CA2344479C - Water-soluble fluorescent semiconductor nanocrystals - Google Patents

Water-soluble fluorescent semiconductor nanocrystals Download PDF

Info

Publication number
CA2344479C
CA2344479C CA2344479A CA2344479A CA2344479C CA 2344479 C CA2344479 C CA 2344479C CA 2344479 A CA2344479 A CA 2344479A CA 2344479 A CA2344479 A CA 2344479A CA 2344479 C CA2344479 C CA 2344479C
Authority
CA
Canada
Prior art keywords
nanocrystal
water
soluble
group
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA2344479A
Other languages
French (fr)
Other versions
CA2344479A1 (en
Inventor
Moungi G. Bawendi
Frederick V. Mikulec
Jin-Kyu Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Massachusetts Institute of Technology
Original Assignee
Massachusetts Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Massachusetts Institute of Technology filed Critical Massachusetts Institute of Technology
Priority claimed from PCT/US1999/021375 external-priority patent/WO2000017655A1/en
Publication of CA2344479A1 publication Critical patent/CA2344479A1/en
Application granted granted Critical
Publication of CA2344479C publication Critical patent/CA2344479C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/588Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with semiconductor nanocrystal label, e.g. quantum dots
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Abstract

A water-soluble semiconductor nanocrystal capable of light emission is provided. The nanocrystal including a semiconductor nanocrystal core having a selected band gap energy, a shell layer overcoating the core comprised of a semiconductor material having a band gap energy greater than that of the semiconductor nanocrystal, and an outer layer comprised of a molecule having at least one linking group for attachment of the molecule to the overcoating shell layer and at least one hydrophilic group optionally spaced apart from the linking group by a hydrophobic region sufficient to prevent electron charge transfer across the hydrophobic region.

Description

WATER-SOLUBLE FLUORESCENT
SEMICONDUCTOR NANOCRYSTALS
Field of the Invention This invention relates to water-soluble nanocrystalline materials that emit energy over a narrow range of wavelengths. In particular, the invention relates to water-soluble semiconductor nanocrystals that emit light in the visible and infrared energy range.
Background of the Invention Semiconductor nanocrystals (also known as Quantum DotT"' particles) whose radii are smaller than the bulk exciton Bohr radius constitute a class of materials intermediate between molecular and bulk forms of matter. Quantum confinement of both the electron and hole in all three dimensions leads to an increase in the effective band gap of the material with decreasing crystallite size. Consequently, both the optical absorption and emission of semiconductor nanocrystals shift to the blue (higher energies) as the size of the nanocrystals gets smaller.
Bawendi and co-workers have described a method of preparing monodisperse semiconductor nanocrystals by pyrolysis of organometallic reagents injected into a hot coordinating solvent (Murray et al. (1993).J. Am. Chem. Soc., 115:8706).
This permits temporally discrete nucleation and results in the controlled growth of macroscopic quantities of nanocrystals. Size-selective precipitation of the crystallites from the growth solution can provide crystallites with even narrower size distributions. The narrow size distribution of the semiconductor nanocrystals allows the possibility of light emission with narrow spectral linewidths.
In an effort to improve the photoluminescent yield of the semiconductor nanocrystals, the nanocrystal surface has been passivated by reaction of the surface atoms of the nanocrystal with organic passivating ligands, to eliminate energy levels at the surface of the crystallite that lie within the energetically forbidden gap of the bulk interior. These surface energy states act as traps for electrons and holes which degrade the luminescence properties of the material. Such passivation produces an atomically abrupt increase in the chemical potential at the interface of the semiconductor and passivating layer (see, Alivisatos (1996) J. Phys. Chem.
100:13226). Murray et al. (1993), supra, describes CdSe nanocrystals capped with organic moieties such as tri-n-octyl phosphine (TOP) and tri-n-octyl phosphine oxide (TOPO) with quantum yields as high as 20% in organic solvents such as toluene (see, also, doctoral thesis of Christopher Murray, "Synthesis and Characterization of II-VI
Quantum Dots and Their Assembly into 3-D Quantum Dot Superlattices" (1995) Massachusetts Institute of Technology; and Kuno et al. (1997) .I. Phys. Chem.
106(23):9869).

Although semiconductor nanocrystals prepared as described by Bawendi and co-wQrkers exhibit near monodispersity, and hence, high color selectivity, the luminescence properties of the material is process dependent. The stability of the photoluminescent property of the nanocrystal is a function of the nature of the passivating species coating the outer surface of the nanocrystal. Known organically coated nanocrystals are not robust and exhibit degradation of photoluminescent yield in solution. This is likely due to dissociation of the passivating layer from the surface of the nanocrystal or degradation of the passivating layer resulting in degradation of the semiconductor surface.
Passivation of semiconductor nanocrystals using inorganic materials also has been reported. Particles passivated with an inorganic coating are more robust than organically passivated particles and have greater tolerance to processing conditions necessary for their incorporation into devices. Previously reported inorganically passivated semiconductor nanocrystal particle structures include CdS-capped CdSe and CdSe-capped CdS (Than et al. (1996) J. Phys. Chem. 100:8927); ZnS grown on CdS (Youn et al. (1988) J. Phys. Chem. 92:6320); ZnS on CdSe and the inverse structure (Kortan et al. (1990) J. Am. Chem. Soc. 112:1327); ZnS-capped CdSe nanocrystals (Hines et al. (1996) J. Phys. Chem. 100:468; ZnSe-capped CdSe nanocrystals (Danek et al. (1996) Chem. Materials 8:173); and SiO2 on Si (Wilson et al. (1993) Science 262:1242).
Kortan et al. (1990), supra, describes a ZnS capped-CdSe nanoparticle that has a layer of thiolphenyl groups bound to the outer surface. The thiolphenyl groups were used to passivate the surface and to allow the clusters to be isolated in powder form. Lawless et al. (1995) J. Phys. Chem. 99:10329 reported the preparation of CdS
semiconductor nanocrystals capped with bifunctional mercaptocarboxylic acids HS(CH2)õCOOH, wherein n is 1-3. TiO, particles were attached to the CdS
nanocrystals through the functional carboxylic acid group of the bifunctional capping moiety in order to promote interparticle electron transfer between dissimilar semiconductor particles.
The semiconductor nanocrystals described above are soluble or dispersible only in organic solvents, such as hexane or pyridine. Many applications which rely on the fluorescent emission of the semiconductor nanocrystals require that the semiconductor nanocrystals be water-soluble.
Many reported water-soluble semiconductor nanocrystals suffer from significant disadvantages which limit their wide applicability. For example, Spanhel et al. (1987) .l. Am. C'hem. Soc. 109:5649, discloses a Cd(OH)2-capped CdS
sol;
however, the photoluminescent properties of the sol were pH dependent. The sol could be prepared only in a very narrow pH range (pH 8-10) and exhibited a narrow fluorescence band only at a pH of greater than 10. Such pH dependency greatly limits the usefulness of the material; in particular, it is not appropriate for use in biological systems.
Other groups have replaced the organic passivating layer of the semiconductor nanocrystal with water-soluble moieties; however, the resultant derivatized semiconductor nanocrystals are not highly luminescent. Short chain thiols such as 2-mercaptoethanol and 1-thio-glycerol have been used as stabilizers in the preparation of water-soluble CdTe nanocrystals. See, Rogach et al. (1996) Ber. Bunsenges.
Phys.
Chem. 100:1772 and Rajh et al. (1993) J. Phys. Chem. 97:11999. Other more exotic capping compounds have been reported with similar results. See, Coffer et al.
(1992) Nanotechnology 3:69 which describes the use of deoxyribonucleic acid (DNA) as a capping compound. In all of these systems, the coated semiconductor nanocrystals were not stable and photoluminescent properties degraded with time.
The unavailability of aqueous suspensions or solutions of semiconductor nanocrystals with sharp photoluminescent emissions limits their application in a variety of water-based applications, such as biological applications. In addition, aqueous solutions can often be very aggressive chemical systems and many of the known water-soluble semiconductor nanocrystal systems degrade, mainly by photoanodic decomposition at the semiconductor surface interface, during long exposure times in water.
Thus, there remains a need for water-soluble semiconductor nanocrystals that can be prepared as stable, robust suspensions or solutions in aqueous media.
There is also a need for water-soluble semiconductor nanocrystals capable of energy emission with high quantum efficiencies, which possess a narrow particle size (and hence with narrow photoluminescence spectral range).

Summary of the Invention 5 It is a primary object of the invention to address the aforementioned needs in the art.

It is another object of the invention to provide water-soluble semiconductor nanocrystals that overcome the limitations of the prior art and that exhibit high quantum yields with photoluminescence emissions of high spectral purity.
It is yet a further object of the present invention to provide a semiconductor nanocrystal that is readily soluble in aqueous systems and that demonstrates chemical and electronic stability therein.

It is yet a further object of the invention to provide a water-soluble semiconductor nanocrystal derivatized to provide linking or coupling capability.
In one aspect of the invention, a water-soluble semiconductor nanocrystal capable of energy emission is provided. The nanocrystal includes a semiconductor nanocrystal core having a selected band gap energy overcoated with a shell layer of a material having a band gap energy greater than that of the core and with appropriate band offsets. The water-soluble nanocrystal further comprises an outer layer at the outer surface of the overcoating layer. The outer layer includes a molecule having at least one linking group for attachment of the molecule to the overcoating layer and at least one hydrophilic group optionally spaced apart from the linking group by a hydrophobic region sufficient to minimize electron charge transfer across the hydrophobic region.

The outer layer of the nanocrystal can comprise an organic molecule. The organic molecule can be comprised of moieties selected to provide solubility in an aqueous medium, such as a long chain hydrocarbon terminating in a moiety having affinity for an aqueous medium, and a moiety that demonstrates an affinity to the semiconductor nanocrystal surface. The affinity for the nanocrystal surface promotes coordination of the organic molecule to the semiconductor nanocrystal outer surface and the moiety with affinity for the aqueous medium stabilizes the semiconductor nanocrystal suspension.

ln one preferred embodiment, the molecule has structural formula (I) (I) H,X'((CH,)nCO,H),.
S and salts thereof, wherein: X' is N, P or O=P; n is greater than or equal to 6; and z and y are selected to satisfy the valence requirements of X'.
In other preferred embodiments, the molecule has structural formula (II) Y - (Z) X' x (II) wherein: X and X' are the same or different and are selected from the group of S, N, P or O=P; Y is a hydrophilic moiety; and Z is absent or a hydrophobic region having a backbone of at least six atoms. X and X' can include other substituents to satisfy the valence requirements, such as for example, amines, thiols, phosphines and phosphine oxides, substituted by hydrogen or other organic moieties. In addition, the atoms bridging X and X' can be selected to form a 5-membered to 8-membered ring upon coordination to the semiconductor surface. The bridging atoms are typically carbon, but can be other elements, such as oxygen, nitrogen, and sulfur. Y can be any charged or polar group, such as a carboxylate, a sulfonates, a phosphate, a polyethylene glycol or other polyol and an ammonium salt, e.g., carboxylate (-COZ ), sulfonate (SO3 ), hydroxide (-OH), alkoxides, ammonium salts (-NH4+), and phosphate (-PO4 2) and phosphonate (-P03 Z), and the like. Z is typically an alkyl group or alkenyl group, but can also include other atoms, such as carbon and nitrogen. Z can be further modified as described herein to provide attractive interactions with neighboring ligands.

In yet another preferred embodiment, the molecule has structural formula (III):

X
Y (Z) x X"
(III) wherein: X, X' and X" are the same or different and are selected from the group of S, N, P or O=P; Y is a hydrophilic moiety; and Z is a hydrophobic region having a backbone of at least six atoms. X, X' and X" can include other substituents in order to satisfy the valence requirements, such as for example, amines, thiols, phosphines and phosphine oxides, substituted by hydrogen or other organic moieties. In addition, the atoms bridging X, X' and X" can be selected to form a 5-membered to 8-membered ring upon coordination to the semiconductor surface. The bridging atoms are typically carbon, but can be other elements, such as oxygen, nitrogen, and sulfur.
Y can be any charged or polar group, such as a carboxylate, a sulfonate, a phosphate, a polyethylene glycol or other polyol and an ammonium salt, e.g., carboxylate (-COZ ), sulfonate (-S03 ), hydroxide (-OH), alkoxides, ammonium salts (-NH,+), phosphate (-PO; 2), phosphonate (-PO3"z), and the like. Z is typically an alkyl group or alkenyl group, but can also include other atoms, such as carbon and nitrogen. Z
can be further modified as described herein to provide attractive interactions with neighboring ligands.
In other preferred embodiments, the molecule has structural formula (IV):
(IV) (R')a RZ-L(R3)e(R`).)a wherein:
R' is selected from the group consisting of heteroalkyl, heteroalkenyl, heteroalkynyl, -OR, -SR, -NHR, -NR'R", -N(O)HR, -N(O)R'R", -PHR, -PR'R", -P(NR'R")NR'R",-P(O)R'R", -P(O)(NR'R")NR'R", -P(O)(OR')OR", -P(O)OR, -P(O)NR'R", -P(S)(OR')OR", and -P(S)OR, wherein R, R' and R" are independently selected from the group consisting of H, a branched or unbranched alkyl, a branched or unbranched alkenyl, a branched or unbranched alkynyl, a branched or unbranched heteroalkyl, a branched or unbranched heteroalkenyl and a branched or unbranched heteroalkynyl, with the proviso that when a is greater than 1 the R' groups can be the same or different or can be linked to form a six-, seven-, eight-, nine- or ten-membered cycloalkyl, cycloalkenyl, heterocyclic, aryl, heteroaryl, or a six-to thirty-membered crown ether or heterocrown ether;
RZ is selected from a bond (i.e., RZ is absent), a branched or unbranched alkylene, a branched or unbranched alkenylene, a branched or unbranched heteroalkylene, a branched or unbranched heteroalkenylene, cycloalkyl, cycloalkenyl, cycloalkynyl, heterocyclic, aryl and heteroaryl;
R3 is selected from a branched or unbranched alkylene, a branched or unbranched alkenylene, a branched or unbranched heteroalkylene, a branched or unbranched heteroalkenylene, cycloalkyl, cycloalkenyl, cycloalkynyl, heterocyclic, aryl and heteroaryl;
R4 is selected from the group consisting of hydrogen, a carboxylate, a thiocarboxylate, an amide, an imide, a hydrazine, a sulfonate, a sulfoxide, a sulfone, a sulfite, a phosphate, a phosphonate, a phosphonium, an alcohol, a thiol, an amine, an ammonium, an alkyl ammonium, a nitrate, a sugar moiety, and a five-, six-, seven-, eight-, nine- or ten-membered cycloalkenyl, cycloalkynyl, heterocyclic, aryl, or heteroaryl;

ais1,2,3or4;
b is 0, 1, 2 or 3;
cisO, 1,2or3;and d is 0, 1, 2 or 3, wherein when d is 2 or 3 the R3 groups can be the same or different or can be linked together to form a five-, six-, seven-, eight-, nine- or ten-membered cycloalkyl, cycloalkenyl, heterocyclic, aryl, or heteroaryl.
Preferably, R' is a thiol (e.g., -SH), a phosphine, a phosphine oxide, or an amine (e.g., -NH2, -NHR or -NRR').

Preferably, R= contains between 6 and 20 atoms. More preferably, R' is a linear alkylene, alkenvlene, alkynylene, heteroalkylene, heteroalkenviene or heteroalkynylene containing 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 atoms, or a cycloalkyl or heterocyclic containing 5 or 6 atoms.

Preferablv, when h is 1, 2 or 3, R3 contains between 6 and 20 atoms. More preferably, R` is a linear alkylene, alkenylene, alkynylene, heteroalkylene, heteroalkenylene or heteroalkynylene containing 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 atoms, or a cycloalkyl or heterocyclic containing 5 or 6 atoms.
Preferably, R' is a carboxylate (-COO-), a phosphonate (-PO,'). a sulfonate (-SO,") or an ammonium (-N+HRR').
In yet another embodiment of the invention, the molecule has structural formula (V):

(V) 4Y2(R' )qm,-R24X2(R +õ..
wherein pendant groups R' and R4 and the R2 moiety are as defined above, X2 and Y2 are the same or different and are mer units selected from the group consisting of acrylate, styrene, imide, acrylamide, ethylene, vinyl, diacetylene, phenylene-vinylene, amino acid, sugar, sulfone, pyrrole, imidazole, thiophene and ether, and m' and n' are selected in relation to the number of available coordinating sites on the surface of the semiconductor nanocrystal. It is desirable that m' be no greater than the number of available coordinating sites and preferably no greater than about one-fourth of available coordinating sites. In particular, m' is in the range of about 3 to about 100.
The value of n' is typically chosen to be commensurate with the value for m'.
Thus, it is desirable that n' be no greater than the number of available coordinating sites and preferably no greater than about one-fourth of available coordinating sites.
In particular, n' is in the range of about 3 to 100. The molecule can be a block copolymer, wherein a first block is provided that includes a pendant group capable of functioning as a linking moiety, Y. A second block is provided that includes a pendant group capable of functioning as a hydrophilic group, X. The polymer block serves as a hydrophilic region. In preferred embodiment, the molecule has the formula, Y
R' R
m n X
wherein the Xs are the same or different and are elements selected from the group of 5 S, N, P or O=P; and the Ys are the same or different and are hydrophilic moieties, such as carboxylates, sulfonates, phosphates, phosphonates, polyethylene glycol, ammonium salt, and the like. X can include other substituents in order to satisfy the valence requirements, such as for example, amines, thiols, phosphine and phosphine oxides, substituted by hydrogen or other organic moieties. The terminal groups R and 10 R' can be any moiety, including hydrogen. In particular, it is desirable for R to be a polar moiety due to its proximity to the hydrophilic block. Similarly, it is desirable for R' to be a non-polar moiety due to its proximity to the hydrophobic block.
m and n are selected in relation to the number of available coordinating sites on the surface of the semiconductor nanocrystal. It is desirable that m be no greater than the number of available coordinating sites and preferably no greater than one-fourth of available coordinating sites. In typical applications, m is in the range of about 3 to 100. The value of n is typically chosen to be commensurate with the value for m. Thus, it is desirable that n be no greater than the number of available coordinating sites and preferably no greater than one-fourth of available coordinating sites. In typical applications, n is in the range of about 3 to 100.
Although not wishing to be bound by theory, the inventors believe that coordination of the molecule having structural formula (IV) to the overcoated nanocrystal occurs between surface moieties on the nanocrystal and the R' moiety of the molecule.
In another preferred embodiment, the water-solubilizing outer layer can comprise a homogeneous population of molecules having structural formula (I), (II), (III), (IV) or (V), a mixed population of molecules any individual structural formula, i.e., a mixed population of molecules all of which have structural formula (I), (II), lt (11I), (IV) or (V), or a mixed population of molecules which have a combination of two or more of structural formulas (I), (II), (III), (IV) and (V).
In another aspect of the invention, a water-soluble semiconductor nanocrystal is provided in which the water solubilizing layer is a bilayer, having a first layer of the bilayer having affinity for the overcoating layer and a second layer of the bilayer having a hydrophobic region adjacent to the first layer and terminating in a hydrophilic group. The bilayer can include a coordinating lyophilic molecule used in the manufacture of the semiconductor nanocrystal as the first layer and a surfactant as the second layer.
These and other embodiments of the present invention will readily occur to those of ordinary skill in the art in view of the disclosure herein.

Brief Description of the Drawing The invention is described with reference to the figures, which are presented for the purpose of illustration only, and in which:
Figure 1 is a schematic illustration of the water-soluble nanocrystal of the invention;
Figure 2 is a schematic illustration of several alternative embodiments of the water-soluble layer of the nanocrystal;
Figure 3 is an illustration of a water-soluble nanocrystal of the invention having crosslinked hydrocarbon hydrophilic backbone;
Figure 4 is an illustration of a water-soluble nanocrystal of the invention comprising a polymethacrylate region;
Figure 5 is a schematic illustration of a bilayer water-soluble nanocrystal of the invention; and Figure 6 is an illustration of the displacement reaction used in the formation of the water-soluble nanocrystal of the invention Detailed Description of the Invention Definitions and nomenclature:
Before the present invention is disclosed and described in detail, it is to be understood that this invention is not Iimited to specific assay formats, materials or reagents, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting.
It must be noted that, as used in the specification and the appended claims, the singular forms "a," "an" and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a nanocrystal" includes more than one nanocrystal, reference to "an outer layer" includes more than one such outer layer, and the like.
In this specification and in the claims which follow, reference will be made to a number of terms which shall be defined to have the following meanings:
"Quantum dotTM particles" are a semiconductor nanocrystal with size-dependent optical and electronic properties. In particular, the band gap energy of a semiconductor nanocrystal varies with the diameter of the crystal.
"Semiconductor nanocrystal" includes, for example, inorganic crystallites between about 1 nm and about 1000 nm in diameter, preferably between about 2 nm and about 50 nm, more preferably about 5 nm to about 20 nm (such as about 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nm) that includes a "core"
of one or more first semiconductor materials, and which can be surrounded by a "shell"
of a second semiconductor material. A semiconductor nanocrystal core surrounded by a semiconductor shell is referred to as a "core/shell" semiconductor nanocrystal. The surrounding "shell" material will preferably have a bandgap greater than the bandgap of the core material and can be chosen so to have an atomic spacing close to that of the "core" substrate. The core and/or the shell can be a semiconductor material including, but not limited to, those of the group I1-VI (e.g., ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, HgTe, MgTe and the like) and III-V (e.g., GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, AlAs, AIP, AISb, AIS, and the like) and IV
(e.g., Ge, Si, Pb and the like) materials, and an alloy thereof, or a mixture, including ternary and quaternary mixtures, thereof.

. ,.,__.~~....~...-,.._.. _ A semiconductor nanocrystal is, optionally, surrounded by a "coat" of an organic capping agent. The organic capping agent can be any number of materials, but has an affinity for the semiconductor nanocrystal surface. In general, the capping agent can be an isolated organic molecule, a polymer (or a monomer for a polymerization reaction), an inorganic complex, and an extended crystalline structure.
The coat is used to convey solubility, e.g., the ability to disperse a coated semiconductor nanocrystal homogeneously into a chosen solvent, functionality, binding properties, or the like. In addition, the coat can be used to tailor the optical properties of the semiconductor nanocrystal.
"Quantum yield" as that term is used herein, means the ratio of photons emitted to that absorbed, e.g., the photoluminescence quantum yield.
In other embodiments of the invention, the coated nanocrystal is characterized in that the nanocrystal exhibits less than a 10% rms (root mean square) and preferably less than 5% rms deviation in diameter of the core. Thus, the phrase "monodisperse particles" includes a population of particles wherein the population of particles deviate less than 10% rms in diameter and preferably less than 5% rms. The nanocrystal in an aqueous environment preferably exhibits photoluminescence having quantum yields of greater than 10%, and most preferably in the range of about 10% to 30%.

The term "alkyl" as used herein includes reference to a branched or unbranched saturated hydrocarbon group of 1 to 100 carbon atoms, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, t-butyl, octyl, decyl, tetradecyl, hexadecyl, eicosyl, tetracosyl and the like, as well as cycloalkyl groups such as cyclopentyl, cyclohexyl and the like. The term "lower alkyl" includes an alkyl group of I to 20 carbon atoms, preferably 6 to 20 carbon atoms.
The term "alkylene" as used herein includes reference to a di-functional saturated branched or unbranched hydrocarbon chain containing from 1 to 100 carbon atoms, and includes, for example, methylene (-CH,-), ethylene (-CH2-CH2-), propylene (-CH,-CH,-CH,-), 2-methylpropylene (-CH,-CH(CH3)-CH,-), hexylene (-(CH2)6-), and the like. "Lower alkylene" includes an alkylene group of I to 20, more preferably 6 to 20, carbon atoms.

The term "alkenyl" as used herein includes reference to a branched or unbranched hydrocarbon group of 2 to 100 carbon atoms containing at least one carbon-carbon double bond, such as ethenyl, n-propenyl, isopropenyl, n-butenyl, isobutenvl, t-butenyl, octenyl, decenyl, tetradecenyl, hexadecenyl, eicosenyl, tetracosenyl and the like. The term "lower alkenyl" includes an alkenyl group of 2 to 20 carbon atoms, preferably 6 to 20 carbon atoms, containing one -C=C- bond.
The term "alkenylene" includes reference to a difunctional branched or unbranched hydrocarbon chain containing from 2 to 100 carbon atoms and at least one carbon-carbon double bond. "Lower alkenylene" includes an alkenylene group of 2 to 20, more preferably 6 to 20, carbon atoms, containing one carbon-carbon double bond.
The term "alkynyl" as used herein includes reference to a branched or unbranched hydrocarbon group of 2 to 100 carbon atoms containing at least one -CDC- bond, such as ethynyl, n-propynyl, isopropynyl, n-butynyl, isobutynyl, 1-butynyl, octynyl, decynyl and the like. Preferred alkynyl groups herein contain 6 to 20 carbon atoms. The term "lower alkynyl" includes an alkynyl group of 2 to 10 carbon atoms, and one -CEIC- bond.
The term "alkynylene" includes reference to a difunctional branched or unbranched hydrocarbon chain containing from 2 to 100 carbon atoms and at least one carbon-carbon triple bond. "Lower alkynylene" includes an alkynylene group of 2 to 10 carbon atoms, containing one -COC- bond.
Optionally, an alkyl, alkylene, alkenyl, alkenylene, alkynyl or alkynyl chain can contain I to 6 linkages selected from the group consisting of -0-, -S- and -NR-wherein R is hydrogen, lower alkyl or lower alkenyl.
The terms "heteroalkyl," "heteroalkylene," "heteroalkenyl,"
"heteroalkenylene," "heteroalkynyl" and "heteroalkynylene" include reference to alkyl, alkylene, alkenyl, alkenylene, alkynyl and alkynylene groups, respectively, in which one or more of the carbon atoms have been replaced with, e.g., nitrogen, sulfur or oxygen atoms.

"Alkoxy" includes reference to the group -O-R, wherein R is an alkyl radical as defined above. Examples of an alkoxy radical include, but are not limited to, methoxy, ethoxy, isopropoxy and the like.

"Alkylamino" includes reference to a radical -NHR, wherein R is an alkyl radical as defined above. Examples of alkylamino radicals include, but are not limited to, methylamino, (1-ethylethyl)amino, and the like.

"Alkylthio" includes reference to a radical -SR where R is an alkyl radical as 5 defined above. Examples of alkylthio radicals include, but are not limited to, methylthio, butylthio, and the like.
"Dialkylamino" includes reference to a radical -NR'R", wherein R' and R" are each independently alkyl radicals as defined above. Examples of dialkylamino radicals include, but are not limited to, dimethylamino, methylethylamino, 10 diethylamino, di(1-methylethyl)amino, and the like.

"Hydroxyalkyl" includes reference to an alkyl radical as defined above, substituted with one or more hydroxy groups. Examples of hydroxyalkyl radicals include, but are not limited to, hydroxymethyl, 2-hydroxyethyl, 2-hydroxypropyl, 3-hydroxypropyl, 2-hydroxybutyl, 3-hydroxybutyl, 4-hydroxybutyl, 15 2,3-dihydroxypropyl, 1-(hydroxymethyl)-2-hydroxyethyl, 2,3-dihydroxybutyl, 3,4-dihydroxybutyl, and 2-(hydroxymethyl)-3-hydroxypropyl, and the like.
The term "acyl" as used herein includes reference to an alkyl group bound through a -(CO)- linkage. The term "lower acyl" includes an acyl group in which the alkyl group bound through the carbonyl linkage is a lower alkyl group.
The term "sugar moiety" includes reference to monosaccharides, disaccharides, polysaccharides, and the like. The term "sugar" includes those moieties which have been modified, e.g., wherein one or more of the hydroxyl groups are replaced with halogen, alkoxy moieties, aliphatic groups, or are functionalized as ethers, amines, or the like. Examples of modified sugars include: those which contain a lower alkoxy group in place of a hydroxyl moiety, i.e., a- or 0-glycosides such as methyl a-D-glucopyranoside, methyl P-D-glucopyranoside, and the like; those which have been reacted with amines, i.e., N-glycosylamines or N-glycosides such as N-(a-D-glucopyranosyl)methylamine; those containing acylated hydroxyl groups, typically from I to 5 lower acyl groups; those containing one or more carboxylic acid groups, e.g., D-gluconic acid or the like; and those containing free amine groups such as D-glucosamine, D-galactosamine, N-acetyl-D-glucosamine or the like. Examples of preferred saccharides are glucose, galactose, fructose, ribose, mannose, arabinose, xylose. Examples of polysaccharides is dextran and cellulose.
"Aryl" inciudes reference to a monovalent aromatic hydrocarbon radical consisting of one or more fused rings in which at least one ring is aromatic in nature, which can optionally be substituted with one or more of the following substituents:
hydroxy, cyano, alkyl, alkoxy, thioalkyl, halo, haloalkyl, hydroxyalkyl, nitro, amino, alkylamino, and dialkylamino, unless otherwise indicated.
"Heteroaryl" includes reference to a monovalent aromatic carbocyclic radical having one or more rings incorporating one, two or three heteroatoms within the ring (chosen from nitrogen, oxygen, or sulfur) which can optionally be substituted with one or more of the following substituents: hydroxy, cyano, alkyl, alkoxy, thioalkyl, halo, haloalkyl, hydroxyalkyl, nitro, amino, and alkylamino and dialkylamino, unless otherwise indicated.
"Cycloalkyl" includes reference to a monovalent saturated carbocyclic radical consisting of one or more rings, which can optionally be substituted with one or more of the following substituents: hydroxy, cyano, alkyl, alkoxy, thioalkyl, halo, haloalkyl, hydroxyalkyl, nitro, amino, alkylamino and dialkylamino, unless otherwise indicated.
"Cycloalkenyl" includes reference to a monovalent unsaturated carbocyclic radical consisting of one or more rings and containing one or more carbon-carbon double bonds, which can optionally be substituted with one or more of the following substituents: hydroxy, cyano, alkyl, alkoxy, thioalkyl, halo, haloalkyl, hydroxyalkyl, nitro, amino, alkylamino and dialkylamino, unless otherwise indicated.
"Cycloalkynyl" includes reference to a monovalent unsaturated carbocyclic radical consisting of one or more rings and containing one or more carbon-carbon triple bonds, which can optionally be substituted with one or more of the following substituents: hydroxy, cyano, alkyl, alkoxy, thioalkyl, halo, haloalkyl, hydroxyalkyl, nitro, amino, alkylamino and dialkylamino, unless otherwise indicated.
"Heterocyclic" includes reference to a monovalent saturated carbocyclic radical, consisting of one or more rings, incorporating one, two or three heteroatoms (chosen from nitrogen, oxygen or sulfur), which can optionally be substituted with one or more of the following substituents: hydroxy, cyano, alkyl, alkoxy, thioalkyl, halo, haloalkyl, hydroxvalkyl, nitro, amino, alkylamino and dialkylamino, unless otherwise indicated.

The term "crown ether" includes reference to a saturated unbranched heterocyclic molecule, mono-, di-, tri-valent or higher (e.g., 4, 5, 6, 7, or 8) multivalent radical, ..Crown ethers are typically referred to as "x crown y"
or "xCy"
wherein x represents the total number of atoms in the molecule and y represents the number of heteroatoms in the molecule. Thus, for example, 12 crown 4 is a crown ether containing 12 atoms, 4 of which are heteroatoms and 18C6 is a crown ether containing 18 atoms, 6 of which are heteroatoms. Preferred heteroatoms are 0, S and N, and in any particular crown ether the heteroatoms can be the same or different. A
"heterocrown ether" is a crown ether in which the heteroatoms are different.
Preferred crown ethers are six- to thirty-membered crown or heterocrown ethers, more preferred are 8C4, 9C3, 12C4, 15C5, 18C6 and 20C8, and even more preferred are 12C4 and 18C6.

"Optional" or "optionally" means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances where it does not. For example, the phrase "optionally substituted alkylene" means that an alkylene moiety may or may not be substituted and that the description includes both unsubstituted alkylene and alkylene where there is substitution, and the like.
The present invention is directed to water-soluble semiconductor nanocrystals that are highly luminescent and stable in aqueous solutions. The nanocrystal is represented schematically in Figure 1. A semiconductor nanocrystal 10 is coated with an outer layer 14 that renders the crystal water-soluble. The outer layer 14 further is selected to maintain the luminescent properties of the nanocrystal and to improve the robustness of the nanocrystal in aqueous solutions. An optional overcoating layer 12 can be used to coat the semiconductor nanocrystal before application of the outer layer 14. The outer layer includes a molecule 15 having at least one linking group 16 for attachment of the molecule to the overcoating layer and at least one hydrophilic group 20 spaced apart from the linking group by a hydrophobic region 18 sufficient to prevent electron charge transfer across the hydrophobic region. Note that the hydrophilic group 20 is denoted for the sake of convenience as a negative charge in Figure 1; however, the group can be positively charged or polar neutral.

The nanocrystal includes a semiconductor nanocrystal that demonstrates quantum confinement effects in their luminescent properties. These nanocrystals are known as "Quantum DotT"t particles". When semiconductor nanocrystals are illuminated with a primarv energy source, a secondary emission of energy occurs of a frequency that corresponds to the band gap of the semiconductor material used in the semiconductor nanocrystal. In quantum confined particles, the band gap is a function of the size of the nanocrystal.

Upon exposure to a light source, the semiconductor nanocrystal emits energy of a wavelength characteristic of its composition and size. The water-soluble layer of the invention can be used with nanocrystals having various combinations of nanocrystal core and overcoating. The invention permits the preparation of a variety of water-soluble nanocrystals having a very narrow particle size distribution and exhibiting improvements in color purity and intensity of their photoluminescent emissions, as well as demonstrating robustness and stability in water-based suspensions and solutions. Most of the II-VI, III-V and group IV
semiconductors have been prepared as quantum sized particles and exhibit quantum confinement effects in their physical properties and can be used in the water-soluble nanocrystals of the invention. Exemplary materials suitable for use as semiconductor nanocrystal cores include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, MgTe, GaAs, GaP, GaSb, GaN, HgS, HgSe, HgTe, InAs, InP, InSb, InN, AlAs, A1P, AlSb, A1S, PbS, PbSe, Ge, Si, an alloy thereof, or a mixture thereof, including ternary and quaternary mixtures thereof.

The semiconductor nanocrystals are characterized by their unifotm nanometer size. By "nanometer" size, it is meant less than about 150 Angstroms (A), and preferably in the range of 15-150 A. The nanocrystal also is substantially monodisperse within the broad size range given above. By monodisperse, as that term is used herein, it is meant a colloidal system in which the suspended particles have substantially identical size and shape. For the purposes of the present invention, monodisperse particles mean that at least 60% of the particles fall within a specified particle size range. In preferred embodiments, monodisperse particles deviate less than 10% rms in diameter, and preferably less than 5%. Monodisperse semiconductor nanocrystals have been described in detail in Murray et al. (1993), mq)ra, the Murray thesis (1995), supra, and Kuno et al., supra.

In preferred embodiments, the semiconductor nanocrystal has an overcoating shell layer. At the surface of the semiconductor nanocrystal, surface defects can result in traps for electron or holes that degrade the electrical and optical properties of the semiconductor nanocrystal. An insulating layer at the surface of the semiconductor nanocrystal provides an atomically abrupt jump in the chemical potential at the interface which eliminates energy states that can serve as traps for the electrons and holes. This results in higher efficiency in the luminescent process.
Suitable materials for the overcoating shell layer include semiconductors having a higher band gap energy than the semiconductor nanocrystal. In addition to having a band gap energy greater than the semiconductor nanocrystals, suitable materials for the overcoating shell layer should have good conduction and valence band offset with respect to the semiconductor nanocrystal. Thus, the conduction band is desirably higher and the valance band is desirably lower than those of the semiconductor nanocrystal core. Thus, the core can be overcoated with a shell material comprising ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, MRS= MgSe, GaAs, GaN, GaP, GaAs, GaSb, HgO, HgS, HgSe, HgTe, InAs, InN, InP, InSb, AlAs, A1N, A1P, AISb, an alloy thereof, or a mixture thereof, including ternary and quaternary mixtures thereof. Preferably, the band gap energy of the overcoating shell is greater than that of the core. For semiconductor nanocrystals that emit energy in the visible (e.g., CdS, CdSe, CdTe, ZnSe, ZnTe, GaP, GaAs) or near IR (e.g., InP, InAs, InSb, PbS, PbSe), a material that has a band gap energy in the ultraviolet regions can be used. Exemplary materials include ZnS, GaN, and magnesium chalcogenides, e.g., MgS, MgSe and MgTe. For semiconductor nanocrystals that emit in the near IR, materials having a band gap energy in the visible, such as CdS or CdSe, can also be used. The overcoating shell layer can include up to eight monolayers of the semiconductor material.

Particularly preferred semiconductor nanocrystals for emission in the visible include CdX3, wherein X3 is S, Se and Te and ZnY3, where Y3 is Se, Te. For those molecules, ZnS is a preferred material for use as the overcoating. For CdTe, ZnSe can be a preferred material for use as the overcoating due to the higher degree of lattice match between the materials. Overcoated nanocrvstals which can be used in the present invention are described in Dabbousi et al. (1997) .I. Phvs.
(:'hem. B, 101(46):9463, and Kuno et al., supra.

Most prior art semiconductor nanocrystals are prepared in a coordinating 5 solvent, resulting in the formation of a passivating organic layer on the nanocrystal surface comprised of the organic solvent. The passivated semiconductor nanocrystals thus are readily soluble in organic solvents, such as toluene, chloroform and hexane.
The present invention provides a surface-modified particle that is soluble instead in aqueous media. According to the invention, the surface of the semiconductor 10 nanocrystal is coated with an outer layer that stabilizes the semiconductor nanocrystal in aqueous solution. The outer layer includes a molecule having at least one linking moiety that attaches to the surface of the particle and that terminates in at least one hydrophilic moiety. The linking and hydrophilic moieties are optionally spaced apart by a hydrophobic region sufficient to prevent charge transfer across the region. The 15 hydrophobic region also provides a "pseudo-hydrophobic" environment for the nanocrystal and thereby shields it from its aqueous surroundings. To exhibit high quantum efficiency it is desirable for the particles to remain electronically isolated from one another. The outer layer of the invention serves the additional useful purpose of maintaining the desired isolation between individual semiconductor 20 nanocrystals.

The outer layer can be made up of any material that meets the structural and performance criteria stated herein. The material can be organic or inorganic.
In preferred embodiments, the molecule is an organic molecule. In some embodiments, the outer layer can be a mixture of two or more different water-solubilizing molecules. In other embodiments, the outer layer can comprise additional molecules selected to provide a desirable attribute to the semiconductor nanocrystal.
For example, the outer coating can include molecules having reactive functional groups for reaction with other substrates or molecules.

Suitable linking moieties include molecules having electron pairs available for interaction with the semiconductor surface, such as oxygen (0), sulfur (S), nitrogen (N) and phosphorus (P). Exemplary molecules include electron-donating moieties such as amines, thiols, phosphines, amine oxides, phosphine oxides, and the like. The linking moiety attaches to the semiconductor nanocrystal surface primarily through coordinate bonding of lone electron pairs of the nitrogen, sulfur, oxygen or phosphorous atom of the linking group. Covalent bonding and ionic bonding can also be used to form the interaction of the outer layer with the semiconductor surface.
S A molecule having a single linking moiety will result in the formation of an outer layer having water-soiubilizing properties; however, it may be desirable for the molecule to comprise a plurality of linking moieties, as illustrated schematically in Figure 2A. Thus, the molecule can be a bidentate or tridentate ligand having two or more linking groups 22, 22'. Linking groups as described herein above can be used.
For example, the molecule can be a derivatized dithiol, diamine, triamine, diphosphine, and the like. The linking groups can be the same or different.
Multidentate ligands provide enhanced stability and robustness to the organic layer and the resulting water-soluble nanocrystal. Without being bound to any particular mode of operation, it is believed that improved stability of the water-soluble nanocrystal is achieved by the increased binding coefficient of the multidentate ligand to the semiconductor surface. Since the organic layer is formed by an exchange reaction with solvated solvent molecules (see below), it follows that the water-solubilizing molecule can also be displaced from the surface of the semiconductor nanocrystal. It has been observed for example that the outer layer can be at least partially removed by dialysis of the water-soluble layer. Use of a multidentate ligand increases the strength of the interaction of the molecule with the semiconductor nanocrystal and decreases the ease of exchange of the organic layer with other coordinating molecules.

Increased stability of the resultant water-soluble semiconductor nanocrystal has been qualitatively observed in the size-selective precipitation of coated semiconductor nanocrystals. Semiconductor nanocrystals which have been overcoated with a bidentate ligand such as lipoic acid, exhibit a four-fold increase in suspension stability over a comparable monodentate ligand-coated molecule.
The hydrophilic moiety can be a polar or charged (positive or negative) group.
The polarity or charge of the group provides the necessary hydrophilic interactions with water to provide stable solutions or suspensions of the semiconductor nanocrystal. Exemplary hydrophilic groups include polar groups such as hydroxides (-OH) , amines, polyethers, such as polyethvlene glycol and the like, as well as charged groups, such as carboxylates (-CO_ ), sulfonates (-SO,"), phosphates (-PO,-:) and phosphonates(-PO3-'`), nitrates, ammonium salts (-NH,`), and the like.
Water solubility has been achieved using molecules having a single hydrophilic group; however, it can be desirable for the molecule to include more than a single hydrophilic moiety, as illustrated schematically in Figure 2B. Figure shows a molecule having at least two hydrophilic moieties 24, 24. The hydrophilic groups can be the same or different. It is also contemplated that the water-solubilizing molecule can include multiple linking groups and hydrophilic groups, as shown in Figure 2C.

The hydrophobic region is selected to prevent photooxidation of the surface by charge transfer of a hole to the surface either from the core of the semiconductor nanocrystal or the environment. Typical processes include electrolysis of water from the environment with the resultant oxidation of sulfur or selenium (of the semiconductor nanocrystal) to SO. or SeO,, , in instances where the semiconductor nanocrystal or overcoating layer contains S or Se. Transfer of a charge across the layer represents a non-energy emissive pathway for the excited state of the semiconductor and photoluminescence is thereby significantly reduced or quenched.
Prior art surface modifications of semiconductor nanocrystals include capping of CdS nanocrystals with 2-mercaptoethanol, 1-thioglycerol and 3-mercaptopropionic acid. See, Lawless et al., supra, and Rogach et al, supra.
These short chain organic molecules do not provide a optimally luminescent, water-soluble semiconductor nanocrystal because the short carbon chain does not provide adequate insulation of the semiconductor nanocrystal against photooxidative processes.
Therefore, charge transfer can occur between the semiconductor nanocrystal and either the carboxylate or the aqueous environment. Luminescence is partially quenched and quantum yields are low, i.e., less than 1%, in systems employing short chain organic molecules as a capping layer.

In one embodiment of the invention, the hydrophobic region is a long-chain hydrocarbon moiety, -(CH,)n-, where n is greater than six and preferably greater than eight. Hydrocarbon moieties wherein n is 11 or 15 have been successfully used in the manufacture of the water-soluble nanocrystal of the invention. There is no upper limit to the hydrocarbon chain length; however, it is recognized that very long hydrocarbon chains.might render the nanocrystal undesirably "greas_y". The hydrophobic region also can include branching hydrocarbons.

In another embodiment, the hydrophobic region can include a modified hydrocarbon backbone. This modification can be the result of coupling reactions, e.g., carbodiimide couplinty, used to increase the length of the hydrophobic backbone.
Alternatively, non-carbon atoms can be introduced into the backbone to improve the attractive interaction of the water-solubilizing ligand with neighboring molecules.
The backbone also can be modified to include pendant groups that are attractive to neighboring hydrophobic regions through forces such as van der Waals attraction or hydrogen bonding. The attractive interaction between neighboring molecules serves to stabilize the outer layer of the semiconductor nanocrystal. In the event that the linking moiety should dissociate from the semiconductor surface, the attractive interaction with its neighbors will help the molecule to remain closely associated with the semiconductor nanocrystal until its linking moiety is able to recoordinate to the surface.

Exemplary modifications include amide, ketone, ether and aromatic moieties, and the like, substituting in whole or in part for the hydrocarbon backbone or attached as pendant groups from the hydrocarbon backbone. The polar nature of the moieties promotes hydrogen bonding and other attractive interaction with neighboring molecules which stabilizes the coating and increases its robustness in aqueous solution.

In other embodiments of the invention, the molecule of the outer layer is crosslinked to or polymerized with its neighboring molecules. Crosslinking provides stability to the layer by creating an effectively multidentate ligand across the semiconductor surface and significantly reducing ligand volatility and increasing the robustness and stability of the coating. Exemplary crosslinked networks are illustrated schematically in Figure 3.

To this end, the hydrocarbon chain can include some degree of unsaturation, which can be crosslinked upon exposure to uv energy or other free radical initiator to bridge neighboring ligands. Hydrocarbon unsaturation (and subsequent crosslinks) retain the hydrophobicitv desired to prevent the photoinduced degradation of the semiconductor surface.

In one embodiment of the invention, the outer layer terminates in an unsaturated hydrophilic moiety that is capable of crosslinking or polymerizing. For example, the unsaturated moiety can be acrylic or methacrylate, which can be polymerized by exposure to free radical initiation, heat, UV energy, etc. to form poly(methacrylate), as is shown in Figure 4. The result is a polymer network, in this example, poly(methacrylate), that interacts with and effectively shields the semiconductor nanocrystal from an aqueous environment. The poly(methacrylate) can be deprotonated to provide a charged surface to render the nanocrystal water-soluble. Other exemplary unsaturated moieties for polymerization include acrylic acid and polystyrene derivatized to include a water-solubilizing functional group, e.g., carboxylate and sulfonate, and the like.
In another embodiment of the invention, the outer layer is comprised of a block copolymer that provides the requisite, linking, hydrophilic and hydrophobic functionalities. The copolymer includes at least a first block which contains a pendant group capable of functioning as a linking moiety and a second block having a pendant group capable of functioning as a hydrophilic moiety. The polymer backbone can function as the hydrophobic region. The linking and hydrophilic moieties can be directly attached to the hydrocarbon backbone or they can be attached through intermediary spacing groups. For example, the linking group Y can terminate from an aromatic or alkyl spacing group to provides greater access to the semiconductor surface.

In one embodiment of the invention, the molecule has structural formula (V):

(V) -{YZ(R' }}m,-R24X2(R4y-n..

wherein Rl, R2, R4, X2, Y`, m' and n' are as defined above. In one exemplary embodiment of a molecule having structural formula (V), the molecule is a block copolymer having the formula, Y
R' R
m n X
wherein X and Y are linking moieties and hydrophilic moieties, respectively, and can be anyo of the moieties discussed hereinabove. R and R' can be hydrogen, R can be a 5 polar moiety and R' can be a non-polar moiety. The block copolymer can have a molecular weight of 300-50,000. The block sizes for the hydrophilic and linking moieties are preferably in the range of about 3 to 100.

Exemplary molecules for use in the invention have structural formula (I) 10 (I) HZX((CH,)nCO2H)Y

wherein X, z, n and y are as defined above, structural formula (II) X
Y--(Z) X' (II) or structural formula (III) X
Y (Z) x X"
(III) wherein Y, Z, X, X' and X" are as defined above, or structural formula (IV) (IV) (R')a R`-[(R3)h(R411 wherein R', R2, R', R', a, b, c, and d are as defined above.
Exemplary molecules for use in the outer layer of the water-soluble nanocrystal of the invention having the formula provided hereinabove include long chain aminocarboxylic acids, NH,(CH,)nCOOH, and phosphinocarboxylic acids, P((CH,)nCOOH),, and their oxides O= P((CH,)nCOOH),, wherein n is greater than or equal to 6, preferably n is greater than or equal to 8 and more preferably n is 10-12.
The carboxylic acid can be deprotonated to provide the hydrophilic moiety.
Other suitable molecules include bidentate ligands, such as, dihydrolipoic acid, HSCH,CHZCH(SH)(CHZ)1COOH, or more generally, HSCH2CH2CH(SH)(CH_),,COOH, where n is 1-10. The length of the ligand can be increased by standard carbodiimide coupling methods, producing a species with the formula HSCH,CH2CH(SH)(CH~,)4CONH(CH2)õCOOH. The commercial availability of numerous precursors allows n to be easily varied from 2 to at least 10.
Further detail of the carbodiimide coupling reaction can be found in Rich et al.
(1979) The Pentides Vol. 1, Academic Press, pp. 241-2561.
Other suitable bidentate ligands include: the primary amine-containing analogues of the above molecule, H2NCH,CH2CH(NHZ)(CHz)nCOOH; derivatives of ethylene diamine, such as (HOOC(CHZ)n)HNCHZCHZNH((CH,)õCOOH);
diphosphines such as (HOOC(CHZ)õ)2PCH,CH,P((CHZ),,COOH),; and the corresponding diphosphine oxides (HOOC(CHZ)n)2P(O)CH,CH,P(O)((CH2),,COOII)2.
An advantage to the use of the above-mentioned carboxylic acid derivatives it that they lend themselves to a wide range of chemistries. For example, the water-soluble semiconductor nanocrystal can be coupled with molecules having biological affinity for use in assaying. In another example, the water-soluble semiconductor nanocrystal can be coupled to beads, solid supports or objects of interest in order to track or identify an article. See U.S. Patent No. 6,426,513 and U.S. Patent No.
6,617,583, supra, for further details.
It will be readily apparent to one of ordinary skill in the art that the carboxylic acid moiety of the above-listed molecules can be substituted for a wide variety of charged or polar groups, including but not limited to, hydroxides, polyethers, such as polyethylene glycol and the like,, and amines, as well as charged groups, such as carboxylates, sulfonates, phosphates, nitrates, ammonium salts and the like.
Molecules such as listed herein above are commercially available or can be synthesized from methods and procedures well known in the art. It will be further apparent that the modifications described above with respect to hydrophobic regions and the hydrophilic groups can be incorporated into the molecule described immediately above in preparation of ligands suitable for use in the outer coating of the invention.

In another aspect of the invention, the water-soluble outer layer can be a bilayer comprising an inner layer having an affinity for the semiconductor surface and an outer layer terminating in a hydrophilic layer having an affinity for an aqueous medium. Figure SA illustrates an exemplary molecule used in the outer bilayer of the invention. The molecule, dioctyl sulfosuccinate (aerosol OT '), contains hydrophobic hydrocarbon regions 52 (denoted schematically as "------ " in Figure 5A) and a charged hydrophilic region 54 (denoted by "0" in Figure 5A). An exemplary bilayer molecule is shown in Figure 5B in which an inner layer 40 includes a molecule 42 (here TOPO) having a linking moiety 44 with an affinity for the semiconductor surface. A hydrophobic tail 48 extends from the linking moiety.
The second outer layer 50 is comprised of a inner hydrophobic region 52 and an terminal hydrophilic moiety 54 for favorable interaction with an aqueous medium.
The hydrophobic regions 48, 52 of the inner and outer layers, respectively, interact preferentially in the aqueous medium, to form a micelle encapsulating the nanocrystal therein. Figure 5B also illustrates the displacement reaction which occurs to form the bilayer of the invention.

The inner layer can include those coordinating solvents typically used in the manufacture of the semiconductor nanocrystal. Exemplary molecules include trialkyl phosphines and phosphine oxides, such as trioctylphosphine oxide (TOPO), trioctylphosphine (TOP), tributylphosphine (TBP), and the like. Hexadecylamine is a possible solvent, in particular, for solvating ZnSe.

The second outer layer can include any surfactant having a non-polar tail and a polar head. Non-limiting examples of surfactants include sodium dioctyl sulfosuccinate (known by the trade name AOT soap), C,2H25(OCH,CH,)Z,OH (Brij ), C,8H37(OCH,CH_),0OH (Brij 76 ) and C,H37(OCH,CH2),o OH (Brij 98 ).

Even common hand soap, e.g., Ivory soap, has been successfully used in the preparation of water-solubfe nanocrystals of the invention.

A method for the preparation of the water-soluble nanocrystal follows. The method is described for a CdSe(ZnS), i.e., a CdSe core with a ZnS shell, semiconductor nanocrystal. but it is understood that the method can be applied in the preparation of semiconductor nanocrystals from the known semiconductor materials.
A population of nearly monodisperse nanocrystals first is prepared. The actual size of the nanocrystals will vary depending upon the material used.
For CdSe, particles range in size from about 12 A to about 150 A diameter with a particle size distribution of about 5-10% rms in diameter. The monodisperse nanocrystals can be obtained using a high-temperature colloidal growth process, optionally followed by size-selective precipitation. If spectral emission linewidths are not as narrow as desired, size-selective precipitation can be used to obtain a population of semiconductor nanocrystals of narrower particle size distribution. See, Murray et al.
(1993), supra, the Murray thesis (1995), supra, and Kuno et al., supra.
The semiconductor nanocrystal core can then be coated with the appropriate semiconductor overcoating layer, i.e., the shell. The coated nanocrystal can be prepared by introducing the substantially monodisperse first semiconductor nanocrystal and a precursor capable of thermal conversion into a second semiconductor material into a coordinating solvent. The coordinating solvent is maintained at a temperature sufficient to convert the precursor into the second semiconductor material yet insufficient to alter substantially the monodispersity of the first semiconductor nanocrystal. Preferably, the second semiconductor material has a band gap greater than that of the first semiconductor nanocrystal. An overcoating shell of the second semiconductor material is formed on the first semiconductor nanocrystal. The monodispersity of the nanocrystal is monitored during conversion of the precursor and overcoating of the first semiconductor nanocrystal. The particle size distribution can be refined further by size-selective precipitation.

Further details in the preparation of a coated semiconductor nanocrystal for use in the water- soluble nanocrystal of the invention can be found in IJ.S.
Patent Application filed on November. 13, 1997 and entitled "Highly Luminescent Color-Selective Materials", now U.S. Patent No. 6,322,901, and Dabbousi et al., supra.

The outer surface of the nanocrystal, as formed, includes an organic layer derived from the coordinating solvent used during the capping layer growth process.
The nanocrystal surface can be modified to obtain the water-soluble nanocrystal of the invention by repeated exposure to an excess of a competing coordinating group.
For example, a dispersion of the semiconductor nanocrystal can be treated with a coordinating organic molecule, such as those described herein, to produce nanocrystals which disperse readily in water, but which no longer disperse in aliphatics. Such a surface exchange process can be carried out using a variety of molecules that are capable of coordinating or bonding to the outer surface of the capped semiconductor nanocrystal, such as by way of example, phosphines, thiols, amines, phosphine oxides and amine oxides.
A typical reaction is illustrated in Figure 6. Semiconductor nanocrystals 60 are prepared in a coordinating organic solvent such as trioctylphosphine oxide (TOPO) which results in the formation of a passivating TOPO layer 62 on the surface of the semiconductor nanocrystal. This layer is displaced at least in part by the ligand 54, here represented as a long chain mercaptocarboxylic acid, comprising the outer layer of the invention in order to obtain water-soluble nanocrystal 66.
Displacement can occur by dispersion of semiconductor nanocrystals or overcoated semiconductor nanocrystals in a medium containing high concentrations of the ligand used to form the outer coating. The medium can be a neat liquid comprising the ligand or it can be a highly concentrated solution. High concentrations drive the displacement reaction forward to maximize surface coverage of the nanocrystal by the molecule of the outer coating. Note that the displacement of the TOPO layer need not be complete in order to obtain a water-soluble nanocrystal.
Repeated exposure of the nanocrystal to the coordinating ligand solution may be desirable. The outer coating can be comprised of a mixture of the original polar organic solvent used in the preparation of the nanocrystal and the water-solubilizing molecule used in the outer coating of the invention. Substitution of the water-solubilizing molecule need only be sufficient to render the molecule water-soluble and need not be complete. In some embodiments, substitution is about 25-50%
complete, preferably greater than 60% complete. The actual degree of substitution needed for solubility in water will depend on the number of charged or polar groups on the water-solubilizing molecule. Higher number of charged or polar groups can require a lower level of surface substitution in order to achieve water solubility.
It is also within the scope of the present invention to include other coordinating ligands on the outer coating of the nanocrystal. The additional ligands 5 can be included to make available additional chemical reactions to the nanocrystal.
For example coordinating ligands that terminate in reactive groups such as carboxylic acid. acyl halides and the like can be added to the outer surface of nanocrystal.

It is to be understood that while the invention has been described in conjunction with the preferred specific embodiments thereof, that the foregoing description as well as the examples which follow are intended to illustrate and not limit the scope of the invention. Other aspects, advantages and modifications within the scope of the invention will be apparent to those skilled in the art to which the invention pertains.
The following examples are intended to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the novel compositions of the invention, and are not intended to limit the scope of what the inventors regard as their invention in any way. Efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperatures, etc), but some experimental error and deviation should, of course, be allowed for. Unless indicated otherwise, parts are parts by weight, temperatures are in degrees centigrade, and pressure is at or near atmospheric.
The practice of the present invention will employ, unless otherwise indicated, conventional techniques of synthetic organic chemistry, biochemistry, molecular biology, and the like, which are within the skill of the art. Such techniques are explained fully in the literature. See, e.g., Kirk-Othmer's Encyclopedia of Chemical Technology: House's Modem Synthetic Reactions; the Marvel et al. text ORGANIC
SYNTHESIS; Collective Volume 1, and the like.

Example I
Preparation of TOPO-capped CdSe(ZnS) (a) Preparation of CdSe. Trioctyiphosphine oxide (TOPO, 90% pure) and trioctylphosphine (TOP, 95% pure) were obtained from Strem and Fluka, respectively. Dimethyl cadmium (CdMe,) and diethyl zinc (ZnEt2) were purchased from Alfa and Fluka, respectively, and both materials were filtered separately through a 0.2 m filter in an inert atmosphere box. Trioctylphosphine selenide was prepare by dissolving 0.1 mols of Se shot in 100ml of TOP thus producing a 1 M solution of TOPSe. Hexamethyl(disilathiane) (TMS.S) was used as purchased from Aldrich.
HPLC grade n-hexane, methanol, pyridine and n-butanol were purchased from EM
Sciences.

The typical preparation of TOP/TOPO-capped CdSe nanocrystals follows.
TOPO (30g) was placed in a flask and dried under vacuum (--1 Torr) at 180 C
for l hour. The flask was then filled with nitrogen and heated to 350 C. In an inert atmosphere drybox the following injection solution was prepared: CdMe2 (200 microliters, 2.78 mmol), I M TOPSe solution (4.0 mL, 4.0 mmol), and TOP (16 mL).
The injection solution was thoroughly mixed, loaded into a syringe, and removed from the drybox.

The heat was removed from the reaction flask and the reagent mixture was delivered into the vigorously stirring TOPO with a single continuous injection. This produces a deep yellow/orange solution with a sharp absorption feature at 470-nm and a sudden temperature decrease to -240 C. Heating was restored to the reaction flask and the temperature was gradually raised to 260-280 C.
Aliquots of the reaction solution were removed at regular intervals (5-10 min) and absorption spectra taken to monitor the growth of the crystallites. The best samples were prepared over a period of a few hours steady growth by modulating the growth temperature in response to changes in the size distribution, as estimated from the sharpness of the features in the absorption spectra. The temperature was lowered 5-10 C in response to an increase in the size distribution. Alternatively, the reaction can also be stopped at this point. When growth appears to stop, the temperature is raised 5-10 C. When the desired absorption characteristics were observed, the reaction flask was allowed to cool to about 60 C and 20 mL of butanol were added to prevent solidification of the TOPO. Addition of a large excess of methanol causes the particles to flocculate. The flocculate was separated from the supernatant liquid by centrifugation; the resulting powder can be dispersed in a variety of organic solvents (alkanes, ethers, chloroform, tetrahvdrofuran, toluene, etc.) to produce an optically clear solution.
The powder can be further optimized in an optional size selective precipitation procedure. Nanocrystallites were dispersed in a solution of -10% butanol in hexane.
Methanol was then added dropwise to this stirring solution until opalescence persisted. Separation of supernatant and flocculate by centrifugation produced a precipitate enriched with the largest crystallites in the sample. This procedure was repeated until no further sharpening of the optical absorption spectrum was noted.
Size-selective precipitation can be carried out in a variety of solvent/nonsolvent pairs, including pyridine/hexane and chloroform/methanol.
(b) Preparation of CdSe(ZnS)- A flask containing 5g of TOPO was heated to 190 C under vacuum for several hours then cooled to 60 C after which 0.5 mL
trioctylphosphine (TOP) was added. Roughly 0.1-0.4 micromols of CdSe nanocrystals dispersed in hexane were transferred into the reaction vessel via syringe and the solvent was pumped off.
Diethyl zinc (ZnEtZ) and hexamethyldisilathiane ((TMS)2S) were used as the Zn and S precursors, respectively. Particle size distribution for a particular sample was determined by comparison of the optical data to those of known semiconductor nanocrystals of known particle size. The amounts of Zn and S precursors needed to grow a ZnS shell of desired thickness for each CdSe sample was calculated based on the ratio of the shell volume to that of the core assuming a spherical core and shell and taking into account the bulk lattice parameters of CdSe and ZnS. For larger particles, the ratio of Zn to Cd necessary to achieve the same thickness shell is less than for the smaller nanocrystals. The actual amount of ZnS that grows onto the CdSe cores was generally less than the amount added due to incomplete reaction of the precursors and to loss of some material on the walls of the flask during the addition.

Equimolar amounts of the precursors were dissolved in 2-4 mL TOP inside an inert atmosphere glove box. The precursor solution was loaded into a syringe and transferred to an addition funnel attached to the reaction flask. The reaction flask containing CdSe nanocrystals dispersed in TOPO and TOP was heated under an atmosphere of N.. The temperature at which the precursors were added ranged from 140 C for 23A diameter nanocrystals to 220 C for 55A diameter nanocrystals.
When the desired temperature was reached the Zn and S precursors were added dropwise to the vigorously stirring reaction mixture over a period of 5-10 minutes.
After the addition was complete the mixture was cooled to 90 C and left stirring for several hours. Butanol (5mL) was added to the mixture to prevent the TOPO from solidifying upon cooling to room temperature. The overcoated particles were stored in their growth solution to ensure that the surface of the nanocrystals remained passivated with TOPO. They were later recovered in powder form by precipitating with methanol and redispersing into a variety of solvents including hexane, chloroform, toluene, TIIF and pyridine.
Example 2 Preparation of a water-soluble semiconductor nanocrystals usiniz long chain mercaQtocarboxylic acid.

TOPO-capped CdSe(ZnS) semiconductor nanocrystals were prepared as described in Example 1. The overcoated CdSe(ZnS) nanocrystals were precipitated from the growth solution using a mixture of butanol and methanol. To obtain the precipitated semiconductor nanocrystals, the solution was centrifuged for 5-10 minõ
the supernatant was decanted and the residue was washed with methanol (2X).
The residue was weighed. The weight of the TOPO cap was assumed to be 30% of the total weight; and a 30-fold molar excess of the new capping molecule, 11-mercaptoundecanoic acid (MUA) was added. The residue and MUA (neat solution) were stirred at 60 C for 8-12 hours. A volume of tetrahydrofuran (THF) equal to the added MUA was added to the MUA/nanocrystal mixture, while the mixture was still hot. A clear solution resulted and the coated semiconductor nanocrystals were stored under THF.

The coated semiconductor nanocrystals are rendered water-soluble by deprotonation of the carboxvlic acid functional group of the MUA. The deprotonation was accomplished by adding a suspension of potassium t-butoxide in THF to the MUA-semiconductor nanocrystal/THF solution. A gel resulted, which was then centrifuged and the supernatant liquid was poured off. The residue was washed twice with THF, centrifuged each time and the supernatant liquid poured off.
The final residue was allowed to dry in air for 10 minutes. Deionized water (Millipore) was added to the residue until a clear solution formed.
The resultant coated semiconductor nanocrystals were tested for photoluminescent quantum yield. A CdSe semiconductor nanocrystal with a four-monolayer coating of ZnS coated as described had an absorption band a 480 nm and a photoluminescent band at 500 nm, with a quantum yield of 12%. A second CdSe semiconductor nanocrystal with a four monolayer coating of ZnS coated as described had an absorption band a 526 nm and a photoluminescent band at 542 nm, with a quantum yield of 18%.

Example 3 Preparation of a water-soluble semiconductor nanocrvstal using a multidentate ligand.

A water-soluble semiconductor nanocrystal was prepared as described in Example 2, except that the bidentate ligand, dihydrolipoic acid was used.
The synthesis of a bidentate dithiol ligand was accomplished via the reduction of the coenzyme lipoic acid. The general procedure was described in Gunsalus et al.
(1956) J. Am. Chem. Soc. 78:1763-1766. Sodium borohydride (1.2 g) was added in 30-50 mg portions to a stirring suspension of lipoic acid (6.0 g) in 117 mL of 0.25 M
sodium bicarbonate in 0 C water. The reaction was stirred for 45 minutes at 0 C, after which 100 mL toluene was added and the mixture was acidified to pH - 2 with hydrochloric acid. The toluene layer was collected and saved. The aqueous layer was washed three times with 15 mL toluene. The organic layers were combined, dried with anhvdrous magnesium sulfate, filtered, and the solvent removed under vacuum, leaving behind the product dihydrolipoic acid as a yellow oil (yield 80%).
Cap exchange was performed using the same procedure as described for 5 11 -mercaptoundecanoic acid. TOPO-capped CdSe(ZnS) semiconductor nanocrystals were precipitated from solution and washed twice with methanol. The remaining powder was dissolved (under nitrogen) at 70 C in the minimum amount (usually 300-600 mg) of dihydrolipoic acid necessary to produce a clear solution. This mixture was stirred at 70 C for 6 hours, then stored at room temperature. The nanocrystais 10 were rendered water soluble by treatment with potassium t-butoxide in THF, as described for the mercaptocarboxylic acid ligands.

Example 4 15 Preparation of a water-soluble semiconductor nanocrystal using a surfactant.

TOPO-capped CdSe(ZnS) semiconductor nanocrystals were prepared as described in Example 1. The semiconductor nanocrystals were dissolved in hexane to 20 give a solution which was approximately 0.001-0.01 molar concentration of CdSe(ZnS) nanocrystals. Sufficient surfactant sodium dioctylsulfosuccinate (trade name AOT) was added to the mixture to produce a solution which is 5%
surfactant by weight (but liquid Ivory soap also worked). The hexane solvent was evaporated under vacuum. The resulting solid residue dissolved in water to give a clear solution 25 whose quantum yield was approximately the same as the initial sample (-75%
of the original value).

Claims (27)

CLAIMS:
1. A water-soluble semiconductor nanocrystal capable of energy emission, comprising:
a semiconductor nanocrystal core having a selected band gap energy;
a shell layer overcoating the semiconductor nanocrystal core, the shell comprised of a semiconductor material having a band gap energy greater than that of the core;
an outer layer comprising a ligand having a first portion comprising at least one linking group for attachment to the nanocrystal and a second portion comprising at least one hydrophilic group, wherein the ligand comprises a multidentate molecule.
2. A water-soluble semiconductor nanocrystal capable of energy emission, comprising:
a semiconductor nanocrystal core having a selected band gap energy; and an outer layer comprising a ligand having a first portion comprising at least one linking group for attachment to the nanocrystal and a second portion comprising at least one hydrophilic group, wherein the ligand comprises a multidentate molecule.
3. A water-soluble semiconductor nanocrystal capable of energy emission, comprising:
a semiconductor nanocrystal core having a selected band gap energy;
a shell layer overcoating the semiconductor nanocrystal core, the shell comprised of a semiconductor material having a band gap energy greater than that of the semiconductor nanocrystal; and a bilayer overcoating the shell, the bilayer comprising:
an inner layer having affinity for the shell; and an outer layer comprising a ligand having a hydrophilic group spaced apart from the inner layer by a hydrophobic region adjacent to the inner layer, wherein the ligand comprises a multidentate molecule.
4. The water-soluble nanocrystal of claim 1, wherein the linking group comprises a moiety selected from the group consisting of amines, thiols, phosphines, phosphine oxides and amine oxides.
5. The water-soluble nanocrystal of claim 1, wherein the hydrophilic group is a charged or polar group.
6. The water-soluble nanocrystal of claim 1, wherein the hydrophilic group is selected from the group consisting of carboxylic acid, carboxylate, sulfonate, hydroxide, alkoxides, ammonium salts, phosphate and phosphonate.
7. The water-soluble nanocrystal of claim 1, wherein the hydrophilic group comprises an unsaturated hydrophilic group that is crosslinkable or polymerizable.
8. The water-soluble nanocrystal of claim 7, wherein the unsaturated hydrophilic group is selected from the group consisting of methacrylic acid, acrylic acid and hydrophilically derivatized styrene.
9. The water-soluble nanocrystal of claim 1, wherein the ligand comprises two or more hydrophilic groups.
10. The water-soluble nanocrystal of claim 1 or 2, wherein the first portion is spaced apart from the second portion by a hydrophobic region.
11. The water-soluble nanocrystal of claim 10, wherein the hydrophobic region comprises a hydrocarbon chain of the formula -(CH2)n-, where n is greater than or equal to six.
12. The water-soluble nanocrystal of claim 1, 2 or 3, wherein the multidentate molecule has the structural formula (II), wherein:

Y is the hydrophilic moiety;
Z is a hydrophobic region having a backbone of at least six atoms;
X and X' are individually or together the linking groups, are the same or different and are selected from the group of S, N, P and O=P, or are linked together to form a 5-membered to 8-membered ring upon coordination to the nanocrystal surface.
13. The water-soluble nanocrystal of claim 1, 2 or 3, wherein the multidentate molecule has the structural formula (III), wherein:
Y is the hydrophilic moiety;
Z is a hydrophobic region having a backbone of at least six atoms;
X, X' and X" are individually or together linking groups, are the same or different and are selected from the group of S, N, P and O=P, or are linked together to form a 5-membered to 8-membered ring upon coordination to the nanocrystal surface.
14. The water-soluble nanocrystal of claim 1, 2 or 3, wherein the multidentate molecule has the structural formula, wherein:
X is the same or different and is S, N, P or O=P, optionally including other substituents in order to satisfy valence requirements; Y is a hydrophilic moiety; R is H or a polar moiety; R' is H or a non-polar moiety; m is in the range of about 3 to 100; and n is in the range of about 3 to 100.
15. The water-soluble nanocrystal of claim 11, wherein n is in the range of 10 to 12.
16. The water-soluble nanocrystal of any one of claims 1, 2 and 3, wherein the nanocrystal core is a Group II-VI, Group III-V or Group IV semiconductor.
17. The water-soluble nanocrystal of any one of claims 1, 2, 3 or 16 wherein the core comprises CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, MgTe, GaAs, GaP, GaSb, GaN, HgS, HgSe, HgTe, InAs, InP, InSb, InN, AlAs, AlP, AlSb, AlS, PbS, PbSe, Ge, Si, an alloy thereof, or a mixture thereof.
18. The water-soluble nanocrystal of claim 16 or 17, wherein the shell comprises ZnO, ZnS, ZnSe, ZnTe, CdO, CdS, CdSe, CdTe, MgS, MgSe, GaAs, GaN, GaP, GaAs, GaSb, HgO, HgS, HgSe, HgTe, InAs, InN, InP, InSb, AlAs, AlN, AlP, AlSb, an alloy thereof, or a mixture thereof.
19. The water-soluble nanocrystal according to any one of claims 1, 2, 3, 16 and 17, wherein the core is CdSe and the shell is ZnS.
20. The water-soluble nanocrystal of claim 1, 2, 3, 16, 17, 18 or 19, wherein the core is a member of a monodisperse particle population.
21. The water-soluble nanocrystal of claim 20, wherein the monodisperse particle population is characterized in that when irradiated the population emits light in a spectral range less than about 40 nm full width at half maximum (FWHM).
22. The water-soluble nanocrystal of claim 20, wherein the monodisperse particle population is characterized in that it exhibits no more than about a 10% rms deviation in the diameter of the core.
23. The water soluble nanocrystal of claim 3, wherein the inner layer comprises a coordinating lyophilic compound.
24. The water soluble nanocrystal of claim 23, wherein the coordinating lyophilic compound is selected from the group consisting of trialkyl phosphines, trialkyl phosphine oxides and alkyl amines.
25. The water soluble nanocrystal of claim 3, wherein the outer layer comprises a surfactant.
26. The water soluble nanocrystal of claim 25, wherein the surfactant is selected from the group consisting of sodium dioctyl sulfosuccinate, C12H25(OCH2CH2)23OH, C18H37(OCH2CH2)10OH and C18H37(OCH2CH2)20OH.
27. A composition, comprising: a water soluble nanocrystal including a semiconductor nanocrystal core having a selected band gap energy and an outer layer comprising at least one water-solubilizing ligand having at least one linking group for attachment of the ligand to a surface of the nanocrystal and at least one hydrophilic group spaced apart from the linking group by a hydrophobic region sufficient to prevent electron charge transfer across the hydrophobic region, wherein the ligand comprises a multidentate molecule.
CA2344479A 1998-09-18 1999-09-17 Water-soluble fluorescent semiconductor nanocrystals Expired - Lifetime CA2344479C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/156,863 US6251303B1 (en) 1998-09-18 1998-09-18 Water-soluble fluorescent nanocrystals
US09/156,863 1998-09-18
PCT/US1999/021375 WO2000017655A1 (en) 1998-09-18 1999-09-17 Water-soluble fluorescent semiconductor nanocrystals

Publications (2)

Publication Number Publication Date
CA2344479A1 CA2344479A1 (en) 2000-03-30
CA2344479C true CA2344479C (en) 2010-03-23

Family

ID=22561412

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2344479A Expired - Lifetime CA2344479C (en) 1998-09-18 1999-09-17 Water-soluble fluorescent semiconductor nanocrystals

Country Status (3)

Country Link
US (3) US6251303B1 (en)
AU (1) AU6148599A (en)
CA (1) CA2344479C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210376242A1 (en) * 2020-06-02 2021-12-02 Samsung Display Co., Ltd. Quantum dot composition, light emitting element, and method for manufacturing the same

Families Citing this family (429)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4043497A (en) 1996-07-29 1998-02-20 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses therefor
US7098320B1 (en) 1996-07-29 2006-08-29 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses therefor
US6750016B2 (en) * 1996-07-29 2004-06-15 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses therefor
US6506564B1 (en) * 1996-07-29 2003-01-14 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses therefor
US7169556B2 (en) 1996-07-29 2007-01-30 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses therefor
US6984491B2 (en) 1996-07-29 2006-01-10 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses therefor
US6582921B2 (en) 1996-07-29 2003-06-24 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses thereof
US6692660B2 (en) * 2001-04-26 2004-02-17 Nanogram Corporation High luminescence phosphor particles and related particle compositions
US6974669B2 (en) * 2000-03-28 2005-12-13 Nanosphere, Inc. Bio-barcodes based on oligonucleotide-modified nanoparticles
US20050037397A1 (en) * 2001-03-28 2005-02-17 Nanosphere, Inc. Bio-barcode based detection of target analytes
US6607829B1 (en) * 1997-11-13 2003-08-19 Massachusetts Institute Of Technology Tellurium-containing nanocrystalline materials
US6207392B1 (en) 1997-11-25 2001-03-27 The Regents Of The University Of California Semiconductor nanocrystal probes for biological applications and process for making and using such probes
GB2334033A (en) * 1998-02-09 1999-08-11 Isis Innovation Self activated rare earth oxide nanoparticles
US6617583B1 (en) * 1998-09-18 2003-09-09 Massachusetts Institute Of Technology Inventory control
US6251303B1 (en) * 1998-09-18 2001-06-26 Massachusetts Institute Of Technology Water-soluble fluorescent nanocrystals
WO2000029617A2 (en) * 1998-09-24 2000-05-25 Advanced Research And Technology Institute, Inc. Water-soluble luminescent quantum dots and bioconjugates thereof
US6576155B1 (en) * 1998-11-10 2003-06-10 Biocrystal, Ltd. Fluorescent ink compositions comprising functionalized fluorescent nanocrystals
EP1135682B1 (en) 1998-11-30 2007-07-11 Nanosphere, Inc. Nanoparticles with polymer shells
NO312867B1 (en) * 1999-06-30 2002-07-08 Penn State Res Found Apparatus for electrically contacting or insulating organic or inorganic semiconductors, as well as a method for making them
JP2004501340A (en) * 2000-01-13 2004-01-15 ナノスフェアー インコーポレイテッド Oligonucleotide-attached nanoparticles and methods of use
US20020004246A1 (en) * 2000-02-07 2002-01-10 Daniels Robert H. Immunochromatographic methods for detecting an analyte in a sample which employ semiconductor nanocrystals as detectable labels
EP1264375A2 (en) 2000-03-14 2002-12-11 Massachusetts Institute Of Technology Optical amplifiers and lasers
KR100376403B1 (en) * 2000-03-17 2003-03-15 광주과학기술원 Ii-vi compound semiconductor core/ii-vi' compound semiconductor shell quantum dots and process for the preparation thereof
WO2001071354A2 (en) 2000-03-20 2001-09-27 Massachusetts Institute Of Technology Inorganic particle conjugates
US6759235B2 (en) 2000-04-06 2004-07-06 Quantum Dot Corporation Two-dimensional spectral imaging system
US6548264B1 (en) * 2000-05-17 2003-04-15 University Of Florida Coated nanoparticles
US6602669B2 (en) 2000-07-11 2003-08-05 Northwestern University Method of detection by enhancement of silver staining
US7241399B2 (en) * 2000-09-08 2007-07-10 Centrum Fuer Angewandte Nanotechnologie (Can) Gmbh Synthesis of nanoparticles
IL138471A0 (en) * 2000-09-14 2001-10-31 Yissum Res Dev Co Novel semiconductor materials and their uses
WO2002029140A1 (en) * 2000-10-04 2002-04-11 The Board Of Trustees Of The University Of Arkansas Synthesis of colloidal nanocrystals
US20050059031A1 (en) 2000-10-06 2005-03-17 Quantum Dot Corporation Method for enhancing transport of semiconductor nanocrystals across biological membranes
EP1327145B1 (en) 2000-10-06 2009-03-11 Life Technologies Corporation Cells having a spectral signature, and methods of preparation and use thereof
US6649138B2 (en) 2000-10-13 2003-11-18 Quantum Dot Corporation Surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media
GB0026382D0 (en) * 2000-10-27 2000-12-13 Nanox Ltd Production of metal chalcogenide nanoparticles
AU3958102A (en) * 2000-12-15 2002-06-24 Univ Arizona Method for patterning metal using nanoparticle containing precursors
US20020110180A1 (en) * 2001-02-09 2002-08-15 Barney Alfred A. Temperature-sensing composition
DE60140486D1 (en) * 2001-03-09 2009-12-24 Univ Reims Champagne Ardenne L HIGHLY SENSITIVE NON-ISOTOPIC WATER-LIQUID NANOCRYSTALS
US20060040286A1 (en) * 2001-03-28 2006-02-23 Nanosphere, Inc. Bio-barcode based detection of target analytes
US6694158B2 (en) 2001-04-11 2004-02-17 Motorola, Inc. System using a portable detection device for detection of an analyte through body tissue
US7521019B2 (en) * 2001-04-11 2009-04-21 Lifescan, Inc. Sensor device and methods for manufacture
US6379622B1 (en) * 2001-04-11 2002-04-30 Motorola, Inc. Sensor incorporating a quantum dot as a reference
US20020164271A1 (en) * 2001-05-02 2002-11-07 Ho Winston Z. Wavelength-coded bead for bioassay and signature recogniton
US7147687B2 (en) * 2001-05-25 2006-12-12 Nanosphere, Inc. Non-alloying core shell nanoparticles
WO2002096262A2 (en) 2001-05-25 2002-12-05 Northwestern University Non-alloying core shell nanoparticles
EP1407265A4 (en) * 2001-06-13 2004-08-18 Univ Rochester Colorimetric nanocrystal sensors, methods of making, and use thereof
US20030013109A1 (en) * 2001-06-21 2003-01-16 Ballinger Clinton T. Hairpin sensors using quenchable fluorescing agents
WO2003003015A2 (en) * 2001-06-28 2003-01-09 Advanced Research And Technology Institute, Inc. Methods of preparing multicolor quantum dot tagged beads and conjugates thereof
US6846565B2 (en) 2001-07-02 2005-01-25 Board Of Regents, The University Of Texas System Light-emitting nanoparticles and method of making same
US6918946B2 (en) * 2001-07-02 2005-07-19 Board Of Regents, The University Of Texas System Applications of light-emitting nanoparticles
US8618595B2 (en) * 2001-07-02 2013-12-31 Merck Patent Gmbh Applications of light-emitting nanoparticles
JP2003028797A (en) * 2001-07-11 2003-01-29 Hitachi Software Eng Co Ltd Fluorescence reader
US6819845B2 (en) * 2001-08-02 2004-11-16 Ultradots, Inc. Optical devices with engineered nonlinear nanocomposite materials
US6710366B1 (en) 2001-08-02 2004-03-23 Ultradots, Inc. Nanocomposite materials with engineered properties
US6794265B2 (en) 2001-08-02 2004-09-21 Ultradots, Inc. Methods of forming quantum dots of Group IV semiconductor materials
US6906339B2 (en) 2001-09-05 2005-06-14 Rensselaer Polytechnic Institute Passivated nanoparticles, method of fabrication thereof, and devices incorporating nanoparticles
US7214428B2 (en) * 2001-09-17 2007-05-08 Invitrogen Corporation Highly luminescent functionalized semiconductor nanocrystals for biological and physical applications
US7205048B2 (en) * 2001-09-17 2007-04-17 Invitrogen Corporation Functionalized fluorescent nanocrystal compositions and methods of making
AU2002326920B2 (en) * 2001-09-17 2007-09-13 Massachusetts Institute Of Technology Semiconductor nanocrystal composite
EP2159044B1 (en) * 2001-09-17 2012-05-16 Life Technologies Corporation Nanocrystals
CA2460674A1 (en) * 2001-10-02 2003-04-10 Quantum Dot Corporation Method of semiconductor nanoparticle synthesis
IL146226A0 (en) * 2001-10-29 2002-12-01 Yissum Res Dev Co Near infra-red composite polymer-nanocrystal materials and electro-optical devices produced therefrom
AU2002367817B2 (en) 2001-11-09 2008-05-29 Nanosphere, Inc. Bioconjugate-nanoparticle probes
US7150910B2 (en) * 2001-11-16 2006-12-19 Massachusetts Institute Of Technology Nanocrystal structures
WO2003045310A2 (en) 2001-11-21 2003-06-05 Applera Corporation Digital assay
US6623559B2 (en) 2001-12-10 2003-09-23 Nanotek Instruments, Inc. Method for the production of semiconductor quantum particles
US20030106488A1 (en) * 2001-12-10 2003-06-12 Wen-Chiang Huang Manufacturing method for semiconductor quantum particles
US20030129311A1 (en) * 2002-01-10 2003-07-10 Wen-Chiang Huang Method of producing quantum-dot powder and film via templating by a 2-d ordered array of air bubbles in a polymer
JP3701622B2 (en) * 2002-03-27 2005-10-05 日立ソフトウエアエンジニアリング株式会社 Semiconductor nanoparticle fluorescent reagent and fluorescence measuring method
CN1656856B (en) 2002-03-29 2013-07-17 麻省理工学院 Light emitting device including semiconductor nanocrystals
US20040038303A1 (en) * 2002-04-08 2004-02-26 Unger Gretchen M. Biologic modulations with nanoparticles
FR2838241B1 (en) * 2002-04-09 2004-06-25 Commissariat Energie Atomique LUMINESCENT MATERIALS CONSISTING OF HEART / SHELL STRUCTURE NANOCRYSTALS AND PROCESS FOR THEIR PREPARATION
AU2003209238A1 (en) * 2002-04-09 2003-10-27 The Government Of The United States Of America As Represented By The Secretary Of The Navy Magnetic nanoparticles having passivated metallic cores
DE60320780D1 (en) * 2002-04-22 2008-06-19 Univ Florida FUNCTIONALIZED NANOPARTICLES AND USE METHOD
WO2004039830A2 (en) * 2002-05-07 2004-05-13 Regents Of The University Of California Bioactivation of particles
US20030211488A1 (en) 2002-05-07 2003-11-13 Northwestern University Nanoparticle probs with Raman spectrocopic fingerprints for analyte detection
EP3312594B1 (en) 2002-05-17 2019-07-24 Life Technologies Corporation Apparatus for differentiating multiple fluorescence signals by excitation wavelength
AU2003243281A1 (en) 2002-05-17 2003-12-02 Applera Corporation Optical instrument includung excitation source
US7253277B2 (en) * 2002-07-02 2007-08-07 Nanosphere, Inc. Nanoparticle polyanion conjugates and methods of use thereof in detecting analytes
JPWO2004007636A1 (en) * 2002-07-16 2005-11-10 双葉電子工業株式会社 Composite nanoparticles and method for producing the same
US7319709B2 (en) 2002-07-23 2008-01-15 Massachusetts Institute Of Technology Creating photon atoms
JP3847677B2 (en) * 2002-07-23 2006-11-22 日立ソフトウエアエンジニアリング株式会社 Semiconductor nanoparticle, method for producing the same, and semiconductor nanoparticle fluorescent reagent
EP1547153A4 (en) * 2002-08-02 2010-12-01 Ultradots Inc Quantum dots, nanocomposite materials with quantum dots, optical devices with quantum dots, and related fabrication methods
CA2495309C (en) * 2002-08-13 2011-11-08 Massachusetts Institute Of Technology Semiconductor nanocrystal heterostructures
US7939170B2 (en) * 2002-08-15 2011-05-10 The Rockefeller University Water soluble metal and semiconductor nanoparticle complexes
EP1576655B1 (en) * 2002-08-15 2014-05-21 Moungi G. Bawendi Stabilized semiconductor nanocrystals
JP2004077389A (en) * 2002-08-21 2004-03-11 Hitachi Software Eng Co Ltd Functional fluorescent reagent containing semiconductor nanoparticle
US20040191567A1 (en) * 2002-09-03 2004-09-30 Caballero Gabriel Joseph Light emitting molecules and organic light emitting devices including light emitting molecules
WO2004034015A2 (en) * 2002-09-03 2004-04-22 Coled Technologies, Inc. Light emitting molecules and organic light emitting devices including light emitting molecules
US7572393B2 (en) * 2002-09-05 2009-08-11 Nanosys Inc. Organic species that facilitate charge transfer to or from nanostructures
WO2004022714A2 (en) * 2002-09-05 2004-03-18 Nanosys, Inc. Organic species that facilitate charge transfer to or from nanostructures
AU2003268444A1 (en) * 2002-09-06 2004-03-29 Chiron Corporation Methods for verifying fluid movement
US20040126901A1 (en) * 2002-10-07 2004-07-01 Kauvar Lawrence M. Clamped value beads
DE10247359A1 (en) * 2002-10-10 2004-04-29 Basf Coatings Ag Nanoparticles, processes for modifying their surface, dispersion of the nanoparticles, processes for their production and their use
US6872450B2 (en) * 2002-10-23 2005-03-29 Evident Technologies Water-stable photoluminescent semiconductor nanocrystal complexes and method of making same
US7192780B2 (en) * 2002-10-23 2007-03-20 Evident Technologies Fluorescent lifetime biological detection and imaging using water-stable semiconductor nanocrystals
US7132787B2 (en) * 2002-11-20 2006-11-07 The Regents Of The University Of California Multilayer polymer-quantum dot light emitting diodes and methods of making and using thereof
EP1565969B1 (en) * 2002-11-26 2008-12-10 Elop Electro-Optics Industries Ltd. Passive q-switch laser
US20040101822A1 (en) * 2002-11-26 2004-05-27 Ulrich Wiesner Fluorescent silica-based nanoparticles
FR2847812B1 (en) * 2002-11-28 2006-04-14 Louis Dubertret COSMETIC COMPOSITION COMPRISING FLUORESCENT NANOPARTICLES AS PIGMENTS
JP2006517786A (en) * 2002-12-12 2006-08-03 ナノスフェアー インコーポレイテッド Direct SNP detection using unamplified DNA
US7056471B1 (en) * 2002-12-16 2006-06-06 Agency For Science Technology & Research Ternary and quarternary nanocrystals, processes for their production and uses thereof
EP1590171B1 (en) * 2003-01-22 2011-06-08 The Board Of Trustees Of The University Of Arkansas Monodisperse core/shell and other complex structured nanocrystals and methods of preparing the same
US6863825B2 (en) 2003-01-29 2005-03-08 Union Oil Company Of California Process for removing arsenic from aqueous streams
US20050130174A1 (en) * 2003-02-27 2005-06-16 Nanosphere, Inc. Label-free gene expression profiling with universal nanoparticle probes in microarray assay format
US7181266B2 (en) * 2003-03-04 2007-02-20 Massachusetts Institute Of Technology Materials and methods for near-infrared and infrared lymph node mapping
US20050020922A1 (en) * 2003-03-04 2005-01-27 Frangioni John V. Materials and methods for near-infrared and infrared intravascular imaging
EP1606103A4 (en) * 2003-03-06 2007-01-10 Rensselaer Polytech Inst Rapid generation of nanoparticles from bulk solids at room temperature
JP4181435B2 (en) * 2003-03-31 2008-11-12 日油株式会社 Polyethylene glycol modified semiconductor fine particles, production method thereof, and biological diagnostic materials
US7279832B2 (en) * 2003-04-01 2007-10-09 Innovalight, Inc. Phosphor materials and illumination devices made therefrom
US20040252488A1 (en) * 2003-04-01 2004-12-16 Innovalight Light-emitting ceiling tile
US7235228B2 (en) * 2003-04-15 2007-06-26 The United States Of America As Represented By The Secretary Of The Navy Fluorescent-magnetic nanoparticles with core-shell structure
US8859000B2 (en) * 2003-05-05 2014-10-14 The Research Foundation Of State University Of New York Synthesis of nanoparticles by an emulsion-gas contacting process
US20050250094A1 (en) * 2003-05-30 2005-11-10 Nanosphere, Inc. Method for detecting analytes based on evanescent illumination and scatter-based detection of nanoparticle probe complexes
KR100619379B1 (en) * 2003-06-27 2006-09-05 삼성전자주식회사 Method for Producing Quantum Dot Silicate Thin Film for Light Emitting Device
WO2005004547A1 (en) * 2003-07-02 2005-01-13 Matsushita Electric Industrial Co., Ltd. Light emitting element and display device
EP1648622A4 (en) * 2003-07-21 2009-11-11 Dendritic Nanotechnologies Inc Stabilized and chemically functionalized nanoparticles
EP1664772A4 (en) * 2003-08-04 2007-01-03 Univ Emory Porous materials embedded with nanospecies
US7229497B2 (en) * 2003-08-26 2007-06-12 Massachusetts Institute Of Technology Method of preparing nanocrystals
KR20060079209A (en) * 2003-09-04 2006-07-05 나노시스, 인크. Methods of processing nanocrystals, and compositions, devices and systems including same
US7422790B1 (en) 2003-09-04 2008-09-09 Nanosys, Inc. Methods of processing nanocrystals, and compositions, devices and systems including same
JP4418220B2 (en) * 2003-09-09 2010-02-17 日立ソフトウエアエンジニアリング株式会社 Nanoparticles with excellent durability and method for producing the same
US20050069726A1 (en) * 2003-09-30 2005-03-31 Douglas Elliot Paul Light emitting composite material and devices thereof
JP2005114576A (en) * 2003-10-08 2005-04-28 Hitachi Software Eng Co Ltd Amphipathic molecule-fixed bead, its manufacturing method, and bead-arraying method of capillary bead array
EP1682568A4 (en) 2003-10-15 2009-10-28 Univ Texas Multifunctional biomaterials as scaffolds for electronic, optical, magnetic, semiconducting, and biotechnological applications
KR100697511B1 (en) 2003-10-21 2007-03-20 삼성전자주식회사 Photocurable Semiconductor Nanocrystal, Photocurable Composition for Pattern Formation of Semiconductor Nanocrystal and Method of Patterning Nanocrystal using the same
US8637650B2 (en) 2003-11-05 2014-01-28 Genovoxx Gmbh Macromolecular nucleotide compounds and methods for using the same
WO2005053649A1 (en) * 2003-11-05 2005-06-16 The Government Of The United States Of America As Represented By The Secretary Of Health And Human Services Biofunctionalized quantum dots for biological imaging
US7462300B2 (en) * 2003-11-10 2008-12-09 Fujifilm Corporation Doped-type metal sulfide phosphor nanoparticle, dispersion thereof, and method for producing the same
WO2005049520A2 (en) * 2003-11-21 2005-06-02 The National University Of Ireland, Galway Method for solubilizing metal oxides by surface treatment, surface treated metal oxide solutions and method for separating metal oxides
FR2862955B1 (en) * 2003-12-02 2006-03-10 Commissariat Energie Atomique INORGANIC NANOCRYSTALS WITH ORGANIC COATING LAYER, PROCESS FOR THEIR PREPARATION, AND MATERIALS THEREOF
US7118627B2 (en) * 2003-12-04 2006-10-10 Hines Margaret A Synthesis of colloidal PbS nanocrystals with size tunable NIR emission
EP1702020B1 (en) * 2003-12-12 2016-04-06 Life Technologies Corporation Preparation of stable, bright luminescent nanoparticles having compositionally engineered properties
EP1733077B1 (en) * 2004-01-15 2018-04-18 Samsung Electronics Co., Ltd. Nanocrystal doped matrixes
US7645397B2 (en) 2004-01-15 2010-01-12 Nanosys, Inc. Nanocrystal doped matrixes
JP5086517B2 (en) 2004-02-02 2012-11-28 株式会社日立ソリューションズ Semiconductor nanoparticle manufacturing method
US7253452B2 (en) 2004-03-08 2007-08-07 Massachusetts Institute Of Technology Blue light emitting semiconductor nanocrystal materials
US7393598B2 (en) * 2004-03-10 2008-07-01 Hcf Partners, L.P. Light emitting molecules and organic light emitting devices including light emitting molecules
US20050250141A1 (en) * 2004-03-30 2005-11-10 Lambert James L Diagnostic assays including multiplexed lateral flow immunoassays with quantum dots
US20080032420A1 (en) * 2004-03-30 2008-02-07 Lambert James L Surface Enhanced Raman Scattering and Multiplexed Diagnostic Assays
US7746681B2 (en) 2005-01-07 2010-06-29 Invisage Technologies, Inc. Methods of making quantum dot films
US7326908B2 (en) 2004-04-19 2008-02-05 Edward Sargent Optically-regulated optical emission using colloidal quantum dot nanocrystals
US7742322B2 (en) 2005-01-07 2010-06-22 Invisage Technologies, Inc. Electronic and optoelectronic devices with quantum dot films
US7773404B2 (en) 2005-01-07 2010-08-10 Invisage Technologies, Inc. Quantum dot optical devices with enhanced gain and sensitivity and methods of making same
US8128908B2 (en) * 2004-04-30 2012-03-06 University Of Florida Research Foundation, Inc. Nanoparticles and their use for multifunctional bioimaging
US20060088713A1 (en) * 2004-05-05 2006-04-27 Dykstra Tieneke E Surface modification of nanocrystals using multidentate polymer ligands
US7407816B2 (en) * 2004-05-07 2008-08-05 Gentius, Inc Isoelectric particles and uses thereof
JP2005320468A (en) * 2004-05-11 2005-11-17 Fuji Photo Film Co Ltd Nano particle fluorophor and its dispersion
US20050253502A1 (en) * 2004-05-12 2005-11-17 Matsushita Electric Works, Ltd. Optically enhanced nanomaterials
US7335345B2 (en) * 2004-05-24 2008-02-26 Drexel University Synthesis of water soluble nanocrystalline quantum dots and uses thereof
US7618778B2 (en) * 2004-06-02 2009-11-17 Kaufman Joseph C Producing, cataloging and classifying sequence tags
US20080032415A1 (en) * 2004-06-22 2008-02-07 Junji Nishigaki Fluorescence Detection Method
WO2006093516A2 (en) 2004-06-22 2006-09-08 The Regents Of The University Of California Peptide-coated nanoparticles with graded shell compositions
TWI237314B (en) * 2004-06-24 2005-08-01 Ind Tech Res Inst Doping method for forming quantum dots
US20070045777A1 (en) * 2004-07-08 2007-03-01 Jennifer Gillies Micronized semiconductor nanocrystal complexes and methods of making and using same
US7229690B2 (en) 2004-07-26 2007-06-12 Massachusetts Institute Of Technology Microspheres including nanoparticles
US7557028B1 (en) 2004-07-28 2009-07-07 Nanosys, Inc. Process for group III-V semiconductor nanostructure synthesis and compositions made using same
US7405002B2 (en) * 2004-08-04 2008-07-29 Agency For Science, Technology And Research Coated water-soluble nanoparticles comprising semiconductor core and silica coating
US7750352B2 (en) * 2004-08-10 2010-07-06 Pinion Technologies, Inc. Light strips for lighting and backlighting applications
WO2006033732A1 (en) * 2004-08-17 2006-03-30 Invitrogen Corporation Synthesis of highly luminescent colloidal particles
US7794600B1 (en) 2004-08-27 2010-09-14 Nanosys, Inc. Purification of nanocrystal solutions by chromatography
WO2006027778A2 (en) * 2004-09-09 2006-03-16 Technion Research & Development Foundation Ltd. Core-alloyed shell semiconductor nanocrystals
US8784685B2 (en) * 2004-09-09 2014-07-22 Technion Research And Development Foundation Ltd. Core-alloyed shell semiconductor nanocrystals
US7288134B2 (en) 2004-09-10 2007-10-30 International Business Machines Corporation Dumbbell-like nanoparticles and a process of forming the same
KR20070053293A (en) * 2004-09-22 2007-05-23 도쿠리쓰교세이호징 가가쿠 기주쓰 신코 기코 Water-soluble fluorescent material and method for producing same
CA2520670A1 (en) * 2004-09-23 2006-03-23 National Research Council Of Canada Nanocrystal coated surfaces
US7316967B2 (en) * 2004-09-24 2008-01-08 Massachusetts Institute Of Technology Flow method and reactor for manufacturing noncrystals
US7534489B2 (en) * 2004-09-24 2009-05-19 Agency For Science, Technology And Research Coated composites of magnetic material and quantum dots
US7361516B2 (en) * 2004-09-24 2008-04-22 The United States Of America As Represented By The Secretary Of The Navy Field of modular multifunctional ligands
US20060196375A1 (en) * 2004-10-22 2006-09-07 Seth Coe-Sullivan Method and system for transferring a patterned material
FR2877092B1 (en) * 2004-10-26 2006-12-29 Commissariat Energie Atomique METHOD OF RELATIVE MEASUREMENT OF THE QUANTUM FLUORESCENCE YIELD OF DYES IN SOLUTION
US7368086B2 (en) * 2004-10-29 2008-05-06 Invitrogen Corporation Functionalized fluorescent nanocrystals, and methods for their preparation and use
WO2006137924A2 (en) 2004-11-03 2006-12-28 Massachusetts Institute Of Technology Light emitting device
WO2007018570A2 (en) 2004-11-03 2007-02-15 Massachusetts Institute Of Technology Absorbing film
US20060240590A1 (en) * 2004-11-09 2006-10-26 The Research Foundation Of State University Of New York Controlled synthesis of nanowires, nanodiscs, and nanostructured materials using liquid crystalline templates
US9637682B2 (en) 2004-11-11 2017-05-02 Samsung Electronics Co., Ltd. Interfused nanocrystals and method of preparing the same
JP4555055B2 (en) * 2004-11-12 2010-09-29 日立ソフトウエアエンジニアリング株式会社 Semiconductor nanoparticles with high luminescent properties
CN100544058C (en) * 2004-11-22 2009-09-23 财团法人工业技术研究院 Structure of organic and inorganic light-emitting diodes
US7306963B2 (en) 2004-11-30 2007-12-11 Spire Corporation Precision synthesis of quantum dot nanostructures for fluorescent and optoelectronic devices
US7514725B2 (en) * 2004-11-30 2009-04-07 Spire Corporation Nanophotovoltaic devices
US8891575B2 (en) * 2004-11-30 2014-11-18 Massachusetts Institute Of Technology Optical feedback structures and methods of making
US7524776B2 (en) * 2004-11-30 2009-04-28 Spire Corporation Surface-activation of semiconductor nanostructures for biological applications
KR100657639B1 (en) * 2004-12-13 2006-12-14 재단법인서울대학교산학협력재단 Large scale one-pot synthesis of semiconductor quantum dots
CA2519608A1 (en) 2005-01-07 2006-07-07 Edward Sargent Quantum dot-polymer nanocomposite photodetectors and photovoltaics
US8134175B2 (en) * 2005-01-11 2012-03-13 Massachusetts Institute Of Technology Nanocrystals including III-V semiconductors
US8097742B2 (en) * 2005-01-20 2012-01-17 Agency For Science, Technology And Research Water-soluble, surface-functionalized nanoparticle for bioconjugation via universal silane coupling
CN1331980C (en) * 2005-02-01 2007-08-15 武汉大学 Method for preparing biological functional water-soluble quantum point of sugar
CN1331979C (en) * 2005-02-01 2007-08-15 武汉大学 Method for preparing water-soluble quantum point of biological functionalized sugar
EP1864341B1 (en) * 2005-02-16 2019-11-13 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
WO2006096835A2 (en) 2005-03-08 2006-09-14 Molecular Probes, Inc. Monitoring and manipulating cellular transmembrane potentials using nanostructures
WO2006105102A2 (en) * 2005-03-28 2006-10-05 The Research Foundation Of State University Of New York Synthesis of nanostructured materials using liquid crystalline templates
US8084001B2 (en) * 2005-05-02 2011-12-27 Cornell Research Foundation, Inc. Photoluminescent silica-based sensors and methods of use
JP2008540142A (en) * 2005-05-04 2008-11-20 エージェンシー フォー サイエンス,テクノロジー アンド リサーチ Novel water-soluble nanocrystals containing low molecular weight coating reagents and methods for their preparation
EP1880236B1 (en) * 2005-05-10 2018-10-03 DataTrace DNA Pty Ltd High-resolution tracking of industrial process materials using trace incorporation of luminescent markers
EP1882047A4 (en) 2005-05-18 2009-10-28 Univ Pennsylvania Compositions, methods and kits for real-time nucleic acid analysis in live cells
US8845927B2 (en) 2006-06-02 2014-09-30 Qd Vision, Inc. Functionalized nanoparticles and method
US9297092B2 (en) 2005-06-05 2016-03-29 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
CN100570912C (en) * 2005-06-15 2009-12-16 耶路撒冷希伯来大学伊萨姆研发公司 III-V semiconductor core-heteroshell nanocrystals
EP3492602A1 (en) 2005-06-15 2019-06-05 Complete Genomics, Inc. Single molecule arrays for genetic and chemical analysis
US20090264299A1 (en) * 2006-02-24 2009-10-22 Complete Genomics, Inc. High throughput genome sequencing on DNA arrays
WO2007002567A2 (en) * 2005-06-23 2007-01-04 Nanosphere, Inc. Selective isolation and concentration of nucleic acids from complex samples
US20070020771A1 (en) * 2005-06-24 2007-01-25 Applied Nanoworks, Inc. Nanoparticles and method of making thereof
JP5753338B2 (en) * 2005-07-01 2015-07-22 ナショナル ユニヴァーシティー オブ シンガポール Conductive composite material
US8101430B2 (en) * 2005-08-15 2012-01-24 Massachusetts Institute Of Technology Fluorescent sensor based on two fluorescent moieties one of which is a semiconductor nanocrystal and methods of using and making
GB0517382D0 (en) 2005-08-26 2005-10-05 Plasticell Ltd Cell culture
US20090278094A1 (en) * 2005-09-02 2009-11-12 National University Corporation Nagoya University Semiconductor nanoparticle and method of producing the same
WO2007034877A1 (en) * 2005-09-22 2007-03-29 National Institute Of Advanced Industrial Science And Technology Semiconductor nanoparticles dispersed glass fine particles and process for preparing the same
US20070072309A1 (en) * 2005-09-29 2007-03-29 General Electric Company Analytical compositions including nanometer-sized transducers, methods to make thereof, and devices therefrom
WO2007044245A2 (en) 2005-10-07 2007-04-19 Callida Genomics, Inc. Self-assembled single molecule arrays and uses thereof
KR100745744B1 (en) * 2005-11-11 2007-08-02 삼성전기주식회사 A coating method of nano particle
KR101167733B1 (en) * 2005-11-16 2012-07-23 삼성전기주식회사 Dispersant for nanoparticles having surfaces to which capping-ligands are bound, Method for dispersing the nanoparticles using the same and Nanoparticle thin film comprising the same
WO2007067733A2 (en) * 2005-12-09 2007-06-14 Massachusetts Institute Of Technology Compositions and methods to monitor rna delivery to cells
US7394094B2 (en) 2005-12-29 2008-07-01 Massachusetts Institute Of Technology Semiconductor nanocrystal heterostructures
EP1984543A2 (en) * 2006-01-20 2008-10-29 Agency for Science, Technology and Research Synthesis of alloyed nanocrystals in aqueous or water-soluble solvents
WO2008057127A2 (en) * 2006-02-06 2008-05-15 Massachusetts Institute Of Technology Self-assembly of macromolecules on multilayered polymer surfaces
WO2007095173A2 (en) 2006-02-14 2007-08-23 Massachusetts Institute Of Technology White light emitting devices
EP2495337A1 (en) 2006-02-24 2012-09-05 Callida Genomics, Inc. High throughput genome sequencing on DNA arrays
US20070202648A1 (en) * 2006-02-28 2007-08-30 Samsung Electronics Co. Ltd. Memory device and method of manufacturing the same
WO2007143197A2 (en) 2006-06-02 2007-12-13 Qd Vision, Inc. Light-emitting devices and displays with improved performance
WO2008070028A2 (en) * 2006-12-01 2008-06-12 Qd Vision, Inc. Improved composites and devices including nanoparticles
US9701899B2 (en) 2006-03-07 2017-07-11 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
US8849087B2 (en) 2006-03-07 2014-09-30 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
US9951438B2 (en) 2006-03-07 2018-04-24 Samsung Electronics Co., Ltd. Compositions, optical component, system including an optical component, devices, and other products
EP2041478B1 (en) 2006-03-07 2014-08-06 QD Vision, Inc. An article including semiconductor nanocrystals
WO2007120441A2 (en) * 2006-03-27 2007-10-25 Los Alamos National Security, Llc Nanophosphors for large area radiation detectors
US7829140B1 (en) 2006-03-29 2010-11-09 The Research Foundation Of The State University Of New York Method of forming iron oxide core metal shell nanoparticles
US8600497B1 (en) 2006-03-31 2013-12-03 Pacesetter, Inc. Systems and methods to monitor and treat heart failure conditions
US7794404B1 (en) 2006-03-31 2010-09-14 Pacesetter, Inc System and method for estimating cardiac pressure using parameters derived from impedance signals detected by an implantable medical device
US8712519B1 (en) 2006-03-31 2014-04-29 Pacesetter, Inc. Closed-loop adaptive adjustment of pacing therapy based on cardiogenic impedance signals detected by an implantable medical device
WO2007117668A2 (en) 2006-04-07 2007-10-18 Qd Vision, Inc. Methods and articles including nanomaterial
WO2007120877A2 (en) * 2006-04-14 2007-10-25 Qd Vision, Inc. Transfer surface for manufacturing a light emitting device
JP5313133B2 (en) 2006-05-21 2013-10-09 マサチューセッツ インスティテュート オブ テクノロジー Optical structures containing nanocrystals
US8941299B2 (en) * 2006-05-21 2015-01-27 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
US9212056B2 (en) 2006-06-02 2015-12-15 Qd Vision, Inc. Nanoparticle including multi-functional ligand and method
WO2008111947A1 (en) 2006-06-24 2008-09-18 Qd Vision, Inc. Methods and articles including nanomaterial
CA2657776C (en) 2006-07-14 2013-08-27 Chemocentryx, Inc. Triazolyl phenyl benzenesulfonamides
US20080245769A1 (en) * 2006-07-17 2008-10-09 Applied Nanoworks, Inc. Nanoparticles and method of making thereof
US8643058B2 (en) 2006-07-31 2014-02-04 Massachusetts Institute Of Technology Electro-optical device including nanocrystals
WO2008021962A2 (en) * 2006-08-11 2008-02-21 Massachusetts Institute Of Technology Blue light emitting semiconductor nanocrystals and devices
KR100809366B1 (en) * 2006-08-21 2008-03-05 한국과학기술연구원 Single nanoparticle containing organic-inorganic composite nanoparticle and method for preparing the same
WO2008033388A2 (en) * 2006-09-12 2008-03-20 Qd Vision, Inc. A composite including nanoparticles, methods, and products including a composite
WO2008043014A1 (en) * 2006-10-04 2008-04-10 Evident Technologies Water based colorants comprising semiconductor nanocrystals and methods of making and using the same
WO2008063758A2 (en) 2006-10-05 2008-05-29 Massachussetts Institute Of Technology Multifunctional encoded particles for high-throughput analysis
US7910354B2 (en) 2006-10-27 2011-03-22 Complete Genomics, Inc. Efficient arrays of amplified polynucleotides
US20090111705A1 (en) * 2006-11-09 2009-04-30 Complete Genomics, Inc. Selection of dna adaptor orientation by hybrid capture
WO2008063652A1 (en) 2006-11-21 2008-05-29 Qd Vision, Inc. Blue emitting semiconductor nanocrystals and compositions and devices including same
WO2008133660A2 (en) 2006-11-21 2008-11-06 Qd Vision, Inc. Nanocrystals including a group iiia element and a group va element, method, composition, device and other prodcucts
WO2008063658A2 (en) 2006-11-21 2008-05-29 Qd Vision, Inc. Semiconductor nanocrystals and compositions and devices including same
WO2008063653A1 (en) 2006-11-21 2008-05-29 Qd Vision, Inc. Semiconductor nanocrystals and compositions and devices including same
US20110189101A1 (en) * 2006-12-01 2011-08-04 National University Corporation Shimane University Fluorescent labeling agent and fluorescent labeling method
EP2099496A2 (en) * 2006-12-08 2009-09-16 Massachusetts Institute of Technology Delivery of nanoparticles and/or agents to cells
US8066874B2 (en) 2006-12-28 2011-11-29 Molycorp Minerals, Llc Apparatus for treating a flow of an aqueous solution containing arsenic
EP2109900A1 (en) * 2007-01-08 2009-10-21 Plextronics, Inc. Quantum dot photovoltaic device
US8836212B2 (en) * 2007-01-11 2014-09-16 Qd Vision, Inc. Light emissive printed article printed with quantum dot ink
AU2008214359B2 (en) 2007-02-05 2014-01-16 Apellis Pharmaceuticals, Inc. Local complement inhibition for treatment of complement-mediated disorders
US7502166B2 (en) * 2007-02-05 2009-03-10 Raytheon Company Optical sight having obscured reticle illumination
US20080186485A1 (en) * 2007-02-05 2008-08-07 Conrad Stenton Optical sight with reticle including a quantum-dot light emitter
US8343627B2 (en) * 2007-02-20 2013-01-01 Research Foundation Of State University Of New York Core-shell nanoparticles with multiple cores and a method for fabricating them
EP2126072A4 (en) 2007-02-21 2011-07-13 Life Technologies Corp Materials and methods for single molecule nucleic acid sequencing
US20100044673A1 (en) * 2007-03-29 2010-02-25 Konica Minolta Medical & Graphic, Inc. Labeling fluorescent compound
US8504153B2 (en) 2007-04-04 2013-08-06 Pacesetter, Inc. System and method for estimating cardiac pressure based on cardiac electrical conduction delays using an implantable medical device
US8208999B2 (en) 2007-04-04 2012-06-26 Pacesetter, Inc. System and method for estimating electrical conduction delays from immittance values measured using an implantable medical device
US9080942B2 (en) * 2007-04-18 2015-07-14 The Research Foundation for State University of New York Flexible multi-moduled nanoparticle-structured sensor array on polymer substrate and methods for manufacture
KR100853086B1 (en) * 2007-04-25 2008-08-19 삼성전자주식회사 Nanocrystal-metal oxide composite, preparation method thereof
KR100853087B1 (en) * 2007-04-26 2008-08-19 삼성전자주식회사 Nanocrystal, preparation method thereof and electronic devices comprising the same
US9121843B2 (en) 2007-05-08 2015-09-01 Trustees Of Boston University Chemical functionalization of solid-state nanopores and nanopore arrays and applications thereof
US9181472B2 (en) 2007-05-31 2015-11-10 Life Technologies Corporation Magnesium-based coatings for nanocrystals
US7776877B2 (en) * 2007-06-22 2010-08-17 Chemocentryx, Inc. N-(2-(hetaryl)aryl) arylsulfonamides and N-(2-(hetaryl) hetaryl arylsulfonamides
US8525303B2 (en) 2007-06-25 2013-09-03 Massachusetts Institute Of Technology Photovoltaic device including semiconductor nanocrystals
JP5773646B2 (en) 2007-06-25 2015-09-02 キユーデイー・ビジヨン・インコーポレーテツド Compositions and methods comprising depositing nanomaterials
US7816135B2 (en) 2007-07-05 2010-10-19 Becton, Dickinson And Company Method of analyzing lymphocytes
US7989153B2 (en) * 2007-07-11 2011-08-02 Qd Vision, Inc. Method and apparatus for selectively patterning free standing quantum DOT (FSQDT) polymer composites
CN101820881B (en) * 2007-07-12 2013-05-01 坎莫森特里克斯公司 Fused heteroaryl pyridyl and phenyl benzenesuflonamides as CCR2 modulators for the treament of inflammation
JP5658563B2 (en) 2007-08-17 2015-01-28 マサチューセッツ インスティテュート オブ テクノロジー Luminescent material
WO2009029870A2 (en) * 2007-08-31 2009-03-05 Hybrid Silica Technologies, Inc. Peg-coated core-shell silica nanoparticles and methods of manufacture and use
JP2010540939A (en) * 2007-09-26 2010-12-24 マサチューセッツ インスティテュート オブ テクノロジー High resolution 3D imaging of single semiconductor nanocrystals
US8349764B2 (en) 2007-10-31 2013-01-08 Molycorp Minerals, Llc Composition for treating a fluid
US8252087B2 (en) 2007-10-31 2012-08-28 Molycorp Minerals, Llc Process and apparatus for treating a gas containing a contaminant
KR100943839B1 (en) * 2007-10-31 2010-02-24 한국과학기술연구원 Method for the production of bio-imaging nanoparticles with high yield by early introduction of irregular structure
US9551026B2 (en) 2007-12-03 2017-01-24 Complete Genomincs, Inc. Method for nucleic acid detection using voltage enhancement
US20110056543A1 (en) * 2007-12-28 2011-03-10 Universite De La Mediterranee Aix-Marseille Ii Hybrid nanocomposite
WO2009089472A2 (en) * 2008-01-10 2009-07-16 Massachusetts Institute Of Technology Photovoltaic devices
US8525022B2 (en) * 2008-01-11 2013-09-03 Massachusetts Institute Of Technology High efficiency multi-layer photovoltaic devices
US8889429B2 (en) * 2008-01-28 2014-11-18 University Of Florida Research Foundation, Inc. Water-soluble nanocrystals through dual-interaction ligands
WO2009099425A2 (en) 2008-02-07 2009-08-13 Qd Vision, Inc. Flexible devices including semiconductor nanocrystals, arrays, and methods
US20110189102A1 (en) * 2008-02-08 2011-08-04 Kairdolf Brad A Coated quantum dots and methods of making and using thereof
WO2009145813A1 (en) 2008-03-04 2009-12-03 Qd Vision, Inc. Particles including nanoparticles, uses thereof, and methods
US9525148B2 (en) 2008-04-03 2016-12-20 Qd Vision, Inc. Device including quantum dots
KR101995369B1 (en) 2008-04-03 2019-07-02 삼성 리서치 아메리카 인코포레이티드 Light-emitting device including quantum dots
WO2009123767A1 (en) * 2008-04-04 2009-10-08 Life Technologies Corporation Scanning system and method for imaging and sequencing
US9207385B2 (en) 2008-05-06 2015-12-08 Qd Vision, Inc. Lighting systems and devices including same
JP2011524064A (en) 2008-05-06 2011-08-25 キユーデイー・ビジヨン・インコーポレーテツド Solid state lighting device containing quantum confined semiconductor nanoparticles
KR101421619B1 (en) * 2008-05-30 2014-07-22 삼성전자 주식회사 Nanocrystal-metal oxide-polymer composite and preparation method thereof
WO2010044920A1 (en) * 2008-06-02 2010-04-22 Redxdefense, Llc Detection of explosives through luminescence
EP2294414B1 (en) 2008-06-05 2015-09-16 Life Technologies Corporation Activation and monitoring of cellular transmembrane potentials
CN102105554A (en) * 2008-06-10 2011-06-22 阿肯色大学托管委员会 Indium arsenide nanocrystals and methods of making the same
EP2303771B1 (en) * 2008-06-30 2018-05-30 Life Technologies Corporation Methods for isolating and purifying nanoparticles from a complex medium
US8679543B2 (en) * 2008-07-02 2014-03-25 Joseph Bartel Stable indium-containing semiconductor nanocrystals
US8435635B2 (en) * 2008-07-30 2013-05-07 The Regents Of The University Of California Chemical modification of nanocrystal surfaces
US9174187B2 (en) 2008-08-06 2015-11-03 Life Technologies Corporation Water-dispersable nanoparticles
WO2010040111A2 (en) * 2008-10-03 2010-04-08 Life Technologies Corporation Sulfonate modified nanocrystals
WO2010048581A2 (en) * 2008-10-24 2010-04-29 Life Technologies Corporation Stable nanoparticles and methods of making and using such particles
US9643252B2 (en) 2008-12-02 2017-05-09 Massachusetts Institute Of Technology Electrically controlled catalytic nanowire growth based on surface charge density
GB0901857D0 (en) * 2009-02-05 2009-03-11 Nanoco Technologies Ltd Encapsulated nanoparticles
US10173454B2 (en) * 2009-02-17 2019-01-08 Bundesdruckerei Gmbh Security and/or value document having a type II semiconductor contact system
GB0903448D0 (en) 2009-03-02 2009-04-08 Ct Angewandte Nanotech Can A method for the manufacture of nanoparticle complexes and triblock polymer ligands and products thereof
US8030624B2 (en) * 2009-03-03 2011-10-04 GM Global Technology Operations LLC Photoluminescent coating for vehicles
US20100264371A1 (en) * 2009-03-19 2010-10-21 Nick Robert J Composition including quantum dots, uses of the foregoing, and methods
US8263639B2 (en) * 2009-04-21 2012-09-11 The United States Of America, As Represented By The Secretary Of The Navy Multifunctional metal-chelating ligands
KR101753740B1 (en) 2009-04-28 2017-07-04 삼성전자주식회사 Optical materials, optical components, and methods
WO2010126606A2 (en) * 2009-05-01 2010-11-04 Nanosys, Inc. Functionalized matrixes for dispersion of nanostructures
US9574134B2 (en) * 2009-05-07 2017-02-21 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
US8536776B2 (en) * 2009-05-07 2013-09-17 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
US20110207232A1 (en) * 2009-05-13 2011-08-25 University Of Utah Research Foundation Water soluble ph responsive fluorescent nanoparticles
JP5561723B2 (en) * 2009-05-14 2014-07-30 独立行政法人産業技術総合研究所 Fluorescent fiber made of semiconductor nanoparticles
US8106420B2 (en) 2009-06-05 2012-01-31 Massachusetts Institute Of Technology Light emitting device including semiconductor nanocrystals
KR101699540B1 (en) 2009-07-08 2017-01-25 삼성전자주식회사 Semiconductor Nanocrystal and Preparation Method thereof
GB0914195D0 (en) 2009-08-13 2009-09-16 Plasticell Ltd Vessel for culturing cells
EP2475717A4 (en) 2009-09-09 2015-01-07 Qd Vision Inc Particles including nanoparticles, uses thereof, and methods
WO2011031876A1 (en) 2009-09-09 2011-03-17 Qd Vision, Inc. Formulations including nanoparticles
AU2010301128B2 (en) 2009-09-30 2014-09-18 Quantapore, Inc. Ultrafast sequencing of biological polymers using a labeled nanopore
GB0918564D0 (en) 2009-10-22 2009-12-09 Plasticell Ltd Nested cell encapsulation
US9315860B2 (en) 2009-10-26 2016-04-19 Genovoxx Gmbh Conjugates of nucleotides and method for the application thereof
KR101924080B1 (en) 2009-11-11 2018-11-30 삼성 리서치 아메리카 인코포레이티드 Device including quantum dots
US8467061B2 (en) 2010-02-19 2013-06-18 Pacific Biosciences Of California, Inc. Integrated analytical system and method
WO2011143124A2 (en) 2010-05-10 2011-11-17 The Regents Of The University Of California Endoribonuclease compositions and methods of use thereof
KR101947801B1 (en) 2010-06-07 2019-02-13 파이어플라이 바이오웍스, 인코포레이티드 Scanning multifunctional particles
US9382470B2 (en) 2010-07-01 2016-07-05 Samsung Electronics Co., Ltd. Thiol containing compositions for preparing a composite, polymeric composites prepared therefrom, and articles including the same
WO2012007725A2 (en) 2010-07-16 2012-01-19 Plasticell Ltd Method of reprogramming a cell
US20130261003A1 (en) 2010-08-06 2013-10-03 Ariosa Diagnostics, In. Ligation-based detection of genetic variants
US20120034603A1 (en) 2010-08-06 2012-02-09 Tandem Diagnostics, Inc. Ligation-based detection of genetic variants
US20120103404A1 (en) * 2010-10-15 2012-05-03 Los Alamos National Security, Llc Quantum dot sensitized solar cell
US10131947B2 (en) 2011-01-25 2018-11-20 Ariosa Diagnostics, Inc. Noninvasive detection of fetal aneuploidy in egg donor pregnancies
US20120190020A1 (en) 2011-01-25 2012-07-26 Aria Diagnostics, Inc. Detection of genetic abnormalities
WO2012118745A1 (en) 2011-02-28 2012-09-07 Arnold Oliphant Assay systems for detection of aneuploidy and sex determination
US8822955B2 (en) 2011-03-21 2014-09-02 East China University Of Science And Technology Polymer-conjugated quantum dots and methods of making the same
US9233863B2 (en) 2011-04-13 2016-01-12 Molycorp Minerals, Llc Rare earth removal of hydrated and hydroxyl species
DE102012008375A1 (en) 2011-04-27 2012-10-31 Genovoxx Gmbh Methods and components for the detection of nucleic acid chains
US8508830B1 (en) 2011-05-13 2013-08-13 Google Inc. Quantum dot near-to-eye display
WO2012158832A2 (en) 2011-05-16 2012-11-22 Qd Vision, Inc. Method for preparing semiconductor nanocrystals
US9080987B2 (en) 2011-05-26 2015-07-14 Altria Client Services, Inc. Oil soluble taggants
US9244017B2 (en) 2011-05-26 2016-01-26 Altria Client Services Llc Oil detection process and apparatus
CN103718068B (en) * 2011-07-01 2017-02-22 特罗皮格拉斯科技有限公司 A spectrally selective panel
WO2013028253A1 (en) 2011-08-19 2013-02-28 Qd Vision, Inc. Semiconductor nanocrystals and methods
WO2013055995A2 (en) 2011-10-14 2013-04-18 President And Fellows Of Harvard College Sequencing by structure assembly
US10837879B2 (en) 2011-11-02 2020-11-17 Complete Genomics, Inc. Treatment for stabilizing nucleic acid arrays
WO2013078252A1 (en) * 2011-11-22 2013-05-30 Qd Vision, Inc. Quantum dot-containing compositions including an emission stabilizer, products including same, and method
US9726928B2 (en) 2011-12-09 2017-08-08 Samsung Electronics Co., Ltd. Backlight unit and liquid crystal display including the same
CN102516996A (en) * 2011-12-13 2012-06-27 北京理工大学 Method for transferring oil phase quantum dots to aqueous phase
EP2809710B1 (en) * 2012-02-03 2017-03-15 Koninklijke Philips N.V. Novel materials and methods for dispersing nano particles in matrices with high quantum yields and stability
BR112014021148B1 (en) 2012-02-29 2022-07-26 Chemocentryx, Inc PYRAZOL-1-YL BENZENE SULFONAMIDES AS CCR9 ANTAGONISTS, THEIR COMPOSITION AND METHOD OF MODULATE CCR FUNCTION(9) IN A CELL
EP2823285A1 (en) 2012-03-09 2015-01-14 Firefly Bioworks, Inc. Methods and apparatus for classification and quantification of multifunctional objects
KR101500829B1 (en) * 2012-03-16 2015-03-11 세종대학교산학협력단 Micro-capsule-type quantum dot-polymer composite passivated using inorganic material, fabrication method of the composite, optical element including the composite, and fabrication method of the optical element
WO2013166024A1 (en) 2012-04-30 2013-11-07 Tufts University Digital quantification of single molecules
WO2013177220A1 (en) 2012-05-21 2013-11-28 The Scripps Research Institute Methods of sample preparation
WO2013181286A1 (en) * 2012-05-29 2013-12-05 Altria Client Services Inc. Oil detection process
US9929325B2 (en) 2012-06-05 2018-03-27 Samsung Electronics Co., Ltd. Lighting device including quantum dots
US9914967B2 (en) 2012-06-05 2018-03-13 President And Fellows Of Harvard College Spatial sequencing of nucleic acids using DNA origami probes
US9628676B2 (en) 2012-06-07 2017-04-18 Complete Genomics, Inc. Imaging systems with movable scan mirrors
US9488823B2 (en) 2012-06-07 2016-11-08 Complete Genomics, Inc. Techniques for scanned illumination
US9139770B2 (en) 2012-06-22 2015-09-22 Nanosys, Inc. Silicone ligands for stabilizing quantum dot films
TWI596188B (en) 2012-07-02 2017-08-21 奈米系統股份有限公司 Highly luminescent nanostructures and methods of producing same
WO2014015328A1 (en) 2012-07-20 2014-01-23 President And Fellows Of Harvard College Cell based quality control bioassays for nutriceutical and medicinal products
US9476089B2 (en) 2012-10-18 2016-10-25 President And Fellows Of Harvard College Methods of making oligonucleotide probes
US9651539B2 (en) 2012-10-28 2017-05-16 Quantapore, Inc. Reducing background fluorescence in MEMS materials by low energy ion beam treatment
US9005480B2 (en) 2013-03-14 2015-04-14 Nanosys, Inc. Method for solventless quantum dot exchange
US9097668B2 (en) 2013-03-15 2015-08-04 Altria Client Services Inc. Menthol detection on tobacco
US9540685B2 (en) 2013-03-15 2017-01-10 President And Fellows Of Harvard College Methods of identifying homologous genes using FISH
WO2015012913A2 (en) * 2013-04-22 2015-01-29 Massachusetts Institute Of Technology Short-wavelength infrared (swir) fluorescence in vivo and intravital imaging with semiconductor nanocrystals
ITRM20130269A1 (en) 2013-05-07 2014-11-08 Univ Bologna Alma Mater METHOD FOR THE CONTROL OF QUANTUM DOTS SOLUBILITY
US9862997B2 (en) 2013-05-24 2018-01-09 Quantapore, Inc. Nanopore-based nucleic acid analysis with mixed FRET detection
US9975787B2 (en) 2014-03-07 2018-05-22 Secure Natural Resources Llc Removal of arsenic from aqueous streams with cerium (IV) oxide compositions
CA2981702A1 (en) 2014-04-23 2015-10-29 Gregory Van Buskirk Cleaning formulations for chemically sensitive individuals: compositions and methods
US20180320226A1 (en) 2014-08-19 2018-11-08 President And Fellows Of Harvard College RNA-Guided Systems For Probing And Mapping Of Nucleic Acids
SG10201902499VA (en) 2014-09-03 2019-04-29 Genesegues Inc Therapeutic nanoparticles and related compositions, methods and systems
CA2960821A1 (en) 2014-09-09 2016-03-17 Igenomx International Genomics Corporation Methods and compositions for rapid nucleic acid library preparation
WO2016044068A2 (en) 2014-09-15 2016-03-24 Massachusetts Institute Of Technology Nanoparticles for magnetic resonance imaging applications
MX2017004344A (en) 2014-10-06 2017-06-07 Chemocentryx Inc Combination therapy of inhibitors of c-c chemokine receptor type 9 (ccr9) and anti-alha4beta7 integrin blocking antibodies.
ES2789000T3 (en) 2014-10-10 2020-10-23 Quantapore Inc Nanopore-based polynucleotide analysis with mutually inactivating fluorescent labels
JP6757316B2 (en) 2014-10-24 2020-09-16 クアンタポール, インコーポレイテッド Efficient optical analysis of polymers using nanostructured arrays
US10782279B2 (en) 2014-11-11 2020-09-22 Altria Client Services Llc Method for detecting oil on tobacco products and packaging
JP6674951B2 (en) 2014-11-21 2020-04-01 ナノストリング テクノロジーズ,インコーポレイティド Enzyme-free and amplification-free sequencing
KR102353095B1 (en) 2014-12-26 2022-01-19 엔에스 마테리얼스 아이엔씨. Wavelength conversion member and method for manufacturing same
EP3247833A4 (en) 2015-01-14 2018-09-19 Gregory Van Buskirk Improved fabric treatment method for stain release
PL234026B1 (en) 2015-08-11 2020-01-31 Univ Wroclawski Method for producing water-dispersible quantum dots, a colloid and method for producing the colloid
CN105153811B (en) 2015-08-14 2019-12-10 广州华睿光电材料有限公司 Printing ink for printing electronics
US10829687B2 (en) 2015-09-15 2020-11-10 3M Innovative Properties Company Additive stabilized composite nanoparticles
KR20180054676A (en) 2015-09-15 2018-05-24 쓰리엠 이노베이티브 프로퍼티즈 캄파니 Additive-stabilized composite nanoparticles
US11555128B2 (en) 2015-11-12 2023-01-17 Guangzhou Chinaray Optoelectronic Materials Ltd. Printing composition, electronic device comprising same and preparation method for functional material thin film
CN105552241B (en) * 2016-01-13 2017-11-03 京东方科技集团股份有限公司 Cross-linking quantum dot and preparation method thereof, array base palte and preparation method thereof
KR102034615B1 (en) 2016-02-17 2019-10-21 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Quantum Dots with Stabilized Fluorine-Based Copolymers
KR102490693B1 (en) 2016-05-16 2023-01-19 나노스트링 테크놀로지스, 인크. Method for detecting target nucleic acid in a sample
WO2018009346A1 (en) 2016-07-05 2018-01-11 Quantapore, Inc. Optically based nanopore sequencing
KR20190031505A (en) 2016-07-20 2019-03-26 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Stabilized styrene polymers for quantum dots
KR20190033071A (en) 2016-07-20 2019-03-28 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Stabilized styrene polymers for quantum dots
CN109642151A (en) 2016-08-22 2019-04-16 默克专利股份有限公司 Mixture for optical device
NL2017437B1 (en) * 2016-09-08 2018-03-27 Univ Amsterdam Multi-chromatic capped semiconductor nanocrystals
JP6730525B2 (en) 2016-11-21 2020-07-29 ナノストリング テクノロジーズ,インコーポレイティド Chemical composition and method of using the same
US10889755B2 (en) 2016-11-22 2021-01-12 Samsung Electronics Co., Ltd. Photosensitive resin composition, complex, laminated structure and display device, and electronic device including the same
CN109790407B (en) 2016-11-23 2021-12-07 广州华睿光电材料有限公司 Printing ink composition, preparation method and application thereof
EP4134080A1 (en) 2016-11-23 2023-02-15 ChemoCentryx, Inc. Ccr2 inhibitors for use in treating renal diseases
BR112020007183A2 (en) 2017-10-11 2020-09-24 Chemocentryx, Inc. treatment of segmented focal glomerulosclerosis with ccr2 antagonists
EP4223855A1 (en) 2017-10-12 2023-08-09 NS Materials Inc. Quantum dot; and wavelength converting member, lighting member, back light unit, and display device using quantum dot
WO2019104070A1 (en) 2017-11-21 2019-05-31 Nanostring Technologies, Inc. O-nitrobenzyl photocleavable bifunctional linker
JP6959119B2 (en) * 2017-12-04 2021-11-02 信越化学工業株式会社 Quantum dots and their manufacturing methods, resin compositions, wavelength conversion materials, light emitting devices
CN108172603A (en) * 2018-01-03 2018-06-15 京东方科技集团股份有限公司 A kind of light emitting diode with quantum dots substrate and preparation method thereof, display panel
CA3099909A1 (en) 2018-05-14 2019-11-21 Nanostring Technologies, Inc. Chemical compositions and methods of using same
KR102046907B1 (en) * 2019-01-16 2019-11-20 주식회사 신아티앤씨 Quantum dots in which ionic liquids are ion-bonded and their preparation method
TW202045684A (en) * 2019-01-24 2020-12-16 美商納諾西斯有限公司 Small molecule passivation of quantum dots for increased quantum yield
US10792360B1 (en) 2019-11-21 2020-10-06 Chemocentryx, Inc. Compositions and methods for treating inflammatory bowel disease using CCR9 inhibitor and anti-TNF-alpha blocking antibodies
EP3872146A1 (en) 2020-02-25 2021-09-01 Rijksuniversiteit Groningen Colloidal nanoparticle inks for printing of active layers in an optoelectronic device
TW202203916A (en) 2020-03-31 2022-02-01 美商卡默森屈有限公司 Compositions and methods for treating inflammatory bowel disease using ccr9 inhibitor and anti-il-23 blocking antibodies
US11309506B2 (en) * 2020-06-24 2022-04-19 Sharp Kabushiki Kaisha Light-emitting device with crosslinked emissive layer including quantum dots with ligands bonded thereto
US20230366012A1 (en) 2020-09-16 2023-11-16 Nanostring Technologies, Inc. Chemical compositions and methods of using the same
US20220228200A1 (en) 2021-01-19 2022-07-21 10X Genomics, Inc. Methods and compositions for internally controlled in situ assays
EP4347877A1 (en) 2021-06-01 2024-04-10 10X Genomics, Inc. Methods and compositions for analyte detection and probe resolution
CN117751197A (en) 2021-06-02 2024-03-22 10X基因组学有限公司 Sample analysis using asymmetric circularizable probes
CN117651855A (en) 2021-07-13 2024-03-05 10X基因组学有限公司 Method for preparing polymeric substrates with controlled thickness
WO2023015192A1 (en) 2021-08-03 2023-02-09 10X Genomics, Inc. Nucleic acid concatemers and methods for stabilizing and/or compacting the same
WO2023023484A1 (en) 2021-08-16 2023-02-23 10X Genomics, Inc. Probes comprising a split barcode region and methods of use
WO2023129898A2 (en) 2021-12-27 2023-07-06 10X Genomics, Inc. Methods and compositions for rolling circle amplification
US20230279475A1 (en) 2022-01-21 2023-09-07 10X Genomics, Inc. Multiple readout signals for analyzing a sample
WO2023164570A1 (en) 2022-02-23 2023-08-31 Insitro, Inc. Pooled optical screening and transcriptional measurements of cells comprising barcoded genetic perturbations
WO2023192616A1 (en) 2022-04-01 2023-10-05 10X Genomics, Inc. Compositions and methods for targeted masking of autofluorescence
WO2023215612A1 (en) 2022-05-06 2023-11-09 10X Genomics, Inc. Analysis of antigen and antigen receptor interactions
WO2023215603A1 (en) 2022-05-06 2023-11-09 10X Genomics, Inc. Methods and compositions for in situ analysis of v(d)j sequences
US20240084378A1 (en) 2022-05-11 2024-03-14 10X Genomics, Inc. Compositions and methods for in situ sequencing
WO2023245190A1 (en) 2022-06-17 2023-12-21 10X Genomics, Inc. Catalytic de-crosslinking of samples for in situ analysis
WO2024036304A1 (en) 2022-08-12 2024-02-15 10X Genomics, Inc. Puma1 polymerases and uses thereof
US20240084373A1 (en) 2022-08-16 2024-03-14 10X Genomics, Inc. Ap50 polymerases and uses thereof

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3996345A (en) 1974-08-12 1976-12-07 Syva Company Fluorescence quenching with immunological pairs in immunoassays
US4637988A (en) 1981-07-01 1987-01-20 Eastman Kodak Company Fluorescent labels for immunoassay
US4777128A (en) 1986-05-27 1988-10-11 Ethigen Corporation Fluorescence immunoassay involving energy transfer between two fluorophores
US5304786A (en) 1990-01-05 1994-04-19 Symbol Technologies, Inc. High density two-dimensional bar code symbol
DE69217497T2 (en) 1991-09-18 1997-06-12 Affymax Tech Nv METHOD FOR SYNTHESISING THE DIFFERENT COLLECTIONS OF OLIGOMERS
US5505928A (en) 1991-11-22 1996-04-09 The Regents Of University Of California Preparation of III-V semiconductor nanocrystals
JPH07502479A (en) * 1991-11-22 1995-03-16 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Semiconductor microcrystals covalently bonded to solid inorganic surfaces using self-assembled monolayers
US5262357A (en) 1991-11-22 1993-11-16 The Regents Of The University Of California Low temperature thin films formed from nanocrystal precursors
US5515393A (en) 1992-01-29 1996-05-07 Sony Corporation Semiconductor laser with ZnMgSSe cladding layers
AU4378893A (en) 1992-05-22 1993-12-30 Minnesota Mining And Manufacturing Company Ii-vi laser diodes with quantum wells grown by atomic layer epitaxy and migration enhanced epitaxy
US5674698A (en) 1992-09-14 1997-10-07 Sri International Up-converting reporters for biological and other assays using laser excitation techniques
US5565324A (en) 1992-10-01 1996-10-15 The Trustees Of Columbia University In The City Of New York Complex combinatorial chemical libraries encoded with tags
US5721099A (en) 1992-10-01 1998-02-24 Trustees Of Columbia University In The City Of New York Complex combinatorial chemical libraries encoded with tags
US5293050A (en) 1993-03-25 1994-03-08 International Business Machines Corporation Semiconductor quantum dot light emitting/detecting devices
US6048616A (en) 1993-04-21 2000-04-11 Philips Electronics N.A. Corp. Encapsulated quantum sized doped semiconductor particles and method of manufacturing same
JPH0750448A (en) 1993-08-04 1995-02-21 Matsushita Electric Ind Co Ltd Semiconductor laser and manufacture thereof
US5492080A (en) 1993-12-27 1996-02-20 Matsushita Electric Industrial Co., Ltd. Crystal-growth method and semiconductor device production method using the crystal-growth method
US5422489A (en) 1994-01-24 1995-06-06 Bhargava; Rameshwar N. Light emitting device
US5881886A (en) 1994-03-18 1999-03-16 Brown University Research Foundation Optically-based methods and apparatus for sorting garments and other textiles
US5448582A (en) 1994-03-18 1995-09-05 Brown University Research Foundation Optical sources having a strongly scattering gain medium providing laser-like action
GB2318666B (en) 1994-04-25 1998-07-15 Univ Hertfordshire Coded items for labelling objects
US5537000A (en) 1994-04-29 1996-07-16 The Regents, University Of California Electroluminescent devices formed using semiconductor nanocrystals as an electron transport media and method of making such electroluminescent devices
US5541948A (en) 1994-11-28 1996-07-30 The Regents Of The University Of California Transition-metal doped sulfide, selenide, and telluride laser crystal and lasers
US5985353A (en) 1994-12-01 1999-11-16 University Of Massachusetts Lowell Biomolecular synthesis of quantum dot composites
US5585640A (en) 1995-01-11 1996-12-17 Huston; Alan L. Glass matrix doped with activated luminescent nanocrystalline particles
US5747180A (en) 1995-05-19 1998-05-05 University Of Notre Dame Du Lac Electrochemical synthesis of quasi-periodic quantum dot and nanostructure arrays
US5736330A (en) 1995-10-11 1998-04-07 Luminex Corporation Method and compositions for flow cytometric determination of DNA sequences
DE19541028C2 (en) 1995-11-05 1998-01-22 Daimler Benz Ag Effect varnish with pigments bearing a label, and process for its production
AU4043497A (en) 1996-07-29 1998-02-20 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses therefor
US5908608A (en) 1996-11-08 1999-06-01 Spectra Science Corporation Synthesis of metal chalcogenide quantum
US5939021A (en) 1997-01-23 1999-08-17 Hansen; W. Peter Homogeneous binding assay
AU6271798A (en) 1997-02-18 1998-09-08 Spectra Science Corporation Field activated security thread including polymer dispersed liquid crystal
CA2306501C (en) 1997-10-14 2011-03-29 Luminex Corporation Precision fluorescently dyed particles and methods of making and using same
US5985173A (en) * 1997-11-18 1999-11-16 Gray; Henry F. Phosphors having a semiconductor host surrounded by a shell
US5990479A (en) 1997-11-25 1999-11-23 Regents Of The University Of California Organo Luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes
EP0990903B1 (en) * 1998-09-18 2003-03-12 Massachusetts Institute Of Technology Biological applications of semiconductor nanocrystals
US6251303B1 (en) * 1998-09-18 2001-06-26 Massachusetts Institute Of Technology Water-soluble fluorescent nanocrystals
WO2000028089A1 (en) 1998-11-10 2000-05-18 Biocrystal Limited Functionalized nanocrystals and their use in labeling for strand synthesis or sequence determination
US6114038A (en) * 1998-11-10 2000-09-05 Biocrystal Ltd. Functionalized nanocrystals and their use in detection systems
WO2000027436A1 (en) 1998-11-10 2000-05-18 Biocrystal Limited Functionalized nanocrystals as visual tissue-specific imaging agents, and methods for fluorescence imaging
US6261779B1 (en) 1998-11-10 2001-07-17 Bio-Pixels Ltd. Nanocrystals having polynucleotide strands and their use to form dendrimers in a signal amplification system
WO2000027365A1 (en) 1998-11-10 2000-05-18 Biocrystal Limited Functionalized nanocrystals and their use in detection systems

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210376242A1 (en) * 2020-06-02 2021-12-02 Samsung Display Co., Ltd. Quantum dot composition, light emitting element, and method for manufacturing the same
US11910703B2 (en) * 2020-06-02 2024-02-20 Samsung Display Co., Ltd. Quantum dot composition including a quantum dot, and a ligand having a head portion, a connecting portion including a metal, and a tail portion

Also Published As

Publication number Publication date
CA2344479A1 (en) 2000-03-30
US6444143B2 (en) 2002-09-03
US6319426B1 (en) 2001-11-20
US6251303B1 (en) 2001-06-26
AU6148599A (en) 2000-04-10
US20010040232A1 (en) 2001-11-15

Similar Documents

Publication Publication Date Title
CA2344479C (en) Water-soluble fluorescent semiconductor nanocrystals
EP1116036B1 (en) Water-soluble fluorescent semiconductor nanocrystals
JP4404489B2 (en) Water-soluble fluorescent semiconductor nanocrystal
US6426513B1 (en) Water-soluble thiol-capped nanocrystals
JP5356318B2 (en) Stabilized semiconductor nanocrystals
Eychmüller et al. Chemistry and photophysics of thiol-stabilized II-VI semiconductor nanocrystals
Green The nature of quantum dot capping ligands
US8003010B2 (en) Water-stable III-V semiconductor nanocrystal complexes and methods of making same
US20190218455A1 (en) Highly luminescent semiconductor nanocrystals
EP2307309B1 (en) METHOD FOR PRODUCING STABLE InP/ZnS CORE/SHELL SEMICONDUCTOR NANOCRYSTALS AND PRODUCT OBTAINED
US7449237B2 (en) Microspheres including nanoparticles in the peripheral region
US7335345B2 (en) Synthesis of water soluble nanocrystalline quantum dots and uses thereof
EP2162901B1 (en) Magnesium-based coatings for nanocrystals
EP2336409A2 (en) Method of preparing a coated nanocrystal
Philippot et al. Synthesis of inorganic nanocrystals for biological fluorescence imaging
Rogach et al. Semiconductor nanoparticles
Barik Synthetic developments of semiconductor quantum dot for biological applications
Emin¹ et al. Synthesis, Characterization, and Self-Assembly of Colloidal Quantum Dots
Xu Synthesis and characterization of silica coated CdSe/CdS core/shell quantum dots
Vo-Dinh Luminescent quantum dots as advanced biological labels
Zhou et al. Aqueous phase synthesis and fluorescence properties of inverted core/shell ZnSe/CdSe nanocrystals

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20190917