CA2370202C - Gum pad for delivery of medication to mucosal tissues - Google Patents

Gum pad for delivery of medication to mucosal tissues Download PDF

Info

Publication number
CA2370202C
CA2370202C CA002370202A CA2370202A CA2370202C CA 2370202 C CA2370202 C CA 2370202C CA 002370202 A CA002370202 A CA 002370202A CA 2370202 A CA2370202 A CA 2370202A CA 2370202 C CA2370202 C CA 2370202C
Authority
CA
Canada
Prior art keywords
medication
layer
semi
pad
permeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002370202A
Other languages
French (fr)
Other versions
CA2370202A1 (en
Inventor
Alayne Yates
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2370202A1 publication Critical patent/CA2370202A1/en
Application granted granted Critical
Publication of CA2370202C publication Critical patent/CA2370202C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • A61K9/006Oral mucosa, e.g. mucoadhesive forms, sublingual droplets; Buccal patches or films; Buccal sprays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/08Drugs for disorders of the alimentary tract or the digestive system for nausea, cinetosis or vertigo; Antiemetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/14Prodigestives, e.g. acids, enzymes, appetite stimulants, antidyspeptics, tonics, antiflatulents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/04Drugs for genital or sexual disorders; Contraceptives for inducing labour or abortion; Uterotonics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/20Hypnotics; Sedatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/06Antiarrhythmics

Abstract

The gum pad (10) is a laminate composed of: (a) a synthetic base or backing layer (12) which is configured to be held in place on the gingiva (gums) in the mouth;
(b) an intermediate reservoir layer (14) for containing medication (16) therein; and (c) a semi-permeable outer layer (18) facing outwardly towards the oral mucosal tissue (22) in the mouth which will allow saliva to enter and dissolve the medication in the reservoir layer (14) into solution and pass the diffused saliva-medication solution out-wardly to the oral mucosal tissue (22). The backing layer is placed on the gum so that the semi-permeable outer layer (18) faces outwardly toward the buccal mucosa (22). Saliva enters the semi-permeable layer (18) and dissolves the medication in the reservoir layer (14), then diffuses outwardly through the semi-permeable layer (18) to the mucosal tissue in the mouth where it is readily absorbed into the circulatory system. The gum pad (10) can be used for the topical or systemic delivery of a wide range of pharmaceutical and nutritional agents, for the treatment of a variety of human disorders and diseases.

Description

GUM PAD FOR DELIVERY OF MEDICATION TO MUCOSAL TISSUES

SPECIFICATION
FIELD OF THE INVENTION

This invention relates generally to an improved methods for treatment of systemic diseases and illnesses by delivery of medication into the body through oral mucosal tissue.
More particularly, it concerns the use of a layered pad (Gum Pad) which is worn intra-orally on the gums for dispensing medication contained in the pad by saliva diffusion and transport to the oral mucosal tissues.

BACKGROUND
It is known that medication can be absorbed into the body through the soft mucosal tissues in the interior layers of the body. The medication can pass through the tissues directly into the systemic circulation, bypassing breakdown by digestive enzymes in the stomach and preventing the medication from passing through the liver where it can be degraded or eliminated. Many medications, especially proteins and peptides, are rendered useless by the gut and liver. Transmucosal delivery preserves the potency of these medications. The efficacy of transmucosal delivery depends in large part on the extent of the mucosal surface exposed to medication and the time over which the medication remains present and available on the mucosal surface.

Many medications that are administered parenterally (by injection), can also be given transmucosally. Transmucosal delivery is preferable in that close medical supervision is not required and it is not associated with scar formation, infection, and noncompliance.
However, transmucosal administration is less efficient than parenteral (injectable) medication with a smaller percentage of medication entering the systemic circulation. Therefore, transmucosal administration may require a higher concentration of medication or a longer duration of administration than parenteral. Parenteral administration can produce an effect more rapidly and in a more controlled manner. However, some medications can produce unexpected, toxic effects. If toxic effects are noted shortly after parenteral injection, increasing toxicity is inevitable as the medication cannot be withdrawn. Transmucosal delivery is safer in that the medication can quickly and easily be withdrawn when signs of toxicity are noted.
Transmucosal delivery is especially suitable for pre-operative patients who must have an empty stomach; cancer patients undergoing chemotherapy or radiotherapy who are nauseated; patients who fear needles; patients with skin conditions; and children who resist swallowing or who are afraid of injections.
Transmucosal delivery forms and devices are known to the art. Medication can be delivered transmucosally through lungs, mouth, nose, vagina, conjunctiva, rectum, bladder, and urethra.
Pulmonary mucosa demonstrate the highest absorption rate due to the extensive surface area of the alveolae. After pulmonary mucosa, nasal and buccal mucosa are the most penetrable, followed by rectal, and vaginal, in that order.
Oral mucosal delivery offers several distinct advantages over other routes.
The mouth is easily accessible with a wide aperture and a broad mucosal surface. The medication can pass easily into the reticulated veins that lie under the oral mucosa. The oral mucosa has more lipophillic cells than other mucosae, allowing for the delivery of lipophillic medications. Medication is more easily absorbed through the oral mucosa than through skin or rectal mucosa. Medication placed in the mouth is more acceptable to patients and more easily controlled than medication placed in the rectum, urethra, vagina, bladder, or up the nose. Problems associated with oral transmucosal delivery include medication's noxious taste or irritation and the fact that a large amount of saliva (up to 2 liters per day) is produced by salivary glands in the mouth. Too much saliva can dilute and carry away medication.
Absorption rates across mucosal surfaces vary according to the physicochemical properties of the mucosa such as thickness of the epithelial layers, electrical resistance, and hydrophilic or lipophilic characteristics. Oral mucosa are generally lipophilic in nature so that molecules that are more lipophilic will penetrate more rapidly. Absorption through the mucosa is influenced by molecular size, concentration, ionization, and pH of the medication. Small, lipid-soluble molecules pass easily through the oral mucosa. Absorption is affected by the presence of various enzymes in the saliva, rate of saliva flow, viscosity, pH, and electrical resistance. It is found that medication absorbed through the buccal mucosa enters the circulation 4 to 8 times more rapidly than when it is ingested in pill or capsule form.
Effects can be observed in 5-20 minutes compared to 30-60 minutes by ingestion into the stomach. Oral transmucosal delivery is also 20-30 times faster than transdermal (skin patch) delivery.

Oral transmucosal delivery forms and devices are known to the art. U.S.
Patents Nos. 3,510,053 to Focke, 5,197,882 to Jernberg, 5,267,862 to Parker and 5,326,685 to Gaglio et al. are illustrative of such prior art. The Gaglio patent is of interest as it discloses an oral pad device having a hollow pocket formed by a flexible backing material and a porous outer layer for holding a viscous medication in gel, salve or liquid form. The viscous medication can pass through the porous layer onto the surfaces desired to be treated, such as the gums for treatment of gum diseases or onto the teeth for teeth whitening. The rate of delivery depends entirely on the porosity of the flexible outer layer.
Buccal and sublingual tablets as well as lozenges have been used for transmucosal delivery of medication. Medication has also been mixed with syrup and fruit-flavored ge(s, compressed into a sustained release buccal tablets, and incorporated into a lozenge mounted on a handle (Oralet).
Measured sprays have recently been developed for sub-lingual use. When medication is delivered by these methods, it is rapidly dispersed by saliva, does not remain in contact with the mucosa, and is often rendered ineffective when swallowed.. Saliva secretion is stimulated by flavoring agents commonly employed and this furthers the dispersion and removal of the medication. When medication is swallowed it may adversely affect the digestive system. Children, especially, find it difficult not to swallow tablets, lozenges, syrup, and fruit-flavored gels.
Compressed tablets including bi-layered and multi-layered products that deliver an active ingredient after being inserted between the gingiva and buccal mucosa are known in the art. Ebert et al., U.S. Patent No. 5,849,322, discloses a bi-layered tablet comprised of medication in one layer and adhesive in the other. The adhesive layer attaches to the gingiva and the drug-containing layer is in drug transfer contact with the buccal mucosa. Davis et al., U.S. Patent No.
4,540,566, discioses a compressed tablet comprising cellulose ether. Schor et al., U.S. Patent No. 4,389,393, describes a compressed tablet comprised of hydroxypropylmethylcellulose, or a mixture of methylcellulose and sodium carboxylmethylcellulose, and/or other cellulose ethers. These tablets are subject to being chewed or swallowed, in which case the active ingredients may be destroyed by digestive enzymes. Even when retained between the gingiva and buccal mucosa, tablets usually dissolve in less than an hour, making them unsuitable for medications that require a longer release time. When tablets are constructed to adhere to the buccai mucosa with adhesive, significant irritation can be caused by the adhesive and the direct contact between concentrated medication and a limited area of mucosa.
If tablets are dislodged, they can be chewed and fractured or swallowed.
Osmotic dosage forms for sustained delivery of medications to various treatment sites including oral mucosa are disclosed in U.S. Patents Nos. 5,021,053 to Barclay et al., 5,248,310 to Barclay et al., 5,200,194 to Edgren et al., and 5,200,195 to Dong et al.
These devices are formed as tablets having a transport layer provided with adhesive for adhering directly onto the mucosa. The tablets have a semi-permeable transport layer, and when a hydrophilic polymer containing the medication imbibes water (saliva) and expands, the medication is transported as a fluid solution through the transport layer. The tablets present a significant advantage in that they are coated on the non-contacting side for structural strength to resist fracturing if chewed. Since they adhere to the mucosa, they are less likely to be swallowed than the tablets noted above.
However, problems with mucosal irritation can occur due to the adhesive and the high concentration of medication exiting onto a = limited area of the mucosa.

Adhesive patches have recently been devefoped for transmucosal application.
Tiny patch-like devices are used to treat gingivitis by delivering antibiotics and other medication directly to gum pockets.

Other tiny patches are used to anesthetize a single tooth prior to a dental procedure. These patches must be applied by a dentist or oral hygienist. Tiny, dome-shaped adhesive patches, typically less than two centimeters in diameter, have been developed for medication delivery through the buccal mucosa. They may be applied by a professional or the patient. Limitations include patient discomfort, difficulties in affixing the patch to the mucosal surface; difficulty removing the patch if the adhesive adheres too tightly;
and absorption that is limited to the very small area of mucosa beneath the patch.

Thin, laminated, extruded or composite water-insoluble films, including multi-layered products for drug delivery to the mucosa are known in the art. U.S. Patent No. 4,900,552 to Schiraldi et al. reveals a trilaminate film comprised of a muco-adhesive base layer, a medication reservoir layer and a water-impermeable carrier film. U.S. Patent No. 4,900,554 to Yanagibashi et al. discloses a device consisting of an adhesive layer and a water insoluble or sparingly soluble backing layer. Additional devices are described in U.S. Patent Nos. 4,517,173, 4,572,832, 4,713,243, and 5,137,729. Because laminated film is extremely thin, the amount of medication that can be contained and delivered is limited.
Too much medication can cause bulging and result in patient discomfort.

SUMMARY OF THE INVENTION

A primary object of the present invention is to provide an oral transmucosal device for delivery of medication to the oral mucosal tissues which will overcome the shortcomings of the prior art devices.
A specific object is to provide an oral transmucosal device that fits snugly, securely, and comfortably in the mouth, and does not interfere with speech. It should be simple and easy to insert and remove, and economical in cost to manufacture. It should be designed so that it is not readily chewed, fractured or swallowed, and does not buckle or rotate when installed in place.

A further object is to provide an oral transmucosal device that does not irritate the oral mucosal tissues by delivering highly concentrated medication onto a limited area of mucosa.
An additional object is to provide an oral transmucosal device that will deliver dried or freeze-dried pharmaceutical or nutritional agents (referred to as medication) to a broad area of oral mucosal tissue.
Another primary object of the invention is to provide an improved method for delivery of medication for topical or systemic use at a controlled rate, over a brief to sustained time interval. In particular, it is desired to provide improved methods of treating systemic illnesses by delivering medication in an optimal manner into the body.

In accordance with the present invention, an oral transmucosal device is formed as a laminate composed of: (a) a synthetic base or backing layer which is configured to be held in place on the gingiva (gums) in the mouth; (b) an intermediate, reservoir layer for containing medication therein; and (c) a semi-permeable outer layer facing outwardly toward oral mucosal tissues in the mouth which will allow saliva to enter and dissolve the medication in the reservoir layer into solution and pass the diffused saliva-medication solution outwardly to the oral mucosal tissues.

In a preferred embodiment of the oral transmucosal device (referred to herein as the "Gum Pad"), the ends of the pad are bulb shaped and contain relatively more medication than the narrower mid-portion.
The layers are heat sealed to form a pocket around the reservoir layer. The pad is inserted between the gums and buccal mucosa with the shape of the pad conforming to the curvature of the mandible or maxilla. The mid-portion of the pad rests on the front portion of the gums and the ends of the pad rest on the gums toward the sides and back of the mouth, in front of the temporo-mandibular joint. The preferred position is for the base layer of the pad to rest on the gums so that the semi-permeable membrane is facing outwardly in contact with the buccal mucosa. The pad can be placed over one or both the upper and lower jaws, according to the parameters for delivery of medication and/or patient preference. The pad is comfortable and does not interfere with speech. A light adhesive may be applied to the base layer for more secure mounting on the gums, particuiarly if the delivery parameters require wearing the pad over a longer period of time. The pad can be removed by the patient once the desired clinical effects are achieved.
The reservoir layer can contain dried orfreeze-dried medication togetherwith exipient or hydrogel matrix. A variety of adjuvants may be combined in the reservoir layer to enhance absorption, such as surfactants, bile salts, chelating agents, and cyclodextrins, among others.
When the pad comes in contact with saliva, the medication is reconstituted and diffuses out of the device and over a sizeable area of the mucosa (mucous membranes of the mouth). Examples of medication that are suitable for delivery through the oral mucosa include: (1) anticonvulsants; (2) anxiolytics; (3) anesthetics; (4) analgesics; (5) proteins and peptides; (6) antiemetics; and (7) beta-adrenergic blockers. The Gum Pad may also be used for the topical or systemic delivery of nutritional products such as vitamins, minerals, herbs, and food supplements The further objects, features, and advantages of the present invention are described in detail below, in conjunction with the following drawings, which are intended to be illustrative only.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a perspective view illustrating in general the use of an oral transmucosal device in the mouth of a person for delivery of medication to oral mucosal tissues in accordance with the invention.
FIG. 2 is a front view of the mouth of the person taken in the direction of arrow 2 in FIG. 1, with the exterior of the head shown in phantom line.

FIG. 3 is a side view of the head of the person taken in the direction of arrow 3 in FIG. 2, showing the outline of the head in phantom line.

FIG. 4 is an enlarged elevational view of the oral transmucosal device of the invention.
FIG. 5 is a side view of the device taken in the direction of arrow 5 in FIG.
4.
FIG. 6 is a further enlarged cross sectional view of the device taken along line 6 - 6 in FIG. 4, showing the internal structure thereof.

FIG. 7 is a cross sectional view of the mouth of the person taken along line 7 - 7 in FIG. 1, showing the positioning of the device between the buccal mucosa and the gums of the teeth.

FIG. 8 is a interior view illustrating the device in place of the gums, and the liquefaction of medication from the device and delivery to the mucosal tissue for absorption into the human circulatory system.

DETAILED DESCRIPTION OF THE INVENTION

Turning now descriptively to the drawings, in which similar reference characters denote similar elements throughout the several views, and to FIG. 6 in particular, an oral transmucosal device in accordance with the present invention ("Gum Pad") 10 comprises a nonporous backing layer 12, an intermediate reservoir layer 14 containing medication 16 therein, and a semi-permeable outer layer 18 covering the reservoir layer. The semi-permeable outer layer 18 is sealed to the backing layer 12 along seal line 20, thus forming a closed envelope around the reservoir layer 14.
The medication 16 in the reservoir layer 14 may be topical or systemic, consisting suitably of biologically active pharmaceutical or nutritional agents 21 that are dried or freeze-dried.

For use as shown particularly in FIG. 7, the nonporous backing layer 12 is applied high up or low down against the gum tissue 26 of the teeth 28 in the mouth of a person 24, with the semi-permeable outer layer 18 facing the buccal mucosa 22. Saliva in the mouth of the person 24 will penetrate through the semi-permeable layer 18 and cause the dried or freeze-dried active agent 21 in the reservoir layer 14 to liquefy and diffuse through the semi-permeable layer 18. The nonporous backing layer 12 contributes stability, but allows flexibility, so that the pad can adapt to the mucosal cavity without buckling or curling.

The nonporous backing layer 12 is preferably formed by a synthetic thermoplastic sheet 30, and the reservoir layer 14 is a non-woven, foam, or sponge-like material impregnated with the medication 16 together with exipient or hydrogel matrix and various adjuvants to enhance absorption, such as surfactants, bile salts, chelating agents, and cyclodextrins, among others.
The semi-permeable outer layer 18 is preferably a thin membrane sheet 34. The seal 20 is preferably formed by a hot-bond adhesive 36.

The Gum Pad 10, as best seen in FIGS. 4 and 5, has an elongated generally tubular shaped body 38 with bulb shaped ends 40, to supply a large posterior area of the gum tissue 26 and additionally to stabilize placement between the buccal mucosa 22 and the gum tissue 26 of the teeth 28. The nonporous backing layer 12 is flat, while the semi-permeable outer layer 18 is curved on the tubular shaped body 38, so as to fit snugly and comfortably between the buccal mucosa 22 and the gum tissue 26 in the mouth of the person 24.

The Gum Pad 10 is designed to deliver any of a variety of pharmaceutical and nutritional agents, herein referred to generally as medication. Medication 16 is delivered topically or systemically as it diffuses away from the pad 10 toward the mucosa 22 of the cheek, the floor of the mouth, the palate, and the upper pharynx. When topically applied, the medication is used to directly affect the mucosa to treat, protect or enhance the growth of the surrounding gum tissue 26. When systemically applied, the medication 16 travels through the mucosa 22 and into the systemic circulation where it can affect various body systems.

Structure of the Gum Pad: Backing Layer For systemic delivery, the preferred backing layer is a flexible thermoplastic sheet insoluble in saliva and inert to the pharmacologic or nutritional agents employed. For treatment of tissues locally within the mouth, the preferred backing is a flexible sheet that is permeable to saliva and to the pharmacologic or nutritional agents employed.

The backing material rests against the gum and forms a barrier that prevents migration of the medication onto the less absorptive surface of the gum. The backing layer material is selected to be rigid enough to prevent buckling, soft enough to be comfortable, and flexible enough to conform to the pocket formed by the gum and buccal mucosa. The backing layer maintains the structural integrity of the Gum Pad and acts to protect against excessive swelling in the drug-impregnated reservoir layer. The backing layer may be a thermoplastic film or non-woven layer of synthetic fibers or a combination of synthetic and natural fibers. The basis weight can range from about 20 gsy to about 120 gsy, preferably from 30 gsy to 90 gsy. The thickness of the backing iayer can range from about 0.030 cm to 0.30 cm.

Appropriate backing materials, used alone or in combination, include acrylics, acetates, modacrylic, polyamides, polyproptiene, polyolefins, and terephalate fibers.
Additional examples are alkyl cellulose or hydroxyalkyl cellulose polymers such as ethyl cellulose, butyl cellulose, hydroxybutyl cellulose, propyl cellulose, cellulose acetate and ethylhydroxyethyl cellulose, or polyvinyl alcohols, shellac, zein, silicone elastomer, polymethacrylate, polyurethane, ethylene-vinyl acetate copolymer, and ethylene propylene diene copolymer. The backing material may be modified by use of a polymeric resin or binder to fortify the bonding of the fibers and to achieve the desired degree of strength and rigidity.
Preparation of non-woven backing materials is described in U.S. Patents Nos.
4,891,227 and 4,891,228 to Thaman et al. One skilled in the art can select materials and cross linking agents that, when suitably combined in the proper measure, will insure a backing material with the preferred combination of properties.
Due to its unique shape, the Gum Pad can remain snugly in place between the gingiva and buccal mucosa without use of adhesive. However, there are circumstances that support the use of adhesive as when the patient is unable to fully cooperate and may intentionally or unintentionally dislodge the pad.
If indicated, an adhesive compound, such as chitosan, can be applied to the external surface of the synthetic backing layer and pressed firmly against the gum for use. An alternative approach is for the base layer to be formed from a hydrophilic polymeric resin that would naturally adhere to the gum tissue.
Any adhesive can cause mucosal irritation, although irritation is less likely with an adhesive such as chitosan. Other problems associated with adhesive use are bad taste, unpleasant textural sensation, and difficulty in affixing or removing the patch.
Structure of the Gum Pad: Reservoir Layer & Medication The reservoir layer contains medication in a therapeutically effective amount to produce an intended effect. The total volume of the layer may be less than about 4.0 cm3, preferably about 0.2 to about 1.0 cm3, and most preferably about 0.5 cm3. The dry density of the material should range from 0.06 g/cc to about 0.30 g/cc and preferably, from about 0.10 g/cc to about 0.16 g/cc. The concentration of the medication should range from about 0.005% to about 25% (by weight of the total dispersion), with a preferred concentration of 0.01 % to about 10%. The dry weight of the medication may be from about 0.005% to about 95% by weight, with a preferred weight of 0.1 % to about 80%.
Generally, the device can be configured to house anywhere from about 0.05 mg to 500 mg or more of medication, exipient, hydrogel, etc. An array of individual devices can be designed to contain specific incremental amounts, such as .25 mg, 1 mg, 5 mg, 25 mg, 50 mg, 125 mg, 250 mg, 500 mg, etc. The concentration of the medication is determined by therapeutic goals, the characteristics of the substance (taste, acidity, etc.), and the optimal rate and time for delivery.

The reservoir layer can contain medication that is mixed or compounded with:
(1) water soluble particulate material; (2) water soluble support matrix; or (3) free flowing lipophilic particles. In the first instance the medication is amorphously dispersed with an exipient matrix, e.g.
cellulose. In the second instance the medication is mixed or compounded with a hydrogel matrix. In the third instance, the medication is mixed or compounded with liposomes, liposome-protein conjugates or proliposomes. In all instances, the preparation is subsequently dried or freeze-dried (lyophillized).

The exipient matrix and the hydrogel matrix serve to maintain the dispersion of active ingredients within the solution or suspension. The excipient matrix and the hydrogel matrix are referred to as matrix materials. Matrix materials maintain particulates in solution or suspension prior to and during the freezing process. Matrix materials may be in the form of a fibrous web, in which case the medication may be contained in: (a) a soluble powder that adheres to the fibrous web; (b) a liquid sprayed on the fibrous web;
or (c) an emulsion coated on the fibrous web. Matrix materials are particularly important when the active ingredients are of limited solubility and must be suspended rather than dissolved.
Amorphous or semi-crystalline exipient matrix can be formed from celluloses such as methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, sodium carboxymethyl cellulose, cellulose acetate phthalate, and cellulose acetate butyrate. Exipient matrix can be developed from dlactose, fructose, raffinose, trehalose, maltose, and inositol after these substances are converted to an amorphous or semi-crystalline state.
Matrix materials must be incorporated into the solution or suspension in concentrations sufficient to maintain the dispersion of the active ingredients. In addition to the agents listed above, any suitable conventional matrix material may be used in connection with the present invention.

Anionic and cationic hydrogels having a molecular weight of 5,000 to 360,000 can be formed from polymers of synthetic, animal or plant origin. The molecular weight of the polymers listed below is between about 300 and 100,000. For purposes of this invention, the preferred weight is between 350 and 40,000, and the preferred average molecular weight range is 2,000 to 20,000.
Examples of suitable polymers are cellulose derivatives, polymers and co-polymers such as polyvinyl alcohol, polyvinyl pyrrolidone, polyethylene glycol, polypropylene, polyvinyl chloride, polyvinyl acetate, ethylene vinyl acetate, lectins, carbopols, silicon elastomers, chitosan, collagen, gelatin and hydrolyzed gelatin, fibronectin, alginic acid, pectin, hyaluronic acid, and polyacrylic polymers, dextrins, maltodextrins, hydroxypropyl-.beta cyclodextrin, poly(ortho-ester), poly(anhydrate), polyacrylamides, polyacrylates, polysaccharides selected from the group consisting of dextran, mannitol, sugars and starches, and gums from the group consisting of acacia, xanthan, guar, and tragacanth. Cross-linked alginate gum of the type described in Etes U.S. Patent No. 3,640,741 is suitable, as is the polytetrafluoroethylene web disclosed in U.S. Patents Nos. 4,153,611 to Ree et al., 4,373,519 to Errede et al., and 4,906,378 to Hagen et al.

The hydrophilic polymers comprising the hydrogel matrix are known in the prior art, for example, in U.S. Patents Nos. 3,865,108, 4,002,173, 4,169,066, 4,207,893, 4,211,681, 4,271,143, 4,277,366, 4,327,725, 4,449,983, and 4,800,056. They are also described in Handbook of Common Polymers, by Scott and Roff, published by the Chemical Rubber Company, Cleveland, Ohio.

Liposomes are lamellar ambiphilic vesicles, composed primarily of phospholipids, that range in size from about 20mn to 10 microns, with a preferred range of 30-150mn.
Liposome preparation is known to prior art and described in U.S. Patents Nos. 4,619,935 and 5,225,212. The composition of the liposome and subsequent sizing of the liposome by filtering determines the eventual rate of medication delivery.
Liposomes may be non-covalently bound with a protein such as biotin to form a protein-liposome conjugate in an amount equal to about 10 to about 100 protein molecules per liposome vesicle, most preferably about 55 to about 80 protein molecules per liposome vesicle. As described by Loughrey et al.
in U.S. Patent No. 5,059,421, bioactive medication can then be absorbed by the protein-liposome conjugates. Protein-liposome conjugates provide stability and structure for fragile molecules and are similar in this respect to other matrix materials. Protein-liposome conjugates may be dehydrated or freeze-dried.

Medication may be delivered by proliposomes, as described for example by Chung, S.J., in "Future Drug Delivery Research in South Korea", Journal of Controlled Release, 62:73-79 (1999).
Proliposomes are free flowing particles composed of medication, phospholipids, and water soluble porous powder that immediately convert to liposomes when hydrated.

Additional materials may be added before or after drying or freeze-drying.
These may include, but are not limited to, sweeteners and flavoring agents, like mint, sugar, corn syrup, honey, sorbitol, saccharin, stevia or aspartame; buffers like sodium hydroxide, hydrochloric acid and potassium phosphate, caffeine, citric acid, hydroxy citric acid; adjuvants such as surfactants, bile salts, chelating agents, cyclodextrins; and enzyme inhibitors such as cetylpyridium chloride.
Cosolvents and permeants (such as dimethyl sulfoxide) can be added to increase the rate of absorption through the mucosa.

The reservoir layer fits between the backing layer and the semi-permeable membrane. The reservoir layer contains medication in a preferred concentration of anywhere from 0.01 % to about 25%
by weight of the total dispersion. The amount of medication provided should be in excess of the amount that can be dissolved in the saliva that enters the reservoir layer. This physical state causes an osmotic gradient that supports transfer of fluids across the membrane. As described previously, the medication is mixed or compounded with exipient matrix or hydrogel matrix. Exipient and hydrogel matrix provide support and maintain particulates in a dispersed state. Hydrogel matrix provides more support and, in addition, provides protection for molecules.

Amorphous dispersion of the medication in exipient matrix is preferred when the medication is dried rather than freeze-dried (to avoid deleterious effects of freeze-drying), when the intent is rapid delivery of medication, and when the rate of delivery does not need to be closely controlled. Dispersion within a hydrogel matrix is preferred when the medication is fragile and easily destroyed in the freeze-drying process and/or when a precise amount of medication must be delivered in a certain time interval. Use of exipient matrix is generally less expensive than use of hydrogel matrix.
Preservation of bioactivity is of critical importance in the case of enzymes, antibodies, and CNS
active proteins and peptides. The preferred method is for these agents to be combined with or added to hydrogel matrix before being freeze-dried. Hydrogels in general and those composed of chitosan in particular, provide a matrix or structure that protects molecules and preserves their bioactivity. Covalent conjugation with a water soluble polymer stabilizes certain polypeptides and improves the release profile, as noted in Camble, et al., U.S. Patent No. 5,320,840.

Hydrogel matrix is well-suited for use with medications because it can be designed to provide controlled release of various concentrations of medication over various intervals ranging from 30 minutes to more than 8 hours. Hydrogel matrix can contain almost any biologically active medication, including proteins and peptides. The matrix is a three dimensional polymeric network that is partially water soluble.
It is non-toxic and does not dissolve in body fluids such as saliva or undergo any significant degredation over the expected Gum Pad application time of up to 8 hours. Approximately 20 wt % to 85 wt % of the hydrogel matrix is comprised of hydrophilic polymer, polymeric networks that retain more than 20% of volume in water. The polymer can more than double in size as it absorbs saliva. The Gum Pad's semi-permeable membrane releases solution and limits the expansion of the polymer, preventing the accumulation of excessive bulk that could cause patient discomfort.

The major component of hydrogel is a polymer that is lightly cross-linked. The cross-links can be physical (microcrystalline), hydrogen or covalent ionic bonds. When the polymer is cross-linked, it will not dissolve in biological fluid. Physical characteristics of hydrogels can be adjusted through the selection of the polymer and the application of various cross-linking agents.

Hydrogel matrix may contain 0.1 wt % to 10 wt % of adjuvants and enzyme inhibitors. Adjuvants are used to protect fragile molecules such as peptides and proteins and to enhance the rate of absorption through the mucosa, allowing relatively large molecules to penetrate the mucosa. Adjuvants can include, for example: ionic surfactants (e.g., sodium lauryl sulfate); cationic surfactants (e.g., cetylpyridinium chloride); nonionic surfactants (e.g., polysorbate 80, polyoxyethylene 9-lauryl ether, glyceryl monolaurate);
chelating agents; dihydrofusidates; cyclodextrin; lipids; and bile salts such as sodium glycocholate decrease lag time and increase steady state flux across the mucosa. Enzyme inhibitors prevent proteolytic enzymes in the saliva from breaking down the medication. Enzyme inhibitors include cetylpyridium chloride, GSH, iodoacetamide, chlorhexidine, glycerol, mannoheptulose, oxalates, glutamates, soluble fluorides, and nitroprussides. Enzyme inhibitors and adjuvants are placed in solution with the medication, dried or freeze-dried, and impregnated into the reservoir layer.
As noted above, medication can be delivered from an excipient matrix or from a hydrogel matrix.
When the medication is amorphously dispersed in an exipient matrix, it is delivered in the following manner. The osmotic gradient causes the water (saliva) to migrate into the reservoir layer where it mixes with the more concentrated medication. The mixture then diffuses through the semi-permeable membrane and onto the mucosa. Diffusion is a function of the molecular size and solubility of the medication. Insoluble medications have a solubility of less than 25 mg per ml of fluid, poorly soluble medications dissolve in about 25-150 mg of agent per ml of fluid, while soluble medications dissolve in about 150-600 mg of agent per ml of fluid. Low molecular weight molecules that are soluble in water diffuse quickly over a shorter interval with an initial increment in outflux.
Very large molecules (molecular weights greater than 1,000) diffuse slowly but evenly over the delivery interval. Poorly water-soluble to water-insoluble medications can be delivered through the hydrogel matrix by mixing the medication with an osmagent that is soluble in saliva. Other factors affecting the rate of delivery are concentration of the medication and the porosity of the semi-permeable membrane.
Hydrogel matrix is capable of releasing biologically active, water-soluble materials having a molecular weight of less than 1,000 in a sustained manner over an extended period of time. Large, poorly water-soluble to water-insoluble molecules can be delivered in a steady sustained to extended release pattern for more than the intended application time of this device (eight hours).
When the medication is dispersed in a hydrogel matrix, it is delivered in the following manner.
The saliva flows through the semi-permeable membrane into the hydrogel matrix producing a solution with the medication. The hydrophilic polymer expands as it absorbs fluid (saliva) into the matrix. Through expansion, the polymer exerts pressure on the solution or suspension and this causes the medication to flow out into the fluid environment. Small molecules diffuse directly through the hydrogel matrix while larger molecules exit through pores and channels into the fluid environment, as noted in Rhine, et al., Journal of Pharmaceutical Sciences, Vol. 69, 265-270 (1980). The freeze-dried hydrogels of the disclosure demonstrate a pore size of about 8-10 um, contributing to a rapid rate of swelling and a correspondingly rapid rate of medication outflux. The rate is also controlled by the osmotic pressure gradient across the wall and the size of the medication molecule. These factors can be controlled by selection of medication and its concentration and by altering the physical properties of the polymer through the selection of materials (chitosan, polyvinyl, etc.) and the application of cross-linking agents.

Hydrogel matrix is formed to fit in the reservoir layer of the Gum Pad. The hydrogel matrix allows diffusion of fluid (saliva) into a polymeric matrix containing dispersed biologically active molecules, with subsequent mixing and dissolving of the active agent. Composition and use of hydrogels to contain and deliver medication are described in U. S. Patents Nos. 4,642,903 to Davies, and 5,114,719 to Sabel, et al. Medication delivery is enhanced if the polymer used for the hydrogel takes up water continuously.
This causes more of the medication to mix with the fluid and flow out of the device. The continuous water uptake polymer disclosed in U.S. Patent No 5,320,840 of Camble et al., would be suitable for use in the Gum Pad when very rapid medication delivery is desired. One skilled in the art can select polymeric ingredients and cross linking agents that, when suitably combined in the proper measure, will insure a hydrogel matrix with the preferred combination of properties.
Freeze-drying or lyophilization is a well known method of preparing heat-sensitive pharmaceuticals or nutrients. Aseptic conditions can be maintained throughout the process.
Freeze-drying is often used to improve the storage stability of therapeutic proteins and to protect them from thermal damage. Freeze-drying is the most reliable and easy method of preparation for water soluble proteins. Freeze-etching, a related cryotechnique, can be used with transmembrane proteins even in the presence of detergents or salts. Freeze-dried medication has a clear advantage in that it rapidly dissolves upon contact with appropriate solvents such as water or saliva. Rapid dissolution of medication is of critical importance in instances where the medication must enter the physiological system as soon as possible.
The medication/matrix solution is freeze-dried using a commercially available lyophilizer in an ordinary manner. Various cryoprotectants such as protein stabilizers (polymers and/or sugars), buffering salts, antioxidants, EDTA, and bulking agents may be added during the procedure. The product can be processed, using suitable auxiliary agents or exipient, into preparations suitable for buccal (transmucosal) delivery of the medication.

The following describes an example of fabrication of the reservoir layer using freeze-dried medication. The freeze-drier shelves are chilled to below about -40 degree C.
The condenser is chilled to below about -50 degree C. Molds conforming to the inner dimensions of the reservoir layer are filled with the medication/matrix solution. The filled molds are placed on the shelves and frozen to shelf temperature. The frozen solution is then exposed to the full vacuum (10-90 millitorrs) of the unit. Once this vacuum is achieved, the shelf temperature is gradually increased to about room temperature and sublimation continues, preferably for at least about 15 hours, or until the sample temperature reaches about 20 - 25 degree C. Typically, residual water is present at about 5% by weight of the final dried product. Crystallization of solutes, phase separation, unfolding and other forms of structural damage of fragile proteins and peptides can occur during the freeze-dry process. These problems can be diminished or prevented when proteins and peptides are prepared with hydrogel matrix and/or when cryoprotectant agents are added.

Meltback is an additional problem that occurs when the heat required during the drying process melts the frozen material. Meltback defeats the purpose of freeze-drying, the removal of water through sublimation rather than evaporation. Meltback would be unlikely during Gum Pad preparation because of the small size and limited thickness of the device.

Storage of freeze-dried bioactive proteins and peptides can be problematic under conditions of high temperature and humidity. A reasonable storage time (120 days) can be achieved by use of hydrogel and the addition of cryoprotectants such as sucrose, trehalose, or trehalose/boron. Vacuum storage at reduced temperature (+ 5 degrees C) can also prolong storage time.
Structure of the Gum Pad: Semi-Permeable Outer Layer The semi-permeable membrane is formed from polymers known to the art as osmosis and reverse osmosis membranes. The membrane employed in the Gum Pad is a soft, non-irritating fibrous or foam layer that allows the influx and outflux of biological fluids such as saliva. The membrane is insoluble in saliva and, in addition, does not react with the medication or any additives contained in the freeze-dried preparation. The membrane is strong enough to remain intact while resisting the pressure of hydrogel expansion.

Typical materials for forming the semi-permeable membrane are cellulose acylate, cellulose diacylate, cellulose triacylate, cellulose acetate, cellulose diacetate, cellulose triacetate, agar acetate, amylose triacetate, beta glucan acetate, acetaldehyde dimethyl acetate, cellulose acetate ethyl carbamate, polyamides, polyurethanes, sulfonated polystyrenes, cellulose acetate phthalate, cellulose acetate methyl carbamate, cellulose acetate succinate, cellulose acetate dimethylaminacetate, cellulose acetate ethyl carbamate, cellulose acetate chloracetate, cellulose dipalmatate, cellulose dioctanoate, cellulose dicaprylate, cellulose dipentaniate, cellulose acetate valerate, cellulose acetate succinate, cellulose propionate succinate, methyl cellulose, cellulose acetate p-toluene sulfonate, cellulose acetate butyrate, and cross-linked selectively semi-permeable polymers formed by the co-precipitation of a polyanion. A polycation as disclosed in U.S. Patent Nos. 3,173,876, 3,276,586, 3,541,005, 3,541,006, and 3,546,142. Semi-permeable polymers are disclosed by Loeb and Sourirajan in U.S. Patent No.
3,133,132. Other materials include lightly cross-linked polystyrene derivatives, cross-linked poly(sodium styrene sulfonate), poly(vinylbenzyltrimethyl ammonium chloride), cellulose acetate having a degree of substitution up to 1 and an acetyl content up to 21 %, cellulose diacetate having a degree of substitution of 1 to 2 and an acetyl content of 21 to 35%, and cellulose triacetate having a degree of substitution of 2 to 3 and an acetyl content of 35 to 44.8%, as disclosed in U.S. Patent No.
4,160,020.
The semi-permeable membrane is comprised of a flexible, high flux semi-permeable material.
Such materials include: a thin polymer film containing pores; a mat of non-woven, thermally fused fibers with apertures formed by inter-fiber spaces; and a foam layer with open cells as pores. High flux membranes promote the rapid delivery of medication. When the medication contained in the Gum Pad is a small molecule that is highly soluble in saliva and amorphously dispersed with an excipient, delivery can be accomplished in under 3 hours and in as brief an interval as 20 minutes. Thus a large dose of medication (e.g., 200 to 500 mg) can be administered over a relatively short period of time. When the medication is contained in hydrogel, the composition of the hydrogel determines the rate of delivery with the semi-permeable membrane exerting an additive rate limiting effect.
Generally, suitable high flux semi-permeable membrane materials can have a thickness of about 1 to 10 mils;
a porosity of about 30 to 70 vol. %; and a fluid permeability greater than about 2 x 10-4cm mil/atm hr, expressed per atmosphere of hydrostatic or osmotic pressure difference across the membrane. High flux semi-permeable membranes indirectly shorten the medication delivery period by enhancing the flow of fluid across the membrane.
High flux semi-permeable membranes used to coat sustained-release tablets have been problematic in that they can fracture if bitten or chewed. Due to its extended length and installed position between the gum and mucosal tissues, the flexible membrane used in the Gum Pad is not susceptible to being fractured. In addition, the Gum Pad fits securely between the gum and buccal mucosa and is unlikely to be bitten or chewed.

Gum Pad Lamination and Wrappincg Process The matrix containing medication is placed in the reservoir space between the backing layer and the semi-permeable membrane. The edges of the backing layer and the semi-permeable membrane are laminated together to enclose the reservoir layer thus forming the Gum Pad.
Chemical, thermal, or mechanical means, or any combination thereof, can be used to seal the pad. The pad can be simultaneously cut and heat-sealed using a conventional cutter/sealer. The sealing of plastics is known to the art and forms no portion of the novelty of this invention.

The Gum Pad may be laminated in continuous strip form, then cut into individual strips. To prevent premature reconstitution of the medication by exposure to moisture, the Gum Pad is wrapped in an individual, sealed envelope composed of a waterproof material, such as non-water soluble cellulose or cellulose derivative film. Impermeable polymer or aluminum envelopes may be used for humidity sensitive proteins. The envelope maintains sterility, increases shelf life.
protects the Gum Pad from moisture, and promotes ease of handling. When dried medication is used, the pad may be moistened prior to insertion for more rapid delivery of the medication.

The Gum Pad can be inexpensively manufactured as a simple laminate of a sheet of thermoplastic film for the base layer, an inner nonwoven reservoir layer impregnated with medication, and an apertured film as the semi-permeable layer, wherein the peripheral outer edges of the base and semi-permeable layers are heat sealed or ultrasonically welded together. From such stock materials, a typical gum pad can be produced in strip form at a cost in the range of about $500 - $1,000 per 2500 units, or about 20 to 40 cents per unit (excluding the cost of the drug agent), or substantially lower in larger quantities.
The Gum Pad is believed to have large commercial potential as a non-invasive, self-applied, slow-release delivery device for pharmaceuticais to treat a wide range of illnesses and organic conditions, such as treating periodontal diseases, preventing gum deterioration, treating bacterial or viral infection, regulating cardiovascular functions, preventing heart attacks and strokes, suppressing appetite, relieving pain, moderating digestive illnesses, stimulating immune system response, and moderating other metabolic and organic conditions.

Use of the Gum Pad When the Gum Pad is placed between the gingiva and buccal mucosa the semi-permeable layer 18 comes in contact with saliva. Saliva penetrates through the apertures or pores in the semi-permeable layer 18 and enters the medication-retaining reservoir layer 14. The penetrating saliva combines with and dissolves the medication, shown as dry particles 21 in FIG. 6 when contained in an exipient matrix. When the medication is dispersed in a hydrogel matrix, the hydrophilic polymer expands as it absorbs saliva.
Through expansion, the polymer exerts pressure on the solution or suspension.
In both instances, the medication diffuses in the saliva and is transported outwardly through the apertures or pores of the semi-permeable layer 18 to be absorbed by the mucosal tissue, as illustrated in FIG. 8. Upon absorption into the mucosal tissue, the medication enters the capillaries 22a and is transported within the circulatory system.
The Gum Pad is unique in its structure for mounting on the gums and saliva-activated diffusion toward the large surface areas of the buccal mucosa. The Gum Pad can deliver significantly more medication than other devices due to the capacity of the reservoir, the large mucosal surface to which the medication diffuses, and the length of time the device can be left in place.
The pad is easy to insert, fits snugly, and is comfortable to wear. It remains in the gum/buccal pocket with or without adhesive. The pad can remain in place for hours if necessary, thus allowing for continuous delivery of medication. The pad can also be applied sequentially for continuous drug delivery. Dosage can be adjusted by changing the colloidal state of the medication in the reservoir layer. The time interval over which the medication is delivered can be extended or abbreviated by changing the porosity of the matrix in the reservoir layer and/or the permeability of the semi-permeable membrane.

The Gum Pad presents a number of advantages over other transmucosal delivery devices. Buccal lozenges have been tested previously butfound to be easily dislodged by mouth movements. Bioadhesive patches or sacks that attach directly to the buccal mucosa tend to deliver less medication because the agent is applied to only a small surface area. The Gum Pad with its extended tubular shape and bulbous ends, covers approximately 10 times more surface area than the adhesive patch and, on that basis alone, can deliver 10 times the amount of medication. If necessary, two pads can be applied simultaneously, one over the upper jaw and the other over the lower jaw. Such a system that would deliver 20 times more medication than the patch. In addition, the shape and placement of the pad allows it to be supported by the natural contours of the jaw, thereby allowing the use of adhesives to be avoided altogether. By placement on the gum facing outwardly toward the mucosal, the medication diffused and transported by saliva pressure can disperse over a larger mucosal surface area, thereby further increasing medication delivery, while also decreasing the likelihood of irritation since the mucosa is exposed to lesser concentrations of medication.
Treatment with the Gum Pad using approved medications for known illnesses should not ordinarily require close medical supervision, and presents no risk of scar formation or infection. The pad can be swiftly removed by the patient if adverse medication effects are noted.
The pad is especially useful in situations where patients are active and require a convenient self-applied delivery device.
Patients are expected to prefer the pad over injections, so the compliance rate should be excellent. Gum Pad delivery is particularly suitable for: pre-operative patients who must have an empty stomach; cancer patients who are nauseated; patients who fear needles; patients with skin conditions; and children who resist swallowing or who are afraid of injections.
The Gum Pad can be used in the near term for delivering topical or systemic medications that have already proven suitable for this type of administration, for example opioid agonists, opioid antagonists, antidepressants, anxiolytics, antibiotics, antifungals, nicotine, antihistamines, antihypertensives, beta-blockers, anaesthetics, cardiovascular and vascular, renal, heparin, antisiezure, hormones, antigens, antibodies, enzymes and other central nervous system-acting drugs such as levodopa. Nutritional supplements such as vitamins or minerals, herbs, and plant extracts have been delivered transmucosally and are also suitable for Gum Pad delivery.

Improved Medication Delivery Various medications and forms of medications can be delivered in an improved manner by the Gum Pad. For example, the Gum Pad can be used for medications as uncharged molecules, molecular complexes, pharmacologically acceptable salts such as hydrochlorides, hydrobromides, sulfate, laurylate, paimitate, phosphate, nitrite, borate, acetate, maleate, tartrate, oleate, and salicylate. For acid drugs, salts of metals, amines or organic cations, for example, quaternary ammonium can be used. Derivatives of drugs such as esters, amides, and ethers can also be used. Medications that are water insoluble can be delivered by use of a water soluble derivative that will serve as a solute.
When the derivative is released systemically, it is converted by enzymes, hydrolyzed by body pH or other metabolic processes to the original biologically active form. Fat soluble substances can be absorbed by liposomes prior to incorporation in the pad.
A preferred residence time for effective drug delivery depends on the characteristics of the particular drug, but is at least 20-30 minutes. The kinetics of drug release depend on the characteristics of the matrix and relative percentages of its components, the total amount of medication incorporated, the particular application site, and the mode of application (topical or systemic). The total dose of the medication contained in the Gum Pad will vary according to the use of adjuvants and the pharmacodynamics of mucosal delivery and may be more or less than the standard oral, intramuscular, or intravenous dose. Speed of delivery can also be regulated by use of freeze-dried versus dried medication and by pre-insertion moistening. In general, delivery speed is: (1) slowestwhen the medication is dried and must be reconstituted by the saliva; (2) intermediate when the medication is dried but moistened prior to insertion; and (3) fastest when the medication is freeze-dried.

The Gum Pad may be used to deliver medication incorporated in liposomes when there is a particular need for the delivery of high concentrations over a prolonged interval (up to 24 hours) or, in the case of extremely fragile proteins and peptides, when extra preservation and protection is necessary.
The Gum Pad is well suited for delivery of biologically active polypeptides and proteins provided those peptides, or saliva activated peptides, are readily absorbed through the mucosa. The pad is useful in the treatment of time-limited conditions such as seizures and cardiac arrhythmias where a rapid response with subsequent withdrawal of medication is essential. The.pad is also advantageous when there is marked variability between patients in how much medication is necessary to achieve a desired effect (e.g. beta blockers). When the desired effect is noted, the physician or the patient can simply remove the pad. Medications that are insoluble or that have a disagreeable taste can be contained within the hydrogel matrix. Some examples of specific systemic applications are further described below.

The Gum Pad can be and is intended to be used with a broad range of medications for the benefit of patients. Controlled laboratory and clinical trials using Gum Pad delivery are necessary to determine the safe and effective use of individual medications.

Pharmaceutical agents such as drugs, hormones and nutritional supplements including herbs, plant extracts and vitamins can be delivered using the Gum Pad. Classes of medication suitable for Gum Pad delivery include cardiovascular agents such as nitrates, antiarrthymic, vasopressor, betaadrenergic blocking agents, vasodilators, and antihypertensive agents. Also deemed suitable are antibiotics, bacteriocidins, antiinflammatory, bronchodilator, antihistamine, antiemetic, muscle relaxant, and antiobesity agents. Agents that target the central nervous system (CNS) can be employed with the Gum Pad. These encompass stimulants, including respiratory stimulants, sedative hypnotics, anticonvulsants, analgesics, opioid agonists, opioid antagonists, antimigraine, antiemetic/antivertigo, antianxiety, antidepressant, antipsychotic, antiparkinson agents and agents to counteract or treat movement disorders.

The Gum Pad can be used to deliver pharmaceutically active forms of various proteins and peptides, including but not limited to gonadal and adrenal hormones such as estrogens, progestins, pregnenolone, DHEA, testosterones, corticosteroids, and aldosterone. It can be used to deliver centrally active neurohormones, neuroprotectants, and neurotransmitters as well as agents that affect neurotransmitters, their receptors, and their transporters, including agonists and antagonists of GABA, serotonin, norepinephrine, epinephrine, dopamine, excitatory amino acids, acetylcholine, and glycine.
Other suitable medications include centrally active proteins and peptides such as beta-endorphin, enkephalins, bradykinin, angiotensin, gonadotropic hormones, thyroid stimulating hormone, adrenocorticotropic hormone, corticotropin releasing hormone, calcitonin, parathyroid hormone, growth hormone, and alpha or beta interferon. The Gum Pad can also be used to deliver neuromodulators such as Substance P, CCK, carnosine, cardiolipin, dynorphin, gastrin, glucagon, lipotropin, LHRH, neuropeptide Y, neurotensin, oxytocin, prolactin, secretin, somatostatin, and VIP. It can also be used to deliver adenosine derivatives, enzymes, enzyme inhibitors, ligands, genes, nucleotides, cytokines, phosphoramidities, antigens, antibodies, antibodies against enzymes and proteins, signal transduction peptides, isotope labeled compounds and other biomarkers, myogenic regulatory factors, prostagiandins, growth factors such as troponin, osteoprotegerin, angiogenesis growth factors, NGF, VGEF, bFGF, EGF, PDGF, and agents that affect growth factor receptors.

The Gum Pad can also be used to deliver medication topically by reversing its position and placing the semi-permeable membrane against the tissue to be treated topically. Topical medications deemed suitable for use in this manner include local anesthetic, antiinflamatory, anticlotting, and antiinfection agents. Antiplaque agents, enzyme inhibitors, genetically engineered cells, and bioprotective agents such as cathepsin C and histatin. may be applied to promote gum health.
A variety of analgesic agents can also be used in the pad. Medications that have the potential of preventing and treating periodontal disease can be used with the Gum Pad. These include gum growth promoting agents such as diphenylantoin sodium, cyclosporin, nifedipine, amlodipine, triclosan, cytokines, prostaglandins, retin-A
or retinols, nerve growth factor, recombinant gene products, or bone growth proteins that stimulate the repair of bone and tooth anchoring connective tissue.

Nutraceutical agents can also be applied by the Gum Pad, including, but not limited to, folic acid, B-6, K-1, Co-Q, green tea, echinacea, myrrh or other medicinal oils, and derivatives of seaweed or kelp.
The Gum Pad may be used for topical or systemic delivery of nutritional supplements or combinations of supplements that, for example, may include vitamins, minerals, trace minerals, amino acids, antioxidants, alpha lipoic acid, CoQ10, DMAE, SAMe, phospholipids, choline, triglycerides, and hormones such as pregnenolone, DHEA, melatonin, naturally derived estrogen and progesterone.
Plants or plant components can also be delivered by Gum Pad, including those from garlic, ginkgo biloba, kava kava, noni, ginseng, saw palmetto, milk thistle, stinging nettle, eucalyptus, aloe vera, feverfew, nasturtium, Ma Huang, and echinacea.

Examples Several examples of specific medications that can be used in an improved mode of treatment with the Gum Pad are presented in the following examples. These examples do not imply nor should be inferred to imply that the use of the Gum Pad is limited to these particular medications.

1. Vigabatrin is an irreversible inhibitor of GABA-aminotransferase. It is effective in patients with refractory seizures and can be used when a patient has continued to seize in spite of treatment with other agents. The total amount of vigabatrin administered is in the range of 1.5 - 3 grams/day but a single seizure can often be aborted by the use of less than 0.5 grams. Vigabatrin is freely soluble in water and as such can be applied in an essentially aqueous solution to the Gum Pad. The absorbent second layer of the pad is impregnated with a solution containing 0.5 grams vigabatrin and then freeze-dried. The freeze-dried material rapidly dissolves once the pad comes in contact with saliva. Vigabatrin is rapidly absorbed through the mucosa and the peak concentration in the plasma is reached within 20 minutes.
Once a therapeutic level is attained, it remains at a significant concentration for about 5 days. To treat a refractory seizure, one or two Gum Pads containing Vigabatrin are placed between the gum and buccal tissues for a period of 5-20 minutes or until the seizure is aborted. The amount of Vigabatrin added to the absorbent layer can be varied along with the time interval that the pads are in contact with the buccal mucosa. Other anticonvulsant medications that could be considered for transmucosal administration are hydantoins, benzodiazapines, GABA analogues, succinamides, and carbamepazine.
Vigabatrin in doses of 0.25-0.50 grams effectively curbs the craving for nicotine and cocaine.
Vigabatrin impregnated Gum Pads would afford more rapid relief of craving than the oral ingestion of vigabatrin. Nicotine delivered by gum, patch, or spray has been used to curb craving for cigarettes;
nicotine could also be delivered by the Gum Pad.
2. The anxiolytic, aprazolam, is a short acting benzodiazapine that acts through binding with GABA
receptors in the brain. Lipid solubility facilitates the rapid passage of the medication into the brain. A
relatively short duration of action makes aprazolam suitable for the treatment of brief discomforts occasioned by anxiety. Aprazolam effectively aborts panic attacks when used parenterally as a single dose in the range of 0.25-3 mg. When ingested in pill form, effects are demonstrated after approximately 30 minutes. When medication is administered by the Gum Pad, it is absorbed directly into the systemic circulation, avoiding high first pass metabolism, a problem for benzodiazapines. A freeze dried preparation containing 1 mg of aprazolam is placed in the reservoir layer of the pad. The pad is inserted at the onset of heightened anxiety or a panic attack. Effects are noted within 2-10 minutes, with marked diminution of anxiety. Pad can then be removed and another pad applied if the anxiety recurs. After the pad is removed, antianxiety effects dissipate over the following 20 minutes.
Concentration of aprazolam, frequency of use, and the duration of application to the buccal surface may vary within the recommended dosage. Other short acting benzodiazapines that could be applied in a similar manner to treat acute anxiety are brotizolam and triazolam.
3. The short acting, powerful anesthetic, midazolam, can also exert hypnotic and sedative effects when administered in lesser doses. Although midazolam is classified as a benzodiazapine, it differs from other benzodiazapines in that it is an acid salt that is soluble in water. It is usually administered parenterally. For preoperative sedation, 5 mg of midazolam is administered by intramuscular injection to adults. Transmucosal midazolam is used for preoperative sedation in children in doses of 0.2 to 0.75 mg/kg. Administration in a flavored syrup preparation to the sublingual mucosa is more readily accepted by children compared to rectal or nasal administration. Sublingual dosing produces higher plasma levels than nasal or rectal administration, with sedative and anxiolytic levels attained within 10 minutes. Table I, from Scott et al. (1998), is a representative plot of serum midazolam concentrations at various intervals following buccal administration. The Gum Pad can be used for preoperative sedation. For adult use, a solution containing 2.5 mg of midazolam with fruit flavoring is added to the absorbent second layer of the pad. The pad is then freeze-dried. One-half to one hour preoperatively, the pad is inserted in between the gum and buccal mucosa and left in place until the patient appears sufficiently relaxed. Initial effects are observed within minutes and peak effects are observed in 15 to 50 minutes, matching peak plasma concentrations. The pad can be left in place until the induction of anesthesia if desired. Another medication in this class is etomidate. It has already been applied transmucosally and would be a suitable candidate for use with the Gum Pad. Table II, from Streisand, Jaarsma et al (1998) portrays serum etomidate concentrations at various intervals following oral transmucosal application of 12.5, 25, 50, and 100 mg of etomidate.

4. Fentanyl is an opioid analgesic and sedative that reacts principally with the opioid receptors in the brain. It is frequently used postoperatively to alleviate pain and to increase drowsiness. Fentanyl citrate, .05 mg/ml, is the form administered parenterally. Fentanyl has been administered by adhesive dermal patch and transmucosally by use of a lozenge on a stick (Oralet).
Transmucosal delivery of fentanyl is as efficacious as parenteral administration. A fentanyl dosage of 300-400 micrograms produces sedation and analgesia that is maintained for hours. Table III, from Macaluso et al. (1996), illustrates the effectiveness of oral transmucosal fentanyl on preoperative anxiety in a controlled experiment. Fentanyl transfers readily through the buccal mucosa and a therapeutic level is rapidly attained in10-20 minutes. Table IV, from Streisand, Busch et al. (1998), shows the mean serum fentanyl concentration following oral trasmucosal application as a function of time and doseage. A solution containing 250 micrograms of fentanyl citrate is added to the absorbent second layer of the Gum Pad, which is then dried. The pad is applied between the gum and buccal mucosa and left in place. Fentanyl concentrations in the serum steadily increase and can be maintained at a fairly constant level for 8-72 hours if necessary.

5. Oxytocin is a model peptide used to stimulate uterine contractions to induce or maintain labor.
It is administered by I.V. drip, by suppository, nasal spray, and more recently by buccal patch. It is destroyed by gastric enzymes when ingested. It is rapidly absorbed through the mucosa with peak levels attained in 5-10 minutes. Plasma half-life is brief and clinical response lasts 1-3 hours depending on route of administration. A solution containing 2.5 units of oxytocin is added to the absorbent second layer (14) and the pad is placed between gum and buccal mucosa. Onset of action is rapid (2-5 minutes) and the pad may be left in place until the desired outcome is attained. Additional pads may be inserted as clinically indicated up to a maximum total dose of 10 units. The following categories of biologically active peptides and proteins cannot be administered by pill or capsule but can be absorbed transmucosally:
appetite enhancers (NPY); appetite inhibitors (CCK); immune system enhancers (interferon, enkephalins, thymopoietin, TNF); cardiovascular (tissue plasminogen activator, bradykinin, angiotensin antagonists);
and metabolic modulators (insulin, human growth hormone, gonadotrophins, buserelin, melatonin, calcitonin, vasopressins, LHRH, growth factors). GLP-1 is a glucagon-like peptide used to modulate plasma insulin levels. Table V (three parts), from Gutiak et al., details changes in plasma glucose, insulin, and glucagon levels after transmucosal delivery of GLP-1.

6. Dronabinol contains the most active ingredient found in marijuana, tetrahydrocannabinol (delta-9-THC). Dronabinol is used to relieve nausea and vomiting secondary to cancer chemotherapy and to stimulate appetite in cancer and AIDS patients. Appetite enhancing effects can persist for more than 24 hours. Dronabinol is insoluble in water and is formulated in sesame oil for oral administration.
Doses of 2.5-5 mg and a total daily dose of 15-20 mg are considered safe. When dronabinol is ingested in pill form, it is almost completely absorbed from the gastrointestinal tract but then largely destroyed due to extensive first-pass deactivation in the liver. Only 10-20% of the medication reaches the systemic circulation after oral administration. Activity is preserved when it is administered parenterally or transmucosally. Dronabinol is lipophilic with an affinity for the brain and adipose tissue. After oral ingestion, it is stored in adipose tissue and slowly released with a half-life of 30 hours. Medication effects commence in one-half to 2 hours with peak effects from 2- 4 hours. Gum Pad administration is ideal for this medication because dronabinol is easily absorbed through the lipophilic oral mucosa and can enter the systemic circulation directly, thus avoiding first-pass degredation in the liver. A preparation containing 5 mg dronabinol is added to the absorbent second layer of the pad. The pad is then freeze-dried. The pad is inserted between the gum and buccal mucosa and left in place until the nausea subsides and appetite returns. Initial effects are observed within minutes and peak effects are observed in 30-60 minutes. Other antiemetic medications that could be used with the Gum Pad include compazine, benadryl, ondansetron, hydroxyzine, meclizine, and trimethobenzamide.

7. Propranolol is a beta-adrenergic receptor blocking agent used to treat cardiac arrhythmias. It is also used to abort stage fright. Propranolol is absorbed from the gastrointestinal tract in 15-25 minutes and peak levels are achieved in 1-1 '/z hours. Propranolol is moderately short acting with a half life of 4 hours. Individuals vary in their response to propranolol; some respond as well to 10 mg as others do to 60 mg. Because a rapid response is critical in treating arrhythmias but the problem is time limited, transmucosal propranolol is an ideal medication for use at home or before arriving at the emergency room. When the episode terminates, the pad is removed. Because of the variation in individual responses to beta blockers, pads of varying dosage are prepared. A solution containing either 5mg, 10mg, or 30mg is added to the absorbent second layer of the pad. The pad is then freeze-dried. When the arrhythmia is noted, the pad is inserted between the gum and buccal mucosa and left in place until the arrhythmia converts to a regular rhythm. The pad is effective in 2-8 minutes with peak medication levels achieved in one hour. Pads can be kept at home by cardiac patients using monitoring devices.
In addition to propranolol, beta blockers esmolol and metaprolol have a very short half life, making them suitable for the treatment of cardiac arrhythmias. These medications can be used with the Gum Pad.
Verapamil, a calcium channel blocker, and adenosine, a purine nucleotide, are also used in the emergency treatment of arrhythmias and can be applied with the Gum Pad.
Streptokinase, a bacterial protein and urokinase, an enzyme, are used as soon as possible after a heart attack to dissolve the clot.
These agents could be delivered transmucosally using the Gum Pad.

It is understood that many modifications and variations may be devised given the above description of the principles of the invention. It is intended that all such modifications and variations be considered as within the spirit and scope of this invention, as defined in the following claims.

Claims (10)

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows:
1. ~The use of a gum pad to deliver a medication to the buccal mucosa tissues in the mouth:
(a) ~said pad having a nonporous first layer, a second layer for retaining a medication therein, and a semi-permeable third layer covering the second layer and sealed to said first layer so as to form a sealed pocket enclosing said second layer;
(b) ~said second layer impregnated with medication to be delivered into the human circulatory system; and (c) ~said pad placed on a supporting part within the mouth of the person with said semi-permeable third layer facing outwardly toward mucosal tissue in the mouth so as to permit saliva within the mouth to penetrate into said semi-permeable third layer and liquify the medication in said second layer and transport it by diffusion through said semi-permeable third layer for absorption into the mucosal tissue, wherein said second layer has a total volume of less than 4.0 cm3, the concentration of the medication is in the range of 0.005% to 25% by weight of a total dispersion the medication is carried in, and the medication delivered through the mucosal tissue into the human circulatory system within a matter of a few minutes or more, and maintained for a number of hours.
2. The use of a gum pad to deliver a medication to the buccal mucosa tissues in the mouth:
(a) ~said pad having a nonporous first layer, a second layer for retaining a medication therein, and a semi-permeable third layer covering the second layer and sealed to said first layer so as to form a sealed pocket enclosing said second layer;

(b) ~said second layer impregnated with medication to be delivered into the human circulatory system; and (c) ~said pad placed on a supporting part within the mouth of the person with said semi-permeable third layer facing outwardly toward mucosal tissue in the mouth so as to permit saliva within the mouth to penetrate into said semi-permeable third layer and liquefy the medication in said second layer and transport it by diffusion through said semi-permeable third layer for absorption into the mucosal tissue, wherein the medication retained in said second layer is selected from the group comprising: uncharged molecules; molecular complexes; pharmacologically acceptable salts, acids, amines or organic cations; derivatives of esters, amides, or ethers;
biologically active polypeptides or proteins; or nutritional supplements.
3. The use of a gum pad to deliver a medication to the buccal mucosa tissues in the mouth:
(a) ~said pad having a nonporous first layer, a second layer for retaining a medication therein, and a semi-permeable third layer covering the second layer and sealed to said first layer so as to form a sealed pocket enclosing said second layer;
(b) ~said second layer impregnated with medication to be delivered into the human circulatory system; and (c) ~said pad placed on a supporting part within the mouth of the person with said semi-permeable third layer facing outwardly toward mucosal tissue in the mouth so as to permit saliva within the mouth to penetrate into said semi-permeable third layer and liquify the medication in said second layer and transport it by diffusion through said semi-permeable third layer for absorption into the mucosal tissue, wherein the medication retained in said second layer is selected from the group comprising: anticonvulsants; anxiolytics; anesthetics; analgesics; peptides;
antiemetics; or beta-adrenergic blockers.
4. The use of a gum pad according to Claim 3 wherein said medication is vigabratin used to treat seizures, and the medication delivered has effect within 20 minutes.
5. The use of a gum pad according to Claim 3, wherein said medication is aprazolam used to treat anxiety, and the medication delivered has effect within 2 - 10 minutes.
6. The use of a gum pad according to Claim 3, wherein said medication is midazolam used as a sedative, and the medication delivered has effect within 10 minutes.
7. The use of a gum pad according to Claim 3, wherein said medication is fentanyl used to alleviate pain, and the medication delivered has effect within 10 - 20 minutes.
8. The use of a gum pad according to Claim 3, wherein said medication is oxytocin used to induce labor, and the medication delivered has effect within 5 - 10 minutes.
9. The use of a gum pad according to Claim 3, wherein said medication is dronabinol used to relieve nausea, and the medication delivered has effect within 30 minutes.
10. The use of a gum pad according to Claim 3. wherein said medication is propanolol used to treat stage fright, and the medication delivered has effect within 2 -8 minutes,
CA002370202A 1999-04-20 2000-04-18 Gum pad for delivery of medication to mucosal tissues Expired - Fee Related CA2370202C (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US13034199P 1999-04-20 1999-04-20
US09/510,470 US6319510B1 (en) 1999-04-20 2000-02-22 Gum pad for delivery of medication to mucosal tissues
US60/130,341 2000-02-22
US09/510,470 2000-02-22
PCT/US2000/010528 WO2000062764A1 (en) 1999-04-20 2000-04-18 Gum pad for delivery of medication to mucosal tissues

Publications (2)

Publication Number Publication Date
CA2370202A1 CA2370202A1 (en) 2000-10-26
CA2370202C true CA2370202C (en) 2007-12-11

Family

ID=26828397

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002370202A Expired - Fee Related CA2370202C (en) 1999-04-20 2000-04-18 Gum pad for delivery of medication to mucosal tissues

Country Status (6)

Country Link
US (1) US6319510B1 (en)
EP (1) EP1173155A4 (en)
JP (1) JP2002542186A (en)
AU (1) AU767373B2 (en)
CA (1) CA2370202C (en)
WO (1) WO2000062764A1 (en)

Families Citing this family (527)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030118641A1 (en) * 2000-07-27 2003-06-26 Roxane Laboratories, Inc. Abuse-resistant sustained-release opioid formulation
WO2001008661A2 (en) * 1999-07-29 2001-02-08 Roxane Laboratories, Inc. Opioid sustained-released formulation
US6180144B1 (en) * 2000-01-27 2001-01-30 The Goodyear Tire & Rubber Co Chewing gum base stabilized with carnosic acid
US7785572B2 (en) 2000-03-17 2010-08-31 Lg Household And Health Care Ltd. Method and device for teeth whitening using a dry type adhesive
JP3682433B2 (en) 2000-03-17 2005-08-10 エル・ジー ハウスホールド アンド ヘルスケア リミティッド Tooth whitening patch
US8652446B2 (en) 2000-03-17 2014-02-18 Lg Household & Healthcare Ltd. Apparatus and method for whitening teeth
NZ505514A (en) * 2000-06-30 2003-02-28 Bee & Herbal New Zealand Ltd Method of manufacturing a wound dressing for the application of honey
US6682757B1 (en) * 2000-11-16 2004-01-27 Euro-Celtique, S.A. Titratable dosage transdermal delivery system
US6576226B1 (en) * 2000-11-17 2003-06-10 Gary R. Jernberg Local delivery of agents for disruption and inhibition of bacterial biofilm for treatment of periodontal disease
US6726898B2 (en) 2000-11-17 2004-04-27 Gary R. Jernberg Local delivery of agents for disruption and inhibition of bacterial biofilm for treatment of periodontal disease
US20020106407A1 (en) * 2000-12-11 2002-08-08 Dennis Coleman Method and apparatus for treating breakthrough pain
US7803392B2 (en) * 2000-12-27 2010-09-28 University Of Kentucky Research Foundation pH-Sensitive mucoadhesive film-forming gels and wax-film composites suitable for topical and mucosal delivery of molecules
WO2002071968A2 (en) * 2001-03-14 2002-09-19 Gerald Mclaughlin Strips for treating teeth
JP4850346B2 (en) * 2001-03-15 2012-01-11 救急薬品工業株式会社 Mucosal patch
US6946142B2 (en) * 2001-06-23 2005-09-20 Lg Household & Healthcare Ltd. Multi-layer patches for teeth whitening
EP1418862A4 (en) * 2001-06-29 2010-06-09 Leon J Lewandowski Individualized addiction cessation therapy
DE10137405A1 (en) * 2001-07-31 2003-02-20 Beiersdorf Ag Drug-containing self-adhesive composition production, e.g. for use in plasters, from styrene block copolymer by continuous, solvent-free and mastication-free process based on extrusion
DE10141650C1 (en) 2001-08-24 2002-11-28 Lohmann Therapie Syst Lts Safe transdermal therapeutic system for administration of fentanyl or analogous analgesics, having matrix layer of carboxy group-free polyacrylate adhesive providing high permeation rate
US6896914B2 (en) * 2001-10-26 2005-05-24 David I. Chapnick Method for normalizing insulin levels
US20050164978A1 (en) * 2001-10-26 2005-07-28 Chapnick David I. Method for normalizing insulin levels
AU2002362069A1 (en) * 2001-12-14 2003-06-30 Syed Rizvi Feminine wipe for symptomatic treatment of vaginitis
GB0130964D0 (en) * 2001-12-24 2002-02-13 Special Products Ltd Pharmaceutical composition
US20030124178A1 (en) * 2001-12-28 2003-07-03 Haley Jeffrey T. Soft, adherent, soluble oral patch
RU2004126684A (en) * 2002-02-06 2005-04-20 Кинг Фармасьютикалз, Инк. (Us) ORAL PEDIATRIC COMPOSITIONS OF TRIMETOBENBENZAMIDE AND WAYS OF THEIR APPLICATION
US6589216B1 (en) 2002-02-20 2003-07-08 Abbott Research Group, Inc. Vaginal douches, vaginal douche applicators and methods of vaginal douching
US8118789B2 (en) * 2002-02-20 2012-02-21 Abbott Research Group, Inc. Deodorizer devices and systems for controlling perspiration-related body odor
US7270653B2 (en) * 2002-02-20 2007-09-18 Abbott Research Group Methods of treating abnormal biological conditions using metal oxides
DE10226494A1 (en) * 2002-06-14 2004-01-08 Lts Lohmann Therapie-Systeme Ag Film-shaped mucoadhesive dosage forms for administration of cannabis active ingredients
US6944549B2 (en) * 2002-10-25 2005-09-13 Syngenta Participations Ag Method and apparatus for automated detection of peaks in spectroscopic data
US7192614B2 (en) * 2002-11-05 2007-03-20 Gelstat Corporation Compositions and methods of treatment to alleviate or prevent migrainous headaches and their associated symptoms
US20040086579A1 (en) * 2002-11-05 2004-05-06 Higgins James W. Dietary supplement comprising parthenolide
US7655618B2 (en) * 2002-12-27 2010-02-02 Diobex, Inc. Compositions and methods for the prevention and control of insulin-induced hypoglycemia
WO2004060387A1 (en) * 2002-12-27 2004-07-22 Diobex, Inc. Compositions and methods for the prevention and control of insulin-induced hypoglycemia
US20040147534A1 (en) * 2003-01-23 2004-07-29 Foote Mary Ann Topical composition and method for treating occlusive wounds
JP2006523703A (en) * 2003-04-14 2006-10-19 シャイア ラボラトリーズ,インコーポレイテッド Pharmaceutical compositions that release active agents from buccal or sublingual locations to overcome the absorption window problem
US7306812B2 (en) 2003-05-09 2007-12-11 Cephalon, Inc. Dissolvable backing layer for use with a transmucosal delivery device
US7276246B2 (en) * 2003-05-09 2007-10-02 Cephalon, Inc. Dissolvable backing layer for use with a transmucosal delivery device
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20040234579A1 (en) * 2003-05-22 2004-11-25 Mark D. Finke, Inc. Dietary supplements and methods of preparing and administering dietary supplements
US20040247706A1 (en) * 2003-06-06 2004-12-09 Roberts Stephen C. Transdermal dietary supplement comprising parthenolide
US20040247705A1 (en) * 2003-06-06 2004-12-09 Roberts Stephen C. Transdermal compositions and methods of treatment to alleviate or prevent migrainous headaches and their associated symptoms
US8337519B2 (en) 2003-07-10 2012-12-25 Boston Scientific Scimed, Inc. Embolic protection filtering device
US20060198800A1 (en) * 2003-08-14 2006-09-07 Natalie Dilallo Skin care compositions including hexapeptide complexes and methods of their manufacture
US20050063932A1 (en) * 2003-08-14 2005-03-24 Natalie Dilallo Skin care compositions including hexapeptide complexes and methods of their manufacture
US20080317828A1 (en) * 2003-09-24 2008-12-25 Kazuyoshi Furusawa Fentanyl compound-containing edible patch to be applied to oral mucosa
US20050084551A1 (en) * 2003-09-26 2005-04-21 Jensen Claude J. Morinda citrifolia-based oral care compositions and methods
US20050271746A1 (en) * 2004-05-18 2005-12-08 Abbott Chun L Topical treatments for abnormal biological conditions and method of topically treating such conditions
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
EP1637547B8 (en) * 2004-09-16 2009-10-07 Polymekon S.r.l. Process for the preparation of a polymeric hydrogel based on a highly purified polyvinylalcohol and uses thereof
DE102004056576A1 (en) * 2004-11-23 2006-05-24 LABTEC Gesellschaft für technologische Forschung und Entwicklung mbH Rapid Card
US20060134201A1 (en) * 2004-12-16 2006-06-22 Haley Jeffrey T Collagen troches for treating mouth lesions
GB2421431B (en) * 2004-12-24 2007-10-10 Aquasol Ltd Dosing systems
WO2006071659A1 (en) * 2004-12-29 2006-07-06 Trustees Of Boston University Delivery of h2 antagonists
CA2603649C (en) * 2005-04-08 2014-10-14 Ozpharma Pty Ltd Buccal delivery system
US20060252010A1 (en) * 2005-05-09 2006-11-09 Sunnen Gerard V Sodium chloride pad for treatment of dental conditions
US20080248090A1 (en) * 2005-05-09 2008-10-09 Sunnen Gerard V Graduated concentration sodium chloride patches for the treatment of dental conditions
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
WO2007047010A2 (en) * 2005-10-20 2007-04-26 Indevus Pharmaceuticals, Inc. Anti-emetic uses of cannabinoid analogs
WO2007055806A1 (en) * 2005-10-31 2007-05-18 Indevus Pharmaceuticals, Inc. Anti-emetic uses of (3r,4r)-δ8-tetrahydrocannabinol-11-oic acids
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US8202535B2 (en) 2006-01-06 2012-06-19 Acelrx Pharmaceuticals, Inc. Small-volume oral transmucosal dosage forms
US8252328B2 (en) * 2006-01-06 2012-08-28 Acelrx Pharmaceuticals, Inc. Bioadhesive drug formulations for oral transmucosal delivery
US8535714B2 (en) 2006-01-06 2013-09-17 Acelrx Pharmaceuticals, Inc. Small volume oral transmucosal dosage forms containing sufentanil for treatment of pain
US8252329B2 (en) 2007-01-05 2012-08-28 Acelrx Pharmaceuticals, Inc. Bioadhesive drug formulations for oral transmucosal delivery
US8865743B2 (en) 2006-01-06 2014-10-21 Acelrx Pharmaceuticals, Inc. Small volume oral transmucosal dosage forms containing sufentanil for treatment of pain
US8753308B2 (en) 2006-01-06 2014-06-17 Acelrx Pharmaceuticals, Inc. Methods for administering small volume oral transmucosal dosage forms using a dispensing device
US9066847B2 (en) * 2007-01-05 2015-06-30 Aceirx Pharmaceuticals, Inc. Storage and dispensing devices for administration of oral transmucosal dosage forms
US8357114B2 (en) 2006-01-06 2013-01-22 Acelrx Pharmaceuticals, Inc. Drug dispensing device with flexible push rod
US9289583B2 (en) 2006-01-06 2016-03-22 Acelrx Pharmaceuticals, Inc. Methods for administering small volume oral transmucosal dosage forms using a dispensing device
CN101370893B (en) * 2006-01-19 2012-11-14 陶氏康宁公司 Silicone adhesive for adhesion to wet surfaces
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US8349120B2 (en) * 2006-03-07 2013-01-08 Ora Health Corporation Multi-layer patch made on a sheet and enclosed in a blister
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8236010B2 (en) 2006-03-23 2012-08-07 Ethicon Endo-Surgery, Inc. Surgical fastener and cutter with mimicking end effector
US20070248655A1 (en) * 2006-04-21 2007-10-25 Haley Jeffrey T Lenticular shaped protective mouth sore discs
US20070248654A1 (en) * 2006-04-21 2007-10-25 Haley Jeffrey T Protective mouth sore discs made with corn starch
US20070260491A1 (en) * 2006-05-08 2007-11-08 Pamela Palmer System for delivery and monitoring of administration of controlled substances
GB0610096D0 (en) * 2006-05-22 2006-06-28 Walker Adam Anti viral spreader
US20070299687A1 (en) * 2006-06-23 2007-12-27 Pamela Palmer Inpatient system for patient-controlled delivery of oral transmucosal medications dosed as needed
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
RS54764B1 (en) * 2006-07-21 2016-10-31 Biodelivery Sciences Int Inc Transmucosal delivery devices with enhanced uptake
US7506791B2 (en) 2006-09-29 2009-03-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with mechanical mechanism for limiting maximum tissue compression
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US20080169332A1 (en) 2007-01-11 2008-07-17 Shelton Frederick E Surgical stapling device with a curved cutting member
US20080275482A1 (en) * 2007-02-28 2008-11-06 Bruce Craig A Facial Lift
US20090001130A1 (en) 2007-03-15 2009-01-01 Hess Christopher J Surgical procedure using a cutting and stapling instrument having releasable staple-forming pockets
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
ES2319042B1 (en) * 2007-05-25 2010-02-12 Universidad Del Pais Vasco BIOCOMPATIBLE MICROGELS AND ITS APPLICATIONS.
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US8113837B2 (en) * 2007-11-26 2012-02-14 Peter John Zegarelli Oral appliance for delivering a medicament
JP2009184937A (en) * 2008-02-04 2009-08-20 Kiyomi Seida Cylindrical bag for caring gum, for delivering composition for gum to gum
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
JP5410110B2 (en) 2008-02-14 2014-02-05 エシコン・エンド−サージェリィ・インコーポレイテッド Surgical cutting / fixing instrument with RF electrode
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
ES2657214T3 (en) * 2008-07-30 2018-03-02 Nitto Denko Corporation Drug vehicles
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8945592B2 (en) 2008-11-21 2015-02-03 Acelrx Pharmaceuticals, Inc. Sufentanil solid dosage forms comprising oxygen scavengers and methods of using the same
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
CN102341048A (en) 2009-02-06 2012-02-01 伊西康内外科公司 Driven surgical stapler improvements
WO2010107761A1 (en) 2009-03-18 2010-09-23 Acelrx Pharmaceuticals, Inc. Improved storage and dispensing devices for administration of oral transmucosal dosage forms
KR101871659B1 (en) 2009-04-30 2018-08-02 젤티크 애스세틱스, 인코포레이티드. Device, system and method of removing heat from subcutaneous lipid-rich cells
CN102470078A (en) * 2009-07-30 2012-05-23 宝洁公司 Oral care articles and methods
EP2498763A4 (en) 2009-11-09 2015-10-07 Spotlight Technology Partners Llc Polysaccharide based hydrogels
AU2010314994B2 (en) 2009-11-09 2016-10-06 Spotlight Technology Partners Llc Fragmented hydrogels
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US20110268809A1 (en) 2010-04-28 2011-11-03 Paul Andrew Brinkley Nicotine-Containing Pharmaceutical Compositions
US20110274628A1 (en) 2010-05-07 2011-11-10 Borschke August J Nicotine-containing pharmaceutical compositions
JP5759544B2 (en) 2010-07-02 2015-08-05 ザ プロクター アンド ギャンブルカンパニー Methods for delivering active agents
RU2640933C1 (en) 2010-07-02 2018-01-12 Дзе Проктер Энд Гэмбл Компани Filaments containing active components, suitable for oral supplementation, non-woven fabrics and methods of manufacturing them
ES2560218T3 (en) * 2010-07-02 2016-02-17 The Procter & Gamble Company Process for making films from bands of nonwoven material
BR112013000101A2 (en) 2010-07-02 2016-05-17 Procter & Gamble filaments comprising active agent nonwoven webs and methods of manufacture thereof
EP2588654B1 (en) 2010-07-02 2019-08-07 The Procter and Gamble Company Nonwoven web comprising one or more active agents
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9301753B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Expandable tissue thickness compensator
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9788834B2 (en) 2010-09-30 2017-10-17 Ethicon Llc Layer comprising deployable attachment members
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9241714B2 (en) 2011-04-29 2016-01-26 Ethicon Endo-Surgery, Inc. Tissue thickness compensator and method for making the same
US9220500B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising structure to produce a resilient load
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US8777004B2 (en) 2010-09-30 2014-07-15 Ethicon Endo-Surgery, Inc. Compressible staple cartridge comprising alignment members
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
AU2011308701B2 (en) 2010-09-30 2013-11-14 Ethicon Endo-Surgery, Inc. Fastener system comprising a retention matrix and an alignment matrix
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
CZ303244B6 (en) * 2011-01-17 2012-06-13 Elmarco S.R.O. Carrier for oromucosal, especially sublingual application of physiologically active compounds
BR112013027794B1 (en) 2011-04-29 2020-12-15 Ethicon Endo-Surgery, Inc CLAMP CARTRIDGE SET
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9770189B2 (en) 2011-08-16 2017-09-26 Elwha Llc Systematic distillation of status data relating to regimen compliance
US20130078307A1 (en) 2011-09-22 2013-03-28 Niconovum Usa, Inc. Nicotine-containing pharmaceutical composition
US8524255B2 (en) * 2011-10-03 2013-09-03 noesisBIO LLC Lingual vestibular dosage-form and delivery system for transmucosal administration of pharmaceutical agents
US9907748B2 (en) 2011-10-21 2018-03-06 Niconovum Usa, Inc. Excipients for nicotine-containing therapeutic compositions
US9763928B2 (en) 2012-02-10 2017-09-19 Niconovum Usa, Inc. Multi-layer nicotine-containing pharmaceutical composition
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
MX353040B (en) 2012-03-28 2017-12-18 Ethicon Endo Surgery Inc Retainer assembly including a tissue thickness compensator.
CN104334098B (en) 2012-03-28 2017-03-22 伊西康内外科公司 Tissue thickness compensator comprising capsules defining a low pressure environment
MX354564B (en) * 2012-03-28 2018-03-09 Ethicon Endo Surgery Inc Tissue thickness compensator comprising at least one medicament.
RU2014143258A (en) 2012-03-28 2016-05-20 Этикон Эндо-Серджери, Инк. FABRIC THICKNESS COMPENSATOR CONTAINING MANY LAYERS
GB201208282D0 (en) 2012-05-11 2012-06-20 Surfaceskins Ltd Delivery device
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US20140005718A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Multi-functional powered surgical device with external dissection features
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US9364431B2 (en) * 2012-07-11 2016-06-14 Terence Vincent Callahan Infused carbohydrate based gel pad for sustained oral transmucosal delivery
US9700310B2 (en) 2013-08-23 2017-07-11 Ethicon Llc Firing member retraction devices for powered surgical instruments
JP6382235B2 (en) 2013-03-01 2018-08-29 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Articulatable surgical instrument with a conductive path for signal communication
JP6345707B2 (en) 2013-03-01 2018-06-20 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Surgical instrument with soft stop
US9687230B2 (en) 2013-03-14 2017-06-27 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US9649110B2 (en) 2013-04-16 2017-05-16 Ethicon Llc Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
ITMI20130682A1 (en) * 2013-04-24 2014-10-25 Giuliani Spa FORMS OF DOSAGE FOR ORAL ADMINISTRATION OF ACTIVE SUBSTANCES
US20160367442A1 (en) * 2013-06-26 2016-12-22 University Of Iowa Research Foundation Oral drug delivery device and methods of using the same
MX369362B (en) 2013-08-23 2019-11-06 Ethicon Endo Surgery Llc Firing member retraction devices for powered surgical instruments.
JP6629196B2 (en) * 2013-11-14 2020-01-15 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Systems and methods for applying oral care agents
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US20140166725A1 (en) 2014-02-24 2014-06-19 Ethicon Endo-Surgery, Inc. Staple cartridge including a barbed staple.
JP6462004B2 (en) 2014-02-24 2019-01-30 エシコン エルエルシー Fastening system with launcher lockout
SE539029C2 (en) * 2014-03-03 2017-03-21 B-O Wiberg Solutions Ab Smokeless tobacco product and method of manufacturing the same
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US20150272557A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Modular surgical instrument system
US20150272571A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Surgical instrument utilizing sensor adaptation
US10013049B2 (en) 2014-03-26 2018-07-03 Ethicon Llc Power management through sleep options of segmented circuit and wake up control
US10299792B2 (en) 2014-04-16 2019-05-28 Ethicon Llc Fastener cartridge comprising non-uniform fasteners
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
BR112016023807B1 (en) 2014-04-16 2022-07-12 Ethicon Endo-Surgery, Llc CARTRIDGE SET OF FASTENERS FOR USE WITH A SURGICAL INSTRUMENT
JP6636452B2 (en) 2014-04-16 2020-01-29 エシコン エルエルシーEthicon LLC Fastener cartridge including extension having different configurations
CN106456158B (en) 2014-04-16 2019-02-05 伊西康内外科有限责任公司 Fastener cartridge including non-uniform fastener
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
WO2015171466A2 (en) * 2014-05-05 2015-11-12 Centrix, Inc. Cleaning, drying, and dispensing applicator pad
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US10111679B2 (en) 2014-09-05 2018-10-30 Ethicon Llc Circuitry and sensors for powered medical device
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
MX2017003960A (en) 2014-09-26 2017-12-04 Ethicon Llc Surgical stapling buttresses and adjunct materials.
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
BR112017012996B1 (en) 2014-12-18 2022-11-08 Ethicon Llc SURGICAL INSTRUMENT WITH AN ANvil WHICH IS SELECTIVELY MOVABLE ABOUT AN IMMOVABLE GEOMETRIC AXIS DIFFERENT FROM A STAPLE CARTRIDGE
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
NZ732808A (en) 2014-12-23 2021-12-24 Acelrx Pharmaceuticals Inc Systems, devices and methods for dispensing oral transmucosal dosage forms
US20160249910A1 (en) 2015-02-27 2016-09-01 Ethicon Endo-Surgery, Llc Surgical charging system that charges and/or conditions one or more batteries
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10226250B2 (en) 2015-02-27 2019-03-12 Ethicon Llc Modular stapling assembly
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US10335149B2 (en) 2015-06-18 2019-07-02 Ethicon Llc Articulatable surgical instruments with composite firing beam structures with center firing support member for articulation support
US10835249B2 (en) 2015-08-17 2020-11-17 Ethicon Llc Implantable layers for a surgical instrument
US10213203B2 (en) 2015-08-26 2019-02-26 Ethicon Llc Staple cartridge assembly without a bottom cover
KR101610598B1 (en) * 2015-09-21 2016-04-07 비엔엘바이오테크 주식회사 FLEXIBLE MICRONEEDLE FOR DENTAL MATERIAL DELIVERY AND THE MANUFACTURING METHOD Of THE SAME
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10736633B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Compressible adjunct with looping members
US10478188B2 (en) 2015-09-30 2019-11-19 Ethicon Llc Implantable layer comprising a constricted configuration
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10532046B2 (en) 2015-12-03 2020-01-14 Niconovum Usa, Inc. Multi-phase delivery compositions and products incorporating such compositions
US20170165252A1 (en) 2015-12-10 2017-06-15 Niconovum Usa Inc. Protein-enriched therapeutic composition
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10588625B2 (en) 2016-02-09 2020-03-17 Ethicon Llc Articulatable surgical instruments with off-axis firing beam arrangements
JP6911054B2 (en) 2016-02-09 2021-07-28 エシコン エルエルシーEthicon LLC Surgical instruments with asymmetric joint composition
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US11064997B2 (en) 2016-04-01 2021-07-20 Cilag Gmbh International Surgical stapling instrument
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10433840B2 (en) 2016-04-18 2019-10-08 Ethicon Llc Surgical instrument comprising a replaceable cartridge jaw
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US20180168598A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Staple forming pocket arrangements comprising zoned forming surface grooves
JP2020501779A (en) 2016-12-21 2020-01-23 エシコン エルエルシーEthicon LLC Surgical stapling system
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10524789B2 (en) 2016-12-21 2020-01-07 Ethicon Llc Laterally actuatable articulation lock arrangements for locking an end effector of a surgical instrument in an articulated configuration
US10835246B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
JP6983893B2 (en) 2016-12-21 2021-12-17 エシコン エルエルシーEthicon LLC Lockout configuration for surgical end effectors and replaceable tool assemblies
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10588631B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical instruments with positive jaw opening features
US20180168608A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical instrument system comprising an end effector lockout and a firing assembly lockout
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10980536B2 (en) 2016-12-21 2021-04-20 Ethicon Llc No-cartridge and spent cartridge lockout arrangements for surgical staplers
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US11819752B1 (en) * 2017-01-19 2023-11-21 Neurovice, L.L.C. Oral device to protect the tongue of a user, and methods of use
US20180271767A1 (en) * 2017-03-21 2018-09-27 Zeltiq Aesthetics, Inc. Use of saccharides for cryoprotection and related technology
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US11141154B2 (en) 2017-06-27 2021-10-12 Cilag Gmbh International Surgical end effectors and anvils
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US20190000461A1 (en) 2017-06-28 2019-01-03 Ethicon Llc Surgical cutting and fastening devices with pivotable anvil with a tissue locating arrangement in close proximity to an anvil pivot axis
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
EP4070740A1 (en) 2017-06-28 2022-10-12 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US11058424B2 (en) 2017-06-28 2021-07-13 Cilag Gmbh International Surgical instrument comprising an offset articulation joint
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US10682134B2 (en) 2017-12-21 2020-06-16 Ethicon Llc Continuous use self-propelled stapling instrument
JP7110355B2 (en) 2018-01-26 2022-08-01 ザ プロクター アンド ギャンブル カンパニー Water soluble unit dose articles containing enzymes
WO2019147532A1 (en) 2018-01-26 2019-08-01 The Procter & Gamble Company Water-soluble unit dose articles comprising perfume
JP7127135B2 (en) 2018-01-26 2022-08-29 ザ プロクター アンド ギャンブル カンパニー Water soluble products and related processes
CA3087583C (en) 2018-01-26 2024-01-09 The Procter & Gamble Company Water-soluble unit dose articles comprising perfume
US11273022B2 (en) 2018-02-13 2022-03-15 Emanate Biomedical, Inc. Oral appliance in a blockchain system
WO2019168829A1 (en) 2018-02-27 2019-09-06 The Procter & Gamble Company A consumer product comprising a flat package containing unit dose articles
BR112020025604A2 (en) 2018-06-15 2021-03-23 R.J. Reynolds Tobacco Company nicotine purification
US10982176B2 (en) 2018-07-27 2021-04-20 The Procter & Gamble Company Process of laundering fabrics using a water-soluble unit dose article
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11666514B2 (en) 2018-09-21 2023-06-06 The Procter & Gamble Company Fibrous structures containing polymer matrix particles with perfume ingredients
CN113748195B (en) 2019-01-28 2024-01-19 宝洁公司 Recyclable, renewable or biodegradable packaging
EP3712237A1 (en) 2019-03-19 2020-09-23 The Procter & Gamble Company Fibrous water-soluble unit dose articles comprising water-soluble fibrous structures
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
BR112021023244A2 (en) 2019-06-28 2022-01-04 Procter & Gamble Soluble solid fibrous articles containing anionic surfactants
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US10758329B1 (en) 2019-08-20 2020-09-01 Raymond L. Wright, III Hydrating mouth guard
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
WO2021186434A1 (en) * 2020-03-17 2021-09-23 Elixie Ltd Device for transmucosal delivery of agents
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
US20220031351A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with differential articulation joint arrangements for accommodating flexible actuators
EP4188554A1 (en) 2020-07-31 2023-06-07 The Procter & Gamble Company Water-soluble fibrous pouch containing prills for hair care
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US20220378424A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a firing lockout
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
WO2023174910A1 (en) 2022-03-14 2023-09-21 Sissa - Scuola Internazionale Superiore Di Studi Avanzati Graphene-based drug delivery device for mucosal and transmucosal administration

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3173876A (en) 1960-05-27 1965-03-16 John C Zobrist Cleaning methods and compositions
NL271831A (en) 1960-11-29
US3276586A (en) 1963-08-30 1966-10-04 Rosaen Filter Co Indicating means for fluid filters
US3546142A (en) 1967-01-19 1970-12-08 Amicon Corp Polyelectrolyte structures
US3541006A (en) 1968-07-03 1970-11-17 Amicon Corp Ultrafiltration process
US3510053A (en) 1968-07-17 1970-05-05 Heinz Focke Pouch made of a single- or multiple-ply synthetic plastics sheet material,preferably for tobacco
US3541005A (en) 1969-02-05 1970-11-17 Amicon Corp Continuous ultrafiltration of macromolecular solutions
US4077407A (en) 1975-11-24 1978-03-07 Alza Corporation Osmotic devices having composite walls
US4153611A (en) 1976-05-10 1979-05-08 American Cyanamid Company Substituted tetrahydrobenzothiophenes and method of preparation thereof
JPS5758615A (en) 1980-09-26 1982-04-08 Nippon Soda Co Ltd Film agnent and its preparation
US4373519A (en) 1981-06-26 1983-02-15 Minnesota Mining And Manufacturing Company Composite wound dressing
US4389393A (en) 1982-03-26 1983-06-21 Forest Laboratories, Inc. Sustained release therapeutic compositions based on high molecular weight hydroxypropylmethylcellulose
US4485954A (en) 1982-06-01 1984-12-04 Japan Bano'k Co., Ltd. Tag assembly feeding mechanism
CA1208558A (en) 1982-10-07 1986-07-29 Kazuo Kigasawa Soft buccal
US4619935A (en) 1983-03-17 1986-10-28 Eli Lilly And Company Stable oncolytic formulations
ATE151286T1 (en) 1983-11-14 1997-04-15 Columbia Lab Inc BIOADHESIVE AGENTS
US4540566A (en) 1984-04-02 1985-09-10 Forest Laboratories, Inc. Prolonged release drug dosage forms based on modified low viscosity grade hydroxypropylmethylcellulose
US5855908A (en) 1984-05-01 1999-01-05 University Of Utah Research Foundation Non-dissolvable drug-containing dosage-forms for use in the transmucosal delivery of a drug to a patient
US4761288A (en) 1984-09-24 1988-08-02 Mezei Associates Limited Multiphase liposomal drug delivery system
US4642903A (en) 1985-03-26 1987-02-17 R. P. Scherer Corporation Freeze-dried foam dosage form
US5059421A (en) 1985-07-26 1991-10-22 The Liposome Company, Inc. Preparation of targeted liposome systems of a defined size distribution
GB8608818D0 (en) 1986-04-11 1986-05-14 Reckitt & Colmann Prod Ltd Pharmaceutical compositions
US4713243A (en) 1986-06-16 1987-12-15 Johnson & Johnson Products, Inc. Bioadhesive extruded film for intra-oral drug delivery and process
JPH0744940B2 (en) 1986-12-24 1995-05-17 ライオン株式会社 Base material for oral application
US5114719A (en) 1987-04-29 1992-05-19 Sabel Bernhard A Extended drug delivery of small, water-soluble molecules
US4906378A (en) 1987-12-28 1990-03-06 Minnesota Mining And Manufacturing Company Composite chromatographic article
US4891227A (en) 1988-02-02 1990-01-02 Richardson-Vicks Inc. Medicated cleansing pads
US4891228A (en) 1988-02-02 1990-01-02 Richardson-Vicks Inc. Medicated cleansing pads
US4900552A (en) 1988-03-30 1990-02-13 Watson Laboratories, Inc. Mucoadhesive buccal dosage forms
US4937078A (en) 1988-08-26 1990-06-26 Mezei Associates Limited Liposomal local anesthetic and analgesic products
JP2656338B2 (en) 1989-01-31 1997-09-24 日東電工株式会社 Oral mucosa patch preparation
US5021053A (en) 1989-07-14 1991-06-04 Alza Corporation Oral osmotic device with hydrogel driving member
US5225212A (en) 1989-10-20 1993-07-06 Liposome Technology, Inc. Microreservoir liposome composition and method
US5197882A (en) 1990-05-14 1993-03-30 Gary R. Jernberg Periodontal barrier and method for aiding periodontal tissue regeneration agents
US5071704A (en) * 1990-06-13 1991-12-10 Fischel Ghodsian Fariba Device for controlled release of vapors and scents
IE912365A1 (en) 1990-07-23 1992-01-29 Zeneca Ltd Continuous release pharmaceutical compositions
US5326685A (en) 1991-02-13 1994-07-05 Gaglio Thomas J Viscous fluid dispensing apparatus
ATE162725T1 (en) 1991-10-16 1998-02-15 Richardson Vicks Inc IMPROVED SKIN PENETRATION SYSTEMS FOR INCREASED TOPICAL RELEASE OF DRUGS
US5200195A (en) 1991-12-06 1993-04-06 Alza Corporation Process for improving dosage form delivery kinetics
US5200194A (en) 1991-12-18 1993-04-06 Alza Corporation Oral osmotic device
US5248310A (en) 1992-03-27 1993-09-28 Alza Corporation Oral osmotic device with hydrogel driving member
ATE155681T1 (en) 1992-05-18 1997-08-15 Minnesota Mining & Mfg DEVICE FOR TRANSMUCOSAL ACTIVE DELIVERY
US5267862A (en) 1993-01-08 1993-12-07 Parker Jonathan A Intraoral appliance
US5762952A (en) 1993-04-27 1998-06-09 Hercon Laboratories Corporation Transdermal delivery of active drugs
US5713852A (en) 1995-06-07 1998-02-03 Alza Corporation Oral dosage and method for treating painful conditions of the oral cavity
US5849322A (en) 1995-10-23 1998-12-15 Theratech, Inc. Compositions and methods for buccal delivery of pharmaceutical agents
US5891465A (en) 1996-05-14 1999-04-06 Biozone Laboratories, Inc. Delivery of biologically active material in a liposomal formulation for administration into the mouth
US5741500A (en) * 1996-07-15 1998-04-21 Yates; Alayne Gum growth pad

Also Published As

Publication number Publication date
EP1173155A4 (en) 2009-05-06
CA2370202A1 (en) 2000-10-26
WO2000062764A1 (en) 2000-10-26
EP1173155A1 (en) 2002-01-23
JP2002542186A (en) 2002-12-10
AU4363000A (en) 2000-11-02
AU767373B2 (en) 2003-11-06
US6319510B1 (en) 2001-11-20

Similar Documents

Publication Publication Date Title
CA2370202C (en) Gum pad for delivery of medication to mucosal tissues
US9248146B2 (en) Dissolvable adhesive films for delivery of pharmaceutical or cosmetic agents
KR100439323B1 (en) Method and composition for delivering zinc to the nasal membrane
US7579019B2 (en) Pharmaceutical carrier device suitable for delivery of pharmaceutical compounds to mucosal surfaces
CA2329128C (en) Pharmaceutical carrier device suitable for delivery of pharmaceutical compounds to mucosal surfaces
US6756051B1 (en) Bioadhesive, closed-cell foam film, sustained release, delivery devices and methods of making and using same
US20050048102A1 (en) Pharmaceutical carrier device suitable for delivery of pharmaceutical compounds to mucosal surfaces
US20030118653A1 (en) Quick dissolving oral mucosal drug delivery device with moisture barrier coating
CZ20012566A3 (en) Dosage unit and process for preparing the dosage unit for mucosal delivery
JP2008506687A (en) Coated vaginal device for transport of anti-migraine and antiemetics and method for treating migraine and vomiting
TWI343263B (en) Patches for mucosa of oral cavity containing fentanyl
WO2010135053A2 (en) Dual and single layer dosage forms
JPS60152413A (en) Composition for local application with improved percutaneousdrug release by menthol
Mathew Oral local drug delivery: An overview
Gawas et al. Current approaches in buccal drug delivery system
US7714011B2 (en) Compositions to reduce congestion and methods for application thereof to the nasal membrane
JP2007506670A (en) Transmucosal form of administration with reduced mucosal irritation
Pathan et al. Buccoadhesive drug delivery systems-extensive review on recent patents
Danckwerts Intraoral drug delivery: A comparative review
Shaikh et al. A review on mucoadhesive drug delivery system
Upadhye et al. A Review on Buccal Drug Delivery System
Repka et al. Matrix-and reservoir-based transmucosal delivery systems: tailoring delivery solutions
Khan et al. AN OVERVIEW OF BUCCAL DRUG DELIVERY IN FORM OF BUCCAL POUCHES
Alsaide et al. Insights into medicated films as attractive dosage forms

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed