CA2353001A1 - Chameleon signal lens - Google Patents

Chameleon signal lens Download PDF

Info

Publication number
CA2353001A1
CA2353001A1 CA2353001A CA2353001A CA2353001A1 CA 2353001 A1 CA2353001 A1 CA 2353001A1 CA 2353001 A CA2353001 A CA 2353001A CA 2353001 A CA2353001 A CA 2353001A CA 2353001 A1 CA2353001 A1 CA 2353001A1
Authority
CA
Canada
Prior art keywords
lens system
light
light transmitting
transmitting elements
signal lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2353001A
Other languages
French (fr)
Inventor
Nicolae Radu Sevastian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2353001A1 publication Critical patent/CA2353001A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • G02B6/06Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images
    • G02B6/08Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images with fibre bundle in form of plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/235Light guides
    • F21S43/251Light guides the light guides being used to transmit light from remote light sources

Abstract

The invention is a lens. The light transmitting portion of the lens comprises a plurality of fiber optic strands arranged parallel to each other in a side-by-side manner, forming a planar layer. The fiber optic strands are also inclined at an angle to a surface of the lens. This defeats any reflection from the interior of the lens face or surface when so needed. In operation, when the light source is illuminated, the lens is then lit, displaying the color of the light source or of the color of the strands.

Description

Chameleon Signal Lens Field of the Invention The present invention relates to lenses, and more particularly to signal lenses comprising a bundle of adjacent light transmitting elements.
Background of the invention Light transmitting elements, including fiber optic cables, are well known for various uses. A defining trait of the fiber optic cable is its ability to transmit light from a source with minimal losses over short or long distances.
It is also known that various vehicles rely on marker lights and headlights, among others, to make them visible during evening hours as well as to provide information to others regarding turns and other vehicular movements.
Marker and headlight lenses have been used in vehicle lighting applications for many years. The lenses generally comprise a transparent plastic or glass material having a tint or color added as necessary to the application. The lens then colors the emitted light as well as providing protection to the bulb. Prior art lenses also comprise ~ plurality of adjacent convex lens giving a dot matrix appearance to the marker light operation.
Prior art uses of the fiber optic cable are primarily focused on transmitting light from a source to an emitter without taking advantage of other unique features of the cable, for example, light transmission efficiency over short distances and the numerical aperture.
Further, the plastic lens presents a noticeable feature on a vehicle surface, regardless of the state of operation.
Representative of the art is U.S. patent no 5,826,966 (1998) to Schwing that discloses a lighted bumper guide that uses a single fiber optic filament extending from a light source to allow a driver to identify the extremity or ends of the bumper of a vehicle.

Also representative of the art is U.S. patent no. 5,384,881 (1995) to Miller that discloses a multi-lens luminaire having a generally tubular macro-housing having a plurality of generally tubular micro-housings, each micro-housing retaining a fiber optic light guide emitting light from a remote source of illumination.
The prior art does not teach use of short fiber optic cable strands in an array used as a lens with a light source. The prior art does not teach orienting the fiber optic strands in a single lens to discriminate between different light sources. Nor does the prior art teach use of adjacent, light transmitting elements in an array. The prior art does not teach use of fiber optic strands coordinated with a vehicle surface in such a way as to render a lens invisible when not in use.
What is needed is a lens comprising a bundle of light transmitting elements.
What is needed is a lens comprising a bundle of light transmitting elements inclined at an angle to a light source.
What is needed is a lens comprising a bundle of fiber optic cable strands.
What is needed is a lens comprising a bundle of light transmitting elements that discriminate between different light sources.
What is needed is a lens comprising fiber optic strands coordinated with a vehicle surface in such a way as to render a marker lens invisible when not in use.
The present invention meets these needs.
Summary of the Invention The primary aspect of the invention is to provide a lens comprising an array of fiber optic cable strands.
Another aspect of the invention is to provide a lens comprising an array of fiber optic cable strands inclined at an angle to a light source.
2 Another aspect of the invention is to provide a lens comprising an array of parallel fiber optic strands.
Another aspect of the invention is to provide a lens comprising an array of fiber optic cable strands which discriminate between dii~erent light sources.
Another aspect of the invention is to provide a lens comprising fiber optic strands coordinated with a vehicle surface in such a way as to render a marker lens invisible when not m use.
Other aspects of the invention will be pointed out or made obvious by the following description of the invention and the accompanying drawings.
The invention is a lens. The light transmitting portion of the lens comprises a plurality of fiber optic strands forming an array arranged parallel to each other in a side-by-side manner. The fiber optic strands are also inclined at an angle to a surface of the lens. This defeats any direct reflection from the interior of the lens, which gives virtual invisibility, to the lens face and when not in use, of the elements inside the lens. In operation, without the light source illuminated, it allows the lens to transmit the color of a reflective panel disposed behind the lens. In operation, with the light source illuminated, the lens is then lit displaying the color of the light source or of the color of the strands or both. In an alternate embodiment, the strands are arranged so that different groups of strands are each focused on one or a group of light sources in an array of light sources.
The chameleon effect of rendering invisible the surface of the light transmitting elements relative to vehicle's surface is achieved through one or a plurality of the following methods:
1.- The variation of the fibers' diameter d 1 in relation to variations of the center distance d2 between adjacent fibers, based on the general relation between the two where
3 d2<dl . To explain how this will work, a principle of its operation is similar and is used when advertising on bus windows, taxis etc. To the outside viewer, the color of the advertisement is what catches the eye. The eye is fooled into believing that the whole surface of the window is painted solid. In reality is only a mesh that has dl diameter orifices spaced at d2 distances that is colored. The passengers inside the bus will be able to see through the window, through these perforations through the mesh.
The larger dl and the smaller d2 the better the passengers will see and the less effective the advertisement will be (the chameleon effect).
When dl is smaller and d2 is increased the passengers' vision will worsen (less brilliance to the signal lights), but the add will be more visible.
This invention will use the same principle and therefore a balance must be found between the various combinations of values given to d 1 and d2. The purpose is to optimize the balance between the brilliance required by a signal light and the effectiveness of the chameleon effect. This balance is influenced by the specific design of the lens in a specific vehicle configuration and therefore cannot be accurately determined for all applications.
However a range of d 1 from 1. 0 mm to 4.0 mm diameter and d2 2. 5 mm to 10 mm will probably give best results. Also, a honeycomb configuration of the fiber optic strands will give a uniform distribution of the light pattern, therefore, it will increase the effectiveness of both signal light ef~'iciency and chameleon effect.
2.- Having the fiber optic tinted to the same color as the vehicle panel where the device is located.
3.- For light color vehicles, a light source of the same color as the vehicle's color can also be used to blend the light source's surface into the rest of the panel.
The intensity of such light will vary depending on the outside or ambient light conditions (midday, dusk, etc.) and it
4 will be automatically adjustable. When the signal light is activated an additional, much stronger red or yellow light source will turn on and override the previous.
Brief Description of the Drawings The accompanying drawings, which are incorporated in and form a part of the specification, illustrate a preferred embodiment of the present invention, and together with the detailed description, serve to explain the principles of the invention.
Fig. 1 is an elevational view of the prior art.
Fig. 2 is an elevational view of the inventive lens in operation.
Fig. 3 is a rotated sectional view of the inventive lens.
Fig. 4 is a plan view of light transmitting elements.
Detailed Description of the Preferred Embodiment Fig. 1 is an elevation view of the prior art. The prior art lens A is shown on a vehicle bumper.
The lens is immediately apparent on the surface of the bumper.
Fig. 2 is an elevational view of the inventive lens in operation. The lens is shown in the same position as the prior art lens. The surface of the lens 100 is flush with the outer surface of the bumper structure and as such there are no ridges or depressions.
Fig. 3. is a rotated sectional view of the inventive lens. A plurality of fiber optic strands or light transmitting elements 10 forming an array or bundle are arranged parallel to each other in a side-by-side manner. The strands are embedded or molded into the material comprising the bumper 11 or other vehicle structural component (similar to existing signal lights of today).
The bundled fiber optic strands form a substantially planar surface. However, one skilled in the art can appreciate that the strands may also be arranged so that the form of the
5 lens conforms to any contour required by a designer. The axis of the fiber optic strands in the lens is inclined at an angle ALPHA to a normal to surface 15. Angle ALPHA is typically in the range 0 to 45 degrees. The optimum angle is determined by the location of the major axis of each strand as compared to the location of the light source 13. More distant strands may be angled more severely toward the light source. Strands adjacent to the light source being less inclined.
In areas of the vehicle where the signal lights have no light source behind them, and the sole purpose is to reflect light from on coming vehicles, so that they are more visible (when the vehicle is parked at night) this design will require the strands' direction square to the lens surface and backing a highly reflective multi faceted, red or yellow surface that will reflect back the light.
In an alternate embodiment, the strands are arranged so that the axis of each strand is aligned with a single light source in an array of light sources. This assures maximum light gathering by each strand as a function of the light acceptance angle of each optical fiber. One skilled in the art can appreciate that different parts of the lens may have strands that are oriented toward dii~erent light sources, depending on the number and location of the light sources.
The ends 16 of the fiber optic strands are flush with an outer surface 15 of the bumper or other structure.
A reflective surface 12 is placed substantially parallel to and located to one side of the planar surface or layer of the fiber optic strands opposite the outer surface 15. The term "layer" is used here to describe any complex surface that can be used for the outer shape of the lens area. A light source 13 is placed between the reflective surface and the planar surface. A light ray 14 emitted by the light source is typically reflected by the reflective
6 surface. It is received through an end 17 of a fiber optic strand. The light ray is transmitted through the fiber optic strand and emitted from end 16. The reflective surface may also comprise a series of reflective ridges that more efficiently reflect and thereby direct the light rays from the light source towards ends 17. The form of each ridge depends on the location of each strand in the array. The shape and arrangement of the ridges is also a function of the numerical aperture of the strands and enhance coupling the light from the light source to the strands.
A plurality or array of light sources may also be included, depending on the needs of the user. For example a yellow light source and a red light source may be used to depict a turn signal (yellow) and a brake signal (red). The light source may comprise an LED
or any other light source known in the art. Each light source may also comprise the termination of a fiber optic cable routed from a remote light source.
In an alternate embodiment, a plurality of fiber optic light sources may each be connected to the end 17 of each strand. Each fiber optic light source would then be individually controllable allowing customization of the appearance of the lens during operation. The lens could display a variety of colors or text, for example "STOP", as required by a user using known light source control methods and apparatus.
The diameter of the fiber optic strands is in the range of 0. 1 mm up to 25 mm. The thickness, t of the fiber optic bundle layer is set according to the design needs of the user and is not always equal to the outer surface thickness.
Fig. 4. is a plan view of light transmitting elements. Strands 10 each have a diameter dl. The figure depicts a set of strands, although the relationship can be applied to any number of strands. Connecting tangent points taken on each adjacent strand results in a triangle.
Generally, the triangle will be equilateral. A line drawn from one center point to the center of
7 the nearest fiber optic will have a length d2. In the preferred embodiment, d2 > dl. The intensity of the transmitted light from the lens is a fiznction of this relationship. Increasing d 1 while holding d2 constant will increase the intensity of the emitted light. On the other hand, decreasing dl while holding d2 constant will decrease emitted light while enhancing the chameleon effect, that is, rendering the location and appearance of the lens undetectable by an observer when the light source is not illuminated.
Although a single form of the invention has been described herein, it will be obvious to those skilled in the art that variations may be made in the construction and relation of parts without departing from the spirit and scope of the invention described herein.
8

Claims (19)

I claim:
1. A signal lens system comprising:
a light source;
a reflective surface;
a plurality of light transmitting elements arranged adjacent and parallel to each other to form a layer; and the light source being located between the reflective surface and the layer of light transmitting elements.
2. A signal lens system comprising:
multiple light sources;
a reflective surface; and a plurality of light transmitting elements arranged adjacent and parallel to each other to form a bundle describing a layer; and the reflective surface arranged substantially parallel to the layer whereby light from said light sources may be reflected from the reflective surface and received by at least one of said light transmitting elements.
3. A signal lens system comprising:
a plurality of light transmitting elements arranged adjacent to each other to form a bundle describing a layer;
a light source arranged to correspond to the light transmitting elements; and a command and control device for said light source.
4. The signal lens system of claim 1, wherein said layer is substantially planar.
5. The signal lens system of claim 1, wherein at least some of said light transmitting elements have a central axis that is inclined to said reflective surface.
6. The signal lens system of claim 5, wherein said light transmitting elements having a central axis that is inclined to said reflective surface, are inclined at different angles based on the location of the elements relative to the light source.
7. The signal lens system of claim 1, wherein an outer surface of said signal lens system is flush with an outer end face of each light transmitting element.
8. The signal lens system of claim 1, wherein adjacent ones of said light transmitting elements are spaced from each other.
9. The signal lens system of claim 8, wherein said light transmitting elements have a diameter of 1.0 mm - 4.0 mm, and a distance between centers of adjacent ones of said light transmitting elements is 2.5 mm - 10.0 mm.
10. The signal lens system of claim 1, wherein said light transmitting elements are optical fibers, and are tinted a color the same as that of a surface surrounding an outer surface of the signal lens system.
11. The signal lens system of claim 1, wherein said light source emits light having a color corresponding to that of a surface surrounding an outer surface of the signal lens system.
12. The signal lens system of claim 11, wherein an intensity of the light emitted by said light source is varied based on ambient light conditions.
13. The signal lens system of claim 1, wherein said reflective surface comprises a series of reflective ridges.
14. The signal lens system of claim 13, wherein said reflective ridges have different forms based on locations of those of said light transmitting elements which receive light reflected from the ridges.
15. The signal lens system of claim 2, wherein said light transmitting elements comprise fiber optic stands.
16. The signal lens system of claim 15, wherein said fiber optic stands are arranged in bundles of various shapes.
17. The signal lens system of claim 16, wherein said multiple light sources correspond to said fiber optic stand bundles.
18. A reflective lens system comprising:
a plurality of light transmitting elements arranged adjacent and parallel to each other to form a layer, an outer surface of said reflective lens system is flush with an outer end face of each light transmitting element, and said light transmitting elements extending square to said outer surface of said reflective lens system; and a highly reflective surface disposed opposite to inner ends of said light transmitting elements.
19. The signal lens system of claim 18, wherein said light transmitting elements comprise fiber optic stands.
CA2353001A 2000-07-14 2001-07-12 Chameleon signal lens Abandoned CA2353001A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/616,746 US6920269B1 (en) 2000-07-14 2000-07-14 Lens
US09/616,746 2000-07-14

Publications (1)

Publication Number Publication Date
CA2353001A1 true CA2353001A1 (en) 2002-01-14

Family

ID=24470788

Family Applications (2)

Application Number Title Priority Date Filing Date
CA2353001A Abandoned CA2353001A1 (en) 2000-07-14 2001-07-12 Chameleon signal lens
CA2414318A Expired - Fee Related CA2414318C (en) 2000-07-14 2001-07-13 Signal lens system

Family Applications After (1)

Application Number Title Priority Date Filing Date
CA2414318A Expired - Fee Related CA2414318C (en) 2000-07-14 2001-07-13 Signal lens system

Country Status (12)

Country Link
US (2) US6920269B1 (en)
EP (1) EP1325362B1 (en)
JP (1) JP2004504692A (en)
CN (1) CN1287171C (en)
AT (1) ATE378218T1 (en)
AU (1) AU2002222957A1 (en)
BR (1) BR0112103A (en)
CA (2) CA2353001A1 (en)
DE (1) DE60131434T2 (en)
ES (1) ES2294038T3 (en)
MX (1) MXPA03001324A (en)
WO (1) WO2002006870A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2821439A1 (en) * 2001-02-28 2002-08-30 Koninkl Philips Electronics Nv APPARATUS COMPRISING A VIEWING UNIT AND VIEWING UNIT SUITABLE FOR SUCH AN APPARATUS
DE10248660B4 (en) * 2002-10-18 2004-09-30 Daimlerchrysler Ag Multi-colored light
US20070136694A1 (en) * 2005-12-09 2007-06-14 Microsoft Corporation Color and context-adaptable hardware button
DE102009005558B4 (en) 2009-01-20 2013-01-31 Edag Gmbh & Co. Kgaa Motor vehicle with a shell structure with integrated lighting elements
DE102014206238A1 (en) * 2013-06-22 2014-12-24 Volkswagen Aktiengesellschaft Motor vehicle with a lighting device

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1067149A (en) * 1965-01-26 1967-05-03 Ferranti Ltd Improvements relating to display screens
US4344668A (en) * 1980-03-17 1982-08-17 Hughes Aircraft Company Fiber optic light traps for electro-optical display devices
US4573082A (en) * 1984-01-16 1986-02-25 Incom, Inc. Focusable display screen
DE58901489D1 (en) 1988-10-01 1992-06-25 Dambach Werke Gmbh LIGHT WARNING DEVICE.
JPH0741046Y2 (en) * 1989-10-27 1995-09-20 スタンレー電気株式会社 LED signal light for vehicle
US4949227A (en) 1989-10-31 1990-08-14 General Electric Company Upper and lower beam optical switch for line-of-light headlamps using opaque masks
US5321789A (en) * 1990-09-18 1994-06-14 Mitsubishi Denki Kabushiki Kaisha Projection display apparatus, and light guide tube/light valve for use in the same
DE4209505C1 (en) * 1992-03-24 1993-07-08 O & K Orenstein & Koppel Ag, 1000 Berlin, De Safe lighting system for indoor and outdoor escalators - employs optical fibre assembly and single light-source to illuminate escalator steps without need for electrical wiring and weatherseals
US5295050A (en) 1992-11-23 1994-03-15 Eaton Corporation Display system
US5329386A (en) 1993-04-13 1994-07-12 Hewlett-Packard Company Fiber-optic faceplate with tilted fibers
US5384881A (en) 1993-07-26 1995-01-24 Miller; Jack V. Multi-lens fiber optic luminaire
US5632551A (en) * 1994-07-18 1997-05-27 Grote Industries, Inc. LED vehicle lamp assembly
US5691696A (en) 1995-09-08 1997-11-25 Federal Signal Corporation System and method for broadcasting colored light for emergency signals
JP3079969B2 (en) * 1995-09-14 2000-08-21 日本電気株式会社 Complete contact image sensor and method of manufacturing the same
US5639153A (en) * 1995-12-18 1997-06-17 Whelen Engineering Company, Inc. Light head assembly with remote light source
US5621829A (en) * 1996-04-02 1997-04-15 Lucent Technologies Inc. Fiber optic switching device and method using free space scanning
JP4083829B2 (en) * 1996-07-15 2008-04-30 富士通株式会社 Stereoscopic image display device
US6042256A (en) 1998-01-26 2000-03-28 Gothard; David Lighting device having highly diffuse light emission
DE19802923A1 (en) * 1998-01-27 1999-07-29 Hella Kg Hueck & Co Lamp for cars, especially tail lamp
US6007226A (en) 1998-02-04 1999-12-28 Howard; Edward B. Fiber optic light
US6106137A (en) * 1998-02-20 2000-08-22 Lorin Industries, Inc. Reflector for automotive exterior lighting
US5826966A (en) 1998-03-17 1998-10-27 Schwing; John Lighted bumper guide
FR2783035B1 (en) * 1998-09-03 2000-10-06 Valeo Vision MULTI-FUNCTIONAL SIGNALING SYSTEM HAVING A UNIFORMLY ILLUMINATED LIGHT
US6195477B1 (en) 1998-11-12 2001-02-27 Delphi Technologies, Inc. Hybrid fiber optic lighting distribution system
US6175679B1 (en) * 1999-07-02 2001-01-16 Brookhaven Science Associates Optical keyboard
US6243520B1 (en) * 1999-08-16 2001-06-05 Schott Fiber Optics, Inc. Optical fiber bundle having an aligned optical fiber array and method of fabricating the same
US6195016B1 (en) * 1999-08-27 2001-02-27 Advance Display Technologies, Inc. Fiber optic display system with enhanced light efficiency

Also Published As

Publication number Publication date
ES2294038T3 (en) 2008-04-01
CA2414318C (en) 2006-12-19
CN1287171C (en) 2006-11-29
BR0112103A (en) 2003-05-20
WO2002006870A1 (en) 2002-01-24
US6579000B2 (en) 2003-06-17
CA2414318A1 (en) 2002-01-24
EP1325362B1 (en) 2007-11-14
EP1325362A1 (en) 2003-07-09
CN1441916A (en) 2003-09-10
DE60131434D1 (en) 2007-12-27
EP1325362A4 (en) 2005-06-01
MXPA03001324A (en) 2003-06-06
JP2004504692A (en) 2004-02-12
AU2002222957A1 (en) 2002-01-30
DE60131434T2 (en) 2008-09-18
US6920269B1 (en) 2005-07-19
US20020126508A1 (en) 2002-09-12
ATE378218T1 (en) 2007-11-15

Similar Documents

Publication Publication Date Title
US6305813B1 (en) Display device using a light guide for exterior automotive lighting
US4765701A (en) Illuminator optical fiber rod
US4996632A (en) Multi-color illuminating system
US6031958A (en) Optical light pipes with laser light appearance
US6623132B2 (en) Light coupler hingedly attached to a light guide for automotive lighting
JP2778731B2 (en) Interior lighting sign
US20070160334A1 (en) End-emitting fiber optic indicia for motor vehicles
JPH10513001A (en) Light directing optical structure
US9435506B2 (en) Lighting device in a motor vehicle having a plate-shaped light conductor and a rod-shaped light conductor
CN104903642A (en) Multifunction lightguide tailight article
JP2008243816A5 (en)
EP2941367B1 (en) An external rear view mirror of a vehicle
EP0711949B1 (en) Headlight for vehicle
CN107076381A (en) Vehicular illumination device and the method for providing illumination functions by Vehicular illumination device car light
CN104006322A (en) Strip lighting device
US10395570B2 (en) Mark and sign lighting device, method and system
US6579000B2 (en) Chameleon signal lens
EP3268521B1 (en) Light guide, lighting device and vehicle part
US7186011B2 (en) Multiple point decorative light strip
US10119672B2 (en) Bundle entry weave for lighting modules
CN208107975U (en) It is a kind of for the side steering indicating light installed of vehicle
CN111094841A (en) Improved comfort of outdoor luminaires due to phyllotactic arrangement of LED sources
CN209839961U (en) Light subassembly and vehicle
CN210662713U (en) LED (light-emitting diode) backlighting lens and LED lamp
JPH10143769A (en) Signing lamp

Legal Events

Date Code Title Description
FZDE Discontinued
FZDE Discontinued

Effective date: 20060712