CA2360406A1 - Bundle of hollow fibres for a device for extracorporeal treatment of blood and plasma, and process for its production - Google Patents

Bundle of hollow fibres for a device for extracorporeal treatment of blood and plasma, and process for its production Download PDF

Info

Publication number
CA2360406A1
CA2360406A1 CA002360406A CA2360406A CA2360406A1 CA 2360406 A1 CA2360406 A1 CA 2360406A1 CA 002360406 A CA002360406 A CA 002360406A CA 2360406 A CA2360406 A CA 2360406A CA 2360406 A1 CA2360406 A1 CA 2360406A1
Authority
CA
Canada
Prior art keywords
bundle
hollow fibres
fibres
hollow
hydraulic permeability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002360406A
Other languages
French (fr)
Inventor
Didier Boivin
Jean Farjaud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gambro Industries SAS
Original Assignee
Gambro Lundia AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gambro Lundia AB filed Critical Gambro Lundia AB
Publication of CA2360406A1 publication Critical patent/CA2360406A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/031Two or more types of hollow fibres within one bundle or within one potting or tube-sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • B01D63/0233Manufacturing thereof forming the bundle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • G01N15/0826Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2319/00Membrane assemblies within one housing
    • B01D2319/06Use of membranes of different materials or properties within one module
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/084Testing filters

Abstract

The invention relates to a bundle of hollow fibres intended to constitute the membrane of a device for treating blood or plasma by extracorporeal circulation, in which:
.cndot. the hydraulic permeability of the hollow fibres in the bundle is heterogeneous; and .cndot. the ratio of the highest hydraulic permeability measured on some hollow fibres of the bundle to the lowest hydraulic permeability measured on other hollow fibres in the same bundle is at least about 5.
The invention also relates to a method for producing such a bundle, and a device comprising such a bundle.

Description

BUNDLE OF HOLLOW FIBRES FOR A DEVICE FOR EXTRACORPOREAL
TREATMENT OF BLOOD AND PLASMA, AND PROCESS FOR ITS
PRODUCTION
The present invention relates to a bundle of hollow fibres for a device for treating blood or plasma by extracorporeal circulation, and to a process for producing a bundle of hollow fibres constituting the semi-permeable membrane of the device.
Membrane devices for treating blood or plasma by extracorporeal circulation are 1 o used in many different medical or paramedical applications, such as treating renal insufficiency by dialysis or haemofiltration, plasmapheresis and apheresis for therapeutic and non-therapeutic purposes, oxygenating blood, immunopurification, etc.
In general, semi-permeable membranes can be classified by their hydraulic permeability into low flux membranes, medium flux membranes and high flux membranes.
Hydraulic permeability describes the quantity of water that can be ultrafiltered through a semi-permeable membrane with a given active surface area, at a given transmembrane pressure over a given time period. Simultaneously with the water ultrafiltration, salts and toxins traverse the semi-permeable membrane.
Eliminating the 2 0 different solutes depends on a property of the membrane known as the rejection rate or transmittance (transmittance = 1 or rejection rate = 0 for solutes traversing the membrane with no change in concentration, rejection rate = 100% and transmittance = 0 for completely cleared solutes). The transmittance of a particular molecule is defined as the ratio of the concentration of the molecule in ultrafiltered water (ultrafiltrate) to its mean concentration in the unfiltered fraction of the blood.
With high flux semi-permeable membranes, i.e., with a hydraulic permeability of at least 31 x 10-12 m3/s.Pa.m2 (15 mllh.mmHg.m2), the quantity of water extracted from the blood must be regulated using a water extraction controller. Devices provided with a high 3 0 flux membrane run the risk of reverse filtration or back filtration, which consists of migration of a portion of the dialysis solution into the blood.

la The dialysis solution, which has an electrolytic composition that is close to that of a normal extracellular liquid, is usually a non-sterile aqueous solution.
Before use, the dialysis solution is normally free of solutes to be eliminated from the blood, but can contain foreign substances or pyrogenic substances, for example as a result of microbial contamination. Dialysis solution is not intended for injection into the blood and thus does not have the quality of an injectable liquid. With back filtration, then, there is then a risk of causing foreign or pyrogenic substances to enter the blood with the dialysis solution.
As is known, back filtration can be minimised by using semi-permeable low flux membranes with a hydraulic permeability of less than 12.5 x 10-12 m3/s.Pa.m2 (6 s ml/h.mmHg.m2), or medium flux semi-permeable membranes with a permeability of between about 12.5 and about 31 x 10-~Z m3/s.Pa.m2 (between about 6 and about ml/h.mmHg.m2). However, the reduction in hydraulic permeability is generally accompanied by a reduction in transmittance, i.e., a reduction in the fraction of certain molecules that pass by convection through the pores of the membrane and which are t o intended to be eliminated from the blood.
Thus, one aim of the invention is to provide a device for treating blood or plasma by extracorporeal circulation, comprising a semi-permeable membrane with a reduced overall hydraulic permeability to limit the risks of reverse filtration, while retaining satisfactory transmittances, in particular those for toxins and proteins.
15 A further aim of the invention is to provide a device for treating blood or plasma by extracorporeal circulation comprising a semi-permeable membrane, the characteristics (hydraulic permeability, transmittances) of which can be adjusted independently of each other to a certain extent such that the hydraulic permeability of the membrane is low flux, medium flux or high flux, while the transmittances, in particular as regards toxins and 2o proteins, are maintained at satisfactory values.
In a first aspect of the invention, these aims are achieved by a bundle of hollow fibres intended to constitute the semi-permeable membrane of a device for treating blood or plasma by extracorporeal circulation, in which:
~ the distribution of the hollow fibres in the bundle is heterogeneous; and 25 ~ the internal diameter and wall thickness of the hollow fibres located in the zones most dense in hollow fibres are respectively greater than the internal diameter and wall thickness of the hollow fibres located in the least dense zones.
Preferably, the internal diameter and wall thickness of the hollow fibres located in the zones least dense in hollow fibres are respectively a minimum of 180 microns and 40 30 microns.

J
In a variation of the invention:
~ the heterogeneity of the distribution of the hollow fibres in the bundle corresponds to a higher density of hollow fibres around at least a portion of the periphery of the bundle compared with a density of hollow fibres at the centre of the bundle; and ~ the internal diameter and wall thickness of the hollow fibres located at the periphery of the bundle are respectively greater than the internal diameter and wall thickness of the hollow fibres located at the centre of the bundle.
In a second aspect of the present invention, the above aims are achieved by a bundle of hollow fibres intended to constitute the semi-permeable membrane of a device for treating blood or plasma by extracorporeal circulation, in which:
~ the hydraulic permeability of the hollow fibres in the bundle is heterogeneous; and ~ the ratio of the highest hydraulic permeability measured on some hollow fibres of the bundle to the lowest hydraulic permeability measured on other hollow fibres of the t 5 same bundle is at least about 5.
In a variation of the invention, the heterogeneity of the hydraulic permeability in the bundle corresponds to a higher hydraulic permeability around at least a portion of the periphery of the bundle compared with a hydraulic permeability of the bundle fibres, such that the ratio of the highest hydraulic permeability measured at the periphery of the bundle 2o to the lowest hydraulic permeability measured at the centre of the bundle is at least about In a further variation of the invention, the heterogeneity of the hydraulic permeability is associated with a heterogeneity of the distribution of the hollow fibres in the bundle, the hydraulic permeability being higher in the zones most dense in hollow fibres 25 and lower in the zones least dense in hollow fibres.
Advantageously, the internal diameter and wall thickness of the hollow fibres located in the zones most dense in hollow fibres are respectively greater than the internal diameter and wall thickness of the hollow fibres located in the zones least dense in hollow fibres. Advantageously again, the internal diameter and wall thickness of the hollow fibres located in the zones least dense in hollow fibres are respectively a minimum of 180 microns and 40 microns.
In one embodiment of the invention, the overall hydraulic permeability of the bundle of hollow fibres is in the range 10 x 10-2 to 312 x 10-2 m3/s.Pa.m2 (5 to 150 m1/h.mmHg.m2), the lowest hydraulic permeability measured at the centre of the bundle is less than 17 x 10-2 m3/s.Pa.m~ (8 ml/h.mmHg.m2) and the highest hydraulic permeability measured at the periphery of the bundle is more than 42 x 10-~2 m3/s.Pa.m2 (20 ml/h.mmHg.m2).
In a further embodiment, the overall hydraulic permeability of the bundle of hollow ~o fibres is in the range 42 x 10-2 to 146 x 10-2 m3/s.Pa.m2 (20 to 70 ml/h.mmHg.mZ), the lowest hydraulic permeability measured at the centre of the bundle is less than 17 x 10-2 m3/s.Pa.m2 (8 ml/h.mmHg.mz), the highest hydraulic permeability measured at the periphery of the bundle is more than 83 x 10-2 m3/s.Pa.m2 (40 ml/h.mmHg.m2) and the ratio of the highest hydraulic permeability measured at the periphery of the bundle to the lowest hydraulic permeability measured at the centre of the bundle is at least 10.
Within the context of the present invention, the overall hydraulic permeability Lp of the bundle is conventionally obtained by measuring the filtration time t of a volume V of water at a mean transmembrane pressure P of the order of 50 to 500 mmHg tluough a surface area S of membrane at a given temperature (see European standard EN
12.83). The 2o hydraulic permeability Lp is expressed in m3/s.Pa.mZ or ml/h.mmHg.m2 and corresponds to formula (I):
Lp = V/(tPS) (I) , To evaluate the heterogeneity of the hydraulic permeability of hollow fibres inside a bundle, within the context of the present invention a method has been developed for measuring the hydraulic permeability of a sub-group of hollow fibres of the bundle, the number of hollow fibres in the evaluated sub-group being substantially the same for each measurement. The hydraulic permeability of a sub-group of hollow fibres will be termed the ''local hydraulic permeability Lpi" in the description. In general, the method for measuring the local hydraulic permeability Lpi of a sub-group of hollow fibres of a bundle of hollow fibres mounted in a tubular casing comprising a lateral opening at one of its ends, the bundle of hollow fibres being fixed in the casing by an adhesive seal at each of its ends, and the adhesive seals having been cut perpendicular to a longitudinal axis of the bundle to open the fibres, comprises the principal steps defined in Claiin 26 below. The conditions for this measurement are diagrammatically shown in the accompanying Figure 1 and are 5 described in detail below. The local hydraulic permeability Lpi measurements are preferably carned out on a ready-to-use hollow fibre device for the treatment of blood or plasma by extracorporeal circulation, i.e. after assembling the various components of the hollow fibre device, in particular by mounting bundle 1 of hollow fibres in a tubular casing 2 comprising, at each of its ends, a lateral opening 5 and 6 (inlet/outlet channel) and by setting ~ 0 seals 3 and 4, after having separated the hollow fibres from each other at their ends, for example by riffling or brushing their ends, manually or with a stream of air.
This allows the ends of hollow fibres that have stuck together to be separated and eliminates the risk of leakage into the seal. As is well known, the sealing operation consists of securing the two ends of the bundle of hollow fibres by adhesive bonding using a seal in which a portion of I S the length of the fibres is embedded, the ends of the fibres being left open. Then the adhesive seals, in which the open ends of the hollow fibres are secured by adhesive and substantially uniformly distributed, are cut. To measure the local hydraulic permeability, casing 2 containing the bundle of hollow fibres is placed in a vertical position, and a seal is produced at the lower end of the casing (and as a result the lower cut surface of the bundle) 2o by pressing it on a plate 11 to ensure a seal, for example a plate of a flexible plastics material such as a silicone. A liquid, for example water or a dialysis liquid, is then passed at a flow rate of 80 ml/min, for example, through the lower lateral opening 6 while the upper lateral opening 5 is closed. A calibrated tube 12, in the vertical position, is applied to a portion of the upper cut surface of the bundle to measure the local flow rate at the upper 25 end of the casing. To carry out the measurement, calibrated tube 12 is firmly applied against the portion of the upper cut surface to be evaluated (in the figure, against the centre of the bundle of hollow fibres), to form an intimate connection between the upper cut surface and the calibrated tube 12. A flow of liquid is applied via lower lateral opening 6 of casing 2 and the time t that the liquid takes to pass from a given first graduation 13 to a 3o second given graduation 14 provided on calibrated tube 12 is measured. From the local measured flow rate (corresponding to the defined volume V of tube 12 between the two graduations 13, 14 related to the time t for the liquid to pass from graduation 13 to graduation 14) and the known values of the transmembrane pressure P and the surface area Si of the hollow fibres in the sub-group on which the local flow rate is being measured, the local hydraulic permeability Lpi is measured using the following formula (II):
Lpi = V/(tPSi) (II).
The dimensions of the calibrated tube 12 are not critical. They are suitable to allow local measurement of the flow rate. Thus the diameter of calibrated tube 12 can be 3.2 cm and its height can be of the order of 50 cm.
It should be noted that the local hydraulic permeability measured with the above method corresponds in fact to back filtration (passage of liquid from the dialysate compartment to the blood compartment, as conventionally defined, in particular via the insides of the hollow fibres), but other tests carried out by the Applicant have shown that the value of the hydraulic permeability of the hollow fibres does not depend on the i 5 direction of passage of the liquid.
By carrying out local hydraulic permeability measurements over the whole of the upper cut surface of the bundle of hollow fibres, the local hydraulic permeability can be mapped to show the variation with measurement zone. In this respect, it should be noted that the number of hollow fibres evaluated during each local hydraulic permeability 2o measurement is substantially constant. The operation of separating the hollow fibres from each other at their ends prior to sealing homogenises the hollow fibre density at the ends of the bundle.
In accordance with the present invention, the devices for treating blood or plasma by extracorporeal circulation contain a bundle composed of an assembly of hollow fibres 25 that differ from each other by their hydraulic permeability, certain hollow fibres being low flux while other hollow fibres are high flux. Overall, devices according to the present invention have the advantage of being capable of being high flux, medium flux or low flux depending on the local hydraulic penneabilities of the hollow fibres in the bundle.
The devices of the invention have the further advantage of having higher transmittance values than those obtained with conventional devices with an equivalent hydraulic permeability.
Thus, in the present invention, the devices can have a transmittance for cytochrome C of about 0.1 to about 0.6 (measured under the conditions specified in standard EN 12.83) with overall hydraulic permeability values of 20 x 10-~Z to 312 x 10-2 m3/s.Pa.m2 (10 to 150 ml/h.mmHg.mZ) In a variation of the invention, to produce the hollow fibre devices of the invention, hollow fibres consisting mainly of polyaiylsulphone are selected. Preferably, they contain 1 o repeating units with formula (I) or (II) below:

C p- O S02- ~ (~) o-~ O ~ n I
CHs O -~ 502 -n The polyarylsulphone with formula (I), the chain of which contains alkyl radicals, l5 in particular methyl radicals, is termed a polysulphone. The polyaiylsulphone with formula (II), which simply contains aryl radicals connected together by an ether or a sulphone group, is termed polyethersulphone.
The invention also pertains to a process for producing a bundle of hollow fibres consisting mainly of polarylsulphone, useful as a semi-permeable membrane in a device for 2o treating blood or plasma by extracorporeal circulation, the process comprising the following steps:
(a) preparing a bundle of hollow fibres with a heterogeneous distribution of fibres within the bundle insofar as the density of the hollow fibres .is higher in certain zones of the bundle than in other zones;

g (b) mounting the bundle of hollow fibres in a tubular casing comprising two axial openings;
(c) causing a hot, dry gas that is chemically inert towards the hollow fibres, preferably hot, dry air, to circulate through the bundle of hollow fibres, not held at its ends, at a temperature and flow rate that are suitable to cause geometrical heterogeneity of the hollow fibres in the bundle as regards the internal diameter and wall thickness of the hollow fibres;
(d) stopping the hot, dry gas from circulating when the geometrical heterogeneity of the hollow fibres has been obtained.
Adjusting the operating conditions of steps a) and c) affects the characteristics of devices for extracorporeal treatment of blood, in particular the hydraulic permeabilities.
The term "hot, dry gas" as used in the context of the present invention means a hot gas with a relative humidity that does not exceed 10% at the temperature at which the gas is used. Preferably, the temperature of the hot, dry gas at the inlet to the bundle of hollow fibres is 75°C to 130°C, more preferably 90°C to 120°C.
Preferably, the flow rate of the hot, dry gas at the inlet to the bundle of hollow fibres is 2 to 5 m3 per hour.
Preferably, the duration of step (c), consisting of circulating a hot, dry gas tluough the bundle of hollow fibres, is of the order of 1 to 4 hours.
2o Preferably, circulation of the hot, dry gas is stopped when the temperature of the gas at the outlet from the tubular casing is substantially equal to the temperature of the gas at the inlet to the tubular casing.
The invention also concerns a bundle of hollow fibres resulting from carrying out the production process described above.
Further characteristics and advantages of the invention will become apparent from the detailed description below, concerning variations and embodiments of the present invention.
Reference should also be made to the accompanying drawings, in which:
~ Figure 1 shows a diagrammatic view in longitudinal section of the device for ;o measuring local hydraulic permeability in accordance with the invention;

~ Figure 2 shows a partial diagrammatic perspective view of a fibre guiding device;
~ Figure 3 shows a perspective diagrammatic view of two carriages of the fibre guiding device that guide the hollow fibres into a semi-cylindrical trough;
~ Figure 4 shows an example of the variation with time of the amplitude of the reciprocating motion of the hollow-fibre guide carriages;
~ Figure 5 shows a diagrammatic view in transverse section of a bundle of hollow fibres after a fibre guiding step carried out in the manner described for Figure 4;
~ Figures 6a, 6b, 6c and 6d show the influence of the conditions of circulation of hot, dry air through the bundle of hollow fibres on the hydraulic permeability of i o the hollow fibres;
~ Figure 7 shows the correlation between the length of the hollow fibre after circulating hot, dry air and its hydraulic permeability.
To provide a detailed illustration of the invention, the production of a pauticular type of device for extracorporeal treatment of blood in accordance with the present invention will now be described.
1. Production of hollow fibre A polymer solution for extrusion is prepared that contains:
~ 14% by weight of polyarylsulphone, in particular a polyethersulphone (with a weight average molecular weight Mw of 70000 Daltons) miscible with N-2o methylpyrrolidone (NMP);
~ 5% by weight of a mixture of polyvinylpyrrolidone (PVP) of the K30 and K90 type, miscible with water and NMP;
~ 1% by weight of water;
~ 80% by weight of NMP.
Mixing is carned out at high temperature, of the order of 80-90°C, applying high shear forces. The solution is then cooled, preferably to 20°C.
To obtain a hollow fibre, the above polymer solution is extruded through a die comprising two concentric circular openings, an external annular opening to extrude the polymer solution and an internal central opening for passage of the hollow-fibre centring 3o and precipitating liquid. The external and internal diameters of the annular opening of the die are respectively 500 microns and 350 microns, and the diameter of the internal central opening is 170 microns.
The composition of the hollow-fibre centring and precipitating liquid in this example is a homogeneous mixture of 44% by weight of NMP, 55% by weight of water and 1 % by weight of PVP.
Under the conditions of this example, a hollow fibre is formed with an internal diameter of 215 ~.m and a wall thickness of 50 p.m.
The hollow fibre is then carefully washed with water that is free of pyrogenous elements by passing it through a plurality of baths without stretching it.
t o 2. Production of bundle of hollow fibres In accordance with the invention, when extrusion is complete, after precipitation and washing the hollow fibres, a bundle of hollow fibres is prepared that is substantially rectilinear with a heterogeneous distribution of fibres inside the bundle whereby the density of the hollow fibres is higher at the periphery of the bundle and lower at the centre of the bundle. The chemical nature of the hollow fibres in this example is identical throughout the bundle.
In this example, preparation of the fibre bundle comprises a fibre guiding step carried out using a fibre guiding device (shown diagrammatically in the accompanying Figures 2 and 3). Fibre guiding is an operation that consists of structuring the fibre bundle 2o and results in a criss-crossed arrangement of fibres. To this end, the fibre-guiding device comprises:
~ a drum 20 with a winding surface 21 with a regular polygonal cross section that can be rotated about its axis of symmetry 22, each side of the winding surface 21 of drum 20 being provided with a semi-cylindrical trough 23, the axes 24 of the semi-cylindrical troughs 23, which are aligned about the drum 20, being coplanar; and ~ at least one carriage 30 (in this case two carriages 30) carrying at least one set of guide rollers (not shown). located a certain distance from the drum 20, to guide and supply at least one hollow fibre 40 (or at least one strand of hollow fibres) 3o to the semi-cylindrical troughs 23, each carriage 30 being movable in a reciprocating motion perpendicular to the plane containing the axes 24 of troughs 23, with a variable amplitude not exceeding the diameter of the semi-cylindrical troughs.
The fibre guiding step consists of winding at least one hollow fibre 40 onto the s drum 20, which drum is rotated about its axis of symmetry 22, the hollow fibre being supplied and guided by the guide rollers on at least one carriage 30 to semi-cylindrical troughs 23 turning with the drum 20, to fill the troughs 23. In this example, the reciprocating motion of the two carnages 30 is in phase opposition and the reciprocating motion of each carriage 30 varies with time as shown in Figure 4 as the troughs 23 are filled, i o leading to the formation of bundles of hollow fibres:
( 1 ) initially, to fill the bottom of the semi-cylindrical troughs 23, the reciprocating motion amplitude is small;
(2) then the reciprocating motion amplitude varies regularly, increasing to reach a plateau corresponding to a value less than the diameter of the 15 semi-cylindrical troughs 23;
(3) then the reciprocating motion amplitude is kept constant for a certain period; and (4) finally, the reciprocating motion amplitude varies regularly, reducing to a very small value.
20 Further, during steps (1) to (4) above, the speed of rotation of drum 20 is substantially constant and the speed of displacement of each carnage 30 is substantially constant.
Preferably, the fibres are arranged into a bundle immediately after their production.
Between the extrusion device and the fibre-guiding device, they are kept under tension 25 without stretching them. They are wound onto drum 20 at a constant circumferential speed (circumferential speed of drum 20 in rotation about its axis of symmetry 22) in the range 20 to 80 metres/minute. As indicated above, semi-cylindrical troughs 23 corresponding to the number of bundles to be manufactured are fixed to the winding surface 21 of drum 20. In this example, the diameter of the troughs 23 is slightly larger than the diameter of the 3o bundles of hollow fibres before they are subjected to a circulation of hot, dry air, while the length of the troughs is slightly less than that of the bundles of hollow fibres. In this example, the trough diameter is 45 mm with a length of 280 mm. Twelve semi-cylindrical troughs 23 are mounted on the drum 20.
In this example, the hollow fibres leaving the extrusion step are distributed into two groups of fibres using fixed separating rollers (not shown), each group of fibres beiizg separately guided by a set of integral movable rollers carried by each of the respective carriages 30. The two groups of hollow fibres finally meet on the troughs 23 whereupon they are wound around the drum 20. As indicated above, the two carriages 30 are displaced in a reciprocating motion in phase opposition, with a variable amplitude, in this case from 0 to to 40 mm. Advantageously, each carriage 30 carries out an odd, non-integer number of movements in one direction per turn of the drum 20 that varies from 3 to 15, preferably 7.1 movements in one direction.
The displacement of the two carriages 30 that guide the fibres 40 towards the troughs 23 with a constant circumferential speed and a variable amplitude influences the structure of the bundle of hollow fibres. The density of the fibres disposed in the trough is inversely proportional to the amplitude of the displacement of the carriages 30: the smaller the displacement amplitude, the higher the density of the fibres placed in the troughs 23.
The fibre-guiding step contributes towards heterogeneous distribution of the hollow fibres with a higher fibre density in certain parts of the bundle. In this case, the bundles of hollow 2o fibres, after they have satisfied the conditions regarding the time variation of the amplitude of the reciprocating motion of the guide carriages 30 indicated in Figure 4, have a higher density at the periphery compared with the density at the centre (see Figure 5). Further, each bundle. comprises two longitudinal peripheral and opposed zones where the densities in hollow fibres are at their highest: these two zones correspond to the start and finish of filling of the troughs 23.
Clearly, the reciprocating motion amplitude of carriages 30 can be varied with time in a different way, and a different distribution of hollow fibres from that described above thus be produced, the zones most dense in hollow fibres then not necessarily being at the periphery of the bundle.

When the predefined number of hollow fibres per trough 23 has been reached, drum 20 is stopped from rotating, troughs 23 are closed with a semi-cylindrical cover (not shown) and the fibres between each trough 23 are cut.
In this example, each bundle of hollow fibres is then transferred into a tubular casing comprising two axial openings and two lateral openings.
After equalising the length of the hollow fibres for each bundle, the operations required to dry the bundles of fibres are carried out. If necessary, firstly, the liquid present in the hollow fibres is eliminated, preferably by centrifuging.
Then, in accordance with the invention, hot, dry air is passed through the bundles of ~ o hollow fibres that are not held at their ends, the hot, dry air entering via one axial opening iil the casing and leaving via the other axial opening in the casing, the two lateral openings in the casing being closed.
The hot, dry air is circulated under the temperature, flow rate and duration conditions described above, to cause a geometrical heterogeneity of the hollow fibres in the t 5 bundle (i.e., differences in the internal diameter and wall thickness of the fibres) and a heterogeneity in the density of the hollow fibres in the bundle.
Advantageously, the hot, dry air is injected via one of the axial openings of the casing with the speed of the circulation front homogeneous over the whole of this opening, under turbulent flux.
20 The hot, dry air introduced into the casing encounters the zones most dense in hollow fibres (at the periphery of the bundle) and preferentially passes along the less dense zones (in particular at the centre of the bundle). Further, circulating hot air in the casuig tends to displace and constrain the hollow fibres towards the periphery of the bundle, against the walls of the casing. This drying step, therefore, also contributes to 25 heterogeneity in the distribution of the hollow fibres in the bundle.
Further, because of the preferential passage of the hot air along the central portion of the bundle, the fibres of the interior of the bundle shrink more (length, internal and external diameters and thickness) than those at the periphery of the bundle.
With such a bundle of hollow fibres, a device can be produced to treat blood or 3o plasma with reduced risks of reverse filtration, an overall hydraulic permeability that can be adjusted to requirements and with transmittances that are higher than those of a conventional device with a similar hydraulic permeability.
Further, with such a bundle, a device can be produced for treating blood or plasma with characteristics (hydraulic permeability, transmittances) that can be independently adjusted to a certain extent so that the hydraulic permeability of the membrane is low flux, medium flux or high flux, while the transmittances, in particular those for toxins and proteins, are maintained at values that are higher than those of a conventional device with a similar hydraulic permeability.
The last steps necessary for finishing the manufacture of a device for treating blood ~o or plasma by extracorporeal circulation in accordance with the invention after stopping the circulation of the hot, dry air as soon as the bundle of hollow fibres is sufficiently dry to allow it to be sealed, are conventional. The principal steps are:
~ homogenising the distribution of the fibres, limited to the ends of the bundle;
~ sealing, consisting of securing the two ends of the bundle of hollow fibres by adhesion using a seal in which a portion of the length of the fibres is embedded, the ends of the fibres being left open;
~ cutting the ends of the bundle;
~ closing the tubular casing at its two ends with caps;
~ sterilising the medical device.
2o EXAMPLES 1 TO 5 Dialysers comprising about 8000 hollow polyethersulphone fibres were produced and assembled as in the above detailed description.
Only the conditions for circulating the hot, dry air differed between the examples.
The table below summarises these conditions.

Example Air flow rate Temperature of hot, (m3/h) dry air at inlet into tubular casing, C

Comparative example 2 60 q 4 110 From the results for the measurements of local permeability Lpi, four maps were established by mathematical regression: see Figures 6a, 6b, 6c and 6d, which correspond to Examples 2, 3, 4 and 5, respectively. In Figures 6a, 6b, 6c and 6d:
5 ~ the axes of the abscissas and ordinates, graduated from -50 mm to +50 rnm, represent two directions that are perpendicular to each other, of one of the cut surfaces of the ends of the bundle of hollow fibres;
~ each curve, closed or otherwise, marked in dotted lines or as a solid line, represents points with the same local hydraulic permeability Lpi, expressed in 1 o ml/h.mmHg.m2;
the central curve, shown in dotted lines, represents points with a local hydraulic permeability Lpi of 0 ml/h.mmHg.m2;
~ the difference between two successive curves is 10 ml/h.mmHg.m2;
~ the key given with each figure notes successive values of the local hydraulic ~ 5 permeability Lpi at each curve starting from the central curve.
Figures 6a, 6b, 6c and 6d demonstrate that the local hydraulic permeabilities Lpi are higher at the periphery of the bundle than at the centre of the bundle.
The table below also shows the influence of the conditions for circulating hot, dry air on the overall and local hydraulic permeabilities, Lpi, measured before sterilisation.

Hydraulic permeability (mUh.mmHg.m2) Example n Overall Minimum at Maximum at Max/min bundle centrebundle peripheryratio 1 (comparative)200 200 200 1 2 30 1.5 80 53 3 25 0.9 63 70 4 23 4.1 98 24 S 18 1.5 46 30 The table below shows the dimensions of certain hollow fibres before and after circulating hot, dry air through the bundle of Example 2. The fibre dimensions were measured using an optical microscope and the results shown below in the table correspond to an average of measurements over 36 fibres.
Internal diameterExternal diameterWall thickness (Nnl) (l~nl) (I~m) Before circulating215 315 50 hot, dry air After circulating hot, dry air:

hollow fibres 213.7 313.6 49.9 at periphery of bundle hollow fibres 205.7 299.1 46.7 at centre of bundle Dialysers comprising about 8000 hollow polyethersulphone fibres were produced and assembled as in the above detailed description.

The conditions for producing the dialysers were substantially similar, with the exception of the conditions for circulating the hot, diy air, which differed from one example to another.
The table below shows the conditions and the results of measurements of the overall hydraulic permeability.
Example Hot air flow Temperature Overall hydraulic n rate of hot, permeability (m3/h) dry air at inlet(ml/h.mmHg.mz) (C) 6 ~ 2, then 1 85-90 37 7 ~ 4, then 2 85-90 51 8 ~ 4, then 2 75-80 54 9 ~ 2 90 33 ~ 1 90 29 Dialysers comprising about 8000 hollow polyethersulphone fibres were produced and assembled as described in the above detailed description.
1 o The conditions for producing the dialysers were substantially similar with the exception of the hot, dry air circulation conditions, which differed between examples.
The table below shows the conditions and the results of measurements of the overall hydraulic permeability Lp and cytochrome C transmittance (Tr), and measurements of the length (L) of the hollow fibres, maximum and minimum, after circulating hot, dry air.
~ 5 The transmittance measurement conditions were: a starting concentration of cytochrome C
of 0.05 g/1, a blood flow rate of about 400 ml/min and an ultrafiltration flow rate of about 80 ml/min. The maximum length, Lmax, and the minimum length, L min, corresponded to the length of the longest fibre and shortest fibre in the bundle respectively. The longest fibre was located at the periphery of the bundle, while the shortest was located at the centre of 2o the bundle.

Example Air TemperatureLp Tr for Lmax L min Difference no. flow of hot, (ml/h.mmcytochrome(mm) (mm) between rate dry Hg.mm2) C Lmax and (m3/h)air at Lmin inlet (nun) to tubular casing, C

11 4.5 102 46.9 n.m. 269.6 268.3 1.3 12 4.5 97.5 55.8 n.m. 270.4 269.4 1.0 13 4.0 97.5 48.7 n.m. 270.2 269.5 0.7 14 4.5 100 42.6 0.23 269.8 268.9 0.9 15 4.5 100 34.1 0.22 269.8 268.5 1.3 16 4.8 93 58.4 0.36 270.2 269.5 0.7 17 4.8 93 63.3 0.39 271.0 269.5 1.5 18 4.8 93 53.2 0.37 270.1 269.3 0.8 19 4.8 93 47.0 0.36 270.1 269.3 0.8 20 4.8 93 46.7 0.34 270.3 269.4 0.9 21 2 105 45.5 0.47 270.3 267.3 3.0 22 2 105 41.8 0.47 270.1 267.4 2.7 23 2 105 44.5 0.47 270.6 267.2 3.4 24 2 105 35.7 0.41 270.2 267.0 3.2 25 4 109 27.3 0.46 269.7 267.7 2.0 26 4 109 27.2 0.52 269.1 267.1 2.0 27 4 109 24.8 0.48 269.2 267.4 1.8 28 4 109 24.9 0.52 269.1 267.2 1.9 29 4.8 93 68.8 n.m. 269.9 269.3 0.6 n.m. means: not measured.
Figure 7 illustrates the relationship between the mean fibre length of the bundle after circulating hot, dry air (along the abscissa) and the overall hydraulic permeability, Lp, of the bundle (up the ordinate), established from Examples 11 to 29.

The mean fibre length corresponds to the mean of values Lmax and Lmin given above.
Figure 7 shows a correlation between this mean fibre length and the overall hydraulic permeability of the bundle.

Claims (26)

1. Bundle of hollow fibres intended to constitute the semi-permeable membrane of a device for treating blood or plasma by extracorporeal circulation, in which:
.cndot. the distribution of the hollow fibres in the bundle is heterogeneous;
and .cndot. the internal diameter and wall thickness of the hollow fibres located in the zones most dense in hollow fibres are respectively greater than the internal diameter and wall thickness of the hollow fibres located in the zones least dense in hollow fibres.
2. Bundle of hollow fibres according to Claim 1, in which the internal diameter and wall thickness of the hollow fibres located in the zones least dense in hollow fibres are respectively a minimum of 180 microns and 40 microns.
3. Bundle of hollow fibres according to Claim 1 or Claim 2, in which:
.cndot. the heterogeneity of the distribution of the hollow fibres in the bundle corresponds to a higher density of hollow fibres around at least a portion of the periphery of the bundle compared with a density of hollow fibres at the centre of the bundle; and .cndot. the internal diameter and wall thickness of the hollow fibres located at the periphery of the bundle are respectively greater than the internal diameter and wall thickness of the hollow fibres located at the centre of the bundle.
4. Bundle of hollow fibres intended to constitute the membrane of a device for treating blood or plasma by extracorporeal circulation, in which:
.cndot. the hydraulic permeability of the hollow fibres in the bundle is heterogeneous; and .cndot. the ratio of the highest hydraulic permeability measured on some hollow fibres of the bundle to the lowest hydraulic permeability measured on other hollow fibres of the same bundle is at least about 5.
5. Bundle of hollow fibres according to Claim 4, in which the heterogeneity of the hydraulic permeability of the hollow fibres in the bundle corresponds to a higher hydraulic permeability around at least a portion of the periphery of the bundle compared with a hydraulic permeability of the bundle fibres at the centre of the bundle, such that the ratio of the highest hydraulic permeability measured at the periphery of the bundle to the lowest hydraulic permeability measured at the centre of the bundle is at least 5.
6. Bundle of hollow fibres according to Claim 4, in which the heterogeneity of the hydraulic permeability is associated with a heterogeneity of the distribution of the hollow fibres in the bundle, the hydraulic permeability being higher in the zones most dense in hollow fibres and lower in the zones least dense in hollow fibres.
7. Bundle of hollow fibres according to Claim 6, in which the overall hydraulic permeability of the bundle of hollow fibres is in the range 10 x 10-12 to 312 x 10-12 m3/s.Pa.m2, the lowest hydraulic permeability measured at the centre of the bundle is less than 17 x 10-12 m3/s.Pa.m2 and the highest hydraulic permeability measured at the periphery of the bundle is more than 42 x 10-12 m3/s.Pa.m2.
8. Bundle of hollow fibres according to Claim 6, in which the overall hydraulic permeability of the bundle of hollow fibres is in the range 42 x 10-12 to 146 x 10-12 m3/s.Pa.m2, the lowest hydraulic permeability at the centre of the bundle is less than 17 X 10-12 m3/s.Pa.m2, the highest hydraulic permeability measured at the periphery of the bundle is more than 87 x 10-12 m3/s.Pa.m2 and the ratio of the highest hydraulic permeability measured at the periphery of the bundle to the lowest hydraulic permeability measured at the centre of the bundle is at least 10.
9. Bundle of hollow fibres according to Claim 6, in which the internal diameter and wall thickness of the hollow fibres located in the zones most dense in hollow fibres are respectively greater than the internal diameter and wall thickness of the hollow fibres located in the zones least dense in hollow fibres.
10. Bundle of hollow fibres according to Claim 9, in which the internal diameter and wall thickness of the hollow fibres located in the zones least dense in the hollow fibres are respectively a minimum of 180 microns and 40 microns.
11. Bundle of hollow fibres according to one of Claims 1 to 10, in which the transmittance is from about 0.1 to 0.6 for cytochrome C.
12. Bundle of hollow fibres according to one of Claims 1 to 11, in which the hollow fibres consist mainly of polyarylsulphone.
13. Bundle of hollow fibres according to Claim 12, in which the polyarylsulphone is a polysulphone, a polyethersulphone or a mixture of said two polyarylsulphones.
14. Device for treating blood or plasma by extracorporeal circulation, comprising a bundle of hollow fibres according to one of Claims 1 to 13.
15. Process for producing a bundle of hollow fibres consisting mainly of polyarylsulphone, useful as a semi-permeable membrane in a device for extracorporeal treatment of blood, the method comprising the following steps:
a) preparing a bundle of hollow fibres with a heterogeneous distribution of fibres within the bundle insofar as the density of the hollow fibres is higher in certain zones of the bundle than in other zones;
b) mounting the bundle of hollow fibres in a tubular casing comprising two axial openings;
c) causing a hot, dry gas that is chemically inert towards the hollow fibres, preferably hot, dry air, to circulate through the bundle of hollow fibres, not held at its ends, at a temperature and flow rate that are suitable to cause geometrical heterogeneity of the hollow fibres in the bundle as regards the internal diameter and wall thickness of the hollow fibres;
d) stopping the hot, dry gas from circulating when the geometrical heterogeneity of the hollow fibres has been obtained.
16. Process according to Claim 15, in which the temperature of the gas at the inlet to the bundle of hollow fibres is 75°C to 130°C.
17. Process according to Claim 15, in which the temperature of the gas at the inlet to the bundle of hollow fibres is 90°C to 120°C.
18. Process according to Claim 15, in which the flow rate of the gas at the inlet to the bundle of hollow fibres is 2 to 5 m3 per hour.
19. Process according to Claim 15, in which the duration of step (c) is of the order of 1 to 4 hours.
20. Process according to Claim 15, in which circulation of the gas is stopped when the temperature of the gas at the outlet from the tubular casing is substantially equal to the temperature of the gas at the inlet to the tubular casing.
21. Process according to Claim 15, in which step (a) comprises a fibre guiding step:
.cndot. carried out using a fibre guiding device comprising:
.cndot. a drum (20) with a winding surface (21) with a regular polygonal cross section that can be rotated about its axis of symmetry (22), each side of the winding surface (21) of drum (20) being provided with a semi-cylindrical trough (23), the axes (24) of the troughs (23), which are aligned about the drum (20), being coplanar; and .cndot. at least one carriage (30) carrying at least one set of rollers located a certain distance from the drum (20), to guide and supply at least one hollow fibre (40) to the troughs (23) and wind the hollow fibre (40) onto the drum (20), each carriage (30) being movable in a reciprocating motion perpendicular to the plane containing the axes (24) of troughs (23), with a variable amplitude not exceeding the diameter of the troughs (23);

.cndot. consisting of winding at least one hollow fibre (40), which is supplied and guided by at least one set of rollers carried by at least one carriage (30), around the drum (20) into the troughs (23) turning with the drum (20), to fill the troughs (23).
22. Process according to Claim 21, in which the reciprocating motion of the carriage or carriages (30) varies with time during formation of the bundles of hollow fibres, as follows:
a) initially, to fill the bottom of the troughs (23), the reciprocating motion amplitude is small;
b) then the reciprocating motion ,amplitude varies regularly, increasing to reach a plateau corresponding to a value less than the diameter of the troughs (23);
c) then the reciprocating motion amplitude is kept constant for a certain period; and d) finally, the reciprocating motion amplitude varies regularly, reducing to a very small value;
and in that, during steps (a) to (d) above for forming bundles of hollow fibres, the speed of displacement of each carriage (30) is substantially constant and the speed of rotation of the drum (20) is substantially constant.
23. Process according to Claim 21 or Claim 22, in which the fibre guiding device comprises two carriages (30) carrying at least one set of guide rollers, the two carriages (30) moving in a reciprocating motion in phase opposition.
24. Process according to Claim 21, Claim 22 or Claim 23, in which each carriage (30) makes an odd number of from 3 to 15 movements in one direction per rotation of the drum (20).
25. Process according to Claim 24, in which each carriage (30) carries out 7.1 movements in one direction per rotation of the drum (20).
26. Method for measuring the local hydraulic permeability Lpi of a sub-group of hollow fibres of a bundle of hollow fibres mounted in a tubular casing comprising a lateral opening at one of its ends, the bundle of hollow fibres being fixed in the casing by an adhesive seal at each of its ends, and the adhesive seals having been cut perpendicular to the longitudinal axis of the bundle to open the fibres, in which it comprises the steps of:
.cndot. placing the casing containing the bundle in a vertical position, the lateral opening being disposed towards the bottom, and sealing the lower end of the casing;
.cndot. applying a graduated, calibrated tube (12) in a vertical position over a portion of the upper cut surface of the bundle, to form a sealed connection between them;
.cndot. passing a liquid at a defined flow rate through the lateral opening of the casing;
.cndot. measuring the time t taken by the liquid to pass from a first graduation to a second graduation of the graduated tube (12) and calculating the local hydraulic permeability Lpi from the formula Lpi = V/tPSi in which:
- V represents the volume of the tube between the two graduations;
- t represents the time that the liquid takes to pass from the first graduation to the second graduation of the tube;
- P represents the transmembrane pressure;
- Si represents the surface area of the hollow fibres belonging to the sub-group under consideration for the measurement.
CA002360406A 2000-10-30 2001-10-29 Bundle of hollow fibres for a device for extracorporeal treatment of blood and plasma, and process for its production Abandoned CA2360406A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0013920 2000-10-30
FR0013920A FR2815886B1 (en) 2000-10-30 2000-10-30 HOLLOW FIBER BEAM FOR AN APPARATUS FOR THE EXTRACORPORAL TREATMENT OF BLOOD AND PLASMA AND ITS MANUFACTURING PROCESS

Publications (1)

Publication Number Publication Date
CA2360406A1 true CA2360406A1 (en) 2002-04-30

Family

ID=8855899

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002360406A Abandoned CA2360406A1 (en) 2000-10-30 2001-10-29 Bundle of hollow fibres for a device for extracorporeal treatment of blood and plasma, and process for its production

Country Status (6)

Country Link
US (2) US6773591B2 (en)
EP (1) EP1201293A1 (en)
JP (1) JP4456307B2 (en)
AU (1) AU8363301A (en)
CA (1) CA2360406A1 (en)
FR (1) FR2815886B1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE527054C2 (en) * 2002-04-23 2005-12-13 Gambro Lundia Ab Process for preparing a regioselective membrane
ES2440656T3 (en) 2003-09-29 2014-01-29 Asahi Kasei Chemicals Corporation Hollow fiber membrane module of external pressure type
US20080135481A1 (en) * 2006-12-06 2008-06-12 General Electric Company Polyarylethernitrile hollow fiber membranes
US7669720B2 (en) 2006-12-15 2010-03-02 General Electric Company Functional polyarylethers
US7695628B2 (en) 2006-12-15 2010-04-13 General Electric Company Polyarylether membranes
US7977451B2 (en) 2006-12-15 2011-07-12 General Electric Company Polyarylether membranes
JP5121470B2 (en) * 2007-01-26 2013-01-16 株式会社日本触媒 Polyvinylpyrrolidone powder composition
US8562876B2 (en) * 2007-11-30 2013-10-22 Baxter International Inc. Multizone polymer membrane and dialyzer
EP2199319A1 (en) * 2008-12-19 2010-06-23 Gambro Lundia AB Virus filter
DE102009017413A1 (en) * 2009-04-14 2010-11-18 Fresenius Medical Care Deutschland Gmbh Filter device and method for producing a filter device
EP2363196B1 (en) 2010-03-03 2017-07-12 Gambro Lundia AB Diffusion and/or filtration device
KR101453231B1 (en) * 2010-09-16 2014-10-22 미쓰비시 레이온 컴퍼니, 리미티드 Method for producing hollow fiber membrane sheet-like object, method for producing hollow fiber membrane module, and device for producing hollow fiber membrane sheet-like object
WO2012058038A1 (en) * 2010-10-26 2012-05-03 Dow Global Technologies Llc Spiral wound module including membrane sheet with regions having different permeabilities
EP3131663A2 (en) 2014-03-29 2017-02-22 Princeton Trade and Technology Inc. Blood processing cartridges and systems, and methods for extracorporeal blood therapies
US10426884B2 (en) 2015-06-26 2019-10-01 Novaflux Inc. Cartridges and systems for outside-in flow in membrane-based therapies
EP3352888B8 (en) 2015-09-24 2022-01-12 Princeton Trade and Technology Inc. Cartridges for hollow fibre membrane-based therapies
DE102016003611A1 (en) * 2016-03-29 2017-10-05 Enmodes Gmbh Apparatus for mass transfer and method of production
WO2023189099A1 (en) * 2022-03-28 2023-10-05 テルモ株式会社 Artificial lung

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3546209A (en) 1968-10-10 1970-12-08 Dow Chemical Co Process for the fabrication of a cellulose hollow fiber separatory cell
DE2059048A1 (en) 1970-12-01 1972-06-15 Kalle Ag Method of making a dry semipermeable cellulose acetate membrane
US3990973A (en) * 1974-11-04 1976-11-09 Cobe Laboratories, Inc. Apparatus for measuring ultrafiltration rate
JPS5389886A (en) * 1977-01-19 1978-08-08 Asahi Chem Ind Co Ltd Treating apparatus for fluid
DE2736569B2 (en) 1977-08-13 1979-07-19 Hoechst Ag, 6000 Frankfurt Viscous membrane for hemodialysis and process for their manufacture
JPS5528728A (en) * 1978-08-21 1980-02-29 Nippon Zeon Co Ltd Hollow fiber type material moving device
DE3021943A1 (en) 1980-06-12 1982-01-21 Akzo Gmbh, 5600 Wuppertal CELLULOSE DIALYSIS MEMBRANE
US4888115A (en) * 1983-12-29 1989-12-19 Cuno, Incorporated Cross-flow filtration
US4906375A (en) 1984-07-14 1990-03-06 Fresenius, Ag Asymmetrical microporous hollow fiber for hemodialysis
IT1183599B (en) * 1985-05-10 1987-10-22 Inphardial Spa DEVICE TO DETERMINE THE QUANTITY OF PLASMATIC WATER REMOVED DURING AN EXTRA-BODY DIALYSIS SESSION
CA1312429C (en) 1985-08-29 1993-01-12 Yukio Seita Porous membrane for separation of blood components and method for manufacture thereof
US4787977A (en) 1986-02-08 1988-11-29 Asahi Kasei Kogyo Kabushiki Kaisha Blood-purifying membrane
SE460521B (en) 1987-08-31 1989-10-23 Gambro Dialysatoren PERMSELECTIVE ASYMMETRIC MEMBRANE AND PROCEDURES FOR ITS PREPARATION
JPH01310668A (en) 1988-06-09 1989-12-14 Nikkiso Co Ltd Hollow yarn type blood cleaning device
US5084349A (en) 1988-09-07 1992-01-28 Terumo Kabushiki Kaisha Hollow cellulose fibers, method for making, and fluid processing apparatus using same
US5578267A (en) * 1992-05-11 1996-11-26 Minntech Corporation Cylindrical blood heater/oxygenator
BR8907905A (en) 1989-10-01 1992-09-29 Minntech Corp CYLINDRIC BLOOD HEATER / OXYGENER
DE4038247A1 (en) 1990-11-30 1992-06-04 Akzo Gmbh CELLULOSE HOLLOW DIALYSIS THREAD
US5176725A (en) 1991-07-26 1993-01-05 Air Products And Chemicals, Inc. Multiple stage countercurrent hollow fiber membrane module
DE4230077A1 (en) 1992-09-09 1994-03-10 Akzo Nv Polysulfone membrane and process for its preparation
JP3392141B2 (en) 1992-11-16 2003-03-31 バクスター インターナショナル インコーポレイテッド High flow rate hollow fiber membrane
US5645778A (en) 1992-11-16 1997-07-08 Althin Medical, Inc. Process of making a cellulose acetate semipermeable membrane
US5320747A (en) * 1992-12-21 1994-06-14 Claude Laval Corp. Apparatus for removing solid matter from fluid systems
DE59308928D1 (en) 1992-12-30 1998-10-01 Hoechst Ag Semipermeable membranes made of homogeneously miscible polymer alloys
US5700372A (en) * 1994-09-02 1997-12-23 Terumo Kabushiki Kaisha Dialyzer with a constricted part made of a material capable of swelled by dializing liquid
CA2165221C (en) 1994-12-16 2003-09-23 Kazuhisa Shibata Module for blood purification, blood purification membrane and its production
DE19514540A1 (en) 1995-04-20 1996-10-24 Gambro Dialysatoren Membrane sterilizable with heat
DE19518624C1 (en) * 1995-05-24 1996-11-21 Akzo Nobel Nv Synthetic separation membrane
US5693694A (en) 1996-03-20 1997-12-02 W.R. Grace & Co.-Conn. Low and medium flux membranes
EP0807460A1 (en) 1996-05-15 1997-11-19 Akzo Nobel N.V. Cellulosic dialysis membrane
NL1005432C2 (en) 1997-03-04 1998-09-07 Stork Friesland Bv Membrane filtration module and like modules comprising membrane filtration system.
NL1005430C2 (en) * 1997-03-04 1998-09-07 Stork Friesland Bv Membrane filtration module and like modules comprising membrane filtration system.
US6258321B1 (en) * 1999-05-06 2001-07-10 Dideco S.P.A. Apparatus and method for cardioplegia delivery

Also Published As

Publication number Publication date
JP4456307B2 (en) 2010-04-28
JP2002239348A (en) 2002-08-27
US6773591B2 (en) 2004-08-10
US20040232062A1 (en) 2004-11-25
US7250108B2 (en) 2007-07-31
FR2815886B1 (en) 2002-12-06
AU8363301A (en) 2002-05-09
EP1201293A1 (en) 2002-05-02
US20020079260A1 (en) 2002-06-27
FR2815886A1 (en) 2002-05-03

Similar Documents

Publication Publication Date Title
US6773591B2 (en) Bundle of hollow fibres for a device for extracorporeal treatment of blood and plasma, and process for its production
AU2007312413B2 (en) Hollow fiber membrane and method for manufacturing thereof
EP0750938B1 (en) Manufacture of a polysulfone hollow fiber semipermeable membrane
EP0576659B1 (en) Membrane, rectifying dialyzer, bioreactor and the relevant use thereof
US8387804B2 (en) Diffusion and/or filtration device
JP5010026B2 (en) Hollow fiber capillary membrane and method for producing the same
EP2113298A1 (en) Hollow fibre membrane with improved permeability and selectivity
EP1578521A1 (en) Permselective membrane and process for manufacturing thereof
EP2845641B1 (en) Permselective asymmetric membranes with high molecular weight polyvinylpyrrolidone, the preparation and use thereof
WO2015046411A1 (en) Porous membrane, blood purifying module incorporating porous membrane, and method for producing porous membrane
US10888823B2 (en) Membrane with improved permeability and selectivity
JPH0970431A (en) Production of polysulfone hollow fiber type artificial kidney and artificial kidney
EP2363196B1 (en) Diffusion and/or filtration device
FR2815887A1 (en) Bundle of hollow fibers used for treating blood extracorporeally, has internal diameter of fibers in densest zones higher than internal diameter and thickness in least dense zones

Legal Events

Date Code Title Description
FZDE Discontinued