine pancreatic elastase); and = 20 L of inhibitor solution (50 mM Tris-HCI, pH 8, 50 mM NaCl, 0.1 mM EDTA, 0.02% Tween -20, 1.5 mM-0.3 M inhibitor, 15% v/v DMSO).

After 60 min pre-incubation at 30 C, 20 L of substrate solution (50 mM Tris-HCI, pH 8, 0.5 M Na2SO4, 50 mM NaCl, 0.1 mM EDTA, 665 M Succ-AAA-pNA) were added to each well and the reaction was further incubated at 30 C for 60 min after which time the absorbance was read on the UV Thermomax plate reader. Rows of wells were allocated for controls (no inhibitor) and for blanks (no inhibitor and no enzyme).

The sequential 2-fold dilutions of the inhibitor solution were performed on a separate plate by the liquid handler using 50 mM Tris-HCI pH 8, 50 mM NaCI, 0.1 mM
EDTA, 0.02% Tween -20, 15% DMSO. All other specificity assays were performed in a similar fashion.

The percentage of inhibition was calculated using the formula:

[1-((UVinh-UVblank)/(UVctl-UVblank))J X 100 A non-linear curve fit with the Hill model was applied to the inhibition-concentration data, and the 50% effective concentration (IC5o) was calculated by the use of SAS
software (Statistical Software System; SAS Institute, Inc., Cary, N.C.).

TABLES OF COMPOUNDS

The following tables list compounds representative of the invention. Compounds of the invention were assayed either in one or both of the assays of Examples 37 and 38 and were found to be active with IC5o below 50 M (A); below 5 M (B) or below 0.5 M (C).

Activity in cells and specificity:
Representative compounds of the invention were also tested in the surrogate cell-based assay of Example 39, and in one or several assays of Example 40. For example, compound 601 from Table 6 was found to have an IC50 of 50 nM in the assay of Example 37 and 30nM in the assay of Example 38. The EC50 as determined by the assay of Example 39 is 8.2 M. In the specificity assays of Example 40, the same compound was found to have the following activity: HLE >751.IM; PPE >75 M;
a-Chym. >75 M; Cat. B >75 M. These results indicate that this family of compounds is highly specific for the NS3 protease and at least certain members of this family are active in a surrogate cell-based assay.

The following abbreviations are used within the present tables:

MS: Mass spectrometric data; Ac: acetyl; Bn: benzyl; Boc: tent-butyloxycarbonyl;
cHex: cyclohexyl; Chg: cyclohexylglycine (2-amino-2-cyclohexyl-acetic acid);
iPr:
isopropyl; O-Bn: benzyloxy; Ph: phenyl: t-Bu: tert-butyl; Tbg: tert-butylglycine; 1- or 2-Np: 1- or 2-naphthyl; 1- or 2-NpCH2O: 1, or 2-naphthylmethoxy.

B "N N 7--r- OH

Tab 1 B R3 R2 MS activity Cpd# range 101 Boc cHex -O-CH2-1-naphthyl 594 A
102 0 cHex -O-CH2-1-naphthyl 632 A

.....
103 cHex -O-CH2-1-naphthyl 642 A

104 cHex -O-CH2-1-naphthyl 728 A
105 cHex -O-CH2-1-naphthyl 619 A
&H

O
106 Boc cHex 702 B
N

NOz 107 0 cHex -O-CH2-1-naphthyl 720 A
CI 0-1, M+Na+
Cl Cl O
108 Boc Pr 662 A
N

I~0 ..... _.. ..
Tab 1 g R3 R2 MS activity C d# .._ _..... ___ _. .._ _ range P
109 acetyl cHex 644 A
N
O
NOZ
.1-O
.........
110 Boc i-Pr ;N) CCI 575.1 A
1.11 Boc t-Bu 661.3 C
0~oo B=N N N OH
H H
O O O

Table 2 B R3 R2 R1 MS Activity Cpd # anti to range i...... carboxy 201 Boc cyclohexyl -O-CH2 1 -naphthyl ethyl 622 A
(one isomer) 202..... _q._.... _ _ . ... ...___...
Boc cyclohexyl -O-CH2-1-naphthyl ethyl (other isomer) 203 Boc t-Bu O vinyl 687.5 C
N o 1R, 2R
O

C

R
Ra ':Iy OH
B,N N N R
V
H Y
H O O O

Table 3 B R3 R2 R, MS Activ.
Cpd # syn to Range carboxyl 301 Boc cHex -O-CH2-1-naphthyl ethyl 622 A
302 j Pr -O-CH2-1-naphthyl ethyl 582 A
303 cHex O-CH2-1-naphthyl ethyl 622 A
..... .... _ . ..
304 Boc cHex O O ethyl N
OCHZ

305 Boc cHex -O-CH2-1-naphthyl vinyl 620 B
........
..
306 130C cHex O vinyl 607 B
307 Boc cHex vinyl 728 C
N

NOZ

. ........
308 Boc cHex O O vinyl 606 B
.........
309 Boc cHex vinyl 606 B
.r ......... ........ ..... ._ 310 Boc cHex N O O vinyl 607 B

........
Table 3 B R3 R2 R, MS Activ.
Cpd # synto Range carboxyl ................
311 Boc cHex O vin l 641 ''B
Y
.. ..
312 Boc cHex O ~ vinyl 607 A
313 Boc cHex O vinyl 621 B
.._..... ..... _.._ ..
314 Boc cHex vinYl 683 C
' 315 Boc cHex vinyl 698 B

NH, 316 Acetyl cHex vinyl 625 B
317 Boc cHex vinyl 740 C
N O
N
H
318 CF3-C(O)- i-Pr vinyl 639 3 B
N

Table 3 B Cpd # R3 R2 R~ MS Acty.
syn to Range ..... ..... ._ carboxyl 319 o j\ cHex vinyl 732.3 C
N~

cHex vinyl 704.3 B_..
HO

N~
O
321 Boc t-Bu L
vinyl 658.7..... C
/ N
-N

. .
322 Boc t-Bu cF
vinyl 717.6 B

i I \
323 Boc t--Bu 672.4... B
N
N~
324 Boc t-Bu of h vinyl 727.5 C
NN O
N~

.. ................. .
325 Boc t-Bu 701.4 C
_ OMe 326 Boc t-Bu 11 Nn vinyl 708.3 C
~/NyN O
N
O
r Table 3 B R3 R2 R, MS Activ.
Cpd # syn to Range carboxyl 327 t-Bu " jOMe vinyl 610.3 C
N aOMe H

328 Boc t-Bu I cl vinyl 615.3 B
/
O N

329 Boc t-Bu vinyl 685.3 C
I N
N i I N
0\
330 Boc t-Bu 0 vinyl 627.5 A
\ N~

331 0 t-Bu vinyl 656.5 C
N
H

332 Boc t-Bu ethyl 689.3 C
N OMe i I \

333 NJ t-Bu vinyl 778.3 C
H H
N
S N OMe a-0 Table 3 B R3 R2 R, MS Activ.
Cpd # syn to Range carboxyl 334 li t-Bu vinyl 764.4 C
H

~--N
S N OMe i I \

H O
B'N N rN OH

Table 4 B R3 R2 R, MS activ.
Cpd#._.__ ran e ....
401 Boc -Pr ci O N H 589.1 A
402 Boc t-Bu O H 603.6 A
403 Boc t-Bu H 675.4 C
N OMe \ I /

3-(=CH2) 687.1 B
404 Boc t -Bu Q~0Me I /

405 Boc t-Bu a', 2-vinyl 702.3C
_N OMe 406 Boc t-Bu 2-Et 703.3 .11 . ..... C -.-OMe \ Nome f0 N

H O O O
..... .............
Table 5 R3 MS Activity .. _ Cpd # _..._ ..... range 501 t-Bu 581.3 C
.... ........ __ 502 H 539.2 A
503 625.3 B
504 582.6 B
505 583.2 B
O

506 659.2 B
o,,r 507 O 670.2 B
N
S
508 703.3 B
8t Table 5 R3 MS Activity Cpd # range 509 581.3 C
...... .. ......_ 510 581.2 C
.......
511 637.2 B
OH

O

N AN OH
_zz O O
. ............
R -Table6 21B.-a R21A R MS Actfvfty Cpd # range 601 i-Pr... Ph 7-OMe 673.3 C
.
602 t-Bu Ph 8-OMe, 717.2 C
7-OMe 603 i-Pr Ph 7-7-ethyl 671.2 C
604 t-Bu ....
-- 7-OMe 611.2 C
C.......
605 t-Bu Ph 7-0-PPr 715.3 606 t-Bu - 7-CI 615.2 C
..........
607 rPr._..._ -- 7-CI 601.2 C
608 CH2-,Pr -- 7-CI 615.3 B
........... .
..................
609 t-Bu l -- 680.2 B
o N

610 t-Bu Cl -- 613.3 C
611 t-Bu Ph 7-N(Me)2 700.5 C
612 t -Bu o -- 666.4 C
613 t-Bu -- 650.4 B
614 t-Bu -- 664.5 B ...
ON
..........
615 t-Bu 7-N(Me)2 624.5 C

Table 6 R3 R21A R21B MS Activity Cpd # range 616 t-Bu H2N_ f N / -- 678.4 C
SY (M-H)-617 t-Bu ^ -- 664.5 C
N--618 t-Bu Me -- 638.5 B
Me-N,1' 619 t-Bu Ph -- 700.5 B
Me-N,,1/

620 t-Bu Me ~, N^ -- 679.5 C
621 t-Bu MeNN -- 678.3 C
\si 622 t-Bu Me/"o/-, 625.4 C
623 t-Bu MeO- -- 611.3 C
624 t-Bu (Me)2N- -- 624.4 B
625 t-Bu Ph 7-S(Me) 703.4 C
626 t-Bu Ph 7-Br 737.3 C
627 t-Bu Ph 7-F 675.3 C
628 t-Bu 0 7-N(Me)2 764.2 C
HN---~
S
629 t-Bu 7-N(Me)2 764.3 C
HN

/~-, N
S"
630 t-Bu 7-N(Et)2 792.3 C
HN
N
S /I

R21A N\ 0 H O O

Table 7 R3 R21A MS Activity Cpd # range...
701 t-Bu Me, N~ 691.3 C
N
702 t-Bu Ph--~~ 713.4 C
703 t-Bu 655.3 C
704 t-Bu 728.4 C
(:PN

705 t-Bu O 696.4 C
706 t-Bu s 693.3 C
707 t-Bu S 694.3 C
N
708 t--Bu Ph-N(Me)- 716.4 C
709 t-Bu HZNN f 709.2 C
S
710 t-Bu HOOC- 655.3 B
711 t-Bu Me~N 708.2 C
S
712 t-Bu (Me)2N- 654.3 C

Table 7 R3 R21A MS Activity Cpd.# .range 713 t-Bu /692.3 C
S:]
`S (M-H)"
714 t-Bu EtN 722.3 C
.......... _ 715 t-Bu N 688.3 C
716 t-Bu 688.3 C
717 t-Bu me 723.3 C
HNN

S-' 718 t -Bu NH2 626.3 C
719 t-Bu H~N / 751.2 C
lO S

720 t-Bu 733.4 C
N

721 t-Bu 724.1 C
722 t-Bu 737.3 C
HNN

723 t-Bu 751.4 C
HN-S /
724 t-Bu 708.4 C

Table 7 R3 R21A MS Activity Cpd # range 727 t-Bu N~ 688.3 C
728 t-Bu O\ ,0 786.1 C
N

s 729 t-Bu "~N 689.3 C
N

730 t-Bu 669.2 C
0-1.
731 t-Bu 669.2 C
732 t-Bu 791.0 C
~--N

N
s~
S~

733 t-Bu 765.3 C
HN-N
S
734 t-Bu i~ 671.3 C
S~
735 t-Bu 683.3 C
736 t-Bu t-Bu 667.4 C
737 t-Bu CHex 693.4 C

=

OMe O

B,N N H
H O O O

Table 8 B R3 R22 MS activity Clad # range 801 Ji t-Bu -- 686.7 C
H

802 t-Bu -- 727.7 C
HOjI-_I

803 Jj t-Bu -- 685.7 C
804 1 0 t-Bu -- 711.7 C
805 Ac t-Bu -- 629.6 C
806 1 0 t-Bu -- 725.7 C
807 t-Bu -- 672.4 C
H

808 II0 t-Bu -- 712.4 C
Q
N
H

Table 8 B R3 R22 MS activity Cpd # range 809 i-Pr -- 649.3 C
810 t-Bu -- 749.3 C
Y10--ir 811 Boc t-Bu 4-CI 721.3 C
812 NNI t-Bu -- 706.2 C
H
813 t-Bu -- 702.2 C
N
H
814 Boc t-Bu 2-CI 721.3 C
815 Boc t-Bu 3-CI 721.3 C
816 t-Bu -- 658.3 C
N
H
817 t-Bu -- 720.2 C

cr 818 Q t-Bu -- 728.3 C

H
819 2" I i-Pr -- 762.3 C

820 H2N / i-Pr -- 732.2 C

CF
821 nne i-Pr -- 679.1 C
822 Me-, I i-Pr -- 663.3 C
823 Boc t-Bu 2-OMe 717.2 C
824 Boc t-Bu 3-OMe 719.2 C
825 Boc t-Bu 4-OMe 719.2 C

i I

Table 8 B R3 R22 MS activity Cpd # range 826 i-Pr -- 663.3 B
827 Me 0 t-Bu -- 673.2 C
Me' NN>
H
828 i-Pr -- 691.3 C
Me O
829 Mei t-Bu -- 734.3 C
N
H
Me 830 t-Bu -- 645.3 C
,-~o 831 Me t-Bu -- 701.3 C
HZN
O H

832 Me t-Bu -- 801.3 C
HZN
)r- ' O H

833 H NM Me Me t-Bu -- 715.2 C

N
O H

834 i-Pr -- 663.3 C
Me 835 Me Me 0 t-Bu -- 702.5 C
HOB K
N
H
836 oz" i-Pr -- 694.4 C

837 i-Pr -- 683.3 C
838 i-Pr -- 679.1 C
Ho ~

Table 8 B R3 R22 MS activity Cpd # range 839 Nc i-Pr -- 674.5 C
840 F i-Pr -- 667.4 C
841 Boc t-Bu 2-Me 701.5 C
842 Boc t-Bu 3-Me 701.5 C
843 Boc t-Bu 4-Me 701.5 C
844 i t-Bu 4-OMe 716.6 C
N
H
845 N i-Pr -- 706.9 C
o 846 < i-Pr -- 693.4 C
o 847 Boc cHex -- 713.4 C
848 Boc -- 687.5 C
849 Boc -- 701.5 C
850 Boc -- 731.5 C
of 851 Boc -- 689.5 C
u T"

852 Boc I -- 689.5 C
o Table 8 B R3 R22 MS activity Cpd # range 853 Boc -- 765.5 C
oT

854 / \ - i-Pr -- 723.4 C
(M-H )+
855 HO I i-Pr -- 693.3 C
856 NC / i-Pr -- 688.3 C
857 Meo~ li t-Bu -- 716.4 C
H
858 ~ t-Bu -- 700.4 C
N
I
Me 859 i-Pr -- 655.4 B

860 F\ I \ I i-Pr -- 759.3 C

861 i-Pr -- 688.3 C
NC I /

862 F i-Pr -- 685.3 C
I~
F /~
863 i-Pr -- 699.4 C
864 i-Pr -- 667.3 C
865 -1 t-Bu -- 701.4 C

Table 8 B R3 R22 MS activity Cpd # range 866 J t-Bu -- 702.4 C
HZN
~O

867 O t-Bu -- 701.3 C 0, 868 ~ t-Bu 713.3 C

869 i t-Bu -- 699.4 C
o) 870 ~-t-Bu -- 700.4 C
N
H

871 ff-t-Bu -- 714.3 C
N
H
872 t-Bu -- 714.4 C
N
H

873 t-Bu -- 714.3 C
H

\ I N\ \ OMe O

OH
B,N N H
H O O O

Table 9 B MS Activity Cpd # range 901 Boc 685.3 C
902 825.4 C
o C

903 0 769.3 C
HO

O

904 0 707.3 C
HO ~

905 i 685.2 C
Oil 906 0 728.2 C
JfN
H

C1 0 717.2 C

Table 9 B MS Activity Cpd # range 908 0 691.2 C
909 0\\ 0 727.2 C
S

910 ~ 715.3 C

911 721.3 C
HO "[(~

912 0 ,0 733.2 C
COr 913 C`r---S IC 713.3 C
N
H

~ 805.3 C
914 0\ S

\
~-S
O
N
H
915 f--g 692.2 C

N
916 680.3 C
N
H

WO 00/09543 PCT/CA"/00736 Box O N O H
O
Table 10 B-X- R3 Z R21B MS activity Cpd #_ range .
1001 Ph-N(Me)- i-Pr 0 H 663.3 C
1002 Boc-NH- t-Bu S OMe 703.4 C
1003 I) i-Pr 0 --- 663.3 C
Me .... _ __...... ...

Claims (99)

WHAT IS CLAIMED IS:
1. A compound of formula (I) and a racemate, diastereoisomer or optical isomer thereof:

wherein B is H, a C6 or C10 aryl, C7-16 aralkyl; Het or (lower alkyl)-Het, all of which optionally substituted with C1-6 alkyl; C1-6 alkoxy; C1-6 alkanoyl; hydroxy;
hydroxyalkyl; halo; haloalkyl; nitro; cyano; cyanoalkyl; amino optionally substituted with C1-6 alkyl; amido; or (lower alkyl)amide;

or B is an acyl derivative of formula R4-C(O)-; a carboxyl of formula R4-O-C(O)-; an amide of formula R4-N(R5)-C(O)-; a thioamide of formula R4-N(R5)-C(S)-;or a sulfonyl of formula R4-SO2 wherein R4 is (i) C1-10 alkyl optionally substituted with carboxyl, C1-6 alkanoyl, hydroxy, C1-6 alkoxy, amino optionally mono- or di-substituted with C1-6 alkyl, amido, or (lower alkyl) amide; provided that when B is R4-C(O)-, R4 is not C1-10 alkyl substituted with (lower alkyl) amide or amino optionally mono- or di-substituted with C1-6 alkyl;
(ii) C3-7 cycloalkyl, C3-7 cycloalkoxy, or C4-10 alkylcycloalkyl, all optionally substituted with hydroxy, carboxyl, (C1-6 alkoxy)carbonyl, amino optionally mono- or di-substituted with C1-6 alkyl, amido, or (lower alkyl) amide;
provided that when B is R4-C(O)-, R4 is not C4-10 alkylcycloalkyl substituted with (lower alkyl) amide or amino optionally mono- or di-substituted with C1-6 alkyl;
(iii) amino optionally mono- or di-substituted with C1-6 alkyl; amido; or (lower alkyl)amide;
(iv) C6 or C10 aryl or C7-16 aralkyl, all optionally substituted with C1-6 alkyl, hydroxy, amido, (lower alkyl)amide, or amino optionally mono- or di-substituted with C1-6 alkyl; or (v) Het or (lower alkyl)-Het, both optionally substituted with C1-6 alkyl, hydroxy, amido, (lower alkyl) amide, or amino optionally mono- or di-substituted with C1-6 alkyl;

R5 is H or C1-6 alkyl;

with the proviso that when B is an amide or a thioamide, R4 is not (ii) a cycloalkoxy;
Y is H or C1-6 alkyl;

R3 is C1-6 alkyl, C3-7 cycloalkyl, or C4-10 alkylcycloalkyl, all optionally substituted with hydroxy, C1-6 alkoxy, C1-6 thioalkyl, amido, (lower alkyl)amido, C6 or C10 aryl, or C7-16 aralkyl;

R2 is CH2-R20, NH-R20, O-R20 or S-R20, wherein R20 is a saturated or unsaturated C3-7 cycloalkyl or C4-10 (alkylcycloalkyl), all of which being optionally mono-, di-or tri-substituted with R21, or R20 is a C6 or C10 aryl or C7-16 aralkyl, all optionally mono-, di- or tri-substituted with R21, or R20 is Het or (lower alkyl)-Het, both optionally mono-, di- or tri-substituted with R21, wherein each R21 is independently C1-6 alkyl; C1-6 alkoxy; lower thioalkyl;
sulfonyl; NO2; OH; SH; halo; haloalkyl; amino optionally mono- or di-substituted with C1-6 alkyl, C6 or C10 aryl, C7-16 aralkyl, Het or (lower alkyl)-Het; amido optionally mono-substituted with C1-6 alkyl, C6 or C10 aryl, C7-16 aralkyl, Het or (lower alkyl)-Het;
carboxyl; carboxy(lower alkyl); C6 or C10 aryl, C7-14 aralkyl or Het, said aryl, aralkyl or Het being optionally substituted with R22; wherein R22 is C1-6 alkyl; C3-7 cycloalkyl; C1-6 alkoxy; amino optionally mono- or di-substituted with C1-6 alkyl; sulfonyl;
(lower alkyl)sulfonyl; NO2; OH; SH; halo; haloalkyl; carboxyl; amide; (lower alkyl)amide; or Het optionally substituted with C1-6 alkyl;
R1 is H; C1-6 alkyl, C3-7 cycloalkyl, C2-6 alkenyl, or C2-6 alkynyl, all optionally substituted with halogen;
wherein said Het is a five-, six-, or seven-membered saturated or unsaturated, aromatic or non-aromatic heterocycle containing from one to four heteroatoms selected from: nitrogen, oxygen and sulfur, said heterocycle being optionally fused to one or more carbocycle or heterocycle, or a pharmaceutically acceptable salt or ester thereof.
2. A compound of formula I according to claim 1, or a pharmaceutically acceptable salt thereof, wherein B is a C6 or C10 aryl or C7-16 aralkyl, all optionally substituted with C1-6 alkyl, C1-6 alkoxy, C1-6 alkanoyl, hydroxy, hydroxyalkyl, halo, haloalkyl, nitro, cyano,cyanoalkyl, amido, (lower alkyl)amido, or amino optionally substituted with C1-6 alkyl; or B is Het or (lower alkyl)-Het, all optionally substituted with C1-6 alkyl, C1-6 alkoxy, C1-6 alkanoyl, hydroxy, hydroxyalkyl, halo, haloalkyl, nitro, cyano, cyanoalkyl, amido, (lower alkyl)amido, or amino optionally substituted with C1-6 alkyl.
3. A compound of formula I according to claim 1, or a pharmaceutically acceptable salt thereof, wherein B is R4-S02 wherein R4 is C1-6 alkyl; amido; (lower alkyl)amide; C6 or C10 aryl, C7-14 aralkyl or Het, all optionally substituted with C1-6 alkyl.
4. A compound of formula I according to claim 1, or a pharmaceutically acceptable salt thereof, wherein B is an acyl derivative of formula R4-C(O)- wherein R4 is (i) C1-10 alkyl optionally substituted with carboxyl, hydroxy or C1-6 alkoxy, amido, (lower alkyl)amide, or amino optionally mono- or di-substituted with C1-6 alkyl; provided that when B is R4-C(O)-, R4 is not C1-10 alkyl substituted with (lower alkyl) amide or amino optionally mono- or di-substituted with C1-6 alkyl;
(ii) C3-7 cycloalkyl or C4-10 alkylcycloalkyl, both optionally substituted with hydroxy, carboxyl, (C1-6 alkoxy)carbonyl, amido, (lower alkyl)amide, or amino optionally mono- or di-substituted with C1-6 alkyl; provided that when B is R4-C(O)-, R4 is not C4-10 alkylcycloalkyl substituted with (lower alkyl) amide or amino optionally mono- or di-substituted with C1-6 alkyl;
(iv) C6 or C10 aryl or C7-16 aralkyl, all optionally substituted with C1-6 alkyl, hydroxy, amido, (lower alkyl)amide, or amino optionally substituted with CI-6 alkyl;
(v) Het or (lower alkyl)-Het, both optionally substituted with CI-6 alkyl, hydroxy, amido, (lower alkyl)amide or amino optionally substituted with C1-6 alkyl.
5. A compound of formula I according to claim 1, or a pharmaceutically acceptable salt thereof, wherein B is a carboxyl of formula R4-O-C(O)-, wherein R4 is (i) C1-10 alkyl optionally substituted with carboxyl, C1-6 alkanoyl, hydroxy, alkoxy, amino optionally mono- or di-substituted with C1-6 alkyl, amido or (lower alkyl)amide;
(ii) C3-7 cycloalkyl, C4-10 alkylcycloalkyl, all optionally substituted with carboxyl, (C1-6 alkoxy)carbonyl, amino optionally mono- or di-substituted with C1-6 alkyl, amido or (lower alkyl)amide;
(iv) C6 or C10 aryl or C7-16 aralkyl, all optionally substituted with C1-6 alkyl, hydroxy, amido, (lower alkyl)amido, or amino optionally mono- or di-substituted with C1-6 alkyl; or (v) Het or (lower alkyl)-Het, both optionally substituted with C1-6 alkyl, hydroxy, amino optionally mono- or di-substituted with C1-6 alkyl, amido or (lower alkyl)amido.
6. A compound of formula I according to claim 1, or a pharmaceutically acceptable salt thereof, wherein B is an amide of formula R4-N(R5)-C(O)- wherein R4 is(i) C1-10 alkyl optionally substituted with carboxyl, C1-6 alkanoyl, hydroxy, C1-6 alkoxy, amido, (lower alkyl)amido, or amino optionally mono- or di-substituted with C1-6 alkyl;
(ii) C3-7 cycloalkyl or C4-10 alkylcycloalkyl, all optionally substituted with carboxyl, (C1-6 alkoxy)carbonyl, amido, (lower alkyl)amido, or amino optionally mono- or di-substituted with C1-6 alkyl;
(iii) amino optionally mono- or di-substituted with C1-3 alkyl;
(iv) C6 or C10 aryl or C7-16 aralkyl, all optionally substituted with C1-6 alkyl, hydroxy, amido, (lower alkyl)amide, or amino optionally substituted with C1-6 alkyl; or (v) Het or (lower alkyl)-Het, both optionally substituted with C1-6 alkyl, hydroxy, amino optionally substituted with C1-6 alkyl, amido or (lower alkyl)amide; and R5 is H or methyl.
7. A compound of formula I according to claim 1, or a pharmaceutically acceptable salt thereof, wherein B is a thioamide of formula R4-NH-C(S)-; wherein R4 is (i) C1-10 alkyl optionally substituted with carboxyl, C1-6 alkanoyl or C1-6 alkoxy;
(ii) C3-7 cycloalkyl or C4-10 alkylcycloalkyl, all optionally substituted with carboxyl, (C1-6 alkoxy)carbonyl, amino or amido.
8. A compound of formula I according to claim 2, or a pharmaceutically acceptable salt thereof, wherein B is a C6 or C10 aryl optionally substituted with C1-6 alkyl, alkoxy, C1-6 alkanoyl, hydroxy, hydroxyalkyl, halo, haloalkyl, nitro, cyano, cyanoalkyl, amido, (lower alkyl)amide, or amino optionally mono- or di-substituted with C1-alkyl.
9. A compound of formula I according to claim 2, or a pharmaceutically acceptable salt thereof, wherein B is Het optionally substituted with C1-6 alkyl, C1-6 alkoxy, alkanoyl, hydroxy, halo, amido, (lower alkyl)amide, or amino optionally mono-or di-substituted with C1-6 alkyl.
10. A compound of formula I according to claim 4, or a pharmaceutically acceptable salt thereof, wherein B is an acyl derivative of formula R4-C(O)- wherein R4 is (i) C1-10 alkyl optionally substituted with carboxyl, hydroxy or C1-6 alkoxy;
or (ii) C3-7 cycloalkyl or C4-10 alkylcycloalkyl, both optionally substituted with hydroxy, carboxyl, (C1-6 alkoxy)carbonyl, or (iv) C6 or C10 aryl or C7-16 aralkyl, all optionally substituted with C1-6 alkyl, hydroxy, or (v) Het optionally substituted with C1-6 alkyl, hydroxy, amido or amino.
11. A compound of formula I according to claim 5, or a pharmaceutically acceptable salt thereof, wherein B is a carboxyl of formula R4-O-C(O)-, wherein R4 is (i) C1-10 alkyl optionally substituted with carboxyl, C1-6 alkanoyl, hydroxy, alkoxy or amido, (lower alkyl)amide, amino optionally mono- or di-substituted with C1-6 alkyl;
(ii) C3-7 cycloalkyl, C4-10 alkylcycloalkyl, all optionally substituted with carboxyl, (C1-6 alkoxy)carbonyl, amido, (lower alkyl)amide, amino optionally mono- or di-substituted with C1-6 alkyl, or (iv) C6 or C10 aryl or C7-16 aralkyl, all optionally substituted with C1-6 alkyl, hydroxy, amino optionally substituted with C1-6 alkyl; or (v) Het or (lower alkyl)-Het, both optionally substituted with C1-6 alkyl, hydroxy, amido, or amino optionally mono-substituted with C1-6 alkyl.
12. A compound of formula I according to claim 6, or a pharmaceutically acceptable salt thereof, wherein B is an amide of formula R4-N(R5)-C(O)- wherein R4 is (i) C1-10 alkyl optionally substituted with carboxyl, C1-6 alkanoyl, hydroxy, alkoxy, amido, (lower alkyl)amide, amino optionally mono- or di-substituted with C1-6 alkyl;
(ii) C3-7 cycloalkyl or C4-10 alkylcycloalkyl, all optionally substituted with carboxyl, (Cl-6 alkoxy)carbonyl, amido, (lower alkyl)amide, amino optionally mono- or di-substituted with C1-6 alkyl;
(iii) amino optionally mono- or di-substituted with C1-3 alkyl, or (iv) C6 or C10 aryl or C7-16 aralkyl, all optionally substituted with C1-6 alkyl, hydroxy, amino or amido optionally substituted with C1-6 alkyl; or (v) Het optionally substituted with C1-6 alkyl, hydroxy, amino or amido, and R5 is H.
13. A compound of formula I according to claim 7, or a pharmaceutically acceptable salt thereof, wherein B is a thioamide of formula R4-NH-C(S)-; wherein R4 is (i) C1-alkyl; or (ii) C3-7 cycloalkyl.
14. A compound of formula I according to claim 12, or a pharmaceutically acceptable salt thereof, wherein B is an amide of formula R4-NH-C(O)- wherein R4 is (i) C1-10 alkyl optionally substituted with carboxyl, C1-6 alkanoyl, hydroxy, alkoxy amido, (lower alkyl)amide, amino optionally mono- or di-substituted with C1-6 alkyl;
(ii) C3-7 cycloalkyl or C4-10 alkylcycloalkyl, all optionally substituted with carboxyl, (Cl-6 alkoxy)carbonyl, amido, (lower alkyl)amide, amino optionally mono- or di-substituted with C1-6 alkyl;
(iv) C6 or C10 aryl or C7-16 aralkyl, all optionally substituted with C1-6 alkyl, hydroxy, amino or amido.
15. A compound of formula I according to claim 1, or a pharmaceutically acceptable salt thereof, wherein B is tert-butoxycarbonyl (Boc) or
16. A compound of formula I according to any one of claims 1 to 15, or a pharmaceutically acceptable salt thereof, wherein Y is H or methyl.
17. A compound of formula I according to claim 16, or a pharmaceutically acceptable salt thereof, wherein Y is H.
18. A compound of formula I according to any one of claims 1 to 17, or a pharmaceutically acceptable salt thereof, wherein R3 is C1-6 alkyl, C3-7 cycloalkyl, or C4-10 alkylcycloalkyl, all optionally substituted with hydroxy, C1-6 alkoxy, C1-6 thioalkyl, acetamido, C6 or C10 aryl, or C7-16 aralkyl.
19. A compound of formula I according to claim 18, or a pharmaceutically acceptable salt thereof, wherein R3 is the side chain of tert-butylglycine (Tbg), Ile, Val, Chg or:

20. A compound of formula I according to claim 19, or a pharmaceutically acceptable salt thereof, wherein R3 is the side chain of Tbg, Chg or Val.
21. A compound of formula I according to any one of claims 1 to 20, or a pharmaceutically acceptable salt thereof, wherein R2 is S-R20 or O-R20 wherein is a C6 or C10 aryl, C7-16 aralkyl, Het or -CH2-Het, all optionally mono-, di-or tri-substituted with R21, wherein R21 is C1-6 alkyl; C1-6 alkoxy; lower thioalkyl; amino optionally mono-or di-substituted with C1-6 alkyl, C6 or C10 aryl, C7-16 aralkyl, Het or (lower alkyl)-Het; amido optionally mono-substituted with C1-6 alkyl, C6 or C10 aryl, C7-14 aralkyl, Het or (lower alkyl)-Het; NO2; OH; halo; trifluoromethyl; carboxyl;

or C10 aryl, C7-16 aralkyl, or Het, said aryl, aralkyl or Het being optionally substituted with R22, wherein R22 is C1-6 alkyl; C3-7 cycloalkyl; C1-6 alkoxy; amino; mono- or di-(lower alkyl)amino; (lower alkyl)amide; sulfonylalkyl; NO2; OH; halo;
trifluoromethyl; carboxyl or Het.
22. A compound of formula I according to claim 21, or a pharmaceutically acceptable salt thereof, wherein R21 is C1-6 alkyl; C1-6 alkoxy; amino; di(lower alkyl)amino; (lower alkyl)amide; C6 or C10 aryl, or Het, said aryl or Het being optionally substituted with R22, wherein R22 is C,.6 alkyl; C3-7 cycloalkyl; C1-6 alkoxy; amino; mono- or di(lower alkyl)amino; (lower alkyl)amide; halo; trifluoromethyl or Het.
23. A compound of formula I according to claim 22, or a pharmaceutically acceptable salt thereof, wherein R22 is C1-6 alkyl; C1-6 alkoxy; halo; amino optionally mono- or di-substituted with lower alkyl; (lower alkyl)amide; or Het.
24. A compound of formula I according to claim 23, or a pharmaceutically acceptable salt thereof, wherein R22 is methyl; ethyl; isopropyl; tert-butyl; methoxy;
chloro;
amino optionally mono- or di-substituted with lower alkyl; or (lower alkyl)amide.
25. A compound of formula I according to claim 21, or a pharmaceutically acceptable salt thereof, wherein R2 is selected from the group consisting of:

26. A compound of formula I according to claim 21, or a pharmaceutically acceptable salt thereof, wherein R2 is 1 -naphthylmethoxy; 2-naphthylmethoxy; benzyloxy, naphthyloxy; 2-naphthyloxy; or quinolinoxy unsubstituted , mono- or di-substituted with R21 as defined in claim 21.
27. A compound of formula I according to claim 26, or a pharmaceutically acceptable salt thereof, wherein R2 is 1 -naphthylmethoxy; or quinolinoxy unsubstituted, mono-or di-substituted with R2, as defined in claim 26.
28. A compound of formula I according to claim 27, or a pharmaceutically acceptable salt thereof, wherein R2 is selected from the group consisting of:

29. A compound of formula I according to claim 26, or a pharmaceutically acceptable salt thereof, wherein R2 is wherein R21A is C1-6 alkyl; C1-6 alkoxy; lower thioalkyl; halo; amino optionally mono-substituted with C1-6 alkyl; or C6, C10 aryl, C7-16 aralkyl, or Het, said aryl, aralkyl or Het optionally substituted with R22 wherein R22 is C1-6 alkyl, C1-6 alkoxy, (lower alkyl)amide, amino optionally mono- or di-substituted with C1-6 alkyl, or Het;
and R21B is C1-6 alkyl, C1-6 alkoxy, amino, di(lower alkyl)amino, (lower alkyl)amide, NO2, OH, halo, trifluoromethyl, or carboxyl.
30. A compound of formula I according to claim 29, or a pharmaceutically acceptable salt thereof, wherein R21A is C6, C10 aryl or Het, all optionally substituted with R22 as defined in claim 29.
31. A compound of formula I according to claim 30, or a pharmaceutically acceptable salt thereof, wherein R21A is selected from the group consisting of:

32. A compound of formula I according to claim 29, or a pharmaceutically acceptable salt thereof, wherein R2 is:

wherein R22A is C1-6 alkyl; or C1-6 alkoxy; and R21B is C1-6 alkyl, C1-6 alkoxy, amino, di(lower alkyl)amino, (lower alkyl)amide, NO2, OH, halo, trifluoromethyl, or carboxyl.
33. A compound of formula I according to claim 29, or a pharmaceutically acceptable salt thereof, wherein R2 is:

wherein R22B is C1-6 alkyl, amino optionally mono-substituted with C1-6 alkyl, or (lower alkyl)amide; and R21B is C1-6 alkyl, C1-6 alkoxy, amino, di(lower alkyl)amino, (lower alkyl)amide, NO2, OH, halo, trifluoromethyl, or carboxyl.
34. A compound of formula I according to claim 32 or 33, or a pharmaceutically acceptable salt thereof, wherein R21B is C1-6 alkoxy, or di(lower alkyl)amino.
35. A compound of formula I according to claim 32 or 33, or a pharmaceutically acceptable salt thereof, wherein R21B is methoxy.
36. A compound of formula I according to any one of claims 1 to 35, or a pharmaceutically acceptable salt thereof, wherein P1 is:

wherein R1 is H, C1-3 alkyl, C3-5 cycloalkyl, or C2-4 alkenyl, all optionally substituted with halo.
37. A compound of formula I according to claim 36, or a pharmaceutically acceptable salt thereof, wherein P1 is: and R1 is ethyl, vinyl, cyclopropyl, 1 or 2-bromoethyl or 1 or 2-bromovinyl.
38. A compound of formula I according to claim 37, or a pharmaceutically acceptable salt thereof, wherein R1 is vinyl.
39. A compound of formula I according to claim 37, or a pharmaceutically acceptable salt thereof, wherein R1 at carbon 2 is orientated syn to the carbonyl at position 1, represented by the radical:

40. A compound of formula I according to claim 37, or a pharmaceutically acceptable salt thereof, wherein R1 at position 2 is orientated anti to the carbonyl at position 1, represented by the radical:

41. A compound of formula I according to claim 37, or a pharmaceutically acceptable salt thereof, wherein carbon 1 has the R configuration:

42. An optical isomer of a compound of formula I according to claim 41, or a pharmaceutically acceptable salt thereof, wherein said R, substituent and the carbonyl in a syn orientation in the following absolute configuration:

43. A compound of formula I according to claim 42, or a pharmaceutically acceptable salt thereof, wherein R, is ethyl, and the asymmetric carbon atoms at positions 1 and 2 have the R,R configuration.
44. A compound of formula I according to claim 42, or a pharmaceutically acceptable salt thereof, wherein R, is vinyl, and the asymmetric carbon atoms at positions 1 and 2 have the R,S configuration.
45. A compound of formula I according to claim 1, or a pharmaceutically acceptable salt thereof, wherein B is a C6 or C10 aryl or C7-16 aralkyl, all optionally substituted with CI-6 alkyl, CI-6 alkoxy, Cl-6 alkanoyl, hydroxy, hydroxyalkyl, halo, haloalkyl, nitro, cyano, cyanoalkyl, amido, (lower alkyl)amido, or amino optionally substituted with C1-6 alkyl; or Het or (lower alkyl)-Het, all optionally substituted with C1-6 alkyl, C1-6 alkoxy, C1-6 alkanoyl, hydroxy, hydroxyalkyl, halo, haloalkyl, nitro, cyano, cyanoalkyl, amido, (lower alkyl)amido, or amino optionally substituted with C1-6 alkyl, or B is R4-SO2 wherein R4 is amido; (lower alkyl)amide; C6 or C10 aryl, C7-14 aralkyl or Het, all optionally substituted with C1-6 alkyl, or B is an acyl derivative of formula R4-C(O)- wherein R4 is (i) C,-lo alkyl optionally substituted with carboxyl, hydroxy or C1-6 alkoxy, amido, (lower alkyl)amide, or amino optionally mono- or di-substituted with C1-6 alkyl; provided that when B is R4-C(O)-, R4 is not C1-10 alkyl substituted with (lower alkyl) amide or amino optionally mono- or di-substituted with C1-6 alkyl;
(ii) C3-7 cycloalkyl or C4-10 alkylcycloalkyl, both optionally substituted with hydroxy, carboxyl, (C1-6 alkoxy)carbonyl, amido, (lower alkyl)amide, or amino optionally mono- or di-substituted with C1-6 alkyl; provided that when B is R4-C(O)-, R4 is not C4-10 alkylcycloalkyl substituted with (lower alkyl) amide or amino optionally mono- or di-substituted with C1-6 alkyl;
(iv) C6 or C10 aryl or C7-16 aralkyl, all optionally substituted with C1-6 alkyl, hydroxy, amido, (lower alkyl)amide, or amino optionally substituted with C1-6 alkyl;
(v) Het or (lower alkyl)-Het, both optionally substituted with C1-6 alkyl, hydroxy, amino optionally substituted with C1-6 alkyl, amido, (lower alkyl)amide, or B is a carboxyl of formula R4-O-C(O)-, wherein R4 is (i) C1-10 alkyl optionally substituted with carboxyl, C1-6 alkanoyl, hydroxy, alkoxy, amino optionally mono- or di-substituted with C1-6 alkyl, amido or (lower alkyl)amide;
(ii) C3-7 cycloalkyl, C4-10 alkylcycloalkyl, all optionally substituted with carboxyl, (C1-6 alkoxy)carbonyl, amino optionally mono- or di-substituted with C1-6 alkyl, amido or (lower alkyl)amide;
(iv) C6 or C10 aryl or C7-16 aralkyl optionally substituted with C1-6 alkyl, hydroxy, amido, (lower alkyl)amido, or amino optionally mono- or di-substituted with C1-6 alkyl; or (v) Het or (lower alkyl)-Het, both optionally substituted with C1-6 alkyl, hydroxy, amino optionally mono- or di-substituted with C1-6 alkyl, amido or (lower alkyl)amido, or B is an amide of formula R4-N(R5)-C(O)- wherein R4 is (i) C1-10 alkyl optionally substituted with carboxyl, C1-6 alkanoyl, hydroxy, alkoxy, amido,(lower alkyl)amido, or amino optionally mono- or di-substituted with C1-6 alkyl;

(ii) C3-7 cycloalkyl or C4-10 alkylcycloalkyl, all optionally substituted with carboxyl, (C1-6 alkoxy)carbonyl, amido, (lower alkyl)amido, or amino optionally mono- or di-substituted with C1-6 alkyl;
(iii) amino optionally mono- or di-substituted with C1-3 alkyl;
(iv) C6 or C10 aryl or C7-16 aralkyl, all optionally substituted with C1-6 alkyl, hydroxy, amido, (lower alkyl)amide, or amino optionally substituted with C1-6 alkyl; or (v) Het or (lower alkyl)-Het, both optionally substituted with C1-6 alkyl, hydroxy, amino optionally substituted with C1-6 alkyl, amido or (lower alkyl)amide; and R5 is H or methyl, or B is thioamide of formula R4-NH-C(S)-; wherein R4 is (i) C1-10 alkyl optionally substituted with carboxyl, C1-6 alkanoyl or C1-6 alkoxy;
(ii) C3-7 cycloalkyl or C4-10 alkylcycloalkyl, all optionally substituted with carboxyl, (C1-6 alkoxy)carbonyl, amino or amido;

Y is H or methyl;

R3 is C1-8 alkyl, C3-7 cycloalkyl, or C4-10 alkylcycloalkyl, all optionally substituted with hydroxy, C1-6 alkoxy, C1-6, thioalkyl, acetamido, C6 or C10 aryl, or C7-16 aralkyl;

R2 is S-R20 or O-R20 wherein R20 is a C6 or C10 aryl, C7-16 aralkyl, Het or -CH2-Het, all optionally mono-, di- or tri-substituted with R21, wherein R21 is C1-6 alkyl; C1-6 alkoxy; lower thioalkyl; amino optionally mono-or di-substituted with C1-6 alkyl, C6 or C10 aryl, C7-16 aralkyl, Het or (lower alkyl)-Het; amido optionally mono- substituted with C1-6 alkyl, C6 or C10 aryl, C7-16 aralkyl, Het or (lower alkyl)-Het; NO2; OH; halo; trifluoromethyl; carboxyl;

or C10 aryl, C7-16 aralkyl, or Het, said aryl, aralkyl or Het being optionally substituted with R22, wherein R22 is C1-6 alkyl; C3-7 cycloalkyl; C1-6 alkoxy; amino; mono- or di-(lower alkyl)amino; (lower alkyl)amide; sulfonylalkyl; NO2; OH; halo;
trifluoromethyl; carboxyl or Het; or R2 is selected from the group consisting of:

or R2 is 1-naphthylmethoxy; 2-naphthylmethoxy; benzyloxy, 1-naphthyloxy; 2-naphthyloxy; or quinolinoxy unsubstituted , mono- or di-substituted with R21 as defined above; and P1 is:

wherein R1 is H, C1-3 alkyl, C3-5 cycloalkyl, or C2-4 alkenyl optionally substituted with halo, and said R, at carbon 2 is orientated syn to the carbonyl at position 1, represented by the radical:

or a pharmaceutically acceptable salt or ester thereof.
46. A compound of formula I according to claim 45, or a pharmaceutically acceptable salt thereof, wherein B is a C6 or C10 aryl optionally substituted with C1-6 alkyl, C1-6 alkoxy, C1-6 alkanoyl, hydroxy, hydroxyalkyl, halo, haloalkyl, nitro, cyano, cyanoalkyl, amido, (lower alkyl)amide, or amino optionally mono- or di-substituted with C1-alkyl; or B is Het optionally substituted with C1-6 alkyl, C1-6 alkoxy, C1-6 alkanoyl, hydroxy, halo, amido, (lower alkyl)amide, or amino optionally mono- or di-substituted with C1-6 alkyl; or B is R4-SO2 wherein R4 is C6 or C10 aryl, a C7-14 aralkyl or Het all optionally substituted with C1-6 alkyl; amido, (lower alkyl)amide; B is an acyl derivative of formula R4-C(O)- wherein R4 is (i) C1-10 alkyl optionally substituted with carboxyl, hydroxy or C1-6 alkoxy;
or (ii) C3-7 cycloalkyl or C4-10 alkylcycloalkyl, both optionally substituted with hydroxy, carboxyl, (C1-6 alkoxy)carbonyl; or (iv) C6 or C10 aryl or C7-16 aralkyl, all optionally substituted with C1-6 alkyl, hydroxy; or (v) Het optionally substituted with C1-6 alkyl, hydroxy, amido or amino;
or B is a carboxyl of formula R4-O-C(O)-, wherein R4 is (i) C1-10 alkyl optionally substituted with carboxyl, C1-6 alkanoyl, hydroxy, alkoxy or amido, (lower alkyl)amide, amino optionally mono- or di-substituted with C1-6 alkyl;
(ii) C3-7 cycloalkyl, C4-10 alkylcycloalkyl, all optionally substituted with carboxyl, (C1-6 alkoxy)carbonyl, amido, (lower alkyl)amide, amino optionally mono- or di-substituted with C1-6 alkyl; or (iv) C6 or C10 aryl or C7-16 aralkyl, all optionally substituted with C1-6 alkyl, hydroxy, amino optionally substituted with C1-6 alkyl; or (v) Het or (lower alkyl)-Het, both optionally substituted with C1-6 alkyl, hydroxy, amido, or amino optionally mono-substituted with C1-6 alkyl;
or B is an amide of formula R4-N(R5)-C(O)- wherein R4 is (i) C1-10 alkyl optionally substituted with carboxyl, C1-6 alkanoyl, hydroxy, alkoxy, amido, (lower alkyl)amide, amino optionally mono- or di-substituted with C1-6 alkyl;
(ii) C3-7 cycloalkyl or C4-10 alkylcycloalkyl, all optionally substituted with carboxyl, (C1-6 alkoxy)carbonyl, amido, (lower alkyl)amide, amino optionally mono- or di-substituted with C1-6 alkyl; and R5 is H or methyl; or R4 is (iii) amino optionally mono- or di-substituted with C1-3 alkyl; or (iv) C6 or C10 aryl or C7-16 aralkyl, all optionally substituted with C1-6 alkyl, hydroxy, amino or amido optionally substituted with C1-6 alkyl; or (v) Het optionally substituted with C1-6 alkyl, hydroxy, amino or amido; or B is a thioamide of formula R4-NH-C(S)-; wherein R4 is:

(i) C1-10 alkyl; or (ii) C3-7 cycloalkyl; or Y is H;

R3 is the side chain of tert-butylglycine (Tbg), Ile, Val, Chg or:

R2 is 1-naphtylmethoxy; or quinolinoxy unsubstituted, mono- or di-substituted with R21 as defined in claim 45, or R2 is:

wherein R21A is C1-6 alkyl; C1-6 alkoxy; lower thioalkyl; halo; amino optionally mono-substituted with C1-6 alkyl; or C6,C10 aryl, C7-16 aralkyl or Het, optionally substituted with R22 wherein R22 is C1-6 alkyl, C1-6 alkoxy, (lower alkyl)amide, amino optionally mono- or di-substituted with C1-6 alkyl, or Het; and R21B is C1-6 alkyl, C1-6 alkoxy, amino, di(lower alkyl)amino, (lower alkyl)amide, NO2, OH, halo, trifluoromethyl, or carboxyl;

P1 is:

; wherein R1 is ethyl, vinyl, cyclopropyl, 1 or 2-bromoethyl or 1 or 2-bromovinyl.
47. A compound of formula I according to claim 46, or a pharmaceutically acceptable salt thereof, wherein B is an amide of formula R4-NH-C(O)- wherein R4 is i) C1-10 alkyl optionally substituted with carboxyl, C1-6 alkanoyl, hydroxy, alkoxy amido, (lower alkyl)amide, amino optionally mono- or di-substituted with C1-6 alkyl;
(ii) C3-7 cycloalkyl or C4-10 alkylcycloalkyl, all optionally substituted with carboxyl, (C1-6 alkoxy)carbonyl, amido, (lower alkyl)amide, amino optionally mono- or di-substituted with C1-6 alkyl;
(iv) C6 or C10 aryl or C716 aralkyl optionally substituted with C1-6 alkyl, hydroxy, amino or amido;

R3 is the side chain of Tbg, Chg or Val;
R2 is:

wherein R22A is C1-6 alkyl; C1-6 alkoxy; or halo; R22B is C1-6 alkyl, amino optionally mono-substituted with C1-6 alkyl, or (lower alkyl)amide; and R21B is C1-6 alkyl, C1-6 alkoxy, amino, di(lower alkyl)amino, (lower alkyl)amide, NO2, OH, halo, trifluoromethyl, or carboxyl;
and P1 is:

48. A compound of formula (I) and a racemate, diastereoisomer or optical isomer thereof:

wherein:

B is a carboxyl of formula R4-O-C(O)-, wherein R4 is (i) C1-10 alkyl optionally substituted with carboxyl, C1-6 alkanoyl, hydroxy, C1-6 alkoxy or amido, (lower alkyl)amide, amino optionally mono- or di-substituted with C1-6 alkyl;

(ii) C3-7 cycloalkyl, C4-10 alkylcycloalkyl, all optionally substituted with carboxyl, (C1-6 alkoxy)carbonyl, amido, (lower alkyl)amide, amino optionally mono- or di-substituted with C1-6 alkyl, or (iv) C6 or C10 aryl or C7-16 aralkyl, all optionally substituted with C1-6 alkyl, hydroxy, amino optionally substituted with C1-6 alkyl; or (v) Het or (lower alkyl)-Het, both optionally substituted with C1-6 alkyl, hydroxy, amido, or amino optionally mono-substituted with C1-6 alkyl;
Y is H;

R3 is the side chain of Tbg, Chg or Val;

R2 is S-R20 or O-R20 wherein R20 is a C6 or C10 aryl, C7-16 aralkyl, Het or -CH2-Het, all optionally mono-, di- or tri-substituted with R21, wherein R21 is C1-6 alkyl; C1-6 alkoxy; lower thioalkyl; amino optionally mono-or di-substituted with C1-6 alkyl, C6 or C10 aryl, C7-16 aralkyl, Het or (lower alkyl)-Het; amido optionally mono-substituted with C1-6 alkyl, C6 or C10 aryl, C7-14 aralkyl, Het or (lower alkyl)-Het; NO2; OH; halo; trifluoromethyl; carboxyl;

or C10 aryl, C7-16 aralkyl, or Het, said aryl, aralkyl or Het being optionally substituted with R22, wherein R22 is C1-6 alkyl; C3-7 cycloalkyl; C1-6 alkoxy; amino; mono- or di-(lower alkyl)amino; (lower alkyl)amide; sulfonylalkyl; NO2;
OH; halo; trifluoromethyl; carboxyl or Het;

wherein said Het is a five-, six-, or seven-membered saturated or unsaturated, aromatic or non-aromatic heterocycle containing from one to four heteroatoms selected from: nitrogen, oxygen and sulfur, said heterocycle being optionally fused to one or more carbocycle or heterocycle, or a pharmaceutically acceptable salt thereof.
49. A compound according to claim 45, or a pharmaceutically acceptable salt thereof, represented by the formula:

wherein B, R3, R2 are as defined below:

50. Compound # 111, or a pharmaceutically acceptable salt thereof, according to claim 49.
51. A compound according to claim 45, or a pharmaceutically acceptable salt thereof, represented by the formula:

wherein B, R3, R2, R, are as defined below:

52. Compound #203, or a pharmaceutically acceptable salt thereof, according to claim 51.
53. A compound according to claim 45, or a pharmaceutically acceptable salt thereof, represented by the formula:

wherein B, R3, R2 and R, are as defined below:

54. A compound according to claim 53, or a pharmaceutically acceptable salt thereof, selected from the group consisting of compound #: 307,314, 317, 321, 324, 325, 326, 327, 329, 331, 332, 333, and 334.
55. A compound according to claim 45, or a pharmaceutically acceptable salt thereof, represented by the formula:

wherein B, R3, R2 and R, are as defined below:

56. A compound according to claim 55, or a pharmaceutically acceptable salt thereof, selected from the group consisting of compound #: 403, 405, and 406.
57. A compound according to claim 45 or a pharmaceutically acceptable salt thereof, represented by the formula:

wherein R3 is as defined below:

58. A compound according to claim 57, or a pharmaceutically acceptable salt thereof, selected from the group consisting of compound #: 501, 509, and 510.
59. A compound according to claim 45, or a pharmaceutically acceptable salt thereof, represented by the formula:

wherein R3, R21A and R21B are as defined below:

60. A compound according to claim 59, or a pharmaceutically acceptable salt thereof, selected from the group consisting of compound #: 601, 602, 603, 604, 605, 606, 607, 610, 611, 612, 615, 616, 617, 620, 621, 622, 625, 626, 627, 628, 629, and 630.
61. A compound according to claim 45 or a pharmaceutically acceptable salt thereof, represented by the formula:

wherein R3 and R21A are as defined below:

62. A compound according to claim 61, selected from the group consisting of compound #: 701, 703, 704, 705, 706, 707, 708, 709, 711, 712, 713, 714, 715, 716, 717, 718, 719, 720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 730, 731, 733, 734, 735, 736 and 737.
63. A compound according to claim 45, or a pharmaceutically acceptable salt thereof, represented by the formula:

wherein B, R3, and R22 are as defined below:

64. A compound according to claim 63, or a pharmaceutically acceptable salt thereof, selected from the group consisting of compound #: 801, 802, 803, 804, 805, 806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 816, 817, 818, 819, 820, 821, 822, 823, 824, 825, 827, 828, 829, 830, 831, 832, 833, 834, 835, 836, 837, 838, 839, 840, 841, 842, 843, 844, 845, 846, 847, 848, 849, 850, 851, 852, 853, 854, 855, 856, 857, 858, 861, 862, 863, 864, 865, 866, 867, 868, 869, 870, 871, 872 and 873.
65. A compound according to claim 45, or a pharmaceutically acceptable salt thereof, represented by the formula:

wherein B is as defined below:

Table 9B
Cpd #
901Boc
66. A compound according to claim 45, or a pharmaceutically acceptable salt thereof, represented by the formula:

wherein B, X, R3, Z and R21B are as defined below:

67. A pharmaceutical composition comprising an anti-hepatitis C virally effective amount of a compound of formula I according to any one of claims 1 to 66, or a therapeutically acceptable salt or ester thereof, in admixture with a pharmaceutically acceptable carrier medium or auxiliary agent.
68. Use of a compound of formula I according to any one of claims 1 to 66, or a therapeutically acceptable salt or ester thereof for the manufacture of a medicament for the treatment of a hepatitis C viral infection in a mammal.
69. A method of inhibiting the replication of hepatitis C virus in vitro by exposing the virus to a hepatitis C viral NS3 protease inhibiting amount of the compound of formula I according to any one of claims 1 to 66, or a therapeutically acceptable salt or ester thereof.
70. The use according to claim 68, wherein said medicament is combined with another anti-HCV agent.
71. The use according to claim 70, wherein said other anti-HCV agent is selected from the group consisting of: .alpha.- or .beta.-interferon, ribavirin and amantadine.
72. The use according to claim 70, wherein said other anti-HCV agent comprises an inhibitor of other targets in the HCV life cycle, selected from: helicase, polymerase, metalloprotease or IRES.
73. A process for the preparation of a peptide analog of formula (I) according to claim 1, wherein P1 is a substituted aminocyclopropyl carboxylic acid residue, comprising the step of:

coupling a peptide selected from the group consisting of: APG-P3-P2; or APG-P2;
with a P1 intermediate of formula:

wherein R1 is C1-6 alkyl, cycloalkyl or C2-6 alkenyl, all optionally substituted with halogen, CPG is a carboxyl protecting group and APG is an amino protecting group and P3 and P2 are as defined in claim 1.
74. The process according to claim 73, wherein said intermediate is of formula:

wherein CPG is a carboxyl protecting group.
75. The process according to claim 73 or 74, wherein said carboxyl protecting group (CPG) is selected from the group consisting of:
alkyl esters, aralkyl esters, and esters being cleavable by mild base treatment or mild reductive means.
76. The process according to claim 73, wherein said amino protecting group (APG) is selected from the group consisting of:
acyl groups, aromatic carbamate groups, aliphatic carbamate groups, cyclic alkyl carbamate groups, alkyl groups, trialkylsilyl, and thiol-containing groups.
77. Use of an intermediate of formula:

wherein R1 is C1-6 alkyl, cycloalkyl or C2-6 alkenyl, all optionally substituted with halogen and CPG is a carboxyl protecting group, for the preparation of a compound of formula I according to claim 1, wherein said carboxyl protecting group (CPG) is selected from the group consisting of:
alkyl esters, aralkyl esters, and esters being cleavable by mild base treatment or mild reductive means.
78. Use of an intermediate of formula:

for the preparation of a compound of formula (I) according to claim 1, wherein said carboxyl protecting group (CPG) is selected from the group consisting of:

alkyl esters, aralkyl esters, and esters being cleavable by mild base treatment or mild reductive means.
79. Use of a proline analog of formula:

wherein R21A is C1-6 alkyl; C1-6 alkoxy; lower thioalkyl; halo; amino optionally mono-substituted with Cl-6 alkyl; C6, C10 aryl, C7-16 aralkyl or Het, said aryl, aralkyl or Het optionally substituted with R22 wherein R22 is C1-6 alkyl, C1-6 alkoxy, amido, (lower alkyl)amide, amino optionally mono- or di-substituted with C1-6 alkyl, or Het;
and R21B is C1-6 alkyl, C1-6 alkoxy, amino, di(lower alkyl)amino, (lower alkyl)amide, NO2, OH, halo, trifluoromethyl, or carboxyl;

for the synthesis of a peptide analog of formula I according to claim 1.
80. Use of an anti-hepatitis C virally effective amount of the compound of formula I
according to any one of claims 1 to 66, or a therapeutically acceptable salt or ester thereof for the preparation of a composition for treating a hepatitis C viral infection in a mammal.
81. Use of a hepatitis C viral NS3 protease inhibiting amount of the compound of formula I according to any one of claims 1 to 66, or a therapeutically acceptable salt or ester thereof for the preparation of a composition for inhibiting the replication of hepatitis C virus.
82. Use of an anti-hepatitis C virally effective amount of a combination of the compound of formula I according to any one of claims 1 to 66, or a therapeutically acceptable salt or ester thereof, and an interferon for the preparation of a composition for treating a hepatitis C viral infection in a mammal.
83. A compound of the formula:

wherein R2 is wherein R21A is C1-6 alkyl; C1-6 alkoxy; lower thioalkyl; halo; amino optionally mono-substituted with C1-6 alkyl; or C6, C10 aryl, C7-16 aralkyl, or Het, said aryl, aralkyl or Het optionally substituted with R22 wherein R22 is C1-6 alkyl, C1-6 alkoxy, amido, (lower alkyl)amide, amino optionally mono- or di-substituted with C1-6 alkyl, or Het;
and R21B is C1-6 alkyl, C1-6 alkoxy, amino, di(lower alkyl)amino, (lower alkyl)amide, NO2, OH, halo, trifluoromethyl, or carboxyl;

R1 is ethyl, vinyl, cyclopropyl, 1 or 2-bromoethyl or 1 or 2-bromovinyl;

APG is an amino protecting group selected from: 1) acyl groups, 2) aromatic carbamate groups, 3) aliphatic carbamate groups, 4) cyclic alkyl carbamate groups, 5) alkyl groups, 6) trialkylsilyl, and 7) thiol containing groups;

CPG is a carboxyl protecting group selected from: alkyl esters, aralkyl esters, and esters being cleavable by mild base treatment or mild reductive means; and wherein said Het is a five-, six-, or seven-membered saturated or unsaturated, aromatic or non-aromatic heterocycle containing from one to four heteroatoms selected from: nitrogen, oxygen and sulfur, said heterocycle being optionally fused to one or more carbocycle or heterocycle.
84. The compound according to claim 83, wherein said carboxyl protecting group is selected from: methyl, trimethylsilylethyl, t-butyl, benzyl, trichloroethyl and phenacyl esters.
85. The compound according to claim 83, wherein said amino protecting group is selected from: formyl, trifluoroacetyl, phthalyl, p-toluenesulfonyl, as benzyloxycarbonyl, 9-fluorenylmethyloxycarbonyl, tert-butyloxycarbonyl, ethoxycarbonyl, diisopropylmethoxycarbonyl, allyloxycarbonyl, cyclopentyloxycarbonyl, adamantyloxycarbonyl, triphenylmethyl, benzyl, trimethylsilyl, phenylthiocarbonyl and dithiasuccinoyl.
86. The compound according to claim 85, wherein said amino protecting group is selected from: tert-butyloxycarbonyl and 9-fluorenylmethyloxycarbonyl.
87. The compound according to claim 83, wherein R21A is C6, C10 aryl or Het, all optionally substituted with R22 as defined in claim 83.
88. The compound according to claim 87, wherein R21A is selected from the group consisting of:

89. The compound according to claim 83, wherein R2 is:

wherein R22B is C1-6 alkyl, amino optionally mono-substituted with C1-6 alkyl, amido, or (lower alkyl)amide; and R21B is C1-6 alkyl, C1-6 alkoxy, amino, di(lower alkyl)amino, (lower alkyl)amide, NO2, OH, halo, trifluoromethyl, or carboxyl.
90. A compound of the formula:

wherein R2 is wherein R22A is C1-6 alkyl; Cl-6 alkoxy; or halo; and R21B is C1-6 alkyl, C1-6 alkoxy, amino, di(lower alkyl)amino, (lower alkyl)amide, NO2, OH, halo, trifluoromethyl, or carboxyl;

R1 is ethyl, vinyl, cyclopropyl, 1 or 2-bromoethyl or 1 or 2-bromovinyl;

APG is an amino protecting group selected from: 1) acyl groups, 2) aromatic carbamate groups, 3) aliphatic carbamate groups, 4) cyclic alkyl carbamate groups, 5) alkyl groups, 6) trialkylsilyl, and 7) thiol containing groups; and CPG is a carboxyl protecting group selected from: alkyl esters, aralkyl esters, and esters being cleavable by mild base treatment or mild reductive means.
91. The compound according to claim 89 or 90, wherein R21B is C1-6 alkoxy, or di(lower alkyl)amino.
92. The compound according to claim 89 or 90, wherein R21B is methoxy.
93. The compound according to claim 83 or 90, wherein R1 is vinyl.
94. The compound according to claim 83 or 90, wherein R1 at carbon 2 is orientated syn to the carbonyl at position 1, represented by the radical:

95. The compound according to claim 83 or 90, wherein R1 at position 2 is orientated anti to the carbonyl at position 1, represented by the radical:

96. The compound according to claim 83 or 90, wherein carbon 1 has the R
configuration:

97. An optical isomer of a compound according to claim 96, wherein said R1 substituent and the carbonyl are in a syn orientation in the following absolute configuration:

98. The compound according to claim 97, wherein R1 is ethyl, and the asymmetric carbon atoms at positions 1 and 2 have the R,R configuration.
99. The compound according to claim 97, wherein R1 is vinyl, and the asymmetric carbon atoms at positions 1 and 2 have the R,S configuration.
CA2338946A 1998-08-10 1999-08-09 Hepatitis c inhibitor tri-peptides Expired - Lifetime CA2338946C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2445938A CA2445938C (en) 1998-08-10 1999-08-09 Hepatitis c inhibitor tri-peptides

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US9593198P 1998-08-10 1998-08-10
US60/095,931 1998-08-10
US13238699P 1999-05-04 1999-05-04
US60/132,386 1999-05-04
PCT/CA1999/000736 WO2000009543A2 (en) 1998-08-10 1999-08-09 Hepatitis c inhibitor tri-peptides

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CA2445938A Division CA2445938C (en) 1998-08-10 1999-08-09 Hepatitis c inhibitor tri-peptides

Publications (2)

Publication Number Publication Date
CA2338946A1 CA2338946A1 (en) 2000-02-24
CA2338946C true CA2338946C (en) 2010-10-12

Family

ID=26790767

Family Applications (2)

Application Number Title Priority Date Filing Date
CA2338946A Expired - Lifetime CA2338946C (en) 1998-08-10 1999-08-09 Hepatitis c inhibitor tri-peptides
CA2445938A Expired - Lifetime CA2445938C (en) 1998-08-10 1999-08-09 Hepatitis c inhibitor tri-peptides

Family Applications After (1)

Application Number Title Priority Date Filing Date
CA2445938A Expired - Lifetime CA2445938C (en) 1998-08-10 1999-08-09 Hepatitis c inhibitor tri-peptides

Country Status (43)

Country Link
US (11) US6323180B1 (en)
EP (2) EP1105413B1 (en)
JP (2) JP4485685B2 (en)
KR (2) KR100631439B1 (en)
CN (2) CN100339389C (en)
AR (3) AR020880A1 (en)
AT (1) ATE430158T1 (en)
AU (1) AU769738B2 (en)
BG (1) BG65738B1 (en)
BR (2) BR9917805B1 (en)
CA (2) CA2338946C (en)
CO (1) CO5261542A1 (en)
CY (2) CY1109291T1 (en)
CZ (2) CZ302766B6 (en)
DE (1) DE69940817D1 (en)
DK (2) DK1105413T3 (en)
EA (1) EA003906B1 (en)
EE (1) EE05517B1 (en)
ES (2) ES2326707T3 (en)
HK (2) HK1040085B (en)
HR (1) HRP20010102B1 (en)
HU (2) HU230701B1 (en)
ID (1) ID27839A (en)
IL (3) IL141012A0 (en)
IN (3) IN211493B (en)
ME (1) ME00381B (en)
MX (2) MX261584B (en)
MY (1) MY127538A (en)
NO (2) NO328952B1 (en)
NZ (1) NZ510396A (en)
PE (1) PE20000949A1 (en)
PH (1) PH11999002002B1 (en)
PL (1) PL204850B1 (en)
PT (2) PT1105413E (en)
RS (3) RS20090459A (en)
SA (1) SA99200617B1 (en)
SI (2) SI2028186T1 (en)
SK (2) SK288068B6 (en)
TR (2) TR200200129T2 (en)
TW (1) TWI250165B (en)
UA (1) UA75026C2 (en)
WO (1) WO2000009543A2 (en)
ZA (1) ZA200100971B (en)

Families Citing this family (423)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA66767C2 (en) 1996-10-18 2004-06-15 Вертекс Фармасьютикалс Інкорпорейтед Serine proteases inhibitors, pharmaceutical composition, a method for inhibitining activity and a method for treatment or prevention of viral infection of hepatitis c
US6767991B1 (en) 1997-08-11 2004-07-27 Boehringer Ingelheim (Canada) Ltd. Hepatitis C inhibitor peptides
US6323180B1 (en) * 1998-08-10 2001-11-27 Boehringer Ingelheim (Canada) Ltd Hepatitis C inhibitor tri-peptides
UA74546C2 (en) * 1999-04-06 2006-01-16 Boehringer Ingelheim Ca Ltd Macrocyclic peptides having activity relative to hepatitis c virus, a pharmaceutical composition and use of the pharmaceutical composition
US6608027B1 (en) 1999-04-06 2003-08-19 Boehringer Ingelheim (Canada) Ltd Macrocyclic peptides active against the hepatitis C virus
KR100878334B1 (en) * 1999-06-25 2009-01-14 백광산업 주식회사 Corynebacterium Glutamicum Genes Encoding Metabolic Pathway Proteins
AR029903A1 (en) 2000-04-05 2003-07-23 Schering Corp MACROCICLIC INHIBITORS OF THE NS3-SERINA PROTEASA, OF THE VIRUS OF HEPATITIS C, WHICH INCLUDE P2 N-CYCLING PARTS, PHARMACEUTICAL COMPOSITIONS AND USE OF THE SAME FOR THE MANUFACTURE OF A MEDICINAL PRODUCT
CA2406532A1 (en) 2000-04-19 2001-11-01 Schering Corporation Macrocyclic ns-3 serine protease inhibitors of hepatitis c virus compri sing alkyl and aryl alanine p2 moieties
AU2001259511A1 (en) 2000-05-05 2001-11-20 Smith Kline Beecham Corporation Novel anti-infectives
PE20011350A1 (en) 2000-05-19 2002-01-15 Vertex Pharma PROPHARMAC OF AN INHIBITOR OF INTERLEUKIN-1ß CONVERTER ENZYME (ICE)
AU2001276988B2 (en) 2000-07-21 2007-01-25 Dendreon Corporation Peptides as NS3-serine protease inhibitors of hepatitis C virus
AR034127A1 (en) 2000-07-21 2004-02-04 Schering Corp IMIDAZOLIDINONES AS INHIBITORS OF NS3-SERINA PROTEASA OF THE HEPATITIS C VIRUS, PHARMACEUTICAL COMPOSITION, A METHOD FOR THEIR PREPARATION, AND THE USE OF THE SAME FOR THE MANUFACTURE OF A MEDICINAL PRODUCT
AR029851A1 (en) 2000-07-21 2003-07-16 Dendreon Corp NEW PEPTIDES AS INHIBITORS OF NS3-SERINA PROTEASA DEL VIRUS DE HEPATITIS C
HUP0303358A3 (en) 2000-07-21 2005-10-28 Schering Corp Novel peptides as ns3-serine protease inhibitors of hepatitis c virus and pharmaceutical compositions containing them
SV2003000617A (en) * 2000-08-31 2003-01-13 Lilly Co Eli INHIBITORS OF PROTEASA PEPTIDOMIMETICA REF. X-14912M
US6846806B2 (en) 2000-10-23 2005-01-25 Bristol-Myers Squibb Company Peptide inhibitors of Hepatitis C virus NS3 protein
CA2429359A1 (en) * 2000-11-20 2002-08-08 Bristol-Myers Squibb Company Hepatitis c tripeptide inhibitors
HUP0303436A2 (en) 2000-12-12 2004-01-28 Schering Corp. Diaryl peptides as ns3-serine protease inhibitors of hepatitis c virus, pharmaceutical compositions containing them and their use
PT1355916E (en) 2001-01-22 2007-04-30 Merck & Co Inc Nucleoside derivatives as inhibitors of rna-dependent rna viral polymerase
ATE349463T1 (en) 2001-07-11 2007-01-15 Vertex Pharma BRIDGED BIZYCLIC SERINE PROTEASE INHIBITORS
WO2003024747A1 (en) 2001-09-14 2003-03-27 Honda Giken Kogyo Kabushiki Kaisha Front grill impact-absorbing structure for a vehicle
EP2402009A1 (en) * 2001-10-24 2012-01-04 Vertex Pharmaceuticals Incorporated Inhibitors of serine protease, particularly hepatitis c virus NS3-NS4A protease, incorporating a fused ring system
US20050009873A1 (en) * 2001-11-02 2005-01-13 Gianpaolo Bravi Acyl dihydro pyrrole derivatives as hcv inhibitors
US6867185B2 (en) * 2001-12-20 2005-03-15 Bristol-Myers Squibb Company Inhibitors of hepatitis C virus
AU2003207625B2 (en) 2002-01-23 2006-09-07 Schering Corporation Proline compounds as NS3-serine protease inhibitors for use in treatment of hepatites C virus infection
US7119072B2 (en) * 2002-01-30 2006-10-10 Boehringer Ingelheim (Canada) Ltd. Macrocyclic peptides active against the hepatitis C virus
US7091184B2 (en) * 2002-02-01 2006-08-15 Boehringer Ingelheim International Gmbh Hepatitis C inhibitor tri-peptides
US6642204B2 (en) * 2002-02-01 2003-11-04 Boehringer Ingelheim International Gmbh Hepatitis C inhibitor tri-peptides
CA2369970A1 (en) * 2002-02-01 2003-08-01 Boehringer Ingelheim (Canada) Ltd. Hepatitis c inhibitor tri-peptides
CA2370396A1 (en) * 2002-02-01 2003-08-01 Boehringer Ingelheim (Canada) Ltd. Hepatitis c inhibitor tri-peptides
WO2003087092A2 (en) 2002-04-11 2003-10-23 Vertex Pharmaceuticals Incorporated Inhibitors of serine proteases, particularly hepatitis c virus ns3 - ns4 protease
MY140680A (en) * 2002-05-20 2010-01-15 Bristol Myers Squibb Co Hepatitis c virus inhibitors
PL213029B1 (en) * 2002-05-20 2012-12-31 Bristol Myers Squibb Co Substituted cycloalkyl p1' hepatitis c virus inhibitors
DE60334205D1 (en) * 2002-05-20 2010-10-28 Bristol Myers Squibb Co Heterocyclische sulfonamid-hepatitis-c-virus-hemmer
US7041698B2 (en) * 2002-05-20 2006-05-09 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
KR100457857B1 (en) * 2002-05-23 2004-11-18 (주) 비엔씨바이오팜 2-[2-(3-Indolyl)ethylamino]pyridine derivatives, its preparation and antiviral pharmaceutical composition comprising the same
RS114004A (en) 2002-06-28 2007-02-05 Idenix (Cayman) Limited, Modified 2' and 3'-nucleoside produgs for treating flaviridae infections
US20040033959A1 (en) * 2002-07-19 2004-02-19 Boehringer Ingelheim Pharmaceuticals, Inc. Pharmaceutical compositions for hepatitis C viral protease inhibitors
AU2003261434A1 (en) * 2002-08-12 2004-02-25 Bristol-Myers Squibb Company Iminothiazolidinones as inhibitors of hcv replication
EP1408031A1 (en) * 2002-10-09 2004-04-14 3 D Gene Pharma Pyrolidine derivatives useful in treatment of hepatitis C virus infection
KR20050057670A (en) 2002-10-24 2005-06-16 글락소 그룹 리미티드 1-acyl-pyrrolidine derivatives for the treatment of viral infections
US20050075279A1 (en) * 2002-10-25 2005-04-07 Boehringer Ingelheim International Gmbh Macrocyclic peptides active against the hepatitis C virus
US7601709B2 (en) 2003-02-07 2009-10-13 Enanta Pharmaceuticals, Inc. Macrocyclic hepatitis C serine protease inhibitors
EP1599496B1 (en) * 2003-03-05 2010-11-03 Boehringer Ingelheim International GmbH Hepatitis c inhibitor peptide analogs
EP1601685A1 (en) * 2003-03-05 2005-12-07 Boehringer Ingelheim International GmbH Hepatitis c inhibiting compounds
KR100960802B1 (en) * 2003-03-08 2010-06-01 주식회사유한양행 Ns3 protease inhibitors for the treatment of hepatitis c virus infection
JP4231524B2 (en) * 2003-04-10 2009-03-04 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Process for producing macrocyclic compounds
EP1629000B1 (en) * 2003-04-16 2009-02-18 Bristol-Myers Squibb Company Macrocyclic isoquinoline peptide inhibitors of hepatitis c virus
US6846836B2 (en) 2003-04-18 2005-01-25 Bristol-Myers Squibb Company N-substituted phenylurea inhibitors of mitochondrial F1F0 ATP hydrolase
DE602004023924D1 (en) 2003-04-18 2009-12-17 Enanta Pharm Inc Ease-hemmer
US7176208B2 (en) 2003-04-18 2007-02-13 Enanta Pharmaceuticals, Inc. Quinoxalinyl macrocyclic hepatitis C serine protease inhibitors
DE602004010137T2 (en) * 2003-05-21 2008-09-11 Boehringer Ingelheim Pharma Gmbh & Co. Kg COMPOUNDS AS HEPATITIS C INHIBITORS
SI3521297T1 (en) 2003-05-30 2022-04-29 Gilead Pharmasset Llc Modified fluorinated nucleoside analogues
US7273851B2 (en) 2003-06-05 2007-09-25 Enanta Pharmaceuticals, Inc. Tri-peptide hepatitis C serine protease inhibitors
WO2004113365A2 (en) * 2003-06-05 2004-12-29 Enanta Pharmaceuticals, Inc. Hepatitis c serine protease tri-peptide inhibitors
US7125845B2 (en) * 2003-07-03 2006-10-24 Enanta Pharmaceuticals, Inc. Aza-peptide macrocyclic hepatitis C serine protease inhibitors
DK1658302T3 (en) * 2003-07-25 2010-11-22 Idenix Pharmaceuticals Inc Purine nucleoside analogues for the treatment of diseases caused by Flavirividae, including hepatitis C
CA2536570A1 (en) 2003-08-26 2005-03-10 Schering Corporation Novel peptidomimetic ns3-serine protease inhibitors of hepatitis c virus
US8377952B2 (en) 2003-08-28 2013-02-19 Abbott Laboratories Solid pharmaceutical dosage formulation
US8025899B2 (en) 2003-08-28 2011-09-27 Abbott Laboratories Solid pharmaceutical dosage form
PE20050374A1 (en) 2003-09-05 2005-05-30 Vertex Pharma SERINE PROTEASE INHIBITORS, IN PARTICULAR HCV PROTEASE NS3-NS4A
EA200600498A1 (en) * 2003-09-22 2006-10-27 Бёрингер Ингельхайм Интернациональ Гмбх MACROCYCLIC PEPTIDES THAT EXPRESS ANTI-VIRUS ACTIVITY AGAINST THE HEPATITIS C VIRUS
AU2004276281A1 (en) 2003-09-26 2005-04-07 Schering Corporation Macrocyclic inhibitors of hepatitis C virus NS3 serine protease
TW200528472A (en) 2003-10-10 2005-09-01 Vertex Pharma Inhibitors of serine proteases, particularly HCV ns3-ns4a protease
RS54573B1 (en) 2003-10-14 2016-06-30 F. Hoffmann-La Roche Ltd Macrocyclic carboxylic acids and acylsulfonamides as inhibitors of hcv replication
US7491794B2 (en) * 2003-10-14 2009-02-17 Intermune, Inc. Macrocyclic compounds as inhibitors of viral replication
US8187874B2 (en) 2003-10-27 2012-05-29 Vertex Pharmaceuticals Incorporated Drug discovery method
EP1944042A1 (en) 2003-10-27 2008-07-16 Vertex Pharmceuticals Incorporated Combinations for HCV treatment
CN1894276B (en) 2003-10-27 2010-06-16 威特克斯医药股份有限公司 HCV NS3-NS4A protease resistance mutants
US20050119318A1 (en) * 2003-10-31 2005-06-02 Hudyma Thomas W. Inhibitors of HCV replication
US7132504B2 (en) 2003-11-12 2006-11-07 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US7135462B2 (en) 2003-11-20 2006-11-14 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
CA2546290A1 (en) 2003-11-20 2005-06-09 Schering Corporation Depeptidized inhibitors of hepatitis c virus ns3 protease
US7309708B2 (en) * 2003-11-20 2007-12-18 Birstol-Myers Squibb Company Hepatitis C virus inhibitors
ATE424926T1 (en) * 2003-12-08 2009-03-15 Boehringer Ingelheim Int SEPARATION OF RUTHENIUM BY-PRODUCTS BY TREATMENT WITH SUPERCRITICAL LIQUIDS
RU2006125441A (en) 2003-12-15 2008-01-27 Джапан Тобакко Инк. (Jp) CYCLOPROPANE DERIVATIVES AND THEIR PHARMACEUTICAL USE
GB0500020D0 (en) 2005-01-04 2005-02-09 Novartis Ag Organic compounds
WO2005070955A1 (en) * 2004-01-21 2005-08-04 Boehringer Ingelheim International Gmbh Macrocyclic peptides active against the hepatitis c virus
PL1713823T3 (en) 2004-01-30 2010-04-30 Medivir Ab Hcv ns-3 serine protease inhibitors
SE0400199D0 (en) * 2004-01-30 2004-01-30 Medivir Ab HCV Protease Inhibitors
AU2005212257A1 (en) 2004-02-04 2005-08-25 Vertex Pharmaceuticals Incorporated Inhibitors of serine proteases, particularly HCV NS3-NS4A protease
US20050182252A1 (en) 2004-02-13 2005-08-18 Reddy K. R. Novel 2'-C-methyl nucleoside derivatives
EA200901463A1 (en) 2004-02-20 2010-08-30 Бёрингер Ингельхайм Интернациональ Гмбх VIRAL POLYMERASE INHIBITORS
US20070049593A1 (en) 2004-02-24 2007-03-01 Japan Tobacco Inc. Tetracyclic fused heterocyclic compound and use thereof as HCV polymerase inhibitor
SI1719773T1 (en) 2004-02-24 2009-08-31 Japan Tobacco Inc Fused heterotetracyclic compounds and use tehreof as hcv polymerase inhibitor
AU2005222055A1 (en) 2004-02-27 2005-09-22 Schering Corporation Compounds as inhibitors of hepatitis C virus NS3 serine protease
US7342041B2 (en) 2004-02-27 2008-03-11 Schering Corporation 3,4-(cyclopentyl)-fused proline compounds as inhibitors of hepatitis C virus NS3 serine protease
ATE434621T1 (en) 2004-02-27 2009-07-15 Schering Corp NEW COMPOUNDS AS INHIBITORS OF THE NS3 SERINE PROTEASE OF THE HEPATITIS C VIRUS
EP1730110B9 (en) * 2004-02-27 2011-11-02 Schering Corporation Sulfur compounds as inhibitors of hepatitis c virus ns3 serine protease
US7816326B2 (en) 2004-02-27 2010-10-19 Schering Corporation Sulfur compounds as inhibitors of hepatitis C virus NS3 serine protease
CA2557301A1 (en) * 2004-02-27 2005-09-15 Schering Corporation Cyclobutenedione groups-containing compounds as inhibitors of hepatitis c virus ns3 serine protease
EP1730165A1 (en) 2004-02-27 2006-12-13 Schering Corporation Inhibitors of hepatitis c virus ns3 protease
US7635694B2 (en) 2004-02-27 2009-12-22 Schering Corporation Cyclobutenedione-containing compounds as inhibitors of hepatitis C virus NS3 serine protease
PL2399916T3 (en) * 2004-03-12 2015-06-30 Vertex Pharma Process and intermediates for the preparation of aspartic acetal caspase ihnhibitors
EP1730166B1 (en) 2004-03-15 2010-03-03 Boehringer Ingelheim International Gmbh Process for preparing macrocyclic dipeptides which are suitable for the treatment of hepatitis c viral infections
WO2005095403A2 (en) * 2004-03-30 2005-10-13 Intermune, Inc. Macrocyclic compounds as inhibitors of viral replication
WO2005107742A1 (en) 2004-05-05 2005-11-17 Yale University Novel antiviral helioxanthin analogs
EP1773868B1 (en) 2004-05-20 2009-07-15 Schering Corporation Substituted prolines as inhibitors of hepatitis c virus ns3 serine protease
CA2568008C (en) * 2004-05-25 2014-01-28 Boehringer Ingelheim International Gmbh Process for preparing acyclic hcv protease inhibitors
WO2005123087A2 (en) 2004-06-15 2005-12-29 Merck & Co., Inc. C-purine nucleoside analogs as inhibitors of rna-dependent rna viral polymerase
CN1972696B (en) 2004-06-24 2010-08-11 默沙东公司 Nucleoside aryl phosphoramidates for the treatment of RNA-dependent RNA viral infection
CA2556669C (en) * 2004-06-28 2012-05-01 Boehringer Ingelheim International Gmbh Hepatitis c inhibitor peptide analogs
MX2007000584A (en) 2004-07-16 2007-06-25 Gilead Sciences Inc Antiviral compounds.
UY29016A1 (en) * 2004-07-20 2006-02-24 Boehringer Ingelheim Int ANALOGS OF INHIBITING DIPEPTIDES OF HEPATITIS C
ES2366478T3 (en) * 2004-07-20 2011-10-20 Boehringer Ingelheim International Gmbh PEPTIDE ANALOGS INHIBITORS OF HEPATITIS C.
CN101023094B (en) * 2004-07-21 2011-05-18 法莫赛特股份有限公司 Preparation of alkyl-substituted 2-deoxy-2-fluoro-d-ribofuranosyl pyrimidines and purines and their derivatives
US7597884B2 (en) 2004-08-09 2009-10-06 Alios Biopharma, Inc. Hyperglycosylated polypeptide variants and methods of use
CA2576030A1 (en) * 2004-08-09 2006-02-23 Alios Biopharma Inc. Synthetic hyperglycosylated, protease-resistant polypeptide variants, oral formulations and methods of using the same
EP1797111B1 (en) 2004-08-27 2011-06-22 Schering Corporation Acylsulfonamide compounds as inhibitors of hepatitis c virus ns3 serine protease
ES2725457T3 (en) 2004-09-14 2019-09-24 Gilead Pharmasset Llc Preparation of ribofuranosyl pyrimidines and 2'fluoro-2'-alkyl-substituted or other optionally substituted purines and their derivatives
WO2006030892A1 (en) * 2004-09-17 2006-03-23 Nippon Shinyaku Co., Ltd. Process for production of heterocyclic compounds
TW201300108A (en) 2004-10-01 2013-01-01 Vertex Pharma HCV NS3-NS4A protease inhibition
US7659263B2 (en) 2004-11-12 2010-02-09 Japan Tobacco Inc. Thienopyrrole compound and use thereof as HCV polymerase inhibitor
US7323447B2 (en) * 2005-02-08 2008-01-29 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
ES2439732T3 (en) 2005-03-08 2014-01-24 Boehringer Ingelheim International Gmbh Procedure for preparing macrocyclic compounds
JP4705164B2 (en) * 2005-05-02 2011-06-22 メルク・シャープ・エンド・ドーム・コーポレイション HCV NS3 protease inhibitor
US7592336B2 (en) * 2005-05-10 2009-09-22 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
MX2007014117A (en) 2005-05-13 2008-02-05 Virochem Pharma Inc Compounds and methods for the treatment or prevention of flavivirus infections.
US20070237818A1 (en) * 2005-06-02 2007-10-11 Malcolm Bruce A Controlled-release formulation of HCV protease inhibitor and methods using the same
US20060276404A1 (en) * 2005-06-02 2006-12-07 Anima Ghosal Medicaments and methods combining a HCV protease inhibitor and an AKR competitor
PE20070011A1 (en) * 2005-06-02 2007-03-08 Schering Corp PHARMACEUTICAL FORMULATIONS OF HCV PROTEASE INHIBITOR COMPOUNDS OR CATEPSIN
AU2006252519B2 (en) 2005-06-02 2012-08-30 Merck Sharp & Dohme Corp. HCV protease inhibitors in combination with food
MX2007016068A (en) 2005-06-17 2008-03-10 Novartis Ag Use of sanglifehrin in hcv.
US7608592B2 (en) 2005-06-30 2009-10-27 Virobay, Inc. HCV inhibitors
TWI449711B (en) * 2005-06-30 2014-08-21 Virobay Inc Hcv inhibitors
US7601686B2 (en) 2005-07-11 2009-10-13 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US7470664B2 (en) * 2005-07-20 2008-12-30 Merck & Co., Inc. HCV NS3 protease inhibitors
CA2615921C (en) * 2005-07-20 2011-09-13 Boehringer Ingelheim International Gmbh Hepatitis c inhibitor peptide analogs with a quinoline or a thienopyridine moiety
WO2007015824A2 (en) * 2005-07-25 2007-02-08 Intermune, Inc. Novel macrocyclic inhibitors of hepatitis c virus replication
EP1912997B1 (en) 2005-07-29 2011-09-14 Tibotec Pharmaceuticals Macrocyclic inhibitors of hepatitis c virus
PE20070210A1 (en) 2005-07-29 2007-04-16 Tibotec Pharm Ltd MACROCYCLIC COMPOUNDS AS INHIBITORS OF HEPATITIS C VIRUS
PL1919899T3 (en) 2005-07-29 2011-06-30 Tibotec Pharm Ltd Macrocyclic inhibitors of hepatitis c virus
PE20070343A1 (en) 2005-07-29 2007-05-12 Medivir Ab MACRO CYCLIC INHIBITORS OF HEPATITIS C VIRUS
RU2437886C2 (en) 2005-07-29 2011-12-27 Тиботек Фармасьютикалз Лтд. Macrocyclic hepatitis c virus inihbitors
PE20070211A1 (en) 2005-07-29 2007-05-12 Medivir Ab MACROCYCLIC COMPOUNDS AS INHIBITORS OF HEPATITIS C VIRUS
JP5230414B2 (en) 2005-07-29 2013-07-10 テイボテク・フアーマシユーチカルズ Macrocyclic inhibitor of hepatitis C virus
US20100120855A1 (en) 2005-07-29 2010-05-13 Tibotec Pharmaceuticals Ltd. Macrocylic inhibitors of hepatitis c virus
WO2007014924A1 (en) 2005-07-29 2007-02-08 Tibotec Pharmaceuticals Ltd. Macrocyclic inhibitors of hepatitis c virus
RU2008107972A (en) * 2005-08-01 2009-09-10 Мерк энд Ко., Инк. (US) MACROCYCLIC PEPTIDES AS HCV NS3-PROTEASE INHIBITORS
RU2441020C2 (en) * 2005-08-02 2012-01-27 Вертекс Фармасьютикалз Инкорпорейтед Serine protease inhibitors
WO2007021610A2 (en) 2005-08-09 2007-02-22 Merck & Co., Inc. Ribonucleoside cyclic acetal derivatives for the treatment of rna-dependent rna viral infection
JP5015154B2 (en) 2005-08-12 2012-08-29 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Viral polymerase inhibitor
US8399615B2 (en) 2005-08-19 2013-03-19 Vertex Pharmaceuticals Incorporated Processes and intermediates
AU2006279357B2 (en) * 2005-08-19 2012-05-31 Janssen Pharmaceutica Nv Processes and intermediates
AR055395A1 (en) 2005-08-26 2007-08-22 Vertex Pharma INHIBITING COMPOUNDS OF THE ACTIVITY OF SERINA PROTEASA NS3-NS4A OF HEPATITIS C VIRUS
US7964624B1 (en) 2005-08-26 2011-06-21 Vertex Pharmaceuticals Incorporated Inhibitors of serine proteases
ATE510846T1 (en) 2005-09-09 2011-06-15 Boehringer Ingelheim Int CYCLIZING METATHESIS PROCESS FOR THE PRODUCTION OF MACROCYCLIC PEPTIDES
NZ568135A (en) 2005-10-11 2011-06-30 Array Biopharma Inc Macrocyclic compounds and methods for inhibiting hepatitis C viral replication
US7772183B2 (en) 2005-10-12 2010-08-10 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US7741281B2 (en) 2005-11-03 2010-06-22 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US7705138B2 (en) 2005-11-11 2010-04-27 Vertex Pharmaceuticals Incorporated Hepatitis C virus variants
EP2392588A3 (en) 2005-11-11 2012-03-07 Vertex Pharmaceuticals Incorporated Hepatitis C virus variants
US7910595B2 (en) * 2005-12-21 2011-03-22 Abbott Laboratories Anti-viral compounds
DE602006015861D1 (en) 2005-12-21 2010-09-09 Abbott Lab ANTIVIRAL CONNECTIONS
US7915411B2 (en) 2005-12-21 2011-03-29 Abbott Laboratories Anti-viral compounds
EP2345652A1 (en) 2005-12-21 2011-07-20 Abbott Laboratories Antiviral compounds
US7816348B2 (en) 2006-02-03 2010-10-19 Boehringer Ingelheim International Gmbh Viral polymerase inhibitors
EP1991229A2 (en) 2006-02-27 2008-11-19 Vertex Pharmaceuticals Incorporated Co-crystals and pharmaceutical compositions comprising the same
CA2645072A1 (en) 2006-03-08 2007-09-13 Achillion Pharmaceuticals, Inc. Substituted aminothiazole derivatives with anti-hcv activity
WO2007109080A2 (en) 2006-03-16 2007-09-27 Vertex Pharmaceuticals Incorporated Deuterated hepatitis c protease inhibitors
RU2448976C2 (en) 2006-04-11 2012-04-27 Новартис Аг Hcv/hiv inhibitors and their application
GB0609492D0 (en) * 2006-05-15 2006-06-21 Angeletti P Ist Richerche Bio Therapeutic agents
CA2651762A1 (en) 2006-05-23 2007-11-29 Irm Llc Compounds and compositions as channel activating protease inhibitors
US20080187516A1 (en) * 2006-06-06 2008-08-07 Ying Sun Acyclic oximyl hepatitis c protease inhibitors
US9526769B2 (en) 2006-06-06 2016-12-27 Enanta Pharmaceuticals, Inc. Macrocylic oximyl hepatitis C protease inhibitors
US7728148B2 (en) * 2006-06-06 2010-06-01 Enanta Pharmaceuticals, Inc. Acyclic oximyl hepatitis C protease inhibitors
US8268776B2 (en) 2006-06-06 2012-09-18 Enanta Pharmaceuticals, Inc. Macrocylic oximyl hepatitis C protease inhibitors
GB0612423D0 (en) * 2006-06-23 2006-08-02 Angeletti P Ist Richerche Bio Therapeutic agents
UY30437A1 (en) * 2006-06-26 2008-01-31 Enanta Pharm Inc QUINOXALINIL MACROCECLIC INHIBITORS OF SERINE PROTEASE VIRUS OF HEPATITIS C
RU2008152171A (en) * 2006-07-05 2010-08-10 Интермьюн, Инк. (Us) NEW HEPATITIS C VIRAL REPLICATION INHIBITORS
WO2008008776A2 (en) 2006-07-11 2008-01-17 Bristol-Myers Squibb Company Hepatitis c virus inhibitors
US20090035267A1 (en) * 2007-07-31 2009-02-05 Moore Joel D Acyclic, pyridazinone-derived hepatitis c serine protease inhibitors
US7718612B2 (en) * 2007-08-02 2010-05-18 Enanta Pharmaceuticals, Inc. Pyridazinonyl macrocyclic hepatitis C serine protease inhibitors
US7635683B2 (en) * 2006-08-04 2009-12-22 Enanta Pharmaceuticals, Inc. Quinoxalinyl tripeptide hepatitis C virus inhibitors
US20090098085A1 (en) * 2006-08-11 2009-04-16 Ying Sun Tetrazolyl acyclic hepatitis c serine protease inhibitors
EP1886685A1 (en) 2006-08-11 2008-02-13 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods, uses and compositions for modulating replication of hcv through the farnesoid x receptor (fxr) activation or inhibition
WO2008022006A2 (en) * 2006-08-11 2008-02-21 Enanta Pharmaceuticals, Inc. Arylalkoxyl hepatitis c virus protease inhibitors
US7582605B2 (en) * 2006-08-11 2009-09-01 Enanta Pharmaceuticals, Inc. Phosphorus-containing hepatitis C serine protease inhibitors
US7687459B2 (en) * 2006-08-11 2010-03-30 Enanta Pharmaceuticals, Inc. Arylalkoxyl hepatitis C virus protease inhibitors
US7605126B2 (en) * 2006-08-11 2009-10-20 Enanta Pharmaceuticals, Inc. Acylaminoheteroaryl hepatitis C virus protease inhibitors
US20080038225A1 (en) * 2006-08-11 2008-02-14 Ying Sun Triazolyl acyclic hepatitis c serine protease inhibitors
MX2009000882A (en) 2006-08-17 2009-02-04 Boehringer Ingelheim Int Viral polymerase inhibitors.
WO2008063727A2 (en) * 2006-08-21 2008-05-29 United Therapeutics Corporation Combination therapy for treatment of viral infections
WO2008051514A2 (en) * 2006-10-24 2008-05-02 Merck & Co., Inc. Hcv ns3 protease inhibitors
CA2667165A1 (en) * 2006-10-24 2008-05-02 Merck & Co., Inc. Hcv ns3 protease inhibitors
JP5345541B2 (en) * 2006-10-24 2013-11-20 メルク・シャープ・アンド・ドーム・コーポレーション HCV NS3 protease inhibitor
US8377874B2 (en) * 2006-10-27 2013-02-19 Merck Sharp & Dohme Corp. HCV NS3 protease inhibitors
JP5268927B2 (en) * 2006-10-27 2013-08-21 メルク・シャープ・アンド・ドーム・コーポレーション HCV NS3 protease inhibitor
US8343477B2 (en) 2006-11-01 2013-01-01 Bristol-Myers Squibb Company Inhibitors of hepatitis C virus
TW200827364A (en) * 2006-11-02 2008-07-01 Taigen Biotechnology Co Ltd HCV protease inhibitors
US7772180B2 (en) * 2006-11-09 2010-08-10 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
CA2670260A1 (en) 2006-11-15 2008-05-22 Virochem Pharma Inc. Thiophene analogues for the treatment or prevention of flavivirus infections
US7888464B2 (en) 2006-11-16 2011-02-15 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US8003604B2 (en) 2006-11-16 2011-08-23 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US7763584B2 (en) 2006-11-16 2010-07-27 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
CA2661338C (en) 2006-11-17 2015-05-12 Tibotec Pharmaceuticals Ltd. Macrocyclic inhibitors of hepatitis c virus
EP2428204A3 (en) 2006-12-07 2012-07-04 Schering Corporation pH sensitive matrix formulation
US8101595B2 (en) * 2006-12-20 2012-01-24 Istituto di Ricerche di Biologia Molecolare P. Angletti SpA Antiviral indoles
GB0625345D0 (en) * 2006-12-20 2007-01-31 Angeletti P Ist Richerche Bio Therapeutic compounds
WO2008133753A2 (en) * 2006-12-20 2008-11-06 Abbott Laboratories Anti-viral compounds
GB0625349D0 (en) * 2006-12-20 2007-01-31 Angeletti P Ist Richerche Bio Therapeutic compounds
WO2008074035A1 (en) * 2006-12-27 2008-06-19 Abbott Laboratories Hcv protease inhibitors and uses thereof
US20080207528A1 (en) * 2007-02-01 2008-08-28 Syaulan Yang Hcv protease inhibitors
SI2114924T1 (en) 2007-02-27 2012-06-29 Vertex Pharma Co-crystals and pharmaceutical compositions comprising the same
EP2134717A2 (en) 2007-02-27 2009-12-23 Vertex Pharmceuticals Incorporated Inhibitors of serine proteases
WO2008106167A1 (en) * 2007-02-28 2008-09-04 Conatus Pharmaceuticals, Inc. Combination therapy comprising matrix metalloproteinase inhibitors and caspase inhibitors for the treatment of liver diseases
CA2696053A1 (en) 2007-02-28 2008-09-04 Conatus Pharmaceuticals, Inc. Methods for the treatment of liver diseases
WO2009008913A2 (en) * 2007-03-23 2009-01-15 Schering Corporation P1-nonepimerizable ketoamide inhibitors of hcv ns3 protease
US7964580B2 (en) 2007-03-30 2011-06-21 Pharmasset, Inc. Nucleoside phosphoramidate prodrugs
US8377872B2 (en) 2007-04-26 2013-02-19 Enanta Pharmaceuticals, Inc. Cyclic P3 tripeptide hepatitis C serine protease inhibitors
US7910587B2 (en) * 2007-04-26 2011-03-22 Enanta Pharmaceuticals, Inc. Quinoxalinyl dipeptide hepatitis C virus inhibitors
US20080317712A1 (en) * 2007-04-26 2008-12-25 Deqiang Niu Arylpiperidinyl and arylpyrrolidinyl tripeptide hepatitis c serine protease inhibitors
US20080267917A1 (en) * 2007-04-26 2008-10-30 Deqiang Niu N-functionalized amides as hepatitis c serine protease inhibitors
US20080292587A1 (en) * 2007-04-26 2008-11-27 Ying Sun Oximyl dipeptide hepatitis c protease inhibitors
NZ581606A (en) * 2007-05-03 2012-06-29 Intermune Inc Novel macrocyclic inhibitors of hepatitis c virus replication
NZ580917A (en) 2007-05-04 2012-06-29 Vertex Pharma Combinations of protease inhibitors such as VX-950 and polymerase inhibitors for the treatment of HCV infection
KR20120011093A (en) * 2007-05-09 2012-02-06 화이자 인코포레이티드 Substituted heterocyclic derivatives and compositions and their pharmaceutical use as antibacterials
AU2008251425A1 (en) 2007-05-10 2008-11-20 Array Biopharma, Inc. Novel peptide inhibitors of hepatitis C virus replication
GB0709791D0 (en) * 2007-05-22 2007-06-27 Angeletti P Ist Richerche Bio Antiviral agents
WO2009005677A2 (en) * 2007-06-29 2009-01-08 Gilead Sciences, Inc. Antiviral compounds
UA98494C2 (en) * 2007-06-29 2012-05-25 Гіліад Сайєнсіз, Інк. Antiviral compounds
WO2009010783A1 (en) * 2007-07-17 2009-01-22 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti Spa Macrocyclic indole derivatives for the treatment of hepatitis c infections
EP2178902B1 (en) * 2007-07-19 2012-11-28 Istituto di Ricerche di Biologia Molecolare P. Angeletti S.R.L. Macrocyclic compounds as antiviral agents
US8242140B2 (en) 2007-08-03 2012-08-14 Boehringer Ingelheim International Gmbh Viral polymerase inhibitors
WO2009032198A1 (en) 2007-08-30 2009-03-12 Vertex Pharmaceuticals Incorporated Co-crystals and pharmaceutical compositions comprising the same
GB0718575D0 (en) 2007-09-24 2007-10-31 Angeletti P Ist Richerche Bio Nucleoside derivatives as inhibitors of viral polymerases
US8419332B2 (en) * 2007-10-19 2013-04-16 Atlas Bolt & Screw Company Llc Non-dimpling fastener
US20090111757A1 (en) * 2007-10-25 2009-04-30 Taigen Biotechnology Co., Ltd. Hcv protease inhibitors
US8383583B2 (en) 2007-10-26 2013-02-26 Enanta Pharmaceuticals, Inc. Macrocyclic, pyridazinone-containing hepatitis C serine protease inhibitors
MX2010005261A (en) 2007-11-14 2010-10-15 Enanta Pharm Inc Macrocyclic tetrazolyl hepatitis c serine protease inhibitors.
WO2009070689A1 (en) * 2007-11-29 2009-06-04 Enanta Pharmaceuticals, Inc. Bicyclic, c5-substituted proline derivatives as inhibitors of the hepatitis c virus ns3 protease
WO2009070692A1 (en) * 2007-11-29 2009-06-04 Enanta Pharmaceuticals, Inc. C5-substituted, proline-derived, macrocyclic hepatitis c serine protease inhibitors
CN101977621A (en) 2007-12-05 2011-02-16 益安药业 Fluorinated tripeptide hcv serine protease inhibitors
US8361958B2 (en) * 2007-12-05 2013-01-29 Enanta Pharmaceuticals, Inc. Oximyl HCV serine protease inhibitors
CA2708047A1 (en) 2007-12-06 2009-06-11 Enanta Pharmaceuticals, Inc. Process for making macrocyclic oximyl hepatitis c protease inhibitors
US8273709B2 (en) 2007-12-14 2012-09-25 Enanta Pharmaceuticals, Inc. Triazole-containing macrocyclic HCV serine protease inhibitors
JP5623289B2 (en) 2007-12-19 2014-11-12 ベーリンガーインゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Viral polymerase inhibitor
US8202996B2 (en) 2007-12-21 2012-06-19 Bristol-Myers Squibb Company Crystalline forms of N-(tert-butoxycarbonyl)-3-methyl-L-valyl-(4R)-4-((7-chloro-4-methoxy-1-isoquinolinyl)oxy)-N- ((1R,2S)-1-((cyclopropylsulfonyl)carbamoyl)-2-vinylcyclopropyl)-L-prolinamide
CA2712940A1 (en) * 2008-01-24 2009-07-30 Enanta Pharmaceuticals, Inc. Heteroaryl-containing tripeptide hcv serine protease inhibitors
WO2009094443A1 (en) * 2008-01-24 2009-07-30 Enanta Pharmaceuticals, Inc. Difluorinated tripeptides as hcv serine protease inhibitors
MX2010008523A (en) 2008-02-04 2010-08-31 Idenix Pharmaceuticals Inc Macrocyclic serine protease inhibitors.
JP5718647B2 (en) * 2008-02-07 2015-05-13 ビロベイ,インコーポレイティド Cathepsin B inhibitor
JP5608563B2 (en) 2008-02-25 2014-10-15 メルク・シャープ・アンド・ドーム・コーポレーション Therapeutic compounds
US8372802B2 (en) * 2008-03-20 2013-02-12 Enanta Pharmaceuticals, Inc. Fluorinated macrocyclic compounds as hepatitis C virus inhibitors
TW200946541A (en) * 2008-03-27 2009-11-16 Idenix Pharmaceuticals Inc Solid forms of an anti-HIV phosphoindole compound
EA201071034A1 (en) 2008-04-15 2011-06-30 Интермьюн, Инк. NEW MACROCYCLIC INHIBITORS OF HEPATITIS C VIRUS REPLICATIONS
US8163921B2 (en) 2008-04-16 2012-04-24 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
EP2271345B1 (en) * 2008-04-28 2015-05-20 Merck Sharp & Dohme Corp. Hcv ns3 protease inhibitors
US8211891B2 (en) * 2008-04-30 2012-07-03 Enanta Pharmaceuticals, Inc. Difluoromethyl-containing macrocyclic compounds as hepatitis C virus inhibitors
US20090285774A1 (en) * 2008-05-15 2009-11-19 Bristol-Myers Squibb Company Hepatitis C Virus Inhibitors
CN101580535B (en) * 2008-05-16 2012-10-03 太景生物科技股份有限公司 Hcv protease inhibitors
US7964560B2 (en) 2008-05-29 2011-06-21 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US8044023B2 (en) 2008-05-29 2011-10-25 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US8173621B2 (en) 2008-06-11 2012-05-08 Gilead Pharmasset Llc Nucleoside cyclicphosphates
CN102177172A (en) 2008-07-02 2011-09-07 埃迪尼克斯医药公司 Compounds and pharmaceutical compositions for the treatment of viral infections
EP2540349B1 (en) * 2008-07-22 2014-02-12 Merck Sharp & Dohme Corp. Pharmaceutical compositions comprising a macrocyclic quinoxaline compound which is an hcv ns3 protease inhibitor
CA2730517A1 (en) 2008-07-23 2010-01-28 F. Hoffmann-La Roche Ag Heterocyclic antiviral compounds
US8207341B2 (en) * 2008-09-04 2012-06-26 Bristol-Myers Squibb Company Process or synthesizing substituted isoquinolines
UY32099A (en) 2008-09-11 2010-04-30 Enanta Pharm Inc HEPATITIS C SERINA PROTEASAS MACROCYCLIC INHIBITORS
NZ591013A (en) * 2008-09-16 2012-09-28 Boehringer Ingelheim Int Crystalline forms of a 2-thiazolyl- 4-quinolinyl-oxy derivative, a potent hepatitis c viral inhibitor
CA2737376A1 (en) * 2008-09-17 2010-03-25 Boehringer Ingelheim International Gmbh Combination of hcv ns3 protease inhibitor with interferon and ribavirin
BRPI0920513A2 (en) 2008-09-26 2019-09-24 F Hoffamann La Roche Ag pyrine or pyrazine derivatives to treat hcv
US8044087B2 (en) 2008-09-29 2011-10-25 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US8563505B2 (en) 2008-09-29 2013-10-22 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
EP3025727A1 (en) 2008-10-02 2016-06-01 The J. David Gladstone Institutes Methods of treating liver disease
EP2358736A1 (en) * 2008-10-15 2011-08-24 Intermune, Inc. Therapeutic antiviral peptides
CN102186823A (en) 2008-10-30 2011-09-14 弗·哈夫曼-拉罗切有限公司 Heterocyclic antiviral arylpyridone derivatives
PL2358355T3 (en) * 2008-11-21 2014-04-30 Boehringer Ingelheim Int Pharmaceutical composition of a potent hcv inhibitor for oral administration
US9120779B2 (en) 2008-12-03 2015-09-01 Presidio Pharmaceuticals, Inc. Inhibitors of HCV NS5A
EP2682393A1 (en) 2008-12-03 2014-01-08 Presidio Pharmaceuticals, Inc. Inhibitors of HCV NS5A comprising a bicyclic core.
US20100272674A1 (en) * 2008-12-04 2010-10-28 Bristol-Myers Squibb Company Hepatitis C Virus Inhibitors
US8283310B2 (en) 2008-12-15 2012-10-09 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US20100160403A1 (en) * 2008-12-19 2010-06-24 Gilead Sciences, Inc. Hcv ns3 protease inhibitors
MX2011006647A (en) 2008-12-22 2011-07-12 Hoffmann La Roche Heterocyclic antiviral compounds.
UY32332A (en) 2008-12-22 2010-07-30 Gilead Sciences Inc MACROCYCLIC COMPOUNDS ITS DRUGS, N-OXIDES, ADDITION SALTS, QUATERNARY AMINES, METAL COMPLEXES AND STEREOCHEMICALLY ISOMERIC PURE FORMS.
AU2009329872B2 (en) 2008-12-23 2016-07-07 Gilead Pharmasset Llc Synthesis of purine nucleosides
AR074897A1 (en) 2008-12-23 2011-02-23 Pharmasset Inc NUCLEOSID PHOSPHORAMIDATES
NZ617066A (en) 2008-12-23 2015-02-27 Gilead Pharmasset Llc Nucleoside analogs
WO2010080874A1 (en) 2009-01-07 2010-07-15 Scynexis, Inc. Cyclosporine derivative for use in the treatment of hcv and hiv infection
WO2010082050A1 (en) 2009-01-16 2010-07-22 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti S.P.A. Macrocyclic and 7-aminoalkyl-substituted benzoxazocines for treatment of hepatitis c infections
GB0900914D0 (en) 2009-01-20 2009-03-04 Angeletti P Ist Richerche Bio Antiviral agents
US8102720B2 (en) * 2009-02-02 2012-01-24 Qualcomm Incorporated System and method of pulse generation
AR075584A1 (en) 2009-02-27 2011-04-20 Intermune Inc THERAPEUTIC COMPOSITIONS THAT INCLUDE beta-D-2'-DESOXI-2'-FLUORO-2'-C-METHYLYCTIDINE AND A CARDIEX ISOINDOL ACID DERIVATIVE AND ITS USES. COMPOUND.
EP2403860B1 (en) 2009-03-04 2015-11-04 IDENIX Pharmaceuticals, Inc. Phosphothiophene and phosphothiazole as hcv polymerase inhibitors
SG174252A1 (en) 2009-03-06 2011-10-28 Hoffmann La Roche Heterocyclic antiviral compounds
JP2012520884A (en) 2009-03-18 2012-09-10 ザ ボード オブ トラスティーズ オブ ザ リランド スタンフォード ジュニア ユニバーシティー Methods and compositions for treating flaviviridae viral infections
WO2010111534A1 (en) 2009-03-27 2010-09-30 Presidio Pharmaceuticals, Inc. Fused ring inhibitors of hepatitis c
US8927576B2 (en) 2009-04-06 2015-01-06 PTC Therpeutics, Inc. HCV inhibitor and therapeutic agent combinations
JP2012523419A (en) 2009-04-08 2012-10-04 イデニク プハルマセウティカルス,インコーポレイテッド Macrocyclic serine protease inhibitor
US20110182850A1 (en) 2009-04-10 2011-07-28 Trixi Brandl Organic compounds and their uses
US8512690B2 (en) 2009-04-10 2013-08-20 Novartis Ag Derivatised proline containing peptide compounds as protease inhibitors
SG175774A1 (en) 2009-04-25 2011-12-29 Hoffmann La Roche Heterocyclic antiviral compounds
EP2429568B1 (en) 2009-05-13 2016-08-17 Enanta Pharmaceuticals, Inc. Macrocyclic compounds as hepatitis c virus inhibitors
US8618076B2 (en) 2009-05-20 2013-12-31 Gilead Pharmasset Llc Nucleoside phosphoramidates
TWI598358B (en) * 2009-05-20 2017-09-11 基利法瑪席特有限責任公司 Nucleoside phosphoramidates
AR077004A1 (en) * 2009-06-09 2011-07-27 Hoffmann La Roche ANTIVIRAL HETEROCICLIC COMPOUNDS
EP2445875A2 (en) 2009-06-24 2012-05-02 F. Hoffmann-La Roche AG Heterocyclic antiviral compound
US8232246B2 (en) * 2009-06-30 2012-07-31 Abbott Laboratories Anti-viral compounds
JP2012532146A (en) * 2009-07-02 2012-12-13 ドクター・レディーズ・ラボラトリーズ・リミテッド Enzymes and methods for resolution of aminovinylcyclopropanecarboxylic acid derivatives
EP2451438B8 (en) 2009-07-07 2014-04-09 Boehringer Ingelheim International GmbH Pharmaceutical composition for a hepatitis c viral protease inhibitor
EP2459582B1 (en) 2009-07-30 2015-05-27 Merck Sharp & Dohme Corp. Hepatitis c virus ns3 protease inhibitors
US9284307B2 (en) 2009-08-05 2016-03-15 Idenix Pharmaceuticals Llc Macrocyclic serine protease inhibitors
US8742162B2 (en) 2009-08-10 2014-06-03 Sumitomo Chemical Company, Limited Method for producing optically active 1-amino-2-vinylcyclopropanecarboxylic acid ester
US8324417B2 (en) 2009-08-19 2012-12-04 Virobay, Inc. Process for the preparation of (S)-2-amino-5-cyclopropyl-4,4-difluoropentanoic acid and alkyl esters and acid salts thereof
AU2009352688B2 (en) * 2009-09-15 2014-04-17 Taigen Biotechnology Co., Ltd. HCV protease inhibitors
KR20130026410A (en) * 2009-09-28 2013-03-13 Intermune Inc Cyclic peptide inhibitors of hepatitis c virus replication
TW201119667A (en) * 2009-10-19 2011-06-16 Enanta Pharm Inc Bismacrocyclic compounds as hepatitis C virus inhibitors
WO2011053617A1 (en) 2009-10-30 2011-05-05 Boehringer Ingelheim International Gmbh Dosage regimens for hcv combination therapy comprising bi201335, interferon alpha and ribavirin
WO2011063076A1 (en) 2009-11-19 2011-05-26 Itherx Pharmaceuticals, Inc. Methods of treating hepatitis c virus with oxoacetamide compounds
EP2504329A1 (en) 2009-11-25 2012-10-03 Vertex Pharmaceuticals Incorporated 5-alkynyl-thiophene-2-carboxylic acid derivatives and their use for the treatment or prevention of flavivirus infections
MY159958A (en) 2009-12-18 2017-02-15 Idenix Pharmaceuticals Inc 5,5-fused arylene or heteroarylene hepatitis c virus inhibitors
EP2515902A1 (en) 2009-12-24 2012-10-31 Vertex Pharmaceuticals Incorporated Analogues for the treatment or prevention of flavivirus infections
US20110178107A1 (en) * 2010-01-20 2011-07-21 Taigen Biotechnology Co., Ltd. Hcv protease inhibitors
CA2788155C (en) 2010-01-27 2018-04-24 AB Pharma Ltd. Polyheterocyclic compounds highly potent as hcv inhibitors
US8530497B2 (en) 2010-03-11 2013-09-10 Boehringer Ingelheim International Gmbh Crystalline salts of a potent HCV inhibitor
EP2550268A1 (en) 2010-03-24 2013-01-30 Vertex Pharmaceuticals Incorporated Analogues for the treatment or prevention of flavivirus infections
CA2794145A1 (en) 2010-03-24 2011-09-29 Vertex Pharmaceuticals Incorporated Analogues for the treatment or prevention of flavivirus infections
EP2550262A1 (en) 2010-03-24 2013-01-30 Vertex Pharmaceuticals Incorporated Analogues for the treatment or prevention of flavivirus infections
TW201200522A (en) 2010-03-24 2012-01-01 Vertex Pharma Analogues for the treatment or prevention of flavivirus infections
CN102906102A (en) 2010-03-31 2013-01-30 吉利德制药有限责任公司 Stereoselective synthesis of phosphorus containing actives
US8563530B2 (en) 2010-03-31 2013-10-22 Gilead Pharmassel LLC Purine nucleoside phosphoramidate
EP2552203B1 (en) 2010-04-01 2017-03-22 Idenix Pharmaceuticals LLC. Compounds and pharmaceutical compositions for the treatment of viral infections
EP2575866A4 (en) 2010-05-24 2013-10-16 Presidio Pharmaceuticals Inc Inhibitors of hcv ns5a
WO2011156545A1 (en) 2010-06-09 2011-12-15 Vertex Pharmaceuticals Incorporated Viral dynamic model for hcv combination therapy
WO2011159826A2 (en) 2010-06-15 2011-12-22 Vertex Pharmaceuticals Incorporated Hcv ns5b protease mutants
JP2013531011A (en) 2010-06-28 2013-08-01 バーテックス ファーマシューティカルズ インコーポレイテッド Compounds and methods for the treatment or prevention of flavivirus infections
WO2012006070A1 (en) 2010-06-28 2012-01-12 Vertex Pharmaceuticals Incorporated Compounds and methods for the treatment or prevention of flavivirus infections
AU2011276526A1 (en) 2010-06-28 2013-01-10 Vertex Pharmaceuticals Incorporated Compounds and methods for the treatment or prevention of Flavivirus infections
AU2011292040A1 (en) 2010-08-17 2013-03-07 Vertex Pharmaceuticals Incorporated Compounds and methods for the treatment or prevention of Flaviviridae viral infections
UA116616C2 (en) 2010-09-21 2018-04-25 Енанта Фармасьютікалз, Інк. HCV SERINE PROTEASE INHIBITORS RECEIVED FROM MACROCYCLIC PROLINE
AP2013006734A0 (en) * 2010-09-30 2013-02-28 Boehringer Ingelheim Int Combination therapy for treating HCV infection
JP5909495B2 (en) 2010-10-08 2016-04-26 ノバルティス アーゲー Vitamin E formulation of sulfamide NS3 inhibitor
EP3042910B1 (en) 2010-11-30 2019-01-09 Gilead Pharmasset LLC 2'-spiro-nucleosides for use in the therapy of hepatitis c
WO2012083170A1 (en) * 2010-12-16 2012-06-21 Abbott Laboratories Anti-viral compounds
AU2011352145A1 (en) 2010-12-30 2013-07-18 Abbvie Inc. Phenanthridine macrocyclic hepatitis C serine protease inhibitors
MX2013007677A (en) 2010-12-30 2013-07-30 Abbvie Inc Macrocyclic hepatitis c serine protease inhibitors.
US9353100B2 (en) 2011-02-10 2016-05-31 Idenix Pharmaceuticals Llc Macrocyclic serine protease inhibitors, pharmaceutical compositions thereof, and their use for treating HCV infections
WO2012107589A1 (en) 2011-02-11 2012-08-16 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and pharmaceutical compositions for the treatment and prevention of hcv infections
WO2012123298A1 (en) 2011-03-11 2012-09-20 F. Hoffmann-La Roche Ag Antiviral compounds
US20120252721A1 (en) 2011-03-31 2012-10-04 Idenix Pharmaceuticals, Inc. Methods for treating drug-resistant hepatitis c virus infection with a 5,5-fused arylene or heteroarylene hepatitis c virus inhibitor
US9243025B2 (en) 2011-03-31 2016-01-26 Idenix Pharmaceuticals, Llc Compounds and pharmaceutical compositions for the treatment of viral infections
US8957203B2 (en) 2011-05-05 2015-02-17 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
US10201584B1 (en) 2011-05-17 2019-02-12 Abbvie Inc. Compositions and methods for treating HCV
US8691757B2 (en) 2011-06-15 2014-04-08 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
WO2012171332A1 (en) 2011-06-16 2012-12-20 爱博新药研发(上海)有限公司 Macrocyclic heterocyclic compound for inhibiting hepatitis c virus and preparation and use thereof
WO2012176715A1 (en) 2011-06-21 2012-12-27 三菱瓦斯化学株式会社 1-amino-2-vinyl cyclopropane carboxylic acid amide, salt of same, and method for producing same
US20120328565A1 (en) 2011-06-24 2012-12-27 Brinkman John A Antiviral compounds
CN102807607B (en) * 2011-07-22 2013-10-23 爱博新药研发(上海)有限公司 Fused ring heterocycle compound for restraining hepatitis c virus, midbody and application of fused ring heterocycle compound
WO2013016499A1 (en) 2011-07-26 2013-01-31 Vertex Pharmaceuticals Incorporated Methods for preparation of thiophene compounds
TW201317223A (en) 2011-07-26 2013-05-01 Vertex Pharma Thiophene compounds
DE102012016127A1 (en) 2011-08-31 2013-02-28 Daniel Elias Error correction encoding apparatus for data stream, supplies one of m' mutually different synchronous words to each block in error correction information
EP2755985B1 (en) 2011-09-12 2017-11-01 Idenix Pharmaceuticals LLC Compounds and pharmaceutical compositions for the treatment of viral infections
US9403863B2 (en) 2011-09-12 2016-08-02 Idenix Pharmaceuticals Llc Substituted carbonyloxymethylphosphoramidate compounds and pharmaceutical compositions for the treatment of viral infections
CA2847083A1 (en) 2011-10-10 2013-04-18 F. Hoffmann-La Roche Ag Antiviral compounds
AR089650A1 (en) 2011-10-14 2014-09-10 Idenix Pharmaceuticals Inc PHOSPHATES 3,5-REPLACED CYCLES OF PURINE NUCLEOTIDE COMPOUNDS AND PHARMACEUTICAL COMPOSITIONS FOR THE TREATMENT OF VIRAL INFECTIONS
US8466159B2 (en) 2011-10-21 2013-06-18 Abbvie Inc. Methods for treating HCV
BR112014006314A2 (en) 2011-10-21 2017-04-11 Abbvie Inc methods for treating hepatitis c virus (hcv) comprising at least two direct acting antiviral agents, ribavirin, without interferon
DE202012013117U1 (en) 2011-10-21 2015-01-16 Abbvie Inc. Combination treatment (e.g., with ABT-072 or ABT-333 from DAAs for use in the treatment of HCV)
US8492386B2 (en) 2011-10-21 2013-07-23 Abbvie Inc. Methods for treating HCV
WO2013074386A2 (en) 2011-11-15 2013-05-23 Merck Sharp & Dohme Corp. Hcv ns3 protease inhibitors
US8889159B2 (en) 2011-11-29 2014-11-18 Gilead Pharmasset Llc Compositions and methods for treating hepatitis C virus
EP3750544A3 (en) 2011-11-30 2021-03-24 Emory University Jak inhibitors for use in the prevention or treatment of viral infection
MY171759A (en) 2011-12-06 2019-10-28 Univ Leland Stanford Junior Methods and compositions for treating viral diseases
US9133170B2 (en) 2011-12-16 2015-09-15 Hoffmann-La Roche Inc. Inhibitors of HCV NS5A
PE20141599A1 (en) 2011-12-20 2014-10-30 Hoffmann La Roche DERIVATIVES OF NUCLEOSIDES SUBSTITUTED IN 4'-AZIDE, 3'-FLUORINE AS INHIBITORS OF HCV RNA REPLICATION
WO2013092481A1 (en) 2011-12-20 2013-06-27 F. Hoffmann-La Roche Ag 2',4'-difluoro-2'-methyl substituted nucleoside derivatives as inhibitors of hcv rna replication
EA201400808A1 (en) 2012-01-12 2015-02-27 Бёрингер Ингельхайм Интернациональ Гмбх STABILIZED PHARMACEUTICAL COMPOSITIONS OF A STRONGLY ACTIVE HEPATITIS VIRUS INHIBITOR
WO2013106344A1 (en) 2012-01-12 2013-07-18 Ligand Pharmaceuticals, Inc. 2 '-c-methyl nucleosides containing a cyclic phosphate diester of 1, 3-propanediol (2-oxo-[1, 3, 2]-dioxaphosphorinane) at position 5'
US20130217644A1 (en) 2012-02-13 2013-08-22 Idenix Pharmaceuticals, Inc. Pharmaceutical Compositions of 2'-C-Methyl-Guanosine, 5'-[2[(3-Hydroxy-2,2-Dimethyl-1-Oxopropyl)Thio]Ethyl N-(Phenylmethyl)Phosphoramidate]
MX2014009799A (en) * 2012-02-24 2014-09-08 Hoffmann La Roche Antiviral compounds.
JP2015509980A (en) 2012-03-14 2015-04-02 ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Combination therapy to treat HCV infection in a population of HCV-HIV co-infected patients
WO2013142157A1 (en) 2012-03-22 2013-09-26 Alios Biopharma, Inc. Pharmaceutical combinations comprising a thionucleotide analog
WO2013147749A1 (en) 2012-03-27 2013-10-03 Boehringer Ingelheim International Gmbh Oral combination therapy for treating hcv infection in specific patient subgenotype populations
WO2013147750A1 (en) 2012-03-27 2013-10-03 Boehringer Ingelheim International Gmbh Oral combination therapy for treating hcv infection in specific patient sub-population
WO2013143581A1 (en) 2012-03-28 2013-10-03 Boehringer Ingelheim International Gmbh Combination therapy for treating hcv infection in specific patient subgenotype sub-population
WO2013177195A1 (en) 2012-05-22 2013-11-28 Idenix Pharmaceuticals, Inc. 3',5'-cyclic phosphate prodrugs for hcv infection
WO2013177188A1 (en) 2012-05-22 2013-11-28 Idenix Pharmaceuticals, Inc. 3',5'-cyclic phosphoramidate prodrugs for hcv infection
EP2852603B1 (en) 2012-05-22 2021-05-12 Idenix Pharmaceuticals LLC D-amino acid compounds for liver disease
US20140010783A1 (en) 2012-07-06 2014-01-09 Hoffmann-La Roche Inc. Antiviral compounds
MD20150036A2 (en) 2012-10-08 2015-08-31 Idenix Pharmaceuticals, Inc. 2'-Chloro nucleoside analogs for HCV infection
SI2909205T1 (en) 2012-10-19 2017-02-28 Bristol-Myers Squibb Company 9-methyl substituted hexadecahydrocyclopropa(e)pyrrolo(1,2-a)(1,4)diazacyclopentadecinyl carbamate derivatives as non-structural 3 (ns3) protease inhibitors for the treatment of hepatitis c virus infections
WO2014063019A1 (en) 2012-10-19 2014-04-24 Idenix Pharmaceuticals, Inc. Dinucleotide compounds for hcv infection
WO2014066239A1 (en) 2012-10-22 2014-05-01 Idenix Pharmaceuticals, Inc. 2',4'-bridged nucleosides for hcv infection
WO2014071007A1 (en) 2012-11-02 2014-05-08 Bristol-Myers Squibb Company Hepatitis c virus inhibitors
EP2914613B1 (en) 2012-11-02 2017-11-22 Bristol-Myers Squibb Company Hepatitis c virus inhibitors
US9643999B2 (en) 2012-11-02 2017-05-09 Bristol-Myers Squibb Company Hepatitis C virus inhibitors
EP2914614B1 (en) 2012-11-05 2017-08-16 Bristol-Myers Squibb Company Hepatitis c virus inhibitors
WO2014078427A1 (en) 2012-11-14 2014-05-22 Idenix Pharmaceuticals, Inc. D-alanine ester of rp-nucleoside analog
EP2938624A1 (en) 2012-11-14 2015-11-04 IDENIX Pharmaceuticals, Inc. D-alanine ester of sp-nucleoside analog
CN103804208B (en) * 2012-11-14 2016-06-08 重庆博腾制药科技股份有限公司 A kind of preparation method of hepatitis C pharmaceutical intermediate
US9211300B2 (en) 2012-12-19 2015-12-15 Idenix Pharmaceuticals Llc 4′-fluoro nucleosides for the treatment of HCV
RU2015132550A (en) 2013-01-23 2017-03-02 Ф. Хоффманн-Ля Рош Аг TRIAZOLE ANTIVIRAL DERIVATIVES
WO2014121417A1 (en) 2013-02-07 2014-08-14 Merck Sharp & Dohme Corp. Tetracyclic heterocycle compounds and methods of use thereof for the treatment of hepatitis c
WO2014121418A1 (en) 2013-02-07 2014-08-14 Merck Sharp & Dohme Corp. Tetracyclic heterocycle compounds and methods of use thereof for the treatment of hepatitis c
US20150065439A1 (en) 2013-02-28 2015-03-05 Vertex Pharmaceuticals Incorporated Pharmaceutical compositions
EP2970358B1 (en) 2013-03-04 2021-06-30 Idenix Pharmaceuticals LLC 3'-deoxy nucleosides for the treatment of hcv
WO2014137930A1 (en) 2013-03-04 2014-09-12 Idenix Pharmaceuticals, Inc. Thiophosphate nucleosides for the treatment of hcv
JP6018715B2 (en) 2013-03-05 2016-11-02 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Antiviral compounds
EP2964664B1 (en) 2013-03-07 2017-01-11 Bristol-Myers Squibb Company Hepatitis c virus inhibitors
WO2014138374A1 (en) 2013-03-08 2014-09-12 Boehringer Ingelheim International Gmbh Oral combination therapy for treating hcv infection in specific patient sub-population
SG11201507469RA (en) 2013-03-14 2015-10-29 Achillion Pharmaceuticals Inc Processes for producing sovaprevir
US9187515B2 (en) 2013-04-01 2015-11-17 Idenix Pharmaceuticals Llc 2′,4′-fluoro nucleosides for the treatment of HCV
KR20160039154A (en) 2013-05-16 2016-04-08 리보사이언스 엘엘씨 4'-azido, 3'-deoxy-3'-fluoro substituted nucleoside derivatives
CN105307662B (en) 2013-05-16 2019-06-04 里博科学有限责任公司 4 '-fluoro- 2 '-methyl substituted nucleoside derivates
US20180200280A1 (en) 2013-05-16 2018-07-19 Riboscience Llc 4'-Fluoro-2'-Methyl Substituted Nucleoside Derivatives as Inhibitors of HCV RNA Replication
US10005779B2 (en) 2013-06-05 2018-06-26 Idenix Pharmaceuticals Llc 1′,4′-thio nucleosides for the treatment of HCV
EP3027636B1 (en) 2013-08-01 2022-01-05 Idenix Pharmaceuticals LLC D-amino acid phosphoramidate pronucleotides of halogeno pyrimidine compounds for liver disease
SG11201600919UA (en) 2013-08-27 2016-03-30 Gilead Pharmasset Llc Combination formulation of two antiviral compounds
US20160229866A1 (en) 2013-09-20 2016-08-11 Idenix Pharmaceuticals Inc. Hepatitis c virus inhibitors
WO2015061683A1 (en) 2013-10-25 2015-04-30 Idenix Pharmaceuticals, Inc. D-amino acid phosphoramidate and d-alanine thiophosphoramidate pronucleotides of nucleoside compounds useful for the treatment of hcv
US20160271162A1 (en) 2013-11-01 2016-09-22 Idenix Pharmacueticals, Llc D-alanine phosphoramide pronucleotides of 2'-methyl 2'-fluro guanosine nucleoside compounds for the treatment of hcv
EP3074399A1 (en) 2013-11-27 2016-10-05 Idenix Pharmaceuticals LLC 2'-dichloro and 2'-fluoro-2'-chloro nucleoside analogues for hcv infection
US9717797B2 (en) 2013-12-05 2017-08-01 International Business Machines Corporation Polycarbonates bearing aromatic N-heterocycles for drug delivery
EP3083654A1 (en) 2013-12-18 2016-10-26 Idenix Pharmaceuticals LLC 4'-or nucleosides for the treatment of hcv
WO2015103490A1 (en) 2014-01-03 2015-07-09 Abbvie, Inc. Solid antiviral dosage forms
EP2899207A1 (en) 2014-01-28 2015-07-29 Amikana.Biologics New method for testing HCV protease inhibition
US20170066779A1 (en) 2014-03-05 2017-03-09 Idenix Pharmaceuticals Llc Solid forms of a flaviviridae virus inhibitor compound and salts thereof
WO2015134561A1 (en) 2014-03-05 2015-09-11 Idenix Pharmaceuticals, Inc. Pharmaceutical compositions comprising a 5,5-fused heteroarylene flaviviridae inhibitor and their use for treating or preventing flaviviridae infection
US20170066795A1 (en) 2014-03-05 2017-03-09 Idenix Pharmaceuticals Llc Solid prodrug forms of 2'-chloro-2'-methyl uridine for hcv
EP3131914B1 (en) 2014-04-16 2023-05-10 Idenix Pharmaceuticals LLC 3'-substituted methyl or alkynyl nucleosides for the treatment of hcv
EP3448392A4 (en) 2016-04-28 2020-01-15 Emory University Alkyne containing nucleotide and nucleoside therapeutic compositions and uses related thereto
KR20200056420A (en) 2017-09-21 2020-05-22 리보사이언스 엘엘씨 4'-fluoro-2'-methyl substituted nucleoside derivatives as inhibitors of HCV RNA replication
KR20210098504A (en) 2018-12-04 2021-08-10 브리스톨-마이어스 스큅 컴퍼니 Analytical Methods Using In-Sample Calibration Curves by Monitoring Multiple Isotope Responses

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0475255A3 (en) * 1990-09-12 1993-04-14 F. Hoffmann-La Roche Ag Process for the preparation of optically pure (s)-alpha-((tert-butylsulfonyl)methyl)hydro cinnamic acid
JPH05155827A (en) * 1991-12-09 1993-06-22 Banyu Pharmaceut Co Ltd Production of cis-2-aminocyclopropanecarboxylic acid derivative
CN1141591A (en) * 1994-02-23 1997-01-29 布·安格莱荻公司分子生物学研究所 Method for reproducing in vitro the proteolytic activity of the NS3 protease of hepatitis C virus (HCV)
IT1272179B (en) 1994-02-23 1997-06-16 Angeletti P Ist Richerche Bio METHODOLOGY TO REPRODUCE IN VITRO THE PROTEOLITHIC ACTIVITY OF THE NS3 PROTEASE OF THE VIRUS HCV.
GB9517022D0 (en) 1995-08-19 1995-10-25 Glaxo Group Ltd Medicaments
IT1277914B1 (en) * 1995-08-22 1997-11-12 Angeletti P Ist Richerche Bio PROCEDURE TO PRODUCE - IN PURE FORM AND IN HIGH QUANTITIES - POLYPEPTIDES WITH THE PROTEOLYTIC ACTIVITY OF THE NS3 PROTEASE OF HCV, AND
CA2165996C (en) * 1995-12-22 2002-01-29 Murray Douglas Bailey Stereoselective preparation of 2-substituted succinic derivatives
DE19600034C2 (en) 1996-01-02 2003-12-24 Degussa 1,1,2-Trisubstituted cyclopropane compounds, process for their preparation and dihydroxyethyl-substituted 1-amino-cyclopropane-1-carboxylic acid
US5633388A (en) 1996-03-29 1997-05-27 Viropharma Incorporated Compounds, compositions and methods for treatment of hepatitis C
UA66767C2 (en) 1996-10-18 2004-06-15 Вертекс Фармасьютикалс Інкорпорейтед Serine proteases inhibitors, pharmaceutical composition, a method for inhibitining activity and a method for treatment or prevention of viral infection of hepatitis c
CA2291778A1 (en) 1997-05-29 1998-12-03 Merck & Co., Inc. Heterocyclic amide compounds as cell adhesion inhibitors
US6767991B1 (en) 1997-08-11 2004-07-27 Boehringer Ingelheim (Canada) Ltd. Hepatitis C inhibitor peptides
CA2294049A1 (en) * 1997-08-11 1999-02-18 Boehringer Ingelheim (Canada) Ltd. Hepatitis c inhibitor peptides
SE9704543D0 (en) * 1997-12-05 1997-12-05 Astra Ab New compounds
US6455571B1 (en) * 1998-04-23 2002-09-24 Abbott Laboratories Inhibitors of neuraminidases
DE19835120C1 (en) * 1998-08-04 1999-10-21 Westfalia Separator Ag Regulating fluid contents in centrifugal separator outlet
US6323180B1 (en) * 1998-08-10 2001-11-27 Boehringer Ingelheim (Canada) Ltd Hepatitis C inhibitor tri-peptides
US6277830B1 (en) * 1998-10-16 2001-08-21 Schering Corporation 5′-amino acid esters of ribavirin and the use of same to treat hepatitis C with interferon
US6608027B1 (en) 1999-04-06 2003-08-19 Boehringer Ingelheim (Canada) Ltd Macrocyclic peptides active against the hepatitis C virus
US7091184B2 (en) * 2002-02-01 2006-08-15 Boehringer Ingelheim International Gmbh Hepatitis C inhibitor tri-peptides
US6642204B2 (en) * 2002-02-01 2003-11-04 Boehringer Ingelheim International Gmbh Hepatitis C inhibitor tri-peptides
EP1601685A1 (en) * 2003-03-05 2005-12-07 Boehringer Ingelheim International GmbH Hepatitis c inhibiting compounds
EP1599496B1 (en) * 2003-03-05 2010-11-03 Boehringer Ingelheim International GmbH Hepatitis c inhibitor peptide analogs

Also Published As

Publication number Publication date
MXPA01001423A (en) 2001-08-01
CZ301268B6 (en) 2009-12-30
US20020016442A1 (en) 2002-02-07
ZA200100971B (en) 2002-06-26
HU230701B1 (en) 2017-10-30
EP1105413B1 (en) 2009-04-29
IL196545A (en) 2012-06-28
AR069583A2 (en) 2010-02-03
DE69940817D1 (en) 2009-06-10
SA99200617B1 (en) 2006-06-24
EE05517B1 (en) 2012-02-15
ID27839A (en) 2001-04-26
SI2028186T1 (en) 2013-06-28
KR20010085363A (en) 2001-09-07
MX257413B (en) 2008-05-27
NO20100004L (en) 2001-04-02
BR9917805B1 (en) 2014-06-17
AU5273199A (en) 2000-03-06
ATE430158T1 (en) 2009-05-15
IL196545A0 (en) 2011-07-31
IN211493B (en) 2008-01-25
CY1109291T1 (en) 2014-07-02
CY1113935T1 (en) 2016-07-27
HK1040085A1 (en) 2002-05-24
TR200200129T2 (en) 2002-06-21
KR20060083992A (en) 2006-07-21
EP1105413A2 (en) 2001-06-13
CN101143892A (en) 2008-03-19
USRE42164E1 (en) 2011-02-22
YU9401A (en) 2003-02-28
MY127538A (en) 2006-12-29
WO2000009543A2 (en) 2000-02-24
JP2002522554A (en) 2002-07-23
HUP1300080A2 (en) 2002-04-29
RS50798B (en) 2010-08-31
US20020037998A1 (en) 2002-03-28
MX261584B (en) 2008-10-22
SK286994B6 (en) 2009-09-07
USRE40525E1 (en) 2008-09-30
IL141012A (en) 2009-09-01
NO336663B1 (en) 2015-10-12
US6323180B1 (en) 2001-11-27
HK1040085B (en) 2008-05-30
CN100339389C (en) 2007-09-26
BR9913646B1 (en) 2014-12-02
KR100631439B1 (en) 2006-10-09
BRPI9913646B8 (en) 2021-05-25
PL346626A1 (en) 2002-02-25
CA2445938A1 (en) 2000-02-24
BG105232A (en) 2001-11-30
NO20010683D0 (en) 2001-02-09
US6268207B1 (en) 2001-07-31
CO5261542A1 (en) 2003-03-31
PT2028186E (en) 2013-03-27
USRE41894E1 (en) 2010-10-26
CA2445938C (en) 2012-10-30
HUP0105144A3 (en) 2002-11-28
IN2007MU00706A (en) 2007-07-20
EP2028186A3 (en) 2009-04-01
JP4485685B2 (en) 2010-06-23
CZ302766B6 (en) 2011-10-26
TWI250165B (en) 2006-03-01
SK288068B6 (en) 2013-05-03
PE20000949A1 (en) 2000-09-26
USRE41356E1 (en) 2010-05-25
US6329417B1 (en) 2001-12-11
JP2010043124A (en) 2010-02-25
CZ2001516A3 (en) 2001-08-15
HRP20010102B1 (en) 2010-07-31
US6534523B1 (en) 2003-03-18
KR100672229B1 (en) 2007-02-28
HRP20010102A2 (en) 2002-02-28
IL141012A0 (en) 2002-02-10
WO2000009543A3 (en) 2000-05-25
EA003906B1 (en) 2003-10-30
DK2028186T3 (en) 2013-03-25
CN101143892B (en) 2010-12-08
AR073428A2 (en) 2010-11-03
CN1323316A (en) 2001-11-21
AU769738B2 (en) 2004-02-05
RS53562B1 (en) 2015-02-27
UA75026C2 (en) 2006-03-15
NO20010683L (en) 2001-04-02
TR200100432T2 (en) 2001-09-21
BG65738B1 (en) 2009-09-30
AR020880A1 (en) 2002-06-05
EA200100228A1 (en) 2001-10-22
ES2405930T3 (en) 2013-06-04
EP2028186A2 (en) 2009-02-25
HK1113164A1 (en) 2008-09-26
US6329379B1 (en) 2001-12-11
EE200100081A (en) 2002-08-15
IN2001MU00127A (en) 2005-03-04
CA2338946A1 (en) 2000-02-24
ES2326707T3 (en) 2009-10-16
SI1105413T1 (en) 2009-10-31
SA99200617A (en) 2005-12-03
NO328952B1 (en) 2010-06-28
ME00381B (en) 2011-10-10
DK1105413T3 (en) 2009-08-17
RS20090459A (en) 2010-06-30
JP5021711B2 (en) 2012-09-12
PL204850B1 (en) 2010-02-26
HUP0105144A2 (en) 2002-04-29
NZ510396A (en) 2004-02-27
US6420380B2 (en) 2002-07-16
EP2028186B1 (en) 2013-01-23
SK2062001A3 (en) 2001-10-08
BR9913646A (en) 2001-06-05
PT1105413E (en) 2009-06-30
HU229262B1 (en) 2013-10-28
US6410531B1 (en) 2002-06-25
PH11999002002B1 (en) 2007-10-19
MEP58508A (en) 2011-05-10

Similar Documents

Publication Publication Date Title
CA2338946C (en) Hepatitis c inhibitor tri-peptides
JP4435982B2 (en) Hepatitis C inhibitor peptide
US7705146B2 (en) Hepatitis C inhibitor peptide analogs
CA2370396A1 (en) Hepatitis c inhibitor tri-peptides
MXPA01001422A (en) Hepatitis c inhibitor peptides

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20190809