CA2369473C - Sand barrier for a level 3 multilateral wellbore junction - Google Patents

Sand barrier for a level 3 multilateral wellbore junction Download PDF

Info

Publication number
CA2369473C
CA2369473C CA002369473A CA2369473A CA2369473C CA 2369473 C CA2369473 C CA 2369473C CA 002369473 A CA002369473 A CA 002369473A CA 2369473 A CA2369473 A CA 2369473A CA 2369473 C CA2369473 C CA 2369473C
Authority
CA
Canada
Prior art keywords
sleeve
window
wellbore
casing
liner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002369473A
Other languages
French (fr)
Other versions
CA2369473A1 (en
Inventor
Douglas J. Murray
John J. Johnson
Enrique M. Proano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Holdings LLC
Original Assignee
Baker Hughes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Inc filed Critical Baker Hughes Inc
Priority to CA2641965A priority Critical patent/CA2641965C/en
Priority to CA002563145A priority patent/CA2563145A1/en
Publication of CA2369473A1 publication Critical patent/CA2369473A1/en
Application granted granted Critical
Publication of CA2369473C publication Critical patent/CA2369473C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/0035Apparatus or methods for multilateral well technology, e.g. for the completion of or workover on wells with one or more lateral branches
    • E21B41/0042Apparatus or methods for multilateral well technology, e.g. for the completion of or workover on wells with one or more lateral branches characterised by sealing the junction between a lateral and a main bore

Abstract

A relatively thin walled sleeve having a premachined window is disposed at a casing window in a wellbore. The sleeve is set in place with the casing or on a separate run wherein the running tool also includes a dog to align the sleeve premachined window with the casing window both linearly and rotationally in the wellbore. The sleeve is swedged in place in part or completely and a subsequent run provides a lateral liner which extends through both the premachined window and the casing window and seals against the premachined window which will then prevent sand entering the wellbore.

Description

WELLBORE JUNCTION
BACKGROUND OF THE INVENTION
A multilateral wellbore system by definition includes at least a primary welibore and a lateral wellbore extending therefrom. The junction between the primary wellbore and the lateral wellbore in some cases is an avenue for sand and other particulate matter infiltration into the wellbore system which generally results in the entrainment of such particulate matter with the production fluid. Clearly, it is undesirable to entrain particulate matter in production fluid since those particulates would then need to be removed from the production fluid adding expense and delay to a final release of a product. The reasons for particulate infiltration through a junction in a multilateral wellbore are many, including the not entirely controllable window size and shape which is generated by running a milling tool into the primary wellbore and into contact with a whipstock whereafter the mill tool mills a window in the casing of the primary wellbore. The milling process itself is not precise and thus it is relatively unlikely that a precise window shape and size can be produced. Lateral liners run in to extend through a milled window and into a lateral borehole are constructed with regular patterns and sizes at the surface. When a regular pattern at the top of such a liner is seated against a milled window in the downhole environment, it is relatively unlikely that the liner flange will seat correctly in all regions of a milled window. This leaves gaps between the flange of the liner and the milled casing in the primary wellbore resulting in the aforesaid avenue for infiltration of particulate matter to the wellbore system. A device and method capable of reducing the amount of particulate matter infiltrating the wellbore system at a junction in a multilateral wellbore will be beneficial to downhole arts.

SUMMARY OF THE INVENTION
Sand and other particulate matter is significantly excluded from junctions in level 3 multilateral wellbore systems by employing a thin walled sleeve having a premachined window therein in conjunction with the conventional milling of a window in the primary wellbore casing. The premachined window exhibits a known and easily controlled shape and size which lends itself to assurance that a commercially available liner hanger will seal thereagainst since the liner hanger and the sleeve are machined in controlled conditions at the surface for the purpose of sealing with one another. The installation of the sleeve with the premachined window ensures that at the ID of the welibore casing, the window surface "seen" by the liner hanger system is one against which the liner hanger system is sealable. The seal of the liner hanger may be by any number of methods, two preferred methods being by an elastomeric seal placed between the flange of the liner hanger and the sleeve, and a metal-to-metal interference fit resulting in deformation of the window sleeve outward during installation of the liner. In addition a hook liner hanger embodiment is disclosed. All of these alternate methods of providing a seal are effective and each have benefits which are attractive for certain applications. The sleeve is preferably swaged at an uphole end thereof, a downhole end thereof, both or in its entirety depending upon the application and desires of the operator. In one embodiment, the casing itself of the primary wellbore is provided with a cylindrical recess capable of receiving the sleeve such that the ID of the sleeve is substantially the same diameter as the ID of the casing.
Accordingly, in one aspect of the present invention there is provided a multilateral wellbore junction comprising:
a primary wellbore casing;
a window through said casing;
a lateral wellbore extending from said window;
a sleeve having a window therein oriented to said window through said casing, said sleeve window being dimensioned and configured to cause interference with insertion therethrough of a lateral liner; and a lateral liner proximately disposed to said sleeve and extending into said lateral borehole.
According to another aspect of the present invention there is provided a method for excluding particulate entry to a wellbore system at a lateral junction thereof comprising:
running a sleeve having a premachined window therein to a location within the wellbore where a casing window exists, said sleeve window being dimensioned and configured to cause interference with insertion therethrough of a lateral liner; and installing a lateral liner through said premachined window and said casing window, the liner being proximately disposed to said premachined window in said sleeve.

BRIEF DESCRIPTION OF THE DRAWINGS
Referring now to the drawings wherein like elements are numbered alike in the several Figures:
Figure 1 is a cross-section view of a thin walled sleeve with premachined window;
Figure 2 is a cross-section view of the thin walled sleeve installed on a running tool which is illustrated schematically, the running tool including a locating dog;
Figure 3 is a schematic illustration of the thin walled sleeve installed with the uphole and downhole sections of the sleeve swaged against the ID of the casing;
Figure 4 is an illustration in cross-section of the thin walled sleeve installed in a fully swaged condition against the ID of the casing wherein an alternate casing segment is employed having a recess to accept the thin walled sleeve;
Figure 5 is an illustration similar to Figure 4 with the lateral liner installed;
Figure 6 is a view of a section of a primary casing with a whipstock installed therein prior to milling the primary casing;
Figure 7 is an illustration similar to Figure 6 but illustrating the drill bit being run downhole;
Figure 8 illustrates the primary casing after drilling creating a window in the primary casing and a lateral borehole;
Figure 9 illustrates the view of Figure 8 after the whipstock is removed;
Figure 10 is an illustration of the sleeve being located at the junction interface with a running tool;
Figure 11 illustrates the running tool swaging and uphole end of the thin walled sleeve against the casing ID;
Figure 12 illustrates the sleeve in position within the wellbore;
Figure 13 is a similar view to Figure 12 with the lateral liner installed therein;
Figure 14 is a schematic view of an alternate embodiment of the sleeve employing an orientation anchor;
Figure 15 is a view of the Figure 14 embodiment after swedging of the uphole end; and Figure 16 is a schematic section view of an embodiment employing a hook liner hanger.

DETAILED DESCRIPTION OF THE INVENTION
Referring to Figure 1, a thin walled sleeve 10 is illustrated having a premachined window 12. Sleeve 10 is preferably constructed of steel with a thickness of from 0.125 inch to 0.250 inch. A preferred thickness of 0.197 inch is selected to facilitate relatively easy swaging yet provide sufficient resiliency in the sleeve to ensure a close proximity of a liner extending therethrough to said sleeve sufficient to facilitate bridging of a particular matter which would otherwise pass between said sleeve and said liner to contaminate produced fluids. In another preferred embodiment the liner is sealed against said sleeve. In a preferred embodiment, bands 13 are positioned around sleeve 10 to aid in sealing and anchoring sleeve 10 against casing 20. Bands 13 are preferably elastomeric. It should be understood that one or more bands 13 may be employed as desired. The bands are visible in Figures 1, 2 and 10 but are not visible in other figures because they are compressed between sleeve 10 and the casing of the borehole.
Figure 2 schematically illustrates a running tool 14 on which sleeve 10 is mounted for being run into the hole (not shown). Running tool 14 may be any one of several commercially available running tools capable of releasably retaining a sleeve to be run downhole. Running tool 14 does however include a schematically illustrated locating dog 16 unique to applications of the thin walled sleeve 10. Locating dog 16 preferably is mounted on pin 18 which includes a torsional spring (not shown). Locating dog 16 follows an ID of a casing 20 until it reaches a milled window 22 whereat locating dog 16 automatically protrudes through window 22 while running tool 14 proceeds farther downhole. As locating dog 16 reaches a lower vee 24 of window 22, it will orient itself both linearly and rotationally to window 22. Because sleeve 10 is carefully oriented on running tool 14 at the surface to place locating dog 16 in a selected position relative to premachined window 12, the action of locating dog 16 in vee 24 linearly and rotationally orients sleeve 10 to the milled window 22.
Once sleeve 10 is oriented properly within the hole, running tool 14 is used to swage an uphole end 26, a downhole end 28 or both 26 and 28 into contact with an ID 30 of casing 20. One preferred method for swaging sleeve 10 is to employ an inflatable swaging device incorporated into the running tool. If both uphole end 26 and downhole end 28 are intended to be swaged then preferably two inflatable tools will be utilized simultaneously.
Figure 3 illustrates, schematically, sleeve 10 swaged at uphole end 26 and downhole end 28.
Referring to Figure 4, an alternate construction for new wells is disclosed wherein casing 32 is premachined with a window and includes recess 34 which is of sufficient dimension and configuration to receive a preinstalled sleeve 10 while providing an ID 36 of sleeve 10 which substantially equals ID 38 of casing 32. By employing such casing 32 there is no restriction at the junction which might otherwise be problematic with respect to tools passing through the junction. As best illustrated in Figures and 4, window 12 in sleeve 10 is preferably of smaller dimension than the window 22 (in Figure 3) and 42 (in Figure 4) so that a lateral liner being urged into a sealing engagement at the junction will seal against the ID 36 of sleeve 10 at window 12.
Referring to Figure 5, the depiction of Figure 4 has been repeated but with a lateral liner installed. Thus, it is illustrated that flange 44 of lateral liner 46 is seated against the window 12 in sleeve 10 and is sealed thereto. It should be noted that at the interface (arrow 48) may be an elastomeric sealing material such as polyurethane or a metal sealing material such as bronze or steel. It should also be noted that it is possible to machine the premachined window 12 slightly smaller than liner 46 to provide an interference fit with the liner 10. Because of the proximity of the sleeve to the liner in the area of the premachined window, sand and other particulate matter from the area of the junction 50 is substantially excluded from the wellbore system. This can be by one of bridging or sealing depending upon the tightness of the liner against the sleeve.
Referring to Figures 6-13, a sequential illustration of one embodiment for installing the sand device is illustrated. In Figure 6, casing is illustrated with a whipstock 52 therein oriented and maintained in place by anchor 54. In Figure 7, a drill string 56 is illustrated being introduced to the downhole environment just prior to contact with whipstock 52. Referring to Figure 8, a milled window 22 and lateral borehole 58 are illustrated.
Referring to Figure 9, the whipstock 52 has been removed from the wellbore leaving anchor 54 in place. It should be noted that anchor 54 is not required for installation of the sand exclusion device described herein but could be used if desired as a locating device. Referring to Figure 10, a running tool 14 as described hereinabove, has been introduced to the downhole environment and into the vicinity of lateral borehole 58. Dog 16 orients linearly and rotationally to milled window 22. Once dog 16 has landed in vee 24, as described above, the sleeve 10 is swaged with inflatable packer 60 which is illustrated in Figure 11. Referring to Figure 12, the swaged sleeve 10 is left in position within the wellbore and anchored to casing 20 with window 12 oriented linearly and rotationally to borehole 58. Figure 13 illustrates a lateral liner 60 installed with flange 62 firmly seated against sleeve 10 and creating a seal thereagainst with either an elastomeric sealant such as polyurethane, metal-to-metal seal or other suitable seal.
The above discussed method for orienting rotationally and linearly using dog 16, while a preferred embodiment, is but one embodiment.
Another preferred embodiment referring to Figures 14 and 15 is to stab into anchor 54 with a running tool 80 having an orientation anchor 82 so that sleeve 10 is orientable to the milled window (not shown in subject figure) based upon the original whipstock anchor 54 and not the vee 24 of the window. The orientation anchor 82 further seals the downhole end and thus removes the need to swage the downhole end of sleeve 10. The uphole end therefore is the only end needing swaging. Figure 15 illustrates the uphole end swaged as has been previously described herein.
In another embodiment referring to Figure 16, a schematic illustration carrying identical numerals for identical components is provided for understanding of another preferred arrangement where the sand exclusion sleeve 10 is employed in connection with a hook hanger liner 70 having hook 72 to engage with vee 24. Although a flange 44 is not available in this embodiment, an interference fit between liner 70 and sleeve 10 is nevertheless crated which causes the bridging of particulates and thus their exclusion from the junction.
It should be noted that while the foregoing method for creating a sand excluding junction is effective, it is only necessary to place the sleeve at a desired location, and run a liner through the premachined winds and into close enough proximity therewith to facilitate bridging of particulate matter.
Swaging the sleeve in place is a preferred operation as well. Milling of a window in the primary casing and drilling a lateral borehole may have been accomplished as part of an earlier operation.
While preferred embodiments of the invention have been shown and described, various modifications and substitutions may be made thereto without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the present invention has been described by way of illustration and not limitation.

Claims (18)

1. A multilateral wellbore junction comprising:
a primary wellbore casing;
a window through said casing;
a lateral wellbore extending from said window;
a sleeve having a window therein oriented to said window through said casing, said sleeve window being dimensioned and configured to cause interference with insertion therethrough of a lateral liner; and a lateral liner proximately disposed to said sleeve and extending into said lateral borehole.
2. A multilateral wellbore junction as claimed in claim 1 wherein said sleeve is a thin walled sleeve.
3. A multilateral wellbore junction as claimed in claim 1 wherein said sleeve further includes at least one band therearound.
4. A multilateral wellbore junction as claimed in claim 3 wherein said at least one band is elastomeric.
5. A multilateral wellbore junction as claimed in claim 1 wherein said sleeve is constructed of steel.
6. A multilateral wellbore junction as claimed in claim 1 wherein said sleeve is swaged against an ID of said casing.
7. A multilateral wellbore junction as claimed in claim 1 wherein said premachined window is of smaller dimensions than said window through said casing.
8. A multilateral wellbore junction as claimed in claim 1 wherein said lateral liner includes an elastomeric material extending around at least a portion thereof, said elastomeric material being located to interfere with said sleeve window upon insertion of the lateral liner.
9. A multilateral wellbore as claimed in claim 1 wherein said primary wellbore casing includes a recess to receive said sleeve such that an ID of said sleeve when installed will substantially equal an ID of said primary casing.
10. A multilateral wellbore as claimed in claim 1 wherein said liner is sufficiently proximate said sleeve to induce bridging in particulate matter which would otherwise flow therebetween.
11. A multilateral wellbore as claimed in claim 1 wherein said lateral liner is sealed against said sleeve.
12. A method for excluding particulate entry to a wellbore system at a lateral junction thereof comprising:
running a sleeve having a premachined window therein to a location within the wellbore where a casing window exists, said sleeve window being dimensioned and configured to cause interference with insertion therethrough of a lateral liner; and installing a lateral liner through said premachined window and said casing window, the liner being proximately disposed to said premachined window in said sleeve.
13. A method for excluding particulate entry to a wellbore system as claimed in claim 12 wherein said method further includes, prior to running said sleeve, milling a window in a primary casing of said wellbore.
14. A method for excluding particulate entry to a wellbore system as claimed in claim 12 wherein said method further includes orienting said premachined window to said casing window.
15. A method for excluding particulate entry to a wellbore system as claimed in claim 12 wherein said method further includes installing said sleeve.
16. A method for excluding particulate entry to a wellbore system as claimed in claim 15 wherein said installing said sleeve includes swaging said sleeve into contact with an ID of said wellbore at one of an uphole end of said sleeve, a downhole end of said sleeve, and both an uphole and downhole end of said sleeve.
17. A method for excluding particulate entry to a wellbore system as claimed in claim 12 wherein said installing said liner includes facilitating bridging of particulate matter which otherwise would flow through said liner and said sleeve.
18. A method for excluding particulate entry to a wellbore system as claimed in claim 12 wherein said installing includes sealing said liner to said sleeve.
CA002369473A 2001-01-26 2002-01-25 Sand barrier for a level 3 multilateral wellbore junction Expired - Lifetime CA2369473C (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA2641965A CA2641965C (en) 2001-01-26 2002-01-25 Particulate matter exclusion device
CA002563145A CA2563145A1 (en) 2001-01-26 2002-01-25 Sand barrier for a level 3 multilateral wellbore junction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US26437101P 2001-01-26 2001-01-26
US60/264,371 2001-01-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
CA002563145A Division CA2563145A1 (en) 2001-01-26 2002-01-25 Sand barrier for a level 3 multilateral wellbore junction
CA2641965A Division CA2641965C (en) 2001-01-26 2002-01-25 Particulate matter exclusion device

Publications (2)

Publication Number Publication Date
CA2369473A1 CA2369473A1 (en) 2002-07-26
CA2369473C true CA2369473C (en) 2009-07-14

Family

ID=23005758

Family Applications (2)

Application Number Title Priority Date Filing Date
CA002369473A Expired - Lifetime CA2369473C (en) 2001-01-26 2002-01-25 Sand barrier for a level 3 multilateral wellbore junction
CA2641965A Expired - Lifetime CA2641965C (en) 2001-01-26 2002-01-25 Particulate matter exclusion device

Family Applications After (1)

Application Number Title Priority Date Filing Date
CA2641965A Expired - Lifetime CA2641965C (en) 2001-01-26 2002-01-25 Particulate matter exclusion device

Country Status (5)

Country Link
US (2) US6679329B2 (en)
AU (1) AU785480B2 (en)
CA (2) CA2369473C (en)
GB (1) GB2371579B (en)
NO (2) NO332415B1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2363139B (en) * 2000-06-09 2004-08-18 Smith International Downhole window finder and a method of using the same
US6591905B2 (en) * 2001-08-23 2003-07-15 Weatherford/Lamb, Inc. Orienting whipstock seat, and method for seating a whipstock
US6883611B2 (en) * 2002-04-12 2005-04-26 Halliburton Energy Services, Inc. Sealed multilateral junction system
US6848504B2 (en) 2002-07-26 2005-02-01 Charles G. Brunet Apparatus and method to complete a multilateral junction
US6830106B2 (en) 2002-08-22 2004-12-14 Halliburton Energy Services, Inc. Multilateral well completion apparatus and methods of use
US7584795B2 (en) 2004-01-29 2009-09-08 Halliburton Energy Services, Inc. Sealed branch wellbore transition joint
US7213652B2 (en) 2004-01-29 2007-05-08 Halliburton Energy Services, Inc. Sealed branch wellbore transition joint
US20050241831A1 (en) * 2004-05-03 2005-11-03 Steele David J Anchor for branch wellbore liner
EP2065554B1 (en) * 2007-11-30 2014-04-02 Services Pétroliers Schlumberger System and method for drilling and completing lateral boreholes
EP2065553B1 (en) 2007-11-30 2013-12-25 Services Pétroliers Schlumberger System and method for drilling lateral boreholes
US8316937B2 (en) * 2009-04-02 2012-11-27 Knight Information Systems, Llc Multi-window lateral well locator/reentry apparatus and method
US8069920B2 (en) * 2009-04-02 2011-12-06 Knight Information Systems, L.L.C. Lateral well locator and reentry apparatus and method
US20100307770A1 (en) * 2009-06-09 2010-12-09 Baker Hughes Incorporated Contaminant excluding junction and method
CA2806772C (en) * 2010-07-28 2018-08-28 Packers Plus Energy Services Inc. Wellbore lateral liner placement system
US8230920B2 (en) 2010-12-20 2012-07-31 Baker Hughes Incorporated Extended reach whipstock and methods of use
US9835011B2 (en) 2013-01-08 2017-12-05 Knight Information Systems, Llc Multi-window lateral well locator/reentry apparatus and method
US9574428B2 (en) 2013-12-23 2017-02-21 Baker Hughes Incorporated Screened production sleeve for multilateral junctions
MX2016011802A (en) * 2014-04-10 2017-07-14 Halliburton Energy Services Inc Casing string monitoring using electro-magnetic (em) corrosion detection tool and junction effects correction.
WO2017074733A1 (en) * 2015-10-26 2017-05-04 Halliburton Energy Services, Inc. Junction isolation tool for fracking of wells with multiple laterals
US20170130565A1 (en) * 2015-11-06 2017-05-11 Baker Hughes Incorporated Erosion-Resistant Multilateral Junctions
US10662710B2 (en) 2015-12-15 2020-05-26 Halliburton Energy Services, Inc. Wellbore interactive-deflection mechanism
GB2566900B (en) 2016-09-16 2021-09-01 Halliburton Energy Services Inc Casing exit joint with guiding profiles and methods for use
CA3029191C (en) 2016-09-19 2020-08-18 Halliburton Energy Services, Inc. Expandable reentry completion device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5787987A (en) 1995-09-06 1998-08-04 Baker Hughes Incorporated Lateral seal and control system
WO1998009049A1 (en) * 1996-08-30 1998-03-05 Camco International, Inc. Method and apparatus to seal a junction between a lateral and a main wellbore
US6283208B1 (en) * 1997-09-05 2001-09-04 Schlumberger Technology Corp. Orienting tool and method
US6244340B1 (en) * 1997-09-24 2001-06-12 Halliburton Energy Services, Inc. Self-locating reentry system for downhole well completions
GB2332462B (en) 1997-12-17 2002-05-22 Dailey Internat Inc Wellbore positioning system
US6119771A (en) 1998-01-27 2000-09-19 Halliburton Energy Services, Inc. Sealed lateral wellbore junction assembled downhole
US6279659B1 (en) 1998-10-20 2001-08-28 Weatherford Lamb, Inc. Assembly and method for providing a means of support and positioning for drilling multi-lateral wells and for reentry therein through a premilled window
US6354375B1 (en) 1999-01-15 2002-03-12 Smith International, Inc. Lateral well tie-back method and apparatus
US6209644B1 (en) * 1999-03-29 2001-04-03 Weatherford Lamb, Inc. Assembly and method for forming a seal in a junction of a multilateral well bore
US6419026B1 (en) * 1999-12-08 2002-07-16 Baker Hughes Incorporated Method and apparatus for completing a wellbore
CA2409872C (en) 2000-05-22 2009-04-28 Smith International, Inc. Sealed lateral wellbore junction
GB2363139B (en) 2000-06-09 2004-08-18 Smith International Downhole window finder and a method of using the same
CA2411363C (en) * 2000-06-30 2005-10-25 Weatherford/Lamb, Inc. Apparatus and method to complete a multilateral junction
US6622789B1 (en) * 2001-11-30 2003-09-23 Tiw Corporation Downhole tubular patch, tubular expander and method

Also Published As

Publication number Publication date
NO332415B1 (en) 2012-09-17
GB0201732D0 (en) 2002-03-13
AU785480B2 (en) 2007-09-06
NO20020411L (en) 2002-07-29
CA2641965A1 (en) 2002-07-26
NO20120691L (en) 2002-07-29
GB2371579A (en) 2002-07-31
GB2371579B (en) 2003-04-30
US20030192700A1 (en) 2003-10-16
US6679329B2 (en) 2004-01-20
CA2369473A1 (en) 2002-07-26
CA2641965C (en) 2011-09-13
NO20020411D0 (en) 2002-01-25
NO337065B1 (en) 2016-01-11
US20020100588A1 (en) 2002-08-01
AU1353002A (en) 2002-08-01

Similar Documents

Publication Publication Date Title
CA2369473C (en) Sand barrier for a level 3 multilateral wellbore junction
EP1249574B1 (en) Multilateral well drilling and completion method and apparatus
US6199633B1 (en) Method and apparatus for intersecting downhole wellbore casings
CA2411363C (en) Apparatus and method to complete a multilateral junction
US7434627B2 (en) Method and apparatus for friction reduction in a downhole tool
US6976534B2 (en) Slip element for use with a downhole tool and a method of manufacturing same
GB2312912A (en) A tool for running in a completion tool
US6913082B2 (en) Reduced debris milled multilateral window
CA2451658C (en) Drillable junction joint
US7231980B2 (en) Self orienting lateral junction system
AU2002315395A1 (en) Drillable junction joint
US20190085661A1 (en) One-trip multilateral tool
CA2260448C (en) Apparatus and methods for sealing a wellbore junction
AU2007202114B2 (en) Sand barrier for a level 3 multilateral wellbore junction
CA2952202A1 (en) Downhole ball valve
GB2382369A (en) A running tool for orienting relative to a casing window
CA2563145A1 (en) Sand barrier for a level 3 multilateral wellbore junction
EP2447465A2 (en) System and method for opening a window in a casing string for multilateral wellbore construction
EP0961008A3 (en) Apparatus and method for drilling and completing a deviated borehole
GB2449566A (en) Method and apparatus for friction reduction in a downhole tool

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20220125