CA2344378A1 - Improved cellular plastic material - Google Patents

Improved cellular plastic material Download PDF

Info

Publication number
CA2344378A1
CA2344378A1 CA002344378A CA2344378A CA2344378A1 CA 2344378 A1 CA2344378 A1 CA 2344378A1 CA 002344378 A CA002344378 A CA 002344378A CA 2344378 A CA2344378 A CA 2344378A CA 2344378 A1 CA2344378 A1 CA 2344378A1
Authority
CA
Canada
Prior art keywords
cellular
vegetable oil
oil
parts
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002344378A
Other languages
French (fr)
Other versions
CA2344378C (en
Inventor
Thomas M. Kurth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tandem Polymers Inc
Original Assignee
Urethane Soy Systems Company, Inc.
Thomas M. Kurth
Tandem Polymers, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22550968&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2344378(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Urethane Soy Systems Company, Inc., Thomas M. Kurth, Tandem Polymers, Inc. filed Critical Urethane Soy Systems Company, Inc.
Publication of CA2344378A1 publication Critical patent/CA2344378A1/en
Application granted granted Critical
Publication of CA2344378C publication Critical patent/CA2344378C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/36Hydroxylated esters of higher fatty acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0008Foam properties flexible

Abstract

An improved cellular material comprises a urethane foam that is the reaction product of soy oil, an isocyanate, and a cross-linker. The soy oil replaces the polyol typically generally required in the production of urethanes. Because the replaced polyol is a petrochemical, use of a renewable and environmentally friendly material such as soy oil is most advantageous. Further, plastic materials of many final qualities may be formed using a single vegetable oil. In addition to cellular foams, solid plastic elastomer s may be formed.

Claims (65)

1. A cellular material comprising the reaction product of an A-side and a B-side, wherein said A-side is comprised of a diisocyanate and said B-side comprises a vegetable oil, a cross-linking agent comprised of a multi-functional alcohol and a catalyst.
2. The cellular material of claim 1, wherein said B-side further includes a blowing agent.
3. The cellular material of claim 1, wherein said vegetable oil is chosen from the group comprising soy oil, rapeseed oil, cottonseed oil, or palm oil.
4. The cellular material of claim 1, wherein said vegetable oil comprises blown soy oil.
5. The cellular material of claim 1, wherein said catalyst is a tertiary amine.
6. The cellular material of claim 1, wherein said multi-functional alcohol is present in a ratio to said vegetable oil such that there are at least 0.7 moles of hydroxyl (OH) groups per mole of vegetable oil.
7. The cellular material of claim 1, wherein said diisocyanate is selected from the group consisting of 2,4 diisocyanate, 4,4' diphenylmethane diisocyanate, and 2,4 diphenylmethane diisocyanate.
8. The cellular material of claim 2, wherein said B-side further comprises a surfactant.
9. The cellular material of claim 1, wherein said diisocyanate is a mixture of at least two diisocyanates.
10. The cellular material of claim 9, wherein said diisocyanate is a mixture of at least two diisocyanates selected from the group comprising 2,4 diisocyanate, 4,4' diphenylmethane diisocyanate and 2,4 diphenylmethane diisocyanate.
11. The cellular material of claim 2, wherein said blowing agent is selected from the group comprising water, acetone, methyl isobutyl ketone, methylene chloride, a hydrochloroflurocarbon, or a hydroflurocarbon.
12. The cellular material of claim 1, wherein said cross-linker is selected from the group comprising ethylene glycol, 1,4 butanediol, and dipropylene glycol.
13. The cellular material of claim 1, wherein said cross-linker is a combination of ethylene glycol and 1,4 butanediol.
14. The cellular material of claim 1, wherein the B-side further comprises a petroleum-based polyol.
15. The cellular material of claim 14, wherein said petroleum-based polyol comprises a polyurea polyol.
16. The cellular material comprising the reactive product of an A-side comprised of a prepolymer diisocyanate and a B-side, wherein said B-side comprises a first vegetable oil, a cross-linking agent comprised of a multi-functional alcohol, a catalyst, and a blowing agent.
17. The cellular material of claim 16, wherein the prepolymer diisocyanate comprises the reaction product of a diisocyanate and a second vegetable oil.
18. The cellular material of claim 17, wherein said first vegetable oil and said second vegetable oil are selected from the group comprising soy oil, rapeseed, cottonseed oil, or palm oil:
19. The cellular material of claim 17, wherein said first vegetable oil and said second vegetable oil comprise blown soy oil.
20. The cellular material of claim 16, wherein said catalyst is a tertiary amine.
21. The cellular material of claim 16, wherein said multi-functional alcohol is present in a ratio to said second vegetable oil such that there are at least 0.7 moles of hydroxyl (OH) groups per mole of said second vegetable oil.
22. The cellular material of claim 17, wherein said diisocyanate comprises diphenylmethane diisocyanate (MDI).
23. The cellular material of claim 18, wherein the B-side further comprises a petroleum-based polyol.
24. The cellular material of claim 23, wherein said petroleum-based polyol comprises a polyurea polyol.
25. A method of preparing a cellular material comprising the steps of combining an A-side material with a B-side material, wherein said A-side comprises a diisocyanate and said B-side material comprises a vegetable oil, a cross-linker comprised of a multi-functional alcohol, a catalyst, and a blowing agent.
26. The method of claim 25, wherein said vegetable oil is chosen from the group comprising soy oil, rapeseed oil, cottonseed oil, or palm oil.
27. The method of claim 25, wherein said vegetable oil comprises blown soy oil.
28. The method of claim 25, wherein said catalyst is a tertiary amine.
29. The method of claim 25, wherein said multi-functional alcohol is present in a ratio with said vegetable oil such that there is at least 0.7 moles of hydroxyl (OH) groups per mole of vegetable oil.
30. The method of claim 25, wherein said B-side further comprises a petroleum-based polyol.
31. The method of claim 26, wherein said petroleum-based polyol comprises a polyurea polyol.
32. A method of preparing a cellular material comprising the steps of combining an A-side material with a B-side material, wherein said A-side comprises a prepolymer diisocyanate and a B-side, wherein said B-side comprises a first vegetable oil, a cross-linking agent comprised of a multi-functional alcohol, a catalyst, and a blowing agent.
33. The method of claim 32, wherein the prepolymer diisocyanate comprises the reaction product of a diisocyanate and a second vegetable oil.
34. The method of claim 33, where in said first vegetable oil and said second vegetable oil are selected from the group comprising soy oil, rapeseed, cottonseed oil, or palm oil.
35. The method of claim 33, wherein said first vegetable oil and said second vegetable oil comprise blown soy oil.
36. The method of claim 32, wherein said catalyst is a tertiary amine.
37. The method of claim 32, wherein said multi-functional alcohol is present in a ratio to said second vegetable oil such that there are at least 0.7 moles of hydroxyl (OH) groups per mole of said second vegetable oil.
38. The method of claim 33, wherein said diisocyanate comprises diphenylmethane diisocyanate (MDI).
39. The method of claim 32, wherein the B-side further comprises a petroleum-based polyol
40. The method of claim 39, wherein said petroleum-based polyol comprises a polyurea polyol.
41. A method of selectively preparing cellular materials of varied physical properties comprising the steps of reacting an A-side material with a B-side material, wherein said A-side comprises an isocyanate and said B-side material comprises blown soy oil, a multi-functional alcohol cross-linking agent present in such quantities that a ratio of moles of hydroxyl (OH) groups to moles of soy oil is between 0.7 and 1.2 equivalent moles of hydroxyl (OH) groups to one mole of soy oil, a tertiary amine catalyst, and a blowing agent, wherein the varied foam physical properties being obtained by the selection and proportions of the blowing agents, cross-linkers, catalysts, and isocyanates.
42. The method of preparing a cellular material as in claim 41, wherein the multi-functional alcohol cross-linking agent comprises a blend of ethylene glycol and 1,4 butanediol, the varied foam physical properties being obtained by selection of the proportions of said cross-linking agents.
43. The method of preparing a cellular material as in claim 41, wherein the blowing agent is selected from the group consisting of methyl isobutyl ketone, acetone, and methylene chloride.
44. The method of preparing a cellular material as in claim 41, wherein the ratio of the A-side to the B-side is 35 to 85 parts to 100 parts.
45. A polyurethane cellular plastic comprising the reaction product of an A-side and a B-side, wherein said A-side comprises an diisocyanate and said B-side is comprised of soy oil, a cross-linking agent comprised of a multi-functional alcohol present in a ratio to said soy oil such that there are at least 0.7 moles of hydroxyl (OH) groups per mole of soy oil, a catalyst, and a blowing agent.
46. The polyurethane cellular plastic of claim 45, wherein the multi-functional alcohol is present in a ratio to said soy oil such that there are between 0.7 to I .2 moles hydroxyl (OH) groups per mole of soy oil, said catalyst is present in the amount of at least 2.5 parts and said isocyanate is present in the amount of 35 parts per 100 parts of the B-side.
47. A cellular plastic foam material, comprising the reaction product of between 35 and 85 parts of an A-side material and 100 parts of a B-side material, wherein said A-side material comprises an isocyanate and said B-side material comprises 100 parts of blown soy oil, between 8 to 18 parts cross-linking agent providing at least 0.7 moles of OH groups per mole of vegetable oil, 1 to 12 parts catalyst and 2 to 14 parts blowing agent.
48. A cellular plastic foam material, comprising the reaction product of 35 to 85 parts of an A-side material and 100 parts of a B-side material, wherein said A-side material comprises an isocyanate and said B-side material comprises 100 parts blown soy oil, from 8 to 16 parts cross-linking agent providing 0.70 to 1.2 moles OH per mole soy oil, from 2.5 to 11 parts catalyst and from 5 to 13 parts blowing agent.
49. A cellular plastic foam material comprising the reaction product of 35 to 85 parts of an A-side material with 100 parts of a B-side material, wherein said A-side comprises an isocyanate and said B-side comprises 100 parts blown soy oil, from 9 to 14 parts cross-linking agent providing 0.70 to 1.2 moles OH per mole soy oil, from 2 to 6 parts catalyst and from 4 to 9 parts blowing agent.
50. The cellular plastic foam material of claim 49, wherein said foam has at least 60 open cells.
51. The cellular plastic foam material of claim 49, wherein said cellular plastic foam material has a density of between approximately 65 lb. to 1.5 lb. per cubic foot.
52. The cellular plastic foam material of claim 49, wherein said catalyst comprises a tertiary amine.
53. The cellular plastic foam material of claim 49, wherein said catalyst comprises a mixture of a front end catalyst and a back end catalyst.
54. The cellular plastic foam material of claim 49, wherein said catalyst is chosen from the group comprising a mixture of 33% 1,4-diaza-bicyclo-octane and 67%
dipropylene glycol; a tertiary amine blowing catalyst, and n, n', n", dimethylamino-propyl-hexahydrotriazine tertiary amine.
55. The cellular plastic foam material of claim 49, wherein said cross-linker is chosen from the group comprising ethylene glycol and 1,4 butanediol.
56. The cellular plastic foam material of claim 49, wherein said cross-linker comprises a mixture of 1,4 butanediol and ethylene glycol.
57. The cellular plastic foam material of claim 49, wherein said blowing agent is chosen from the group comprising water, acetone, methyl isobutyl ketone, methylene chloride, a hydrochloroflurocarbon, and a hydroflurocarbon.
58. The cellular plastic foam material of claim 49, wherein said isocyanate is chosen from the group consisting of 2,4 diisocyanate, 4,4' diphenylmethane diisocyanate, and 2,4 diphenylmethane diisocyanate.
59. The cellular plastic foam material of claim 49, wherein said B-side material further comprises from 2-5 parts surfactant agent for effecting foam cell size.
60. The cellular plastic foam material of claim 49, wherein said B-side material further comprises a molecular sieve agent for absorbing water.
61. A solid plastic elastomer comprising the reaction product of 35 to 85 parts of an A-side material and 100 parts of a B-side material, wherein said A-side material comprises an isocyanate and said B-side material comprises 100 parts blown soy oil, 8 to 20 parts cross-linking agent, and from 1 to 15 parts catalyst.
62. A cellular material comprising the reaction product of an A-side and a B-side, wherein said A-side is comprised of a diisocyanate and said B-side comprises a vegetable oil, a cross-linking agent comprised of a multi-functional alcohol and a catalyst, wherein said vegetable oil and said cross-linking agent are substantially non-esterfied prior to said A-side reacting with said B-side.
63. The cellular material comprising the reactive product of an A-side comprised of a prepolymer diisocyanate and a B-side, wherein the B-side comprises a first vegetable oil, a cross-linking agent comprised of a multi-functional alcohol, a catalyst, and a blowing agent, wherein said first vegetable oil, said cross-linking agent, and said blowing agent are substantially non-esterfied prior to said A-side reacting with said B-side.
64. A method of preparing a cellular material comprising the steps of combining an A-side material with a B-side material, wherein said A-side comprises a diisocyanate and said B-side material comprises a vegetable oil, a cross-linker comprised of a multi-functional alcohol, a catalyst, and a blowing agent, wherein said vegetable oil, said cross-linking agent, and said blowing agent are substantially non-esterfied prior to combining said A-side with said B-side.
65. A method of preparing a cellular material comprising the steps of combining an A-side material with a B-side material, wherein said A-side comprises a prepolymer diisocyanate and a B-side, wherein said B-side comprises a first vegetable oil, a cross-linking agent comprises of a multi-functional alcohol, a catalyst, and a blowing agent, wherein said vegetable oil, said cross-linking agent, and said blowing agent are substantially non-esterfied prior to combining said A-side with said B-side.
CA2344378A 1998-09-17 1999-09-17 Improved cellular plastic material Expired - Fee Related CA2344378C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/154,340 US6180686B1 (en) 1998-09-17 1998-09-17 Cellular plastic material
US09/154,340 1998-09-17
PCT/US1999/021511 WO2000015684A1 (en) 1998-09-17 1999-09-17 Improved cellular plastic material

Publications (2)

Publication Number Publication Date
CA2344378A1 true CA2344378A1 (en) 2000-03-23
CA2344378C CA2344378C (en) 2012-09-04

Family

ID=22550968

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2344378A Expired - Fee Related CA2344378C (en) 1998-09-17 1999-09-17 Improved cellular plastic material

Country Status (16)

Country Link
US (8) US6180686B1 (en)
EP (1) EP1127086B2 (en)
JP (1) JP2002524627A (en)
CN (1) CN1245428C (en)
AT (1) ATE286929T1 (en)
AU (1) AU766760B2 (en)
BR (1) BR9913784B1 (en)
CA (1) CA2344378C (en)
DE (1) DE69923210T3 (en)
DK (1) DK1127086T4 (en)
ES (1) ES2235516T5 (en)
GT (1) GT200000029A (en)
MX (1) MXPA01002680A (en)
PT (1) PT1127086E (en)
TW (1) TWI257399B (en)
WO (1) WO2000015684A1 (en)

Families Citing this family (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143728A (en) * 1996-11-15 2000-11-07 The Picower Institute For Medical Research Guanylhydrazones useful for treating diseases associated with T cell activation
US6962636B2 (en) * 1998-09-17 2005-11-08 Urethane Soy Systems Company, Inc. Method of producing a bio-based carpet material
US6180686B1 (en) * 1998-09-17 2001-01-30 Thomas M. Kurth Cellular plastic material
US8575226B2 (en) * 1998-09-17 2013-11-05 Rhino Linings Corporation Vegetable oil-based coating and method for application
US20030191274A1 (en) * 2001-10-10 2003-10-09 Kurth Thomas M. Oxylated vegetable-based polyol having increased functionality and urethane material formed using the polyol
US7063877B2 (en) * 1998-09-17 2006-06-20 Urethane Soy Systems Company, Inc. Bio-based carpet material
US20020058774A1 (en) * 2000-09-06 2002-05-16 Kurth Thomas M. Transesterified polyol having selectable and increased functionality and urethane material products formed using the polyol
US20090223620A1 (en) * 1998-09-17 2009-09-10 Kurth Thomas M Method of producing a bio-based carpet material
US20020192456A1 (en) * 2001-03-15 2002-12-19 Mashburn Larry E. Carpet backings prepared from vegetable oil-based polyurethanes
US20030083394A1 (en) 2001-06-07 2003-05-01 Clatty Jan L. Polyurethane foams having improved heat sag and a process for their production
KR100760884B1 (en) * 2002-01-11 2007-10-04 로디아닐 Use of zinc sulfide as an anti-mite agent
US20030143910A1 (en) * 2002-01-31 2003-07-31 Mashburn Larry E. Carpet backings prepared from vegetable oil-based polyurethanes
US20100151226A9 (en) * 2002-03-15 2010-06-17 Mashburn Larry E Carpet backings prepared from hydroxylated vegetable oil-based polyurethanes
KR101110522B1 (en) * 2003-04-25 2012-01-31 다우 글로벌 테크놀로지스 엘엘씨 Vegetable oil based polyols and polyurethanes made therefrom
US7168216B2 (en) * 2003-06-06 2007-01-30 Hans T. Hagen, Jr. Insulated stud panel and method of making such
CA2469986A1 (en) 2003-06-06 2004-12-06 Hagen, Hans T., Iii Insulated stud panel and method of making such
US8293808B2 (en) * 2003-09-30 2012-10-23 Cargill, Incorporated Flexible polyurethane foams prepared using modified vegetable oil-based polyols
US7763341B2 (en) 2004-01-23 2010-07-27 Century-Board Usa, Llc Filled polymer composite and synthetic building material compositions
US7211206B2 (en) * 2004-01-23 2007-05-01 Century-Board Usa Llc Continuous forming system utilizing up to six endless belts
US20050176839A1 (en) * 2004-02-10 2005-08-11 Huzeir Lekovic Low density acoustic foams based on biopolymers
US8258198B2 (en) * 2004-05-28 2012-09-04 Air Products And Chemicals, Inc. Fast demold/extended cream time polyurethane formulations
DE602005006414T2 (en) * 2004-06-10 2009-06-04 Dow Global Technologies, Inc., Midland POLYURETHANE RUGS MANUFACTURED BY FATTY ACID AMID POLYOLS
US20050282921A1 (en) * 2004-06-18 2005-12-22 Ford Global Technologies, Llc Automotive grade, flexible polyurethane foam and method for making the same
US7316559B2 (en) 2004-06-24 2008-01-08 Century-Board Usa, Llc Continuous forming apparatus for three-dimensional foam products
BRPI0512511A (en) 2004-06-25 2008-03-11 Pittsburg State University method of producing a polyol, oligomeric mixture of a modified fatty acid triglyceride, and polyol composition based on oligomeric vegetable oil
US8501828B2 (en) 2004-08-11 2013-08-06 Huntsman Petrochemical Llc Cure rebond binder
US7794224B2 (en) 2004-09-28 2010-09-14 Woodbridge Corporation Apparatus for the continuous production of plastic composites
US20060073322A1 (en) * 2004-10-01 2006-04-06 Lear Corporation Low density spray polyurethane for automobile interior applications
CA2578848A1 (en) * 2004-10-25 2006-05-04 Dow Global Technologies Inc. Polyurethane carpet backings made using hydroxymethylated polyester polyols
CA2588127A1 (en) * 2004-12-23 2006-07-06 Dow Global Technologies Inc. An isocyanate composition comprising a vegetable oil and composites therefrom
US20060141239A1 (en) * 2004-12-28 2006-06-29 Gilder Stephen D Method for making a bonded foam product suitable for use as an underlayment for floor coverings
JP2008535789A (en) 2005-03-03 2008-09-04 サウス ダコタ ソイビーン プロセッサーズ,エルエルシー New polyols derived from vegetable oils using oxidation processes
US20060222775A1 (en) * 2005-03-24 2006-10-05 Lear Corporation System, method and composition for forming composite sprayed polyurethane skins having a low density expanded polyurethane layer
US20060229375A1 (en) * 2005-04-06 2006-10-12 Yu-Ling Hsiao Polyurethane foams made with alkoxylated vegetable oil hydroxylate
US20060276614A1 (en) * 2005-04-12 2006-12-07 Niemann Lance K Bio-based, multipurpose adhesive
US20060235100A1 (en) * 2005-04-13 2006-10-19 Kaushiva Bryan D Polyurethane foams made with vegetable oil hydroxylate, polymer polyol and aliphatic polyhydroxy alcohol
EP1888666B1 (en) * 2005-04-25 2017-06-21 Cargill, Incorporated Polyurethane foams comprising oligomeric polyols
US20060240194A1 (en) * 2005-04-26 2006-10-26 Cargill, Incorporated Polyglycerol fatty acid ester composition and coating
CN101166776B (en) * 2005-04-29 2011-05-04 陶氏环球技术公司 Polyester polyols containing secondary alcohol groups and their use in making polyurethanes such as flexible polyurethane foams
US7700661B2 (en) * 2005-05-05 2010-04-20 Sleep Innovations, Inc. Prime foam containing vegetable oil polyol
US7566406B2 (en) * 2005-05-05 2009-07-28 L&P Property Management Company Bonded foam product manufactured with vegetable oil polyol and method for manufacturing
EP1921099B1 (en) * 2005-08-12 2012-09-19 Mitsui Chemicals, Inc. Composition for polyurethane foam, polyurethane foam obtained from the composition, and use thereof
US20070066697A1 (en) * 2005-08-31 2007-03-22 Gilder Stephen D Strut-reinforced polyurethane foam
US20070078193A1 (en) * 2005-08-31 2007-04-05 Gilder Stephen D Strut-reinforced, reduced VOC polyurethane foam
US20100174006A1 (en) * 2005-09-20 2010-07-08 Sleep Innovations, Inc. Strut-Reinforced, Reduced VOC Polyurethane Foam
US20070123597A1 (en) * 2005-11-29 2007-05-31 Ford Global Technologies, Llc Encapsulated flexible polyurethane foam and method for making polyol to form foam
US20070129451A1 (en) * 2005-12-01 2007-06-07 Niemann Lance K Bio-based, insulating foam
US7538236B2 (en) * 2006-01-04 2009-05-26 Suresh Narine Bioplastics, monomers thereof, and processes for the preparation thereof from agricultural feedstocks
US8138234B2 (en) * 2006-03-24 2012-03-20 Century-Board Usa, Llc Polyurethane composite materials
DE102006039901A1 (en) * 2006-08-25 2008-02-28 Renate Marquardt Novel high-water polyurethanes, processes for their preparation and use
US7674925B2 (en) 2006-09-21 2010-03-09 Athletic Polymer Systems, Inc. Polyols from plant oils and methods of conversion
US8575294B2 (en) * 2006-09-21 2013-11-05 Thomas M. Garrett High bio content hybrid natural oil polyols and methods therefor
WO2008038678A1 (en) 2006-09-27 2008-04-03 Asahi Glass Company, Limited Method for producing soft polyurethane foam
US20080185900A1 (en) * 2006-09-28 2008-08-07 Lee Ellen Cheng-Ch Use of renewable and biodegradable materials for automotive interiors
CA2668072A1 (en) * 2006-10-30 2008-05-08 Johnson Controls Technology Company Non-petroleum-based polyurethane foam products having improved performance specifications and method of production
AR064261A1 (en) * 2006-11-16 2009-03-25 Cargill Inc VISCOELASTIC POLYURETHANIC FOAMS THAT INCLUDE AMIDED OR TRANSESTERIFIED OLIGOMERIC NATURAL OIL POLYOLS
TW200848445A (en) * 2006-12-19 2008-12-16 Asahi Glass Co Ltd Method for producing soft polyurethane foam
US20080164730A1 (en) * 2007-01-05 2008-07-10 Ford Global Technologies, Llc Insert for vehicle seat head restraint
US20100087562A1 (en) * 2007-03-07 2010-04-08 Salvatore Anthony Diloreto Polyurethane Foam Batt Insulation
US20090029097A1 (en) * 2007-06-11 2009-01-29 Riddle Dennis L Flooring products and methods
EP2176312A1 (en) * 2007-08-06 2010-04-21 Dow Global Technologies Inc. Polyol blends and their use in making polymers
US7678936B2 (en) * 2007-08-21 2010-03-16 Lear Corporation Isocyanato terminated precursor and method of making the same
US20090287007A1 (en) * 2008-05-13 2009-11-19 Cargill, Incorporated Partially-hydrogenated, fully-epoxidized vegetable oil derivative
US20090295021A1 (en) * 2008-05-27 2009-12-03 Century-Board Usa, Llc Extrusion of polyurethane composite materials
CN101684171B (en) * 2008-09-27 2012-11-14 上海联合气雾制品灌装有限公司 Single-component polyurethane foam prepared from renewable raw materials
US8901187B1 (en) 2008-12-19 2014-12-02 Hickory Springs Manufacturing Company High resilience flexible polyurethane foam using MDI
US8906975B1 (en) 2009-02-09 2014-12-09 Hickory Springs Manufacturing Company Conventional flexible polyurethane foam using MDI
GB0903717D0 (en) * 2009-03-04 2009-04-15 Innochem Ltd Flexible polyurethane foam
CA2753896C (en) * 2009-03-06 2018-08-28 Biopolymer Technologies, Ltd. Protein-containing foams, manufacture and use thereof
MX2011009085A (en) * 2009-03-06 2011-12-06 Biopolymer Technologies Ltd Protein-containing emulsions and adhesives, and manufacture and use thereof.
US8476329B2 (en) * 2009-06-11 2013-07-02 Basf Se Bioresin composition for use in forming a rigid polyurethane foam article
US8846776B2 (en) 2009-08-14 2014-09-30 Boral Ip Holdings Llc Filled polyurethane composites and methods of making same
US9481759B2 (en) 2009-08-14 2016-11-01 Boral Ip Holdings Llc Polyurethanes derived from highly reactive reactants and coal ash
TW201120077A (en) 2009-10-05 2011-06-16 Asahi Glass Co Ltd Soft polyurethane foam, method for producing the same, and seat cushion for automobile
US8828269B1 (en) 2009-11-16 2014-09-09 Thomas M. Garrett Method for increasing miscibility of natural oil polyol with petroleum-based polyol
CN101704938B (en) * 2009-11-27 2011-11-30 中国科学院青岛生物能源与过程研究所 Preparation method of bean pulp polyurethane foam plastics
ES2442627T3 (en) 2009-12-08 2014-02-12 Dow Global Technologies Llc Procedure for preparing open cell foams made with polyols based on natural oil and poly (oxypropylene) polyols
US8822625B2 (en) 2010-01-07 2014-09-02 MCPU Polymer Engineering, LLC Method for providing higher molecular weight natural oil polyols without loss of functionality
US8865854B2 (en) 2010-01-07 2014-10-21 Thomas M Garrett Method of synthesizing tuneably high functionality in high molecular weight natural oil polyols
US8541536B2 (en) * 2010-01-07 2013-09-24 Mcpu Polymer Engineering Llc Coupling method for providing high molecular weight natural oil polyol
US8022164B1 (en) 2010-03-04 2011-09-20 Microvast, Inc. Two-component solvent-free polyurethane adhesives
JP5585175B2 (en) * 2010-04-08 2014-09-10 東ソー株式会社 Method for producing polyurethane resin
US8933191B1 (en) 2010-05-19 2015-01-13 Thomas M. Garrett Method for synthesizing high molecular weight natural oil polyols
CA2801262C (en) 2010-06-07 2021-02-09 Biopolymer Technologies, Ltd. Protein-containing adhesives, and manufacture and use thereof
JP5627333B2 (en) 2010-08-12 2014-11-19 住化バイエルウレタン株式会社 Polyurethane composition for integral skin foam
CA2848056C (en) 2011-09-09 2020-04-28 Biopolymer Technologies, Ltd. Protein-containing adhesives, and manufacture and use thereof
US20150044483A1 (en) 2011-09-09 2015-02-12 Biopolymer Technologies, Ltd. Protein-containing adhesives, and manufacture and use thereof
US9745224B2 (en) 2011-10-07 2017-08-29 Boral Ip Holdings (Australia) Pty Limited Inorganic polymer/organic polymer composites and methods of making same
EP2677030A1 (en) 2012-06-21 2013-12-25 Latvijas Valsts Koksnes kimijas instituts Polyurethane rigid and flexible foams as composite obtained from wood origin raw materials and used as support for immobilization of microorganisms that produce ligninolytic enzymes
EP3666845A1 (en) 2012-07-30 2020-06-17 Evertree Protein adhesives containing an anhydride, carboxylic acid, and/or carboxylate salt compound and their use
US10619001B2 (en) 2013-03-14 2020-04-14 Lear Corporation Polyurethane foam forming composition including triglycerides, polyurethane foam made from the composition, and method of making polyurethane foam
WO2014168633A1 (en) 2013-04-12 2014-10-16 Boral Ip Holdings (Australia) Pty Limited Composites formed from an absorptive filler and a polyurethane
WO2016018226A1 (en) 2014-07-28 2016-02-04 Crocco Guy The use of evaporative coolants to manufacture filled polyurethane composites
WO2016022103A1 (en) 2014-08-05 2016-02-11 Amitabha Kumar Filled polymeric composites including short length fibers
US9371633B2 (en) * 2014-11-25 2016-06-21 Dennis R. Salazar Apparatus and method of freeze protection in fluid systems
WO2016118141A1 (en) 2015-01-22 2016-07-28 Boral Ip Holdings (Australia) Pty Limited Highly filled polyurethane composites
WO2016195717A1 (en) 2015-06-05 2016-12-08 Boral Ip Holdings (Australia) Pty Limited Filled polyurethane composites with lightweight fillers
US20170267585A1 (en) 2015-11-12 2017-09-21 Amitabha Kumar Filled polyurethane composites with size-graded fillers
WO2018183440A1 (en) 2017-03-28 2018-10-04 Ford Global Technologies, Llc Bio-based polyurethane resin for additive manufacturing
CN107501516A (en) * 2017-09-08 2017-12-22 张家港长泰汽车饰件材料有限公司 Low aldehyde content polyurethane plate and preparation method thereof
BR112020008034A2 (en) * 2017-11-08 2020-10-06 Basf Se process for preparing polyurethane moldings, polyurethane molding and use of a polyurethane molding
JP2021536501A (en) 2018-08-30 2021-12-27 チェッカースポット, インコーポレイテッド Hydroformylated triglycerides and their use
US11214584B2 (en) * 2018-12-14 2022-01-04 Nanjing Tech University Polyols for preparing flexible polyurethane foam, and preparation method and application thereof
CN110372841B (en) * 2019-07-24 2022-02-11 张家港市飞航科技有限公司 Polyurethane hard foam heat-insulating material and preparation method thereof
WO2021127181A1 (en) 2019-12-18 2021-06-24 Checkerspot, Inc. Uses of microbially derived materials in polymer applications
CN112779100B (en) * 2021-01-25 2023-04-25 南京工业大学 Vegetable oil polyol for removing suspension chain, and preparation method and application thereof

Family Cites Families (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2569206A (en) 1951-09-25 Removing inhibitors from
US449654A (en) * 1891-04-07 Bedstead-exhibitor
US1447954A (en) 1923-03-06 pelham manor
US2167266A (en) 1938-04-08 1939-07-25 Fuel Dev Corp Valve for automatic control of supplementary liquids
US2556336A (en) 1946-08-20 1951-06-12 Harvel Res Corp Copolymerization of styrene with blown unsaturated fatty oils
US2606890A (en) 1949-12-15 1952-08-12 Union Oil Co Production of high molecular weight carboxylic acids and their derivatives
US2745855A (en) 1951-04-14 1956-05-15 Sinclair Oil & Gas Co Alkylene oxide condensate of discard palm oil
US2787601A (en) 1953-03-03 1957-04-02 Du Pont Cellular plastic materials which are condensation products of hydroxy containing fatty acid glycerides and arylene dhsocyanates
US2833730A (en) 1953-09-30 1958-05-06 Du Pont Arylene diisocyanate-fatty acid triglyceride-polyol cellular materials and process of producing same
US3001958A (en) 1957-02-06 1961-09-26 Spencer Kellogg And Sons Inc Modifying drying oil
DE1504093A1 (en) * 1963-11-14 1969-09-25 Collo Rheincollodium Koeln Gmb Process for the production of light-core composite panels and light-core composite structures from plastic foam
US3488394A (en) 1966-05-11 1970-01-06 Fmc Corp Oxidation of olefinic compounds to glycols
US3396473A (en) 1966-08-03 1968-08-13 Dow Chemical Co Method of desorbing vaporizable liquids from sorptive material
US3535156A (en) 1967-12-11 1970-10-20 Dow Chemical Co Method of employing aqueous fluorocarbon concentrates in chlorinated solvent application to textiles
US3576929A (en) 1968-06-21 1971-04-27 Dow Chemical Co Method for cooling blown polymer films
US3639312A (en) 1969-02-25 1972-02-01 Dow Chemical Co Olefin polymers containing sugars
US3778205A (en) 1970-06-11 1973-12-11 Dow Chemical Co Apparatus for cooling blown polymer films
US3752212A (en) * 1970-07-20 1973-08-14 Thompson E Manuf Co Method of forming castings of different metals
US3755212A (en) 1971-05-13 1973-08-28 Dow Chemical Co Air blown polyurethane foams
US3821130A (en) 1972-04-26 1974-06-28 Dow Chemical Co Air frothed polyurethane foams
US3862879A (en) 1973-03-12 1975-01-28 Dow Chemical Co Articles coated with air frothed polyurethane foams
US4036789A (en) * 1973-08-20 1977-07-19 Stauffer Chemical Company Polyurethane foams prepared from mixed polyalkylene glycol polyphosphorous compounds
US3963699A (en) 1974-01-10 1976-06-15 The Procter & Gamble Company Synthesis of higher polyol fatty acid polyesters
US4022941A (en) 1974-06-27 1977-05-10 Union Carbide Corporation Organosilicone polymers in polyurethane foams for carpet backing
US4005035A (en) 1974-12-24 1977-01-25 Tecnik International Corporation Composition for reinforced and filled high density rigid polyurethane foam products and method of making same
US3985814A (en) 1975-02-28 1976-10-12 Celanese Corporation Production of alcohols from carboxylic acids
US3991126A (en) 1975-09-11 1976-11-09 Chevron Research Company Hydroxylation of unsaturated diols to prepare novel tetraols
US4045498A (en) 1975-10-15 1977-08-30 Fats And Proteins Research Foundation, Inc. Method of hydroxylation
US4076679A (en) 1976-01-21 1978-02-28 The Dow Chemical Company Rapid setting polyurethane elastomers and process of preparation
US4171395A (en) 1977-03-30 1979-10-16 Tillotson John G Method and apparatus for forming a layer of foam urethane on a carpet backing and product
US4405393A (en) 1977-03-30 1983-09-20 Tillotson John G Method for forming a layer of blown cellular urethane on a carpet backing
IT1114714B (en) * 1978-03-25 1986-01-27 Akzo Nv POLYURETHANE INCORPORATION MASS AND RELATED PRODUCTION PROCESS
US4286003A (en) 1978-10-18 1981-08-25 Milliken Research Corporation Thin polyurethane foam backed rug
US4185146A (en) 1978-11-15 1980-01-22 The General Tire & Rubber Company Polyurethane binder composition containing a rubber extender oil and a finely divided solid soybean derivative
US4512831A (en) 1979-01-02 1985-04-23 Tillotson John G Method for forming a layer of blown cellular urethane on a carpet backing
US4264743A (en) * 1979-04-23 1981-04-28 Nhk Spring Co., Ltd. Polyurethane foam sealing material and process for producing the same
US4246363A (en) 1979-06-18 1981-01-20 The Dow Chemical Company Reaction injection molded polyurethanes having particular flexural modulus factors and at least two thermal transition temperatures in a particular range
US4278482A (en) 1979-06-26 1981-07-14 Custom Coating, Inc. Apparatus and method for production of polyurethane carpet backing
US4334061A (en) 1979-10-29 1982-06-08 Ethyl Corporation Process for recovery of polyol fatty acid polyesters
US4296159A (en) 1980-09-29 1981-10-20 The Dow Chemical Company Polyurethane backed carpet
US4354810A (en) 1980-11-24 1982-10-19 Polysar Incorporated Apparatus for distributing a foamed composition on a substrate
US4393253A (en) 1980-11-24 1983-07-12 Exxon Research & Engineering Co. Hydroxylation of olefins
US4314088A (en) 1980-11-24 1982-02-02 Exxon Research & Engineering Co. Hydroxylation of olefins
US4585804A (en) 1981-03-25 1986-04-29 The Dow Chemical Company Rigid foam with improved "K" factor by reacting a polyol, a polyisocyanate and at least one compound having at least one primary aliphatic amine group
US4375521A (en) 1981-06-01 1983-03-01 Communications Technology Corporation Vegetable oil extended polyurethane systems
US4483894A (en) 1981-06-24 1984-11-20 The Dow Chemical Company Process for applying polyurethane foams to substrates and product made thereby
US4390739A (en) 1981-10-09 1983-06-28 Exxon Research & Engineering Co. Hydroxylation of olefins
US4376171A (en) 1981-11-09 1983-03-08 Blount David H Process for the production of polyester resins
JPS58110515A (en) 1981-12-25 1983-07-01 Mitsui Toatsu Chem Inc Preventive or remedy for hoven
US4687788A (en) 1982-10-08 1987-08-18 The Dow Chemical Company Dimensionally stable urethane elastomers
US4530941A (en) 1983-01-26 1985-07-23 The Dow Chemical Company Reaction injection molded polyurethanes employing high molecular weight polyols
DE3316652A1 (en) * 1983-05-06 1984-12-20 Dr. Alois Stankiewicz Schallschluck GmbH & Co KG, 3101 Adelheidsdorf Foam material with noise-reducing properties
US4518772A (en) 1983-06-23 1985-05-21 The Proctor & Gamble Company Synthesis of higher polyol fatty acid polyesters using high soap:polyol ratios
US4496778A (en) 1983-10-03 1985-01-29 Exxon Research & Engineering Co. Process for the hydroxylation of olefins using molecular oxygen, an osmium containing catalyst, a copper Co-catalyst, and an aromatic amine based promoter
US4642320A (en) 1983-11-02 1987-02-10 The Dow Chemical Company Reaction injection molded polyureas employing high molecular weight amine-terminated polyethers
US4595436A (en) 1983-11-22 1986-06-17 Paul Walker Method for applying polyurethane backing
US4515646A (en) 1983-11-22 1985-05-07 Paul Walker Method for applying polyurethane backing
JPS60166353A (en) * 1984-02-09 1985-08-29 Dai Ichi Kogyo Seiyaku Co Ltd Polyurethane metal corrosion-proof coating composition
US4496779A (en) 1984-04-26 1985-01-29 Exxon Research & Engineering Co. Process for the hydroxylation of olefins using molecular oxygen, an osmium containing catalyst, a copper co-catalyst, and a cycloaliphatic amine based promoter
US4740367A (en) 1984-07-19 1988-04-26 Westvaco Corporation Vegetable oil adducts as emollients in skin and hair care products
US4686242A (en) 1985-03-25 1987-08-11 The Dow Chemical Company Polyurea polymers prepared from urea containing prepolymers
US4611044A (en) 1985-05-28 1986-09-09 The Dow Chemical Company Polyurethane carpet backing catalyzed with organoiron and organobismuth catalysts
US5173505A (en) * 1985-06-20 1992-12-22 University Of Florida Anti-neoplastic, anti-viral and ribonucleotide reductase activity affecting pharmaceutical compositions and methods of treatment
US4657790A (en) 1985-07-08 1987-04-14 The Dow Chemical Company Polyurethane backed carpet
US4696849A (en) 1985-09-16 1987-09-29 The Dow Chemical Company Process for preparing polyurethane-backed textiles
DE3761050D1 (en) 1986-02-19 1990-01-04 Unilever Nv FATTY ACID ESTERS OF SUGAR AND SUGAR ALCOHOLS.
US4701475A (en) 1986-06-25 1987-10-20 The Dow Chemical Company Polyurethanes reinforced with rigid rod micro fillers
US4745136A (en) 1986-06-25 1988-05-17 The Dow Chemical Company Polyurethanes prepared from dispersions or solutions of cholesterol or cholestanol-containing polymers in a polyol
US4745137A (en) 1986-06-25 1988-05-17 The Dow Chemical Company Polyurethanes prepared from solutions or dispersions of polymers of rigid polyaromatic monomers in polyols
US4798849A (en) 1986-06-25 1989-01-17 The Dow Chemical Company Organic polymers containing dispersed liquid crystalline filler polymers
US4745135A (en) 1986-06-25 1988-05-17 The Dow Chemical Company Polyurethanes prepared from liquid crystal-containing polyols
NL8601904A (en) 1986-07-23 1988-02-16 Unilever Nv PROCESS FOR THE PREPARATION OF POLYOL FATTY ACID POLYESTERS.
US4853280A (en) 1986-11-17 1989-08-01 The Dow Chemical Company Releasable polyurethane backed textiles
US4734455A (en) 1986-12-05 1988-03-29 The Dow Chemical Company Stabilizers for filled polyol compositions
US4806632A (en) 1986-12-29 1989-02-21 The Procter & Gamble Company Process for the post-hydrogenation of sucrose polyesters
DE3702615A1 (en) 1987-01-29 1988-08-11 Henkel Kgaa COATING AND FINISHING AGENT FOR LEATHER
US5021256A (en) 1987-05-06 1991-06-04 The Procter & Gamble Company Shortening compositions containing polyol polyesters
DE3719790A1 (en) 1987-06-13 1988-12-22 Henkel Kgaa MANUFACTURE OF LONG-CHAIN POLYOLS FROM RENEWABLE RAW MATERIALS
US4968791A (en) 1987-07-23 1990-11-06 Lever Brothers Company Process for the preparation of polyol fatty acid esters
US4853054A (en) 1987-09-29 1989-08-01 The Dow Chemical Company Process for preparing polyurethane carpet backings based on high equivalent weight polyols
US5126494A (en) 1988-01-11 1992-06-30 Massachusetts Institute Of Technology Methods for catalytic asymmetric dihydroxylation of olefins
US4843138A (en) 1988-02-08 1989-06-27 The Firestone Tire & Rubber Company Polyureaurethanes having improved low temperature properties based on high molecular weight polyether intermediates
US5106967A (en) 1988-05-05 1992-04-21 The Procter & Gamble Company Functional sugar substitutes with reduced calories
US5231199B1 (en) 1988-06-29 1998-08-04 Bergh Foods Co Process for the synthesis of polyol fatty acid polyesters
US4931552A (en) 1988-06-30 1990-06-05 The Procter & Gamble Company Production of polyol polyesters having reduced color content
US4943626A (en) 1988-07-29 1990-07-24 The Dow Chemical Company Primary polyether active hydrogen compounds which are prepared from linked, protectively initiated polyalkyleneoxides
JPH0762025B2 (en) 1988-10-05 1995-07-05 昭和産業株式会社 Method for stabilizing polyol fatty acid polyester
US4980388A (en) 1988-10-17 1990-12-25 The Dow Chemical Company Use of carbon dioxide adducts as blowing agents in cellular and microcellular polyureas
US5106884A (en) 1988-10-28 1992-04-21 The Dow Chemical Company Flexible polyurea foams having controlled load bearing qualities
US4942278A (en) 1988-12-05 1990-07-17 The United States Of America As Represented By The United States Department Of Energy Microwaving of normally opaque and semi-opaque substances
US5043438B1 (en) 1989-02-16 1998-04-28 Lever Brothers Ltd Process for the synthesis of polyol fatty-acid esters
US5106874A (en) 1989-06-16 1992-04-21 The Dow Chemical Company Process for preparing elastomeric polyurethane or polyurethane-urea polymers, and polyurethanes so prepared
US5010117A (en) 1989-06-16 1991-04-23 Dow Chemical Company Flexible polyurethane foams prepared using low unsaturation polyether polyols
US4913958A (en) 1989-06-29 1990-04-03 The Dow Chemical Company Process for preparing polyurethane-backed substrate
US5397810A (en) 1989-07-19 1995-03-14 Mitsui Toatsu Chemicals, Inc. Polyol, polyurethane resin and utilization thereof
US5194281A (en) 1989-10-16 1993-03-16 The Procter & Gamble Company Polyol fatty acid polyesters with reduced trans double bond levels and process for making
EP0435364B1 (en) 1989-12-21 1995-04-05 Unilever N.V. Process for refining organic-solvent containing crude polyol fatty-acid polyester products
FR2658187B1 (en) 1990-02-15 1993-09-17 Rhone Poulenc Sante NOVEL ALPHA-HYDROXYLIC ACIDS, PROCESS FOR THEIR PREPARATION AND THEIR USE.
WO1991014758A1 (en) 1990-03-21 1991-10-03 The United States Of America, As Represented By The Secretary, U.S. Department Of Commerce Microbial production of a novel compound 7,10-dihydroxy-8-octadecenoic acid from oleic acid
US5032622A (en) 1990-07-02 1991-07-16 The Dow Chemical Company Densifiable and re-expandable polyurethane foam
US5104693A (en) 1990-12-20 1992-04-14 The Dow Chemical Company Polyurethane carpet-backing process based on soft segment prepolymers of diphenylmethane diisocyanate (MDI)
US5104910A (en) 1991-01-03 1992-04-14 The Dow Chemical Company Combustion-modified polyurethane foam
US5324846A (en) 1992-01-30 1994-06-28 Elf Atochem North America, Inc. Partial esters of epoxy containing compounds
EP0648237B1 (en) * 1992-06-26 1997-11-05 Minnesota Mining And Manufacturing Company Polyurethane/polyurea elastomers
TW211523B (en) 1992-06-29 1993-08-21 Amerchol Corp Hydroxylated milk glycerides
WO1994005718A1 (en) 1992-08-27 1994-03-17 Stepan Company Process for production of low density water-blown rigid foams with flow and dimensional stability
US5491174A (en) 1992-10-09 1996-02-13 The Dow Chemical Company Process for preparation of polyurethanes utilizing novel catalysts
IL107810A0 (en) 1992-12-17 1994-02-27 Exxon Chemical Patents Inc Functionalized polymers and processes for the preparation thereof
JP3115458B2 (en) * 1993-08-30 2000-12-04 トヨタ自動車株式会社 Transmission control device for automatic transmission
DE4332292A1 (en) 1993-09-20 1995-03-23 Brinckmann Harburger Fett Process for the direct hydroxylation of unsaturated carboxylic acids
US5440027A (en) 1993-10-05 1995-08-08 Kraft General Foods, Inc. Method for preparing saccharide fatty acid polyesters by transesterification
US5571935A (en) 1994-01-14 1996-11-05 Cpc International Inc. Process for producing esterified alkoxylated polyols with improved stability
EP0672697A1 (en) * 1994-03-17 1995-09-20 Bayer Ag Process for the preparation of rigid foams having urethane, urea and biuret groups and their use
US5504202A (en) 1994-04-05 1996-04-02 Henkel Corporation Sucrose polyester useful as fat subtitute and preparation process
US5491226A (en) 1994-04-06 1996-02-13 Procter & Gamble Company Process for preparing polyol polyesters having low levels of triglycerides
HRP950150B1 (en) * 1994-04-13 2000-12-31 Bayer Ag Mixtures for preparing hard polyurethane foams
DE4416623A1 (en) * 1994-04-13 1995-10-19 Bayer Ag Mixtures leading to hard polyurethane foams
US5407967A (en) 1994-05-05 1995-04-18 Stepan Company Methods and compositions for preparing rigid forms with non-chlorofluorocarbon blowing agents
DE4420310A1 (en) 1994-06-10 1995-12-14 Henkel Kgaa Use of dimer diol in polyurethane moldings
US5447963A (en) 1994-07-14 1995-09-05 Pmc, Inc. Method for reducing volatile emissions generated during the preparation of foams and fabrication of foam products
US5482980A (en) 1994-07-14 1996-01-09 Pmc, Inc. Methods for preparing flexible, open-celled, polyester and polyether urethane foams and foams prepared thereby
US5681948A (en) 1995-03-06 1997-10-28 Kraft Foods, Inc. Two-stage method for preparing polyol fatty acid polyesters
US5756195A (en) 1995-06-07 1998-05-26 Acushnet Company Gel cushion conprising rubber polymer and oil
US5710190A (en) 1995-06-07 1998-01-20 Iowa State University Research Foundation, Inc. Soy protein-based thermoplastic composition for foamed articles
US5648483A (en) 1995-06-07 1997-07-15 The Procter & Gamble Company Continuous transesterification method for preparing polyol polyesters
AP9801213A0 (en) 1995-08-21 1998-03-31 Martin Ernst Stielau Process for producing new polymers based on oil of cashew-nut shells, and products obtained therefrom.
US5766704A (en) 1995-10-27 1998-06-16 Acushnet Company Conforming shoe construction and gel compositions therefor
US5945529A (en) 1996-07-19 1999-08-31 The Procter & Gamble Company Synthesis of polyol fatty acid polyesters using column with inert gas stripping
US5767257A (en) 1996-07-19 1998-06-16 The Procter & Gamble Company Methods for producing polyol fatty acid polyesters using atmospheric or superatmospheric pressure
CN1230963A (en) 1996-08-08 1999-10-06 普罗克特和甘保尔公司 Polyol polyester synthesis
WO1998007777A1 (en) 1996-08-20 1998-02-26 Martin Ernst Stielau Use of cashew nut husk oil in rubber and duroplastics recycling
DE19634392A1 (en) * 1996-08-26 1998-03-05 Bayer Ag Foaming polyurethane formulations with good flow behavior and a process for producing foamed polyurethane moldings
US6096401A (en) * 1996-08-28 2000-08-01 The Dow Chemical Company Carpet backing precoats, laminate coats, and foam coats prepared from polyurethane formulations including fly ash
DE19643816A1 (en) * 1996-10-30 1998-05-07 Basf Ag Polyurethane preparation using an increase in materials
US5908701A (en) 1996-12-10 1999-06-01 The Dow Chemical Company Preparation of filled reactive polyurethane carpet backing formulations using an in-line continuous mixing process
US6288133B1 (en) * 1997-09-10 2001-09-11 H. B. Fuller Licensing & Financing Inc. Foaming urethane composition and methods of using such compositions
US5922779A (en) 1997-10-10 1999-07-13 Stepan Company Polyol blends for producing hydrocarbon-blown polyurethane and polyisocyanurate foams
US6121398A (en) 1997-10-27 2000-09-19 University Of Delaware High modulus polymers and composites from plant oils
US6174501B1 (en) 1997-10-31 2001-01-16 The Board Of Regents Of The University Of Nebraska System and process for producing biodiesel fuel with reduced viscosity and a cloud point below thirty-two (32) degrees fahrenheit
US6015440A (en) 1997-10-31 2000-01-18 Board Of Regents Of The University Of Nebraska Process for producing biodiesel fuel with reduced viscosity and a cloud point below thirty-two (32) degrees fahrenheit
GB2331993B (en) * 1997-12-04 2002-06-05 Rhone Poulenc Chemicals Dispersed resins for use in coating compositions
US6962636B2 (en) * 1998-09-17 2005-11-08 Urethane Soy Systems Company, Inc. Method of producing a bio-based carpet material
US6979477B2 (en) * 2000-09-06 2005-12-27 Urethane Soy Systems Company Vegetable oil-based coating and method for application
US7063877B2 (en) * 1998-09-17 2006-06-20 Urethane Soy Systems Company, Inc. Bio-based carpet material
US20030191274A1 (en) * 2001-10-10 2003-10-09 Kurth Thomas M. Oxylated vegetable-based polyol having increased functionality and urethane material formed using the polyol
US6180686B1 (en) * 1998-09-17 2001-01-30 Thomas M. Kurth Cellular plastic material
US6107433A (en) 1998-11-06 2000-08-22 Pittsburg State University Process for the preparation of vegetable oil-based polyols and electroninsulating casting compounds created from vegetable oil-based polyols
US6133329A (en) * 1999-03-31 2000-10-17 Oxid L.P. Aromatic polyester polyols made from a natural oil
US6420446B1 (en) * 2000-03-27 2002-07-16 Ck Witco Polyurethane prepared from sorbitol-branched polyesters
US20030083394A1 (en) * 2001-06-07 2003-05-01 Clatty Jan L. Polyurethane foams having improved heat sag and a process for their production
US7098291B2 (en) * 2002-06-10 2006-08-29 Rohm And Haas Company Urethane polymer compositions

Also Published As

Publication number Publication date
US6867239B2 (en) 2005-03-15
TWI257399B (en) 2006-07-01
AU766760B2 (en) 2003-10-23
US6180686B1 (en) 2001-01-30
EP1127086B1 (en) 2005-01-12
EP1127086B2 (en) 2008-01-09
PT1127086E (en) 2005-04-29
US20040029988A1 (en) 2004-02-12
CN1323326A (en) 2001-11-21
US6624244B2 (en) 2003-09-23
DE69923210T3 (en) 2008-07-24
ES2235516T5 (en) 2008-06-01
US6881763B2 (en) 2005-04-19
US20040034163A1 (en) 2004-02-19
US20040102596A1 (en) 2004-05-27
AU5926899A (en) 2000-04-03
DK1127086T3 (en) 2005-05-23
US20050182228A1 (en) 2005-08-18
JP2002524627A (en) 2002-08-06
EP1127086A4 (en) 2001-09-19
ATE286929T1 (en) 2005-01-15
GT200000029A (en) 2001-09-07
CA2344378C (en) 2012-09-04
BR9913784B1 (en) 2010-07-13
US6465569B1 (en) 2002-10-15
DK1127086T4 (en) 2008-05-13
BR9913784A (en) 2001-05-29
MXPA01002680A (en) 2002-04-08
US20030105178A1 (en) 2003-06-05
WO2000015684A1 (en) 2000-03-23
CN1245428C (en) 2006-03-15
DE69923210T2 (en) 2006-01-05
DE69923210D1 (en) 2005-02-17
US20080051506A1 (en) 2008-02-28
US6864296B2 (en) 2005-03-08
EP1127086A1 (en) 2001-08-29
ES2235516T3 (en) 2005-07-01

Similar Documents

Publication Publication Date Title
CA2344378A1 (en) Improved cellular plastic material
US5114989A (en) Isocyanate-terminated prepolymer and polyurethane foam prepared therefrom
US8333905B1 (en) Transesterified polyol having selectable and increased functionality and urethane material products formed using the polyol
US7084230B2 (en) Oxylated vegetable-based polyol having increased functionality and urethane materials formed using the polyol
EP1726612B1 (en) Carbon dioxide blown low density, flexible microcellular polyurethane elastomers
FI95141C (en) Liquid polyisocyanate mixtures, process for their preparation and their use in the manufacture of soft polyurethane foams
CN101328254B (en) Polyester type polyurethane micropore elastomer added with low cost polycarbonate polyatomic alcohol and preparation thereof
CN108602934B (en) Composition for polyurethane foam containing polyrotaxane, polyurethane foam derived from the composition, and method for producing polyurethane foam
CA1107449A (en) Semi-flexible polyurethane foams containing amylaceous material and process for preparing same
CZ287435B6 (en) Process for preparing foam polyurethane shaped parts without use of fluorochlorinated hydrocarbons
CA2156383A1 (en) Rigid foams with improved insulation and physical properties
CA2099271C (en) Energy absorbing, water blown, rigid polyurethane foam
US20070117875A1 (en) Flexible Polyurethane Foam and a Method of Producing the Same
CN106397729A (en) Cushioning material capable of being shaped by hot compression as well as preparation method and application of cushioning material
JP2022522466A (en) Soft particle foam made of thermoplastic polyurethane
KR20120090708A (en) Method for preparing non-shrinking polyurethane foam
FI66410B (en) FOER FARING FRAMSTAELLNING AV CELL-POLYURETAN-ELASTOMERER
CN106317853A (en) Polyurethane elastomer composition, polyurethane elastomer preparation method and vehicle interior part skin
US5286758A (en) Use of formate salts as auxiliary agents for low density rigid foams
KR100929196B1 (en) Polyether-based polyurethane foam with improved strength and its use
JP2002337159A (en) Method for manufacturing polyurethane/polyurea molded product reinforced by natural fibers
JP7059875B2 (en) Polyurethane foam
US4900760A (en) Flexible polyurethane foam prepared from a novel polyisocyanate mixture
JPH06128348A (en) Biodegradable polyurethane composite and its production
CN117683198A (en) Washable memory sponge and preparation method thereof

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20140917