CA2385141A1 - Multivariate responses using classification and regression trees systems and methods - Google Patents

Multivariate responses using classification and regression trees systems and methods Download PDF

Info

Publication number
CA2385141A1
CA2385141A1 CA002385141A CA2385141A CA2385141A1 CA 2385141 A1 CA2385141 A1 CA 2385141A1 CA 002385141 A CA002385141 A CA 002385141A CA 2385141 A CA2385141 A CA 2385141A CA 2385141 A1 CA2385141 A1 CA 2385141A1
Authority
CA
Canada
Prior art keywords
function
split
node
server
child
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002385141A
Other languages
French (fr)
Inventor
Tim K. Keyes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Corporate Financial Services Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2385141A1 publication Critical patent/CA2385141A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/02Banking, e.g. interest calculation or account maintenance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/03Credit; Loans; Processing thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/04Trading; Exchange, e.g. stocks, commodities, derivatives or currency exchange

Abstract

Published without an Abstract

Description

MULTIVARIATE RESPONSES USING
CLASSIFICATION AND REGRESSION TREES
SYSTEMS AND METHODS
BACKGROUND OF THE INVENTION
This invention relates generally to prediction of responses using mathematical algorithms for quality measurements and more specifically to the use of Classification and Regression Tree (CART) analysis for prediction of responses.
In a financing example, an amount collected on a charged off loan is a function of many demographic variables, as well as historic and current information on the debtor. If one desired to predict the amount paid for an individual borrower, a statistical model need be built frog an analysis of trends between the account information" and the amount paid by "similar" borrowers, that is, borrowers with similar profiles. CART tools allow an analyst to sift, i.e. data mine, through the many complex combinations of these explanatory variables to isolate which ones are the key drivers of an amount paid.
Commercially available tools for CART analysis exist, however, there is no known tool that allows the user to build a model that predicts more than one measurement at a time (i.e., more than one response in a CART application). It would be desirable to develop a CART tool that allows a user to predict more than one measurement at a time, thereby allowing for a multivariate response CART
analysis.
BRIEF SUMMARY OF THE INVENTION
The present invention is, in one aspect, a method of allowing inclusion of more than one variable in a Classification and Regression Tree (CART) analysis.
The method includes predicting y using p exploratory variables, where y is a ?0 multivariate response vector. A statistical distribution function is then described at "parent" and "child" nodes using a multivariate normal distribution, which is a function of y. A split function where "child" node distributions are individualized, compared to the parent node is then defined.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a single node split diagram;

Figure 2 is a univariate Classification and Regression Tree (CART) model for recovery amount;
Figure 3 is a univariate CART model for recovery timing;
Figure 4 is a multivariate CART model for recovery amount and timing using negative entropy and Hotelling;
Figure 5 is a multivariate CART model for recovery amount and timing using Kullback-Liebler Divergence; and Figure 6 is a system block diagram.
DETAILED DESCRIPTION OF THE INVENTION
Classification and Regression Tree (CART) analysis is founded on the use of p explanatory variables, X, , X Z ,..., X ~ , to predict a response, y, using a multi-stage, recursive algorithm as follows:
1. For each node, P, evaluate every eligible split, s, of the form X; E S, X; ~ S , on each predictor variable, by associating a split function, ~p(s, P) >_ 0 which operates on P. The split forms a segregation of data into two 1 S groups. The set S can be derived in any useful way.
2. Choose the best split for each node according to ~p(s, P) . This could be the maximum or minimum split function value for that node, for example.
Fach split produces two child nodes.
3. Repeat 1 and 2 for each child node.
4. Stop when apriori conditions are met.
Figure 1 illustrates a single split 10 where a heterogeneous parent node, P, 12 is observed to identify a split that is used to segregate a heterogeneous parent node, 12 into more homogeneous child nodes, such as node L 14 and node R 16, as defined by an appropriate measure of diversity. Diversity can be a function of the data, {yk ~k=~ , or of an assumed distribution, p(y) = f (y ~ ,u, E) being the probability density function, or both.

The p(y) notation is used, with subscripts where appropriate, to describe probability density function at the parent and child nodes in the sequel.
Parameter nomenclature typically associated with multivariate continuous distributions is used in Figure 1, but the concept applies universally. It is assumed that the observations are independent.
Several measures of diversity in the univariate response setting have been advocated. One, called Node Impurity, is negative entropy:
I (P) _ - Jlog~p(Y))P(Y)dY
with a split function defined as cp(s, P) = I (P) - I (L) - I (R) .
Other known regression tree methodologies include longitudinal data by using split functions that addressed within-node homogeneity in either mean structure (a Hotelling / Wald-type statistic) or covariance structure (a likelihood ratio split function), but not both. Another methodology uses five multivariate split criteria that involved measures of generalized variance, association, and fuzzy logic.
In addition, the use of tree methods on multiple binary responses, and introducing a generalized entropy criterion has been investigated.
CART analysis and methodology can be applied, for example, for valuation of non-performing commercial loans. A valuation of n non-performing commerc=al loans involves ascribing (underwriting) the loans with values for a recovery amount, expressed as a percentage of unpaid principal balance, and a value for recovery timing, expressed in months after an appropriate baseline date (e.g., date of acquisition). Recovery amount and timing information is sufficient to calculate the present vale" of future cash flows, a key part of portfolio valuation.
Underwriters of defaulted loans use their individual and collective experience to ascribe these values.
Statistical models can be used to associate underwriters' values with key loan attributes that shed light on the valuation process.
Figure 2 illustrates a univariate CART model 20 for a percentage recovery amount for non-performing commercial loans. Statistics at each node are included in the rectangle representing the node. Node 22 shows a number, n which represents the number of loans in the analysis. In the example of Figure 2, n is equal to 151. The 151 loans are examined for a split, and as noted in nodes 24 and 26, 132 of the loans have a legal status as being in collections or the subject of a lawsuit, shown in node 24, while nineteen of the loans are classified as being current as shown in node 26. Nodes 28 and 30 signify where another split has been identified between the 132 loans of node 24 relating to a secured score which is a scoring model prediction of whether or not the borrower account is collateralized (secured by real estate).
Figure 3 illustrates a univariate CART model 40 for a recovery timing amount in months for non-performing commercial loans. Statistics at each node are included in the rectangle representing the node. Node 42 shows a number, n which represents the number of loans in the analysis. In the example of Figure 3, n is equal to 151. The 1 S 1 loans are examined for a split, and as noted in nodes 44 and 46, thirty of the loans have a legal status as being in collections or current, shown in node 44, while 121 of the loans are classified as.being the subject of a lawsuit as shown in node 46.' Nodes 48 and 50 signify where another split has been identified between the thirty loans of node 44, node 48 signifying that payers have paid in the last twelve months in nine of the thirty loans in node 44 and node 50 signifying that no payments have been made in the last twelve months for twenty-one of the thirty loans.
Nodes 52 and 54 signify where another split has been identified between the 121 loans of node 46 relating to a secured score which is a scoring model prediction of whether or not the borrower's account is collateralized (secured by real estate).
In the iultivariate normal case, the node impurity equation results in ~P(S~ p) = 2 log~E p I )- ~ log~E ~ ~)- 2 log ~ a ~).
An impi~ xnentation using the above equation, with maximum likelihood estimations imputed, when compared to the split function acts as a diversity . measure on covariance structure only. A Hotelling / Wald - type statistic, as a diversity measure on mean structure only, results in:
~P(s~P)= n~nR (!~c-!~x)~~'(~c-1-~n)~
Yl~ + MR
Figure 4 illustrates a single CART model 60, resulting from an implementation version of either of the covariance structure split function equation or the mean structure split function equation above. The explanatory variables used in the analysis are: account status, secured score, and legal status which are described above. Using an example of 151 commercial loans, a split is identified in node regarding the legal status of the 151 loans. Node 64 signifies that nineteen of the 1 S 1 loans have a legal status of current, while node 66 signifies that 132 of the 151 loans are in collections or are the subject of a lawsuit. Splits are identified in both nodes 64 and 66. The split in node 64, the nineteen loans that are current, is indicated in node 68 which shows that ten of the nineteen loans have had no payment activity over the last twelve months and node 70 shows that nine of the nineteen loans from node have had payment activity.
Node 66 is split into two nodes 72 and 74 where node 72 signifies that 121 of the 132 loans of node 66 are the subject of a lawsuit, while node 74 signifies that eleven of the loans are in collections. The 121 loans of node 72 are further separated into nodes 76 and 78, showing that of the 121 loans that are subjects of lawsuits, 54 are secured by assets such as real estate, shown in node 76, while 67 of the loans are unsecured, shown by node 78.
Typically, in known applications, separate CART models are built for each response variable. Described below are applications where a single multivariate CART model, which uses multiple response variables, is built. The form of the probability density function under multivariate normality is:
P(Y) _ .f (Y ~ f~~ E) _ (2~) l2 IEI 2 exp.- ~ tr( y - fc)E ~ ( y - f.~)~~ , S
where n = sample size (number of observations), r = number of response variables, y = n x r matrix of response values, ,u = n x r matrix of mean response values, where each row is the same r-vector mean, and E = r x r matrix of covariance values for the responses. The structure of the above equation encompasses repeated measures and time series models. It is assumed that the observations are not correlated, i.e., the covariance matrix for the rows ~f y is the identity matrix of size n, Node homogeneity, as depicted in Figure 1, results in individualized probability density functions for each node. In general terms, the split function of the present invention is Pc PR PcPx ~P(s~ P) _ ~(Pr, Pe ~ Pp ) = Jlog c Px dY = Ec.R log Pr Pr where Ec,H log pc pR signifies the expected value, taken over the joint pr distribution arising from the child nodes. Note that the implied node impurity measure in the above equation is related to the node impurity equation in the univariate case, in that node impurity is measured in comparison with a proposed split, s, and the child probability density functions involved:
I (s, P) _ - Jlog(P,, (Y))Pc (Yc )Px (YR )dYc dYR = -Ec.e ~log(Pr (Y)~.
Under probability density function for p(y), the split function cp is calculated, using matrix calculus: "
~P(s~~')= ~r log ~~c~ nR log ~~R~ nxr+~c tr(E-'Ec)+nR tr~~-~~rr 2 ~~~ 2 ~~~ 2 2 2 ' + ~ tree-' (fir. -N~)~(~i -1~)~+ 2 tr(E-' (1-1x y )~(ux -~)~.
In one embodiment, the present invention uses Kullback-Liebler divergence ~ ~ a node split criterion. This crib ~rion has an interpretation related to the node impurity function earlier described. K~.Iiback-Liebler divergence is a general 1 S measure of discrepancy between probability distributions, that is usually a function of mean and covariance structure.
That--_cp(s, P) is a valid split function is guaranteed by the information inequality, which states that KL( pc pR , p p ) >_ 0 , and equals zero if and only if PcPe = PY ~ i.e., the parent node is optimally homogeneous. Kullback-Liebler divergence, in this context, measures the information gain, resulting from the use of individualized statistical distributions for the child nodes in Figure 1, compared to a single statistical distribution, as for the parent node. Maximizing cp(s, P) will produce the best split. Use of the above equation for the split function requires the estimation of parameters (,u, E) , ( pc , E, ) , arid (,uR , E R ) from the data in each node, P, L, R, respectively. This is done by the usual method of maximum likelihood estimation.
Figure 5 displays a single CART model 90, resulting from an implementation version using maximum likelihood estimations of the split function, cp(s, P) defined above. The explanatory variables used in the analysis are:
account status, secured score, and legal status which are described above and again the 151 commercial loans example is used. As shown in Figure 5, using model 90, a split is identified in node 92 regarding account activity of the 151 loans over the past twelve months, resulting in a split into nodes 94 and 96. In node 96 where no payments have been received for 142 of the original 151 loans another split is identified, regarding the secured status of the 142 loans. Node 98 shows that 61 of the 142 loans of node 96 are secured, perhaps by real estate, while node 100 shows that 81 of the 142 loans of node 96 are unsecured. A split identified in node 100 results in nodes 102 and 104, where node 102 represents that ten of the 81 loans of node 100 are in collections, while node 104 represents that 71 of the 81 loans of node 100 have a legal status of being current or in lawsuit.
Another split function used in practice for univariate response settings, and adaptable for multivariate responses is the least squares split function:
~p(s,P) _ ~(Y; -Yr)a -~(Y~ "YL)z -~(Y~ -YR)Z
f G R

HL hR + hR n~ ~~~
~/ YR
where y signifies the sample average of observations, with the subscript designating from which node the sa.~m and averages come. T'he split function equation cp(s,P)= ~L log ~~L~ nR log ~~R~ nxr+nL tr~E-~EL)'~' ~R ~~~ ~~R) + 2 ~'(E ~ (N~L w)~(!~L w))+ 2 ~'(E~~ (!~R !a)~(f~R w)).
in this case reduces to E = a2 = EL = ~R, r = 1, and the implementation version of the above equation, with maximum likelihood estimations imputed is proportional to:
_7_ ~ 4j'c - YR
and agrees with the least squares equation, but for the dependence on sample sizes n, and n,~ .
Figure 6 illustrates an exemplary system 110 in accordance with one embodiment of the present invention. System 110 includes a computer configured as a server 112 and a plurality of other computers 114 coupled to server 112 to form a network. The network of computers may be local area networks (LAN) or wide area networks (WAN).
Server 112 is configured to perform multivariate CART analysis to assess valuation and to predict future performance in non-performing commercial loans. In one embodiment, server 112 is coupled to computers 114 via a WAN or LAN. A user may dial or directly login to an Intranet or the Internet to gain access.
Each computer 114 includes an interface for communicating with server 112. The interface allows a user to input data relating to a portfolio of non-performing loans and to receive valuations of the loans and predictions future loan performance. A
CART analysis tool, as described above, is stored in server 112 and can be accessed by a requester at any one of computers 114.
As shown by the -~ommercial loan example, mul; variate CART
response methodology is useful for determination of recovery timings and amounts and has efficiency over known univariate response models in that one model is used to data mine multiple through multiple covariates to predict future loan performances.
While _ the invention has been described in terms of vari;;us specif c embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.
_g_

Claims (19)

WHAT IS CLAIMED IS:
1. A method of allowing inclusion of more than one variable in a Classification and Regression Tree analysis, said method comprising the steps of predicting y using p exploratory variables, where y is a multivariate, response vector;
describing a probability density function at "parent" (12) and "child"
(14, 16) nodes using a multivariate normal distribution, which is a function of y; and defining a split function where "child" node distributions are individualized, compared to the parent node.
2. A method according to Claim 1 wherein said step of describing a probability density function further comprises the step of defining p(y) = f(y ¦ µ,.SIGMA.), where p(y) represents a statistical distribution generated at each "parent" (12) and "child"(14, 16) node.
3. A method according to Claim 2 wherein said step of defining a split function further comprises the step of defining the split function as where signifies the expected value, taken over the joint distribution arising from the child nodes (14, 16).
4. A method according to Claim 2 further comprising the step of defining the probability density function as where p(y) represents a statistical distribution generated at each "parent"
(12) and "child" (14, 16) node which is also a multivariate distribution function, and n =
sample size (number of observations), r = number of response variables, y~ = n X r matrix of response values, µ = n × r matrix of mean response values, where each row is the same r vector mean, and .SIGMA. = r × r matrix of covariance values for the responses.
5. A method according to Claim 4 wherein said step of defining a split function further comprises the step of defining the split function as where signifies the expected value, taken over the joint distribution arising from the child nodes (14, 16).
6. A method according to Claim 5, wherein for a probability density function for p(y), the split function is calculated using matrix calculus as:
7. A method according to Claim 6 wherein said step of defining a split function further comprises the step of using maximum likelihood estimation (MLE) for parameter estimation of µ and .SIGMA..
8. A method according to Claim 6 further comprising the step of choosing a split such that the split function .PHI. is maximized.
9. A system (110) for performing multivariate Classification and Regression Tree analysis comprising:
at least one computer (114);
a server (112) configured to read input information relating to a portfolio of non-performing loans, predict y using p exploratory variables, where y is a multivariate, continuous response vector, describe a probability density function at "parent" (12) and "child" (14, 16) nodes using a multivariate normal distribution, which is a function of y, and define a split function where "child" node distributions are individualized, compared to the parent node;

a network connecting said computer to said server; and a user interface allowing a user to input information relating to the portfolio of non-performing loans.
10. A system (110) according to Claim 9 wherein said server (112) is configured to describe a probability density function further according to p(y) = f(y ¦ µ, .SIGMA.), where p(y) represents a statistical distribution generated at each "parent" (12) and "child" (14, 16) node.
11. A system (110) according to Claim 10 wherein said server (112) configured to define a split function as where signifies the expected value, taken over the joint distribution arising from the child nodes (14, 16).
12. A system (110) according to Claim 10 wherein said server (112) is configured to describe a probability density function according to wherein p(y) is a multivariate distribution function, and n = sample size (number of observations), r = number of response variables, y = n × r matrix of response values, µ = n × r matrix of mean response values, where each row is the same r vector mean, and .SIGMA. = r × r matrix of covariance values for the responses.
13. A system (110) according to Claim 12 wherein said server (112) configured to define a split function as where signifies the expected value, taken over the joint distribution arising from the child nodes (14, 16).
14. A system (110) according to Claim 13, wherein for a probability density function for p(y), said server is configured to calculate the split function using matrix calculus as:
15. A system (110) according to Claim 10 wherein said server (112) is configured to define a split function using maximum likelihood estimation (MLE) for parameter estimation of µ and .SIGMA..
16. A system (110) according to Claim 10 wherein said server (112) is configured to choose a split such that the split function .PHI. is maximized.
17. A system (110) according to Claim 9 wherein said server (112) is configured to allow a user to submit information relating to non-performing loan portfolios via the Internet.
18. A system (110) according to Claim 9 wherein said server (112) is cofigured to allow a user to submit information relating to non-performing loan portfolios ma an Intranet.
19. A system (110) according to Claim 9 wherein said network is one of a wide area network and a local area network.
CA002385141A 2000-07-19 2001-07-11 Multivariate responses using classification and regression trees systems and methods Abandoned CA2385141A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/619,278 US7003490B1 (en) 2000-07-19 2000-07-19 Multivariate responses using classification and regression trees systems and methods
US09/619,278 2000-07-19
PCT/US2001/021753 WO2002011017A2 (en) 2000-07-19 2001-07-11 Multivariate responses using classification and regression trees systems and methods

Publications (1)

Publication Number Publication Date
CA2385141A1 true CA2385141A1 (en) 2002-02-07

Family

ID=24481218

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002385141A Abandoned CA2385141A1 (en) 2000-07-19 2001-07-11 Multivariate responses using classification and regression trees systems and methods

Country Status (5)

Country Link
US (1) US7003490B1 (en)
EP (1) EP1316046A1 (en)
AU (1) AU785207B2 (en)
CA (1) CA2385141A1 (en)
WO (1) WO2002011017A2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020174088A1 (en) * 2001-05-07 2002-11-21 Tongwei Liu Segmenting information records with missing values using multiple partition trees
US6654727B2 (en) * 2001-11-29 2003-11-25 Lynn Tilton Method of securitizing a portfolio of at least 30% distressed commercial loans
US7251639B2 (en) * 2002-06-27 2007-07-31 Microsoft Corporation System and method for feature selection in decision trees
JP2004054769A (en) * 2002-07-23 2004-02-19 Ns Solutions Corp Loan assets management system, loan assets management method, and recording medium and program therefor
US7558755B2 (en) * 2005-07-13 2009-07-07 Mott Antony R Methods and systems for valuing investments, budgets and decisions
US20070055619A1 (en) * 2005-08-26 2007-03-08 Sas Institute Inc. Systems and methods for analyzing disparate treatment in financial transactions
WO2008137544A1 (en) 2007-05-02 2008-11-13 Mks Instruments, Inc. Automated model building and model updating
KR100902006B1 (en) 2007-05-29 2009-06-11 주식회사 신한은행 System and Method for Dealing Non Performing Loan and Program Recording Medium
US20090055140A1 (en) * 2007-08-22 2009-02-26 Mks Instruments, Inc. Multivariate multiple matrix analysis of analytical and sensory data
JP2011508320A (en) * 2007-12-21 2011-03-10 エム ケー エス インストルメンツ インコーポレーテッド Hierarchical organization of data using partial least squares analysis (PLS-tree)
US9892461B2 (en) * 2008-06-09 2018-02-13 Ge Corporate Financial Services, Inc. Methods and systems for assessing underwriting and distribution risks associated with subordinate debt
US8494798B2 (en) * 2008-09-02 2013-07-23 Mks Instruments, Inc. Automated model building and batch model building for a manufacturing process, process monitoring, and fault detection
US9069345B2 (en) * 2009-01-23 2015-06-30 Mks Instruments, Inc. Controlling a manufacturing process with a multivariate model
US8331699B2 (en) * 2009-03-16 2012-12-11 Siemens Medical Solutions Usa, Inc. Hierarchical classifier for data classification
US8234230B2 (en) * 2009-06-30 2012-07-31 Global Eprocure Data classification tool using dynamic allocation of attribute weights
US8855804B2 (en) 2010-11-16 2014-10-07 Mks Instruments, Inc. Controlling a discrete-type manufacturing process with a multivariate model
US9429939B2 (en) 2012-04-06 2016-08-30 Mks Instruments, Inc. Multivariate monitoring of a batch manufacturing process
US9541471B2 (en) 2012-04-06 2017-01-10 Mks Instruments, Inc. Multivariate prediction of a batch manufacturing process
US20130346033A1 (en) * 2012-06-21 2013-12-26 Jianqiang Wang Tree-based regression
US20140372174A1 (en) 2013-06-12 2014-12-18 MEE - Multidimensional Economic Evaluators LLC Multivariate regression analysis
US9460402B2 (en) 2013-12-27 2016-10-04 International Business Machines Corporation Condensing hierarchical data
US9582566B2 (en) 2013-12-27 2017-02-28 International Business Machines Corporation Condensing hierarchical data
GB201610984D0 (en) 2016-06-23 2016-08-10 Microsoft Technology Licensing Llc Suppression of input images
CN107272611A (en) * 2017-05-27 2017-10-20 四川用联信息技术有限公司 A kind of algorithm for weighing manufacture procedure quality ability

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6016255A (en) 1990-11-19 2000-01-18 Dallas Semiconductor Corp. Portable data carrier mounting system
AU1427492A (en) * 1991-02-06 1992-09-07 Risk Data Corporation System for funding future workers' compensation losses
US5737440A (en) 1994-07-27 1998-04-07 Kunkler; Todd M. Method of detecting a mark on a oraphic icon
US5740271A (en) 1994-07-27 1998-04-14 On-Track Management System Expenditure monitoring system
JPH0877010A (en) * 1994-09-07 1996-03-22 Hitachi Ltd Method and device for data analysis
US5864839A (en) * 1995-03-29 1999-01-26 Tm Patents, L.P. Parallel system and method for generating classification/regression tree
US5710887A (en) 1995-08-29 1998-01-20 Broadvision Computer system and method for electronic commerce
US5671279A (en) 1995-11-13 1997-09-23 Netscape Communications Corporation Electronic commerce using a secure courier system
AU2191197A (en) 1996-02-26 1997-09-10 E Guide, Inc. Cordless phone back link for interactive television system
JPH09282900A (en) 1996-04-11 1997-10-31 Oki Electric Ind Co Ltd Memory module
US5850446A (en) 1996-06-17 1998-12-15 Verifone, Inc. System, method and article of manufacture for virtual point of sale processing utilizing an extensible, flexible architecture
US5889863A (en) 1996-06-17 1999-03-30 Verifone, Inc. System, method and article of manufacture for remote virtual point of sale processing utilizing a multichannel, extensible, flexible architecture
US5987132A (en) 1996-06-17 1999-11-16 Verifone, Inc. System, method and article of manufacture for conditionally accepting a payment method utilizing an extensible, flexible architecture
US6002767A (en) 1996-06-17 1999-12-14 Verifone, Inc. System, method and article of manufacture for a modular gateway server architecture
US6026379A (en) 1996-06-17 2000-02-15 Verifone, Inc. System, method and article of manufacture for managing transactions in a high availability system
US5812668A (en) 1996-06-17 1998-09-22 Verifone, Inc. System, method and article of manufacture for verifying the operation of a remote transaction clearance system utilizing a multichannel, extensible, flexible architecture
US5943424A (en) 1996-06-17 1999-08-24 Hewlett-Packard Company System, method and article of manufacture for processing a plurality of transactions from a single initiation point on a multichannel, extensible, flexible architecture
US5983208A (en) 1996-06-17 1999-11-09 Verifone, Inc. System, method and article of manufacture for handling transaction results in a gateway payment architecture utilizing a multichannel, extensible, flexible architecture
US5931917A (en) 1996-09-26 1999-08-03 Verifone, Inc. System, method and article of manufacture for a gateway system architecture with system administration information accessible from a browser
US5978840A (en) 1996-09-26 1999-11-02 Verifone, Inc. System, method and article of manufacture for a payment gateway system architecture for processing encrypted payment transactions utilizing a multichannel, extensible, flexible architecture
US5996076A (en) 1997-02-19 1999-11-30 Verifone, Inc. System, method and article of manufacture for secure digital certification of electronic commerce
US6249775B1 (en) * 1997-07-11 2001-06-19 The Chase Manhattan Bank Method for mortgage and closed end loan portfolio management
US6026364A (en) * 1997-07-28 2000-02-15 Whitworth; Brian L. System and method for replacing a liability with insurance and for analyzing data and generating documents pertaining to a premium financing mechanism paying for such insurance

Also Published As

Publication number Publication date
US7003490B1 (en) 2006-02-21
AU785207B2 (en) 2006-11-02
AU2297902A (en) 2002-02-13
EP1316046A1 (en) 2003-06-04
WO2002011017A2 (en) 2002-02-07

Similar Documents

Publication Publication Date Title
CA2385141A1 (en) Multivariate responses using classification and regression trees systems and methods
Tripathi et al. Credit scoring model based on weighted voting and cluster based feature selection
Robinson et al. Updating and estimating a social accounting matrix using cross entropy methods
US8346691B1 (en) Computer-implemented semi-supervised learning systems and methods
Nazemi et al. Improving corporate bond recovery rate prediction using multi-factor support vector regressions
Giudici et al. Network based scoring models to improve credit risk management in peer to peer lending platforms
JP2002543538A (en) A method of distributed hierarchical evolutionary modeling and visualization of experimental data
Elliott et al. A Double HMM approach to Altman Z-scores and credit ratings
Halkos et al. Effective energy commodity risk management: Econometric modeling of price volatility
CN111899055A (en) Machine learning and deep learning-based insurance client repurchase prediction method in big data financial scene
CN112862585A (en) Personal loan type bad asset risk rating method based on LightGBM decision tree algorithm
Kumar et al. Credit score prediction system using deep learning and k-means algorithms
Amendola et al. Variable selection in default risk models
Rivera et al. The impact of migration and remittances on distribution and sources income: The Mexican rural case
Zafeiriou et al. Short-term trend prediction of foreign exchange rates with a neural-network based ensemble of financial technical indicators
US7617172B2 (en) Using percentile data in business analysis of time series data
Wu et al. The weighted average information criterion for multivariate regression model selection
Jothimani et al. Risk parity models for portfolio optimization: a study of the Toronto stock exchange
Aleti The high-frequency factor zoo
Vaněk Economic adjustment of default probabilities
Avellaneda et al. Hierarchical PCA and modeling asset correlations
Turiel et al. Simplicial persistence of financial markets: filtering, generative processes and portfolio risk
Amador et al. The impact of ICT adoption on productivity: Evidence from Portuguese firm-level data
US11388187B2 (en) Method of digital signal feature extraction comprising multiscale analysis
CN113034264A (en) Method and device for establishing customer loss early warning model, terminal equipment and medium

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued