CA2387728C - Test element analysis system with an infrared detector - Google Patents

Test element analysis system with an infrared detector Download PDF

Info

Publication number
CA2387728C
CA2387728C CA002387728A CA2387728A CA2387728C CA 2387728 C CA2387728 C CA 2387728C CA 002387728 A CA002387728 A CA 002387728A CA 2387728 A CA2387728 A CA 2387728A CA 2387728 C CA2387728 C CA 2387728C
Authority
CA
Canada
Prior art keywords
analysis system
test element
test
infrared radiation
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002387728A
Other languages
French (fr)
Other versions
CA2387728A1 (en
Inventor
Hans-Peter Haar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roche Diagnostics GmbH
Original Assignee
Roche Diagnostics GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roche Diagnostics GmbH filed Critical Roche Diagnostics GmbH
Publication of CA2387728A1 publication Critical patent/CA2387728A1/en
Application granted granted Critical
Publication of CA2387728C publication Critical patent/CA2387728C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8483Investigating reagent band
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48785Electrical and electronic details of measuring devices for physical analysis of liquid biological material not specific to a particular test method, e.g. user interface or power supply
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/121Correction signals
    • G01N2201/1211Correction signals for temperature

Abstract

Test element analysis system (1) for the analytical investigation of a sample (8), in particular of a body liquid, of human beings or of animals, comprising test elements (3) with a test zone (7), to be brought in contact with the sample to be investigated for the purpose of performing an analysis, in order to measure a measurement quantity characteristic for the analysis, and an evaluation instrument (2) with a test element holder (5) for positioning a test element (3) in a measuring position in order to perform a measurement, and a measurement and evaluation electronics (15) for measuring the characteristic change and for determining a result of the analysis, based on the result of the measurement. In order to provide increased measuring accuracy by improved temperature compensation, it is proposed, in the scope of the invention, that the evaluation instrument (2) for the determination of the temperature prevailing in the test zone (7) of the test element (3) comprises an infrared detector (20).

Description

Test Element Analysis System With An Infrared Detector The invention relates to a test element analysis system for the analytical investigation of a sample, in particular a body liquid, of human beings or of animals.

The system consists of two components, namely test elements, comprising a test zone to which the sample to be investigated is contacted in order to perform an analysis by measuring a measurement quantity charac-teristic for the analysis, and an evaluation instrument with a test element holder for positioning a test element in a measuring position for making the measurement, and with a measuring and evaluation electronics for measuring the characteristic measurement quantity and deriving an analytical result therefrom-.

Test element analysis systems are common in medical science, in particular for the analysis of blood and urine. In most cases, the test elements have the form of test strips. Other forms of test elements are, however, also common, e.g. flat, almost square plates.

^
Generally, the test elements contain reagents the reaction of which with the sample leads to a physically detectable change of the test element. This change is measured with the evaluation instrument belonging to the system. In particular, photometrical analysis systems are common, using test elements in which the reaction causes a color change of a detection layer which is measured photometrically. Furthermore, electrochemical analysis systems are of important significance. Here an electrically measurable change of the test element, in form of a voltage or a current, occurs due to the reaction. In addition to these analysis systems working with reagents, reagent-free analysis systems are also discussed, in which an analytically characteristic property (e.g. the light absorption spectrum) of the sample itself is measured after bringing the test element in contact with the sample. The invention is generally applicable to all these methods.

Test element analysis systems are to some extent used in medical laboratories. The invention is, however, particularly intended for application cases in which the patients themselves perform the analysis in order to monitor his or her health state (home monitoring). This is of particular medical importance for diabetics, who have to check their blood glucose concentration several times a day in order to adjust the insulin injections accordingly. For such purposes, the evaluation instruments must be light-weight, small, battery-operated and robust.

A fundamental problem is caused by the fact that the measured quantity which is characteristic for the analysis, is often very temperature-dependent. This temperature dependence is, in many cases, about one or two percent per degree. In the area of home-monitoring, the exposure of the analysis system to large temperature changes is unavoidable. Temperature variations of at least 5% have to be taken into account. Much higher temperature variations may occur, however, e.g. if measurements under unusual conditions (in the car or outdoors) are required.

In order to avoid the measurement uncertainties resulting therefrom, it was proposed to temper the test zone of the test element by means of a corresponding thermostating device, in order to provide a defined, constant temperature. For example, US patent 5,035,862 describes the tempering of individual test fields of urine test strips by means of inductive heating. Another example, for a blood analysis instrument, is described in DE
3321783 Al. Such methods are, however, due to their high energy consumption, not practicable for small battery-operated instruments.

In some analysis systems, the temperature is determined electrically (by means of a thermocouple or a thermal resistor) at the time of the measurement in the housing of the evaluation instrument, and the measured temperature is taken into account for the determination of the analysis result. An example is described in WO
99/06822. Such a correction can be exact if the temperature in the environment of the evaluation instrument and the test element did not change significantly for an extended period before the measure-ment, so that the actual temperature of the sample in the measuring position almost equals to the electrically measured temperature. In particular in the field of home-monitoring, however, this condition is not always given, as the life circumstances of the patient require analyses to be performed at different places and with changing temperature conditions.

^
In order to solve this problem, US patent 5,405,511 proposes to measure the temperature repeatedly in regular intervals, and to determine the corrective temperature by extrapolation based on the temperature history measured over a certain period of time. This, however, requires a permanent determination of the temperature, continuously or in certain intervals, over a period of several minutes before the analysis. In order to avoid the resulting waiting time before the test, temperature measurements are, according to US patent 5,405,511, also performed when the instrument is switched off in intervals of several minutes. This allows to make the extrapolation to the corrective temperature immediately after the instru-ment is switched on. This method, however, causes an increased battery consumption, as the electronic system of the instrument must be put into operation in intervals of several minutes, in order to determine the tempe-rature. Furthermore, the estimation of the corrective temperature by means of an extrapolation algorithm is not reliable under all operating conditions.

EP 0851229 Al describes an analysis system in which a temperature measuring surface coated with a thermo-chromous liquid crystal (TLC) is located at the holder of the test element or at the test element itself. The temperature of the TLC is determined by photometrical measurement. Here, good correspondence of the measurement with the actual temperature of the test zone can only be achieved if the test element itself is coated with the TLC. This, however, leads to considerable additional cost for the production of the test elements. Furthermore, an acceptable accuracy of the temperature measurement can only be achieved with high expense for the measurement technology.

The invention addresses the problem to provide a test element analysis system which provides an increased measurement accuracy by an improved temperature compensation. This should be achieved with low expense, 5 as appropriate for home-monitoring systems.

In a test element analysis system of the previously described type the problem is solved by providing the evaluation instrument with an infrared detector for the determination of the temperature in the test zone of the test element.

The particular requirements of common test strip analysis systems have the disadvantage that in most cases it is not possible to position an infrared detector in such a manner that it directly detects the infrared radiation coming from the test zone with sufficient selectivity and sensitivity in order to ensure the required exactness of the temperature measurement. According to a preferred embodiment of the invention this problem is solved by providing a connection of the test zone and the infrared detector by a location-selective infrared radiation transport device fulfilling the following requirements:
- It selectively transmits the IR radiation emerging from the test zone to the detector.

- A very high share of the IR radiation emerging from the test zone arrives at the detector, i.e. the transport device works almost loss-free.

Principally, these requirements can be fulfilled with an optical imaging system which comprises at least one lens.
Substantially preferred components of the infrared transport device are, however, a hollow conductor with IR-reflecting interior walls, in particular made of metal-coated plastics, and/or an imaging mirror located inside the housing. These elements allow an almost loss-free IR transport from the test zone to the infrared detector, as well as a very good selectivity. The cost is low, and it is possible, without any problems, to provide a curved or polygonal (non-straight) radiation path between the test zone and the infrared detector. This allows a realization of the infrared temperature measurement of the test zone, which is optimally adapted to the requirements of a test element analysis system.

The invention is hereafter described in more detail with reference to exemplary embodiments shown in the figures.
The described features can be used single or in combination in order to create preferred embodiments of this invention.

Fig. 1 shows a test element analysis system according to the invention, Fig. 2 shows a partial sectional view of an analysis system according to the invention, Fig. 3 shows a partial sectional view of an alternative embodiment, Fig. 4 shows a diagrammatic sectional view of a further alternative embodiment, Fig. 5 shows a diagrammatic sectional view of a third alternative embodiment.

The analysis system shown in figures 1 and 2 consists of an evaluation instrument 2 and of disposable test elements 3 for single use.

^
The evaluation instrument 2 has a test element holder 5 for fixing a test element 3 in the measuring position shown in figure 2. The test element 3 is fixed in the measuring position by appropriate means, as e.g. a leaf spring 6.

For making a measurement, the sample liquid (e.g. blood) has to be contacted to a measurement zone 7. In the shown embodiment of a test element this is achieved by applying a blood drop 8 to a sample application zone 9 located at the end of the test element 3 from where it is suctioned to the measurement zone 7 through a capillary gap 10. A
reagent layer 12, to be dissolved by the sample liquid and reacting with its components, is located in the measurement zone 7.

The reaction leads to a measurable change in the measurement zone 7. In the shown case of an electrochemical test element, the measurement of an electrical measurement quantity is performed by means of electrodes located in the measurement zone (not shown in the figure) connected to contact stripes 13. In the measuring position, the contact stripes 13 establish an electrical contact to corresponding countercontacts 14 of the test element holder 5 which again are connected to a measuring and evaluation electronics 15. The measuring and evaluation electronics 15 is highly integrated for compact design and high reliability. In the shown case, it essentially consists of a printed circuit board 16 and a special IC (ASIC) 17.

An infrared detector 20 for the determination of the temperature in the test zone 7 is also mounted on the printed circuit board 16. Appropriate infrared detectors are inexpensively available. Preferably, a detector type ^
including an integrated temperature sensor for self-calibration (e.g. a NTC semiconductor element) is chosen.
Generally it is advantageous if the infrared detector 20 is integrated into the measuring and evaluation electronics 15 in such a manner that a rigid mechanic connection is provided between the infrared detector 20 and the further components of the measuring and evaluation electronics 15. Short and mechanically rigid conductor connections between the infrared detector 20 and the further components of the measuring and evaluation electronics 15 do not only allow a compact design, but also provide high mechanic and electrical stability as well as a good long-term reliability.

At first glance it seems disadvantageous that the transmission path shown in dotted line in figure 2 which the IR radiation must travel from the test zone 7 to the infrared detector 20 is relatively long and not straight.
This is particularly true if the evaluation instrument has a very flat design which is desirable (for easy handling) in practical use, but does not allow to arrange the test element holder 5 above the electronic unit 15.
Additional problems arise if the test element and the holder of the evaluation instrument are formed - as shown - in such a manner that the test element 3, when in the measuring position, sticks out of the housing 23 of the evaluation instrument 2. Such a design is advantageous for the handling of the analysis system, since the sample can be provided to the test zone 7 while the test element is already in the measuring position. However, for the determination of the temperature in the test zone 7, this implies the disadvantage that the transmission path 21 must pass through a window 26 arranged in the housing 2 and including a section 21a located outside the housing 23.

The infrared transport device, designated as 22, enables even in such difficult cases a selective and sensitive detection of the infrared radiation coming from the test zone 7. In the shown case, it consists of a hollow conductor 24 with IR-reflecting interior walls, and an imaging mirror 25 located inside the housing 23 of the evaluation instrument 2.

The hollow conductor 24 is made from a plastic part which is at least in its interior metal-coated (in particular, gold-plated). By means of this hollow conductor 24, the desired IR transmission path 21 can be realized within the housing 25, in a simple and inexpensive way.

If - as in case of the shown test element analysis system - the IR transmission path 21 includes a section 21a located outside the housing 25 of the evaluation instrument 2, it is advantageous to realize in this section the necessary selective detection of the IR
radiation coming from the test zone 7 by means of an optical imaging system. Preferably a concave imaging mirror 25 as shown in figure 2 is used. The optical window 26 is closed dust-proof, preferably with a pane 28 transparent for infrared radiation, in particular a polyethylene sheet.

Figure 3 shows an alternative embodiment in which the optical imaging system is formed by an optical lens integrated into the pane 28, whereas the required beam deflection of the IR radiation on the transmission path 21 is provided by a plane mirror 29.

In the embodiments shown in figures 2 and 3, the function of the location-selective light transport device 22 is essentially based on the effect of an optical imaging system realized by the imaging mirror 25 or the lens 27.
Inside hollow conductor 24 the light path is mainly influenced by the rear, inclined surface which acts as a 5 plane mirror 30 and essentially effects the required deflection to the IR detector 20.

A very effective and at the same time very inexpensive realization of the location-selective IR transport device can be provided (even without an optical imaging system) 10 by means of a hollow conductor with mirror-coated interior, which is designed in such a manner - as shown in figures 4 and 5 - that the input opening 31 facing the test zone 7 has a larger opening cross-section than the output opening 32 facing the infrared detector. In such an embodiment it is advantageous if the hollow conductor 24 tapers continuously between the input opening 31 and the output opening 32, i.e. its cross-section decreases gradually along the path. In this way a concentration of the infrared radiation intensity reflected at the interior walls of the hollow conductor 24 is provided.
In the embodiment shown in figure 4, the axis of hollow conductor 24 is a straight line. In this case, the light-sensitive surface of the detector 20 is located in a lateral position. However, it is easily possible to produce the hollow conductor 24 in a curved embodiment, as shown in figure 5. Such a curved embodiment enables a particularly flexible design and positioning of the test element 3 with the test zone 7 and of the printed circuit board 16 with the detector 20.

Although figures 4 and 5 do not show an optical imaging system, it is of course possible to combine a hollow conductor 24 of the construction type shown in the figures, with an optical imaging system in form of a lens or in form of an imaging mirror.

Claims (14)

CLAIMS:
1. Test element analysis system (1) for the analytical investigation of a sample (8), comprising:
a test element (3) with a test zone (7), which is contacted with the sample to be analyzed in order to measure a measurement quantity which is characteristic for the analysis, and an evaluation instrument (2) with a test element holder (5) for positioning the test element (3) in a measuring position in order to perform a measurement, and a measurement and evaluation electronics (15) for measuring the characteristic change and for determining, based on this measurement, a result of the analysis, characterized in that the evaluation instrument (2) comprises an infrared detector (20) for the determination of the temperature in the test zone (7) of the test element (3).
2. Analysis system according to claim 1, characterized is that the infrared detector (20) is integrated into the measuring and evaluation electronics (15).
3. Analysis system according to claim 1 or 2, characterized in that the evaluation instrument (2) comprises an infrared radiation transport device (22) for providing a location-selective connection of the test zone (7) with the infrared detector (20).
4. Analysis system according to claim 3, characterized in that the infrared radiation transport device (22) comprises a hollow conductor (24) with an interior wall reflective for infrared radiation.
5. Analysis system according to claim 4, characterized in that the hollow conductor (24) is made from metal-coated plastic.
6. Analysis system according to claim 4 or 5, characterized in that an input opening (31) of the hollow conductor (24) facing the test zone (7) has a larger opening cross-section than an output opening (32) of the hollow conductor (24) facing the infrared detector (20).
7. Analysis system according to any one of claims 3 to 6, characterized in that the location-selective infrared radiation transport device (22) includes an imaging mirror (25) located inside the housing (23) of the evaluation instrument.
8. Analysis system according to any one of claims 1 to 7, characterized in that the test element (3), in the measuring position, sticks out of the housing (23) of the evaluation instrument (2) in such a manner that the sample (8) can be contacted to the test zone (7), while the test element is in the measuring position, the detector (20) is located in the housing (23), the housing (23) comprises a window (26) which is transparent for infrared radiation, and a transport path (21) of the infrared radiation between the test zone (7) and the infrared detector (20) passes through the optical window (26).
9. Analysis system according to claim 8, characterized in that the optical window (26) is dust-proof closed by means of a pane (28) transparent to infrared radiation.
10. Analysis system according to claim 9, characterized in that the pane (28) is a polyethylene foil.
11. Analysis system according to claim 3, characterized in that the test element (3), in the measuring position, sticks out of the housing (23) of the evaluation instrument (2) in such a manner that the sample (8) can be contacted to the test zone (7), while the test element is in the measuring position, the detector (20) is located in the housing (23), the housing (23) comprises a window (26) which is transparent for infrared radiation, and a transport path (21) of the infrared radiation between the test zone (7) and the infrared detector (20) passes through the optical window (26); and an infrared transparent radiation pane (28) of the optical window (26) is combined with an optical lens (27) forming a part of the infrared radiation transport device (22).
12. Analysis system according to claim 11, characterized in that the pane (28) is a polyethylene foil.
13. Analysis system according to any one of claims 1 to 12, for the analytical investigation of a sample of a body liquid of humans or animals.
14. Use of an analysis system according to any one of claims 1 to 12, in the analytical investigation of a sample of a body liquid of humans or animals.
CA002387728A 1999-10-29 2000-10-26 Test element analysis system with an infrared detector Expired - Fee Related CA2387728C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19952215.4 1999-10-29
DE19952215A DE19952215C2 (en) 1999-10-29 1999-10-29 Test element analysis system
PCT/DE2000/003804 WO2001033214A2 (en) 1999-10-29 2000-10-26 Test element analysis system with an infrared detector

Publications (2)

Publication Number Publication Date
CA2387728A1 CA2387728A1 (en) 2001-05-10
CA2387728C true CA2387728C (en) 2009-01-06

Family

ID=7927361

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002387728A Expired - Fee Related CA2387728C (en) 1999-10-29 2000-10-26 Test element analysis system with an infrared detector

Country Status (7)

Country Link
US (1) US6880968B1 (en)
EP (1) EP1238274B1 (en)
JP (1) JP3723772B2 (en)
AT (1) ATE269542T1 (en)
CA (1) CA2387728C (en)
DE (3) DE19952215C2 (en)
WO (1) WO2001033214A2 (en)

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
DE10032015A1 (en) * 2000-07-01 2002-01-10 Roche Diagnostics Gmbh Test strip analysis unit for bodily fluid, employs temperature history correction system which will not drain batteries
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
ATE485766T1 (en) 2001-06-12 2010-11-15 Pelikan Technologies Inc ELECTRICAL ACTUATING ELEMENT FOR A LANCET
US7749174B2 (en) 2001-06-12 2010-07-06 Pelikan Technologies, Inc. Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US7682318B2 (en) 2001-06-12 2010-03-23 Pelikan Technologies, Inc. Blood sampling apparatus and method
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
EP1404234B1 (en) 2001-06-12 2011-02-09 Pelikan Technologies Inc. Apparatus for improving success rate of blood yield from a fingerstick
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US7025774B2 (en) 2001-06-12 2006-04-11 Pelikan Technologies, Inc. Tissue penetration device
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
DE60234598D1 (en) 2001-06-12 2010-01-14 Pelikan Technologies Inc SELF-OPTIMIZING LANZET DEVICE WITH ADAPTANT FOR TEMPORAL FLUCTUATIONS OF SKIN PROPERTIES
ITMI20012828A1 (en) 2001-12-28 2003-06-28 Gambro Dasco Spa NON-INVASIVE DEVICE FOR THE DETECTION OF BLOOD TEMPERATURE IN A CIRCUIT FOR THE EXTRACORPOREAL BLOOD CIRCULATION AND APPARATUS
CN100344963C (en) * 2002-01-18 2007-10-24 爱科来株式会社 Analyzer having temperature sensor
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7175642B2 (en) 2002-04-19 2007-02-13 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7291117B2 (en) 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7226461B2 (en) 2002-04-19 2007-06-05 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
SE523545C2 (en) * 2002-09-19 2004-04-27 Foss Tecator Ab Method, a portable device and a measuring instrument for standardizing a satellite measuring instrument to a corresponding main measuring instrument
DE10253934C1 (en) * 2002-11-19 2003-12-04 Seleon Gmbh Continuous positive airway pressure respiration device with selective illumination of display and/or operating controls under control of sensor signal
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
EP1443325A1 (en) * 2003-02-01 2004-08-04 Roche Diagnostics GmbH System and method for determining a coagulation parameter
DK1633235T3 (en) 2003-06-06 2014-08-18 Sanofi Aventis Deutschland Apparatus for sampling body fluid and detecting analyte
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
US8282576B2 (en) 2003-09-29 2012-10-09 Sanofi-Aventis Deutschland Gmbh Method and apparatus for an improved sample capture device
EP1680014A4 (en) 2003-10-14 2009-01-21 Pelikan Technologies Inc Method and apparatus for a variable user interface
US7444005B2 (en) * 2003-11-04 2008-10-28 Becton, Dickinson And Company Apparatus and method for using optical mouse engine to determine speed, direction, position of scanned device and to obtain quantitative or qualitative data from same
EP1706026B1 (en) 2003-12-31 2017-03-01 Sanofi-Aventis Deutschland GmbH Method and apparatus for improving fluidic flow and sample capture
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
US20050227370A1 (en) * 2004-03-08 2005-10-13 Ramel Urs A Body fluid analyte meter & cartridge system for performing combined general chemical and specific binding assays
US8828203B2 (en) 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
EP1765194A4 (en) 2004-06-03 2010-09-29 Pelikan Technologies Inc Method and apparatus for a fluid sampling device
JP4742184B2 (en) * 2004-09-30 2011-08-10 アークレイ株式会社 Analysis equipment
WO2006070199A1 (en) * 2004-12-29 2006-07-06 Lifescan Scotland Limited An analyte test meter having a test sensor port
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
EP1813937A1 (en) * 2006-01-25 2007-08-01 Roche Diagnostics GmbH Electrochemical biosensor analysis system
US7947222B2 (en) * 2006-08-15 2011-05-24 Infopia Co., Ltd. Mobile communication terminal equipped with temperature compensation function for use in bio-information measurement
EP1889568A1 (en) 2006-08-16 2008-02-20 Infopia Co., Ltd. Mobile communication terminal equipped with temperature compensation function for use in bioinformation measurement
ES2693097T3 (en) 2007-05-30 2018-12-07 Ascensia Diabetes Care Holdings Ag System and method for managing health data
JP5773241B2 (en) * 2007-10-15 2015-09-02 バイエル・ヘルスケア・エルエルシーBayer HealthCareLLC Method and assembly for determining the temperature of a test sensor
WO2009126900A1 (en) 2008-04-11 2009-10-15 Pelikan Technologies, Inc. Method and apparatus for analyte detecting device
WO2010048303A1 (en) * 2008-10-21 2010-04-29 Lifescan, Inc. Infrared temperature measurement of strip
JP5540001B2 (en) 2008-10-21 2014-07-02 ライフスキャン・インコーポレイテッド Multiple temperature measurement with modeling
DK2380009T3 (en) * 2008-12-18 2015-05-04 Bayer Healthcare Llc Device for determining the temperature of a test sensor
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
EP2408931A2 (en) * 2009-03-20 2012-01-25 Roche Diagnostics GmbH Test element for determining a body fluid and measurement method
US8801273B2 (en) 2009-06-08 2014-08-12 Bayer Healthcare Llc Method and assembly for determining the temperature of a test sensor
JP5270501B2 (en) * 2009-09-17 2013-08-21 テルモ株式会社 Blood glucose meter and blood glucose level measuring method
US9326708B2 (en) * 2010-03-26 2016-05-03 Medtronic Minimed, Inc. Ambient temperature sensor systems and methods
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8275413B1 (en) * 2011-09-17 2012-09-25 Fraden Corp. Wireless communication device with integrated electromagnetic radiation sensors
US9823214B2 (en) * 2011-11-01 2017-11-21 Panasonic Healthcare Holdings Co., Ltd. Biological sample measuring apparatus
US10094804B2 (en) 2014-03-20 2018-10-09 Phc Holdings Corporation Biological information measurement device and method for controlling biological information measurement device
US20180095049A1 (en) * 2016-09-30 2018-04-05 Lifescan Scotland Limited Hand-held test meter with analytical test strip contact pressure feature

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2062428B (en) * 1979-10-31 1983-06-02 Tokyo Shibaura Electric Co Microwave oven
CA1168064A (en) 1980-03-22 1984-05-29 Klaus Nenninger Device for positioning a test strip for optical- medical measurements
DE3011223C2 (en) 1980-03-22 1983-04-14 Clinicon Mannheim GmbH, 6800 Mannheim Device for positioning and holding a test strip for optical medical measurements
DE3321783A1 (en) * 1983-06-16 1984-12-20 Boehringer Mannheim Gmbh, 6800 Mannheim ARRANGEMENT FOR EVALUATING A TEST STRIP
DE3742786A1 (en) 1987-12-17 1989-06-29 Boehringer Mannheim Gmbh ANALYSIS SYSTEM FOR DETERMINING A COMPONENT OF A LIQUID
US4947850A (en) * 1988-03-11 1990-08-14 Trustees Of The University Of Pennsylvania Method and apparatus for imaging an internal body portion of a host animal
US4993419A (en) * 1988-12-06 1991-02-19 Exergen Corporation Radiation detector suitable for tympanic temperature measurement
US4988211A (en) * 1989-04-27 1991-01-29 The Dow Chemical Company Process and apparatus for contactless measurement of sample temperature
US5095913A (en) * 1989-09-01 1992-03-17 Critikon, Inc. Shutterless optically stabilized capnograph
US5578499A (en) * 1989-09-20 1996-11-26 The Royal Institution For The Advancement Of Learning Homogeneous immunoassay system employing fourier transform infrared spectroscopy
US5313941A (en) * 1993-01-28 1994-05-24 Braig James R Noninvasive pulsed infrared spectrophotometer
US5405511A (en) * 1993-06-08 1995-04-11 Boehringer Mannheim Corporation Biosensing meter with ambient temperature estimation method and system
CN1168623A (en) * 1994-02-28 1997-12-24 伊康诺梅逊公司 Infrared tympanic thermometer
US5626139A (en) * 1994-09-23 1997-05-06 Artech Industries, Inc. Tympanic thermometer
US5695949A (en) * 1995-04-07 1997-12-09 Lxn Corp. Combined assay for current glucose level and intermediate or long-term glycemic control
KR980700818A (en) 1995-11-13 1998-04-30 미지오 나까지마 radiothermometer
US5820264A (en) 1996-03-25 1998-10-13 Oriental System Technology, Inc. Tympanic thermometer arrangement
JPH10142066A (en) 1996-11-06 1998-05-29 Nikon Corp Observing apparatus
JP3368159B2 (en) * 1996-11-20 2003-01-20 東京エレクトロン株式会社 Plasma processing equipment
US5972715A (en) * 1996-12-23 1999-10-26 Bayer Corporation Use of thermochromic liquid crystals in reflectometry based diagnostic methods
JPH10227699A (en) 1997-02-14 1998-08-25 Matsushita Electric Ind Co Ltd Noncontact temperature measuring sensor
US5823966A (en) * 1997-05-20 1998-10-20 Buchert; Janusz Michal Non-invasive continuous blood glucose monitoring
US5985675A (en) * 1997-12-31 1999-11-16 Charm Sciences, Inc. Test device for detection of an analyte
US6066243A (en) * 1997-07-22 2000-05-23 Diametrics Medical, Inc. Portable immediate response medical analyzer having multiple testing modules
DE19733445A1 (en) * 1997-08-02 1999-02-18 Boehringer Mannheim Gmbh Analysis appts. with time counter and data processor for blood glucose level monitoring
WO1999006822A1 (en) * 1997-08-04 1999-02-11 Kyoto Daiichi Kagaku Co., Ltd. Clinical examination apparatus and method
CA2547299C (en) * 1997-12-04 2009-03-03 Roche Diagnostics Corporation Instrument and method
DE19810163A1 (en) 1998-03-05 1999-09-30 Valco Cincinnati Gmbh Device for the detection of water and water-containing substances, in particular water-containing adhesives, on surfaces of any materials
US6302855B1 (en) * 1998-05-20 2001-10-16 Novo Nordisk A/S Medical apparatus for use by a patient for medical self treatment of diabetes
US6201245B1 (en) * 1998-06-18 2001-03-13 Robert J. Schrader Infrared, multiple gas analyzer and methods for gas analysis
US6518034B1 (en) * 1998-06-25 2003-02-11 Abb Diagnostics, Ltd. Test strip for blood glucose determination
US6084660A (en) * 1998-07-20 2000-07-04 Lifescan, Inc. Initiation of an analytical measurement in blood
US6261519B1 (en) * 1998-07-20 2001-07-17 Lifescan, Inc. Medical diagnostic device with enough-sample indicator
US6087182A (en) * 1998-08-27 2000-07-11 Abbott Laboratories Reagentless analysis of biological samples
US6424851B1 (en) * 1998-10-13 2002-07-23 Medoptix, Inc. Infrared ATR glucose measurement system (II)
US6136610A (en) * 1998-11-23 2000-10-24 Praxsys Biosystems, Inc. Method and apparatus for performing a lateral flow assay
US6167290A (en) * 1999-02-03 2000-12-26 Bayspec, Inc. Method and apparatus of non-invasive measurement of human/animal blood glucose and other metabolites
DE59913262D1 (en) * 1999-07-08 2006-05-11 Leonhardt Steffen DEVICE FOR MEASURING HUMAN BLOOD SUGAR MIRROR
US6133552A (en) * 1999-08-11 2000-10-17 General Electric Company Sensor assembly for glass-ceramic cooktop appliance and method of calibrating
US6320170B1 (en) * 1999-09-17 2001-11-20 Cem Corporation Microwave volatiles analyzer with high efficiency cavity
US20020048307A1 (en) * 2000-09-14 2002-04-25 Volker Schmidt Device and process for infrared temperature measurement
US6541266B2 (en) * 2001-02-28 2003-04-01 Home Diagnostics, Inc. Method for determining concentration of an analyte in a test strip
US6898451B2 (en) * 2001-03-21 2005-05-24 Minformed, L.L.C. Non-invasive blood analyte measuring system and method utilizing optical absorption
US7041468B2 (en) * 2001-04-02 2006-05-09 Therasense, Inc. Blood glucose tracking apparatus and methods
US20040147034A1 (en) * 2001-08-14 2004-07-29 Gore Jay Prabhakar Method and apparatus for measuring a substance in a biological sample
US6678542B2 (en) * 2001-08-16 2004-01-13 Optiscan Biomedical Corp. Calibrator configured for use with noninvasive analyte-concentration monitor and employing traditional measurements
CN1620502A (en) * 2001-11-09 2005-05-25 陶氏环球技术公司 Enzyme-based system and sensor for measuring acetone
US7811231B2 (en) * 2002-12-31 2010-10-12 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use

Also Published As

Publication number Publication date
JP2003513277A (en) 2003-04-08
ATE269542T1 (en) 2004-07-15
EP1238274A2 (en) 2002-09-11
DE19952215A1 (en) 2001-05-17
WO2001033214A2 (en) 2001-05-10
DE19952215C2 (en) 2001-10-31
WO2001033214A3 (en) 2001-11-15
DE50006851D1 (en) 2004-07-22
US6880968B1 (en) 2005-04-19
DE10083447D2 (en) 2002-12-05
JP3723772B2 (en) 2005-12-07
EP1238274B1 (en) 2004-06-16
CA2387728A1 (en) 2001-05-10

Similar Documents

Publication Publication Date Title
CA2387728C (en) Test element analysis system with an infrared detector
EP0619880B1 (en) Improved non-invasive near-infrared quantitative measurement instrument
AU674474B2 (en) An analytical system for monitoring a substance to be analyzed in patient-blood
US5279294A (en) Medical diagnostic system
US20100130838A1 (en) Infrared Temperature Measurement of Strip
AU749033B2 (en) Apparatus and method for noninvasive glucose measurement
US20080114227A1 (en) Analysis device for in vivo determination of an analyte in a patient's body
US20040193024A1 (en) Calibrator
US20050054082A1 (en) Analysis system for determining an analyte concentration, taking into consideration sample-and analyte-independent light-intensity changes
PT948284E (en) Monitoring of tissue analytes by infrared radiation

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20181026