CA2389338A1 - The meso sniffer: a device and method for active gas sampling using alternating flow - Google Patents

The meso sniffer: a device and method for active gas sampling using alternating flow Download PDF

Info

Publication number
CA2389338A1
CA2389338A1 CA002389338A CA2389338A CA2389338A1 CA 2389338 A1 CA2389338 A1 CA 2389338A1 CA 002389338 A CA002389338 A CA 002389338A CA 2389338 A CA2389338 A CA 2389338A CA 2389338 A1 CA2389338 A1 CA 2389338A1
Authority
CA
Canada
Prior art keywords
pump
chamber
sensor
diaphragm
sensor head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002389338A
Other languages
French (fr)
Inventor
J. David Zook
Cleopatra Cabuz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2389338A1 publication Critical patent/CA2389338A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0026General constructional details of gas analysers, e.g. portable test equipment use of an alternating circulation of another gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25375Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/2575Volumetric liquid transfer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25875Gaseous sample or with change of physical state

Abstract

A sampling system for detecting an analyte, comprising a diaphragm pump, a buffer chamber, a sensor head and intake port. The pump includes a chamber for receiving fluids via first and second ports. A buffer chamber is located at the second port for holding a quantity of air, and a sensor head is adapted to identify the presence of a desired analyte and produce a signal in response to the quantity identified. Preferably the diaphragm pump has a volume of gas per stroke capacity slightly larger than the volume of the sensor head such that the pump chamber has a greater volume than the buffer chamber and the buffer chamber has about the same volume as the sensor head. A sensor intake port intakes a sample potentially containing the analyte for contact with the sensor head upon operation of the diaphragm pump and out of the sensor head by jet-action caused by rapid movement of the diaphragm pump. A filter may be used for filtering air drawn through the pump chamber. The diaphragm pump may be either a single chamber pump or a multiple chamber diaphragm mesopump. In the purging mode, the system can also contain a pump for filling the system with cleaned air. When a mesopump is used, a single pumping channel can provide both AC and DC operation.

Description

THE MESO SNIFFER: A DEVICE AND METHOD FOR ACTIVE GAS
SAMPLING USING ALTERNATING FLOW
FIELD OF THE INVENTION
The present invention relates to a sampling pump for a chemical sensing system. More particularly the invention relates to a sensing system using a sniffing mode, alternately inhaling and exhaling in each pumping cycle to expose the sensor or other chemically responsive surface to doses of reference gas and analyte.
BACKGROUND OF THE INVENTION
A large number of chemical and biological sensors are based on changes in the properties of a chemically sensitive material, such as changes in conductivity, surface charge or luminescence, that occur upon adsorption of analyte molecules. Analytes are, of course, the gas to be chemically analyzed. These changes can be monitored through physical methods and are related to the concentration of the analyte in the environment. In order to reduce the time associated with the diffusion of the analyte to the sensor site and to increase the amount of analyte seen by the sensor, sampling methods are used which force the air from the environment into direct contact with the sensitive polymer or other sensor material.
A typical present day configuration includes a material having physical properties that change when its surface is exposed to a gas containing certain chemical or biological species. These properties may be optical, electrical or mechanical, for example. A gas sampling system is used to bring fresh gas samples into contact with the surface of the material. Then, a read-out and signal processing system of electronics is used to convert the physical change to a useful output.
4~lhile these sensors have been demonstrated to work over a short time basis, they have been found to be adversely affected by long term drift that limits their practical use. The baseline drift frequently exceeds the minimum detectable signal by orders of magnitude, so that a sensitive technique is rendered essentially useless. It would be of great advantage to the art to greatly reduce the effects of baseline drift in gas sensing systems.
It would be another great advance in the art if a system would be developed to enable or significantly enhance the use of a wide variety of chemical and biological sensing techniques now not useful due to an inability to distinguish between the response to an analyte and the effect of baseline drift.
Other advantages will appear hereinafter.
SUMMARY OF THE INVENTION
It has now been discovered that the above and other objects of the present invention may be accomplished in the following manner. Specifically, the present invention provides a sampling system for a chemical sensor that works in a sniffing mode, that is, it produces an alternating flow pattern that alternately exposes the sensor head to a dose of reference gas and then to a dose of analyte gas during each sampling cycle.
The flow pattern during the exhaling phase is sufficiently powerful to insure a fresh sample at each intake phase of the sniffing cycle. The principle, used by all breathing animals, has not been previously suggested or used for active gas sampling.
The sampling system also functions in a purge mode to restore the baseline output of the sensor. The present invention permits the use of signal processing techniques that suppress background and sensor baseline drift, and thus significantly improve the sensitivity and usefulness of chemical sensors.
The diaphragm pump used in the present invention operates in two different modes to accomplish the goals of the invention. In a DC mode, the pump produces a gas flow in one direction through a filter or other cleaning device.
This cleaned air is further used as a reference gas for the second mode, known as the AC operation regime.
The second or AC operation mode performs the sniffing function by causing the direction of flow to alternate during each cycle. Gas flow in this regime is analogous to the electric current in an AC electrical circuit.
In the present invention, operation sequence first includes filling the whole sampling system with cleaned reference gas using the above referenced pumping cycle.
An intake phase of the sniffing mode follows, where a fresh sample of analyte gas from the environment of interest is brought into the sensing head. Outside air is kept from getting into the pumping chamber, avoiding contamination of the pump.
An exhaling cycle follows. The diaphragm action pushes the sample out of the sensing chamber and fills the sensing chamber again with the reference air from the buffer and the pump chambers.
The cycle starts over again by inhaling another sample.
In its simplest embodiment, the mesosniffer system consists only of a diaphragm pump working in the AC mode and a chemical sensor. The AC mode pump moves air back and forth across a sensor surface which is responsive to the desired analyte. The interaction between the analyte and the sensor is assumed to have an irreversible component, so that all the absorbed analyte is not desorbed. This causes a slowly increasing output which cannot be distinguished from baseline drift. AC signal processing eliminates the effect of the slowly changing baseline and provides an output proportional to the concentration of analyte.
BRIEF DESCRIPTION OF THE DRAWINGS
For a more complete understanding of the invention, reference is hereby made to the drawings, in which.:-=---FIGURE la is a schematic illustration of a sensor/sampler system of the present invention which uses two separate pumps, while FIGURES 1b and lc show the DC or purge pump operation, and FIGURES 1d through 1g show the sequential operation of the diaphragm pump used for AC
operation;
FIGURE 2 is a graphical illustration of the output of the system shown in FIGURE 1;
FIGURES 3a and 3b are side elevational, schematic illustration of a single chamber diaphragm pump operating in the AC regime in both intake and output modes;
FIGURE 4 illustrates a multiple chamber mesopump structure;
FIGURE 5 illustrates the operation of a multiple chamber diaphragm mesopump operating in the DC regime;
FIGURE 6 illustrates the signal used to drive the mesopump of FIGURE 5 operating in the DC regime; and FIGURE 7 illustrates the operation of the mesopump of FIGURE 4 in the AC regime.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Turning now to the drawings, Fig. la illustrates a sampling system 10 generally, showing a pump 11 for AC
pumping, a separate pump 25 for DC pumping and a valve 15 to enable the switching from DC pumping to AC pumping.
Pumps 11 and 25 and valve 15 all may be elements of the pump generically known as a mesopump, such as that described in commonly owned U.S. Patent No. 5,835,750. Also shown are a sensing device 23 connected to pump 11 through a buffer chamber 19 and a filter 21 that cleans the gas entering the sampling system during the purging phase of the operation cycle as disclosed below. Figs . 1b to if are schematic representations of the different phases of the operation cycle of the sampling system. Fig. 1b shows the purging phase of the operation. In this phase, valve 15 is opened, allowing the gas to move from the purging port 27 to the sampling port 29. The gas filling the system from purging port 27 is cleaned by filter 21, serving as a reference gas for the following phases of the operation cycle. Fig. lc shows the end of the purging phase. Valve 21 is closed, blocking the flow to and from the purging port 27. During purging, pump 11 can contribute to the pumping action by suitable synchronization with pump 25 or can be kept inactive, in a neutral position.
Figs. 1b, 1d, 1e, if and 1g show the operation of the diaphragm pump with arrows indicating the induced air flow outside the system. A volume of gas equal to the pump chamber 17 and proportionally larger than the volume of sensing chamber 23 is expelled out of the system in pump llb by movement of diaphragm 13 in pump chamber 17, downward in the drawing. However, enough cleaned air remains in the sampling system to refill pump chamber 17 in later cycles. During this phase, Fig. 1d, of operation, the base-line level and drift of the chemical sensor located in sampling chamber 23 are established as shown as phase d of Fig. 2. It should be noted that these systems are independent of orientation and terms such as "downward" and "one end" or other directional terms are used for descriptive purposes only and are merely convenient terms for illustrating the operation of a particular system in a specific orientation.
An intake cycle follows as shown in Fig. 1e, which is of course phase a of the cycle, wherein a fresh sample of analyte gas from the environment is brought into sampling chamber 23, functioning in the inhaling phase of the sniffing mode. Diaphragm 13 moves up with valve 15 closed, so sample air is drawn into sensor head 23. Buffer chamber 19 is used to prevent outside air from getting into pump chamber 17, thus avoiding contamination of the pump 11 with particles and with the analyte gas. During this phase the sensor in sampling chamber 23 will produce an output indicating the analyte concentration.
Fig. if illustrates the exhaling phase of the sniffing system, where rapid movement of diaphragm 13, by electrostatic action for example, causes a jet-formation regime to expel everything from sensor head 23 to insure a fresh sample during the next intake phase. The action of diaphragm 13 pushes the sample out of the sensor head and fills the sampling chamber 23 again with the reference air from buffer chamber 19 and pump chamber 17. During this phase, shown as Fig. 1f, the reading from the sensor in sampling chamber 23 will correspond to the reference gas and is expected to be stable. Any variation in the output of the sensor during this phase will indicate base-line drift of the chemical sensor used in sensor head 23 as phase f of Fig. 2.
The cycle then begins again by inhaling another sample as shown in Fig 1g and phase g of Fig. 2. It should be noted that the analyte may accumulate in the sensing device after a certain number of cycles or until a saturation level is detected. At this point a purging cycle is initiated, as shown in Fig. 1b, where valve 15 is opened to permit DC cycle operation purging using purge pump 25 and filter 21.
In the preferred embodiment of the present invention, it is desirable that the dimensions of the device and flow rates conform to certain constraints. In the jet-action expulsion phase shown in Figs. 1d and 1f, the flow pattern is highly irreversible. To achieve jet-action during the exhaling regime, the flow in the sampling chamber 23 must be fast enough to provide sufficient momentum to the air so that it is expelled into the open space away from the sensor head. Thus, this air will not be drawn back into the sensor during an inhaling phase which brings in fresh analyte. Because of this feature, the inhaled air comes from the near neighborhood of the sensor head and is therefore different and fresher than the exhaled air. This principle, though used by all breathing animals to avoid breathing in their own exhaled air, has not been used to date in active sampling systems.
In a preferred embodiment, the sensing chamber 23 is small enough and the inhale phase, Fig. 1e, is of long enough duration that most of the analyte molecules diffuse to and absorb onto the sensing surface therein. The exhaling phase is fast enough and the sensing head opening is small enough to generate an exhaust j et with suf f icient momentum to avoid being drawn in during the next inhale cycle. The air from the environment is retained in the sensor head 23 for a time long enough to diffuse to the walls but short enough to avoid diffusion into pump chamber 17.
In designing a prototype and preferred embodiment using the mesopumps described in the above referenced patents, certain volumes have been chosen as an example of good functional operation. The sampling chamber 23 would have a preferred volume of two microliters for each centimeter length of the chamber, such as 10 microliters for 5 centimeters of sampling chamber. Pump chamber 17 would have a volume of 3 microliters for a pump chamber with a 7.5 mm diameter, or 10 microliters for the 10 mm chamber. With these dimensions, mesopumps have functioned in the AC mode at a period of operation of 50 Hz.
In this example, an AC mode flow at high frequency, of about 20 Hz to 50 Hz, can be maintained for about ten seconds, resulting in a 2 ml total sample volume for the 10 mm chamber, followed by purging at a higher pump speed, such as 100 ml/min, achieved by using the purging pump.
Also, if the detected level of baseline drift is above a predetermined margin, heaters may be used for the purging phase to assist in desorption. A heater may be placed in buffer chamber 19, for example, to accomplish this step.
Fig. 2 illustrates the output of the system of Fig. 1.
Specifically, V represents the voltage applied to the bottom electrode. More generally, it represents the position of the diaphragm, or an output derived from a flow sensor, or a diaphragm position sensor. Output (1) is the detector output for a reversible analyte-sensor interaction and Output (2) represent the detector output for an irreversible analyte-sensor interation. With AC pumping, the sensor output provides information on the reversibility of the chemical interaction between the analyte molecules and the material of the chemical sensor. For a reversible reaction, the analyte molecules adsorbed during inhaling will be desorbed during the exhaling phase and the sensor output will be in phase with the pumping motion, shown as Output (1). At the other extreme, Output (2) illustrates the case where the analyte molecules have reacted irreversibly with the sensor material, so a dosimeter-type response is obtained. The chemical sensor output will increase during inhaling and will remain constant during exhaling, with the base-line monotonically increasing. The output of the chemical sensor will have a Fourier component at the sniffing frequency, proportional to the concentration of analyte but out of phase with the pumping action. Phase-sensitive detection or other means of correlating the pumping action with the sensor output allows the separation of the montonically increasing signal from the output, producing an output proportional to the analyte concentration. Without the active sniffing action, it would be very hard to distinguish between the analyte response and the base-line drift of the sensor. Output variations due to temperature changes, for example, will be much slower than the pumping action and can be subtracted by AC signal processing.
For irreversible interaction between the analyte and the sensor a simple AC system will provide the same benefits without the buffer chamber or the purging pump as shown in Figs. 3a and 3b. Figs. 3a and 3b illustrate the intake mode and output mode of a single chamber diaphragm pump operating in the AC regime. Molded pump body 31 includes a port 32 for input in Fig. 3a and output in Fig.
3b, leading to a chamber 33 which is filled or emptied by movement of diaphragm 34 upon actiori of a driving signal from signal source 36 to create electrostatic forces on electrodes 37. Back pressure vent 38 is included in pump body 31 to facilitate movement of diaphragm 34 and elimination of back pressure. Pump body 31 is, of course, connected via port 32 to a sensing chamber 37. The dimensions and frequency of operation are chosen so that most of the analyte is absorbed during the inhaling cycle.
The resulting clean air provides the referernce for the exhale cycle.
The mufti-chamber mesopump described in our earlier patent is a versatile pumping system that performs both the AC and DC pumping action. Fig. 4 illustrates one mesopump channel 41, draws air into inlet 42 through filter 43, through chambers 44a, 44b, 44c and 44d to produce flow in the direction of arrow 46, for discharge via port 47. In this mesopump, which of course can be in an array, four chambers 44a-d operate electrostatically to move fluid through the sequence in the manner of mesopump operation.
Fig. 5 illustrates the operation of a mesopump in what has been called the DC operation regime for purposes. In Fig. 5, the flow is from left to right. In Fig. 5a, filtered purging air enters at 51 into chamber 52, then in Fig. 5b to pump 53 and chamber 54, sequentially in Fig. 5c to chamber 56, then in Fig. 5d to chamber 60. In Fig. 5e, the fluid is expelled at 62, respectively. Fig. 6 illustrates the DC operation of Fig. 5 with applied signals for the electrodes of chambers 52, 54, 56 and 60.
Operation of the mesopump of Fig. 4 in the AC regime is shown in Fig. 7, where pump 71 is operated with one diaphragm 73 operating to intake and exhale fluid at port 74, while diaphragms 75, 76 and 77, acting as valves, are kept in a fixed position to close the inter-chamber conduits.
During each sampling cycle, information will be generated at the sensor head. A first output occurs during exposure to the fresh sample of analyte gas, and the sensor can typically be read at a frequency much higher than the frequency of the sampling cycle. The sensor output will indicate the accumulation of analyte in the sensing layer during this phase of the sampling cycle. Also, the sensor output during exposure to reference (cleaned) air will occur without analyte being attached to the sensing layer and the output of the sensor during this exposure to clean air should be stable or decrease as analyte is desorbed.
If, however, an increase in the level of the analyte during exposure to clean air samples would be detected, this would indicate a drift in the base-line and could be accounted for in the measurement process.
Since these two conditions set out above are synchronized to the pumping action, it is possible to use the powerful AC signal processing technique of synchronous demodulation or phase-sensitive detection to significantly enhance the performance of the chemical sensor. In the AC
gas sampling, a reference gas and a sample gas are presented to the sensor alternatively, allowing compensation for base-line drift. By integrating the output of the synchronous detector over long integration times, very low levels of signals can be detected. This technique is used to detect a modulated light sources in the presence of a large unmodulated background. Electrical chopping and synchronous detection are used to accurately measure small DC voltages that are smaller than the drifting offset voltages of the input amplifier.
The advantages of AC signal processing are well known in the art of infrared detection, and in fact are an essential element of it. In IR detection a chopper is used, and the IR sensor is alternately exposed to the shutter and to the IR source. It is commonly used to detect infrared radiation through the use of a mechanical chopper. In this example, the infrared imager alternately sees the scene and the chopper blade that presents it with a reference temperature. By phase-sensitive detection methods, the temperature of the chopper blade is subtracted from the temperature of the scene, providing a thermal image in which full contrast corresponds to a few degrees of temperature difference in the scene. The meso-sniffer of this invention has been discovered to function as the equivalent of a chopper blade to enable phase sensitive detection for a chemicl sensor.
It is well known that phase-sensitive detection provides two output signals instead of one: the in-phase and the out-of-phase components of teh signal. With the meso-sniffer, these two components provide information on the reversibiltiy of the chemical interaction between the analyte molecules and the material of the chemical sensor.
We first consider the case of a chemically reversible reaction. The analyte molecules adsorbed during inhaling will be desorbed during the exhaling phase and the sensor output will be in phase with the pumping motion. See Fig.
2, detector output (1).
At the other extreme, if the analyte molecules react irreversibly with the sensor material a dosimeter-type response is obtained, as in Fig. 2, detector output (2).
The chemical sensor output will increase during inhaling and wil remain constant during exhaling, with the baseline monitonically increasing. The output of the chemical sensor will have a Fourier component at the sniffing frequency, proportional to the concentration of analyte but out of phase with the pumping action. Phase-sensitived detection subtracts the monotonically increasing signal from the output, producing an output proportional to the analyte concentration as shown in Fig. 2, detector output (3).
Without the active sniffing action, it is very hard to distinguish the monotonic increase from baseline drift of the sensor. Output variations due to temperature changes, for example, will be much slower than the sniffing action and are much reduced by AC signal processing.
The use of phase-sensitive detection or equivalent signal processing methods significantly advances the state of the art of chemical sensing, since the present invention can be applied to many types of chemical sensors. This mode of operation is especially beneficial to the problem of land mine detection, where rapid detection of very low levels of explosives is needed.
While particular embodiments of the present invention have been illustrated and described, it is not intended to limit the invention, except as defined by the following claims .

Claims (26)

1. A sampling system for detecting the presence of an analyte, comprising:
a sensor adapted to produce an output signal in response to the presence of a desired analyte in contact with a surface thereof;
a diaphragm pump having a pump chamber with means for moving fluids back and forth across said sensor surface; and correlation means for correlating the sensor output signal to the back and forth motion of the fluids.
2. The system of claim 1, wherein said diaphragm pump is a single chamber pump.
3. The system of claim 1, wherein said diaphragm pump comprises a multiple chamber diaphragm mesopump.
4. A sampling system for detecting the presence of an analyte, comprising:
a diaphragm pump having a pump chamber for moving fluids into and out of said pump chamber through first and second ports, said pump including a valve at said first port having open and closed positions;
a buffer chamber at said second port for holding a quantity of air from said pump chamber;
a sensor head operationally connected to said buffer chamber and adapted to identify the presence of a desired analyte and produce a signal in response to the quantity identified, said sensor head having a volume less than said pump chamber;
a sensor intake port for intaking and exhausting a sample potentially containing said analyte for contact with said sensor head upon operation of said diaphragm pump with said valve in its closed position to pump air in and out of said buffer chamber; and a purging pump connected to said diaphragm pump for producing a continued flow for purging and filling said system with clean air.
5. The system of claim 4, which further includes a filter at said first port for filtering air drawn into said pump chamber when said valve is in its open position for passage of filtered air through said pump chamber, buffer chamber and sensor head to exit through said sensor intake port.
6. The system of claim 4, wherein said sample is exhausted from said sensor intake port by jet-action caused by rapid movement of said diaphragm pump.
7. The system of claim 4, wherein said diaphragm pump has a volume of gas per stroke capacity slightly larger than the volume of said sensor head.
8. The system of claim 4, wherein said pump chamber has a greater volume than said buffer chamber.
9. The system of claim 4, wherein said pump chamber has a greater volume than said buffer chamber and said buffer chamber has about the same volume as said sensor head.
10. The system of claim 4, wherein said diaphragm pump is a single chamber pump.
11. The system of claim 4, wherein said diaphragm pump comprises a multiple chamber diaphragm mesopump.
12. A sampling system for detecting the presence of an analyte, comprising:
diaphragm pump means for pumping fluids and having pump chamber means for moving fluids into and out of said pump chamber means through first and second port means for intake and exhaust of fluid from said pump chamber means, said diaphragm pump means including valve means at said first port having open and closed positions for open and closed communication with the ambient air;
buffer chamber means at said second port means for holding a quantity of air from said pump chamber means;
sensor head means operationally connected to said buffer chamber for identifying the presence of a desired analyte and producing a signal in response to the quantity identified, said sensor head means having a volume less than said pump chamber means;
sensor intake port means for intaking and exhausting a sample potentially containing said analyte for contact with said sensor head means upon operation of said diaphragm pump means with said valve means in its closed position to pump air in and out of said buffer chamber means; and filter means at said first port for filtering air drawn into said pump chamber means when said valve means is in its open position for passage of filtered air through said pump chamber means, buffer chamber means and sensor head means to exit through said sensor intake port means.
13. The system of claim 12, wherein said sample is exhausted from said sensor intake port means by jet-action caused by rapid movement of said diaphragm pump means.
14. The system of claim 12, wherein said diaphragm pump means has a volume of gas per stroke capacity slightly larger than the volume of said sensor head means.
15. The system of claim 12, wherein said pump chamber means has a greater volume than said buffer chamber means.
16. The system of claim 12, wherein said pump chamber means has a greater volume than said buffer chamber means and said buffer chamber means has about the same volume as said sensor head means.
17. The system of claim 12, wherein said diaphragm pump means is a single chamber pump means.
18. The system of claim 12, wherein said diaphragm pump means comprises a multiple chamber diaphragm mesopump means.
19. A method of sampling an environment for detecting the presence of an analyte, comprising the steps of:
purging a diaphragm pump by drawing air through a filter at a first port on said diaphragm with an inlet valve open to draw air into a pump chamber and moving said filtered air through a second port into a buffer chamber, then into a sensor head, and out the inlet to said sensor head;
closing said valve and operating said diaphragm pump to move fluids into and out of said pump chamber through first and second ports to transfer air to a buffer chamber for holding a quantity of air from said pump chamber;
intaking a sample of air potentially containing an analyte for contact by said air with said sensor head upon operation of said diaphragm pump with said valve in its closed position, said sensor head operationally connected to said buffer chamber and adapted to identify the presence of a desired analyte and produce a signal in response to the quantity identified; and exhausting said sample of air from said sensor head out said sensor intake port.
20. The method of claim 19, wherein said sample is exhausted from said sensor intake port by jet-action caused by rapid movement of said diaphragm pump.
21. The method of claim 19, wherein said diaphragm pump has a volume of gas per stroke capacity slightly larger than the volume of said sensor head.
22. The method of claim 19, wherein said pump chamber has a greater volume than said buffer chamber.
23. The method of claim 19, wherein said pump chamber has a greater volume than said buffer chamber and said buffer chamber has about the same volume as said sensor head.
24. The method of claim 19, wherein said diaphragm pump is a single chamber pump.
25. The method of claim 19, wherein said diaphragm pump comprises a multiple chamber diaphragm mesopump.
26. The system of claim 1, wherein a sample is exhausted from a sensor intake port by jet-action caused by rapid movement of said diaphragm pump.
CA002389338A 1999-10-29 2000-10-26 The meso sniffer: a device and method for active gas sampling using alternating flow Abandoned CA2389338A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/430,425 US6432721B1 (en) 1999-10-29 1999-10-29 Meso sniffer: a device and method for active gas sampling using alternating flow
US09/430,425 1999-10-29
PCT/US2000/029435 WO2001030497A2 (en) 1999-10-29 2000-10-26 The meso sniffer: a device and method for active gas sampling using alternating flow

Publications (1)

Publication Number Publication Date
CA2389338A1 true CA2389338A1 (en) 2001-05-03

Family

ID=23707507

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002389338A Abandoned CA2389338A1 (en) 1999-10-29 2000-10-26 The meso sniffer: a device and method for active gas sampling using alternating flow

Country Status (8)

Country Link
US (2) US6432721B1 (en)
EP (1) EP1224458B1 (en)
JP (1) JP2003512632A (en)
AT (1) ATE449328T1 (en)
AU (1) AU3634101A (en)
CA (1) CA2389338A1 (en)
DE (1) DE60043353D1 (en)
WO (1) WO2001030497A2 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6432721B1 (en) * 1999-10-29 2002-08-13 Honeywell International Inc. Meso sniffer: a device and method for active gas sampling using alternating flow
DE19960174A1 (en) * 1999-12-14 2001-06-28 Leybold Vakuum Gmbh Leak detection and leak detection methods and devices suitable for carrying out these methods
US6568286B1 (en) * 2000-06-02 2003-05-27 Honeywell International Inc. 3D array of integrated cells for the sampling and detection of air bound chemical and biological species
US7061595B2 (en) * 2000-08-02 2006-06-13 Honeywell International Inc. Miniaturized flow controller with closed loop regulation
US7465425B1 (en) * 2002-09-09 2008-12-16 Yizhong Sun Sensor and method for detecting analytes in fluids
US7897406B2 (en) * 2002-12-20 2011-03-01 Fiso Technologies Inc. Method and sensor for detecting a chemical substance using an optically anisotropic material
WO2005040764A1 (en) * 2003-10-16 2005-05-06 Smiths Detection Inc. Automated bioaerosol analysis platform
US20060134510A1 (en) * 2004-12-21 2006-06-22 Cleopatra Cabuz Air cell air flow control system and method
US7168675B2 (en) * 2004-12-21 2007-01-30 Honeywell International Inc. Media isolated electrostatically actuated valve
US7216048B2 (en) * 2004-12-30 2007-05-08 Honeywell International Inc. Calibrated pressure sensor
US7445017B2 (en) * 2005-01-28 2008-11-04 Honeywell International Inc. Mesovalve modulator
US7654129B2 (en) * 2005-05-17 2010-02-02 Honeywell International Inc. Sensor with an analyte modulator
US7320338B2 (en) * 2005-06-03 2008-01-22 Honeywell International Inc. Microvalve package assembly
US20070045128A1 (en) * 2005-08-19 2007-03-01 Honeywell International Inc. Chlorine dioxide sensor
US20070051415A1 (en) * 2005-09-07 2007-03-08 Honeywell International Inc. Microvalve switching array
US8549934B2 (en) * 2008-03-25 2013-10-08 Flownamics Analytical Instruments, Inc. Segmented online sampling apparatus and method of use
DE102008024769B4 (en) * 2008-05-23 2014-01-30 Eads Deutschland Gmbh Apparatus and method for detecting trace gases
US10282965B2 (en) * 2014-12-11 2019-05-07 Intel Corporation Synthetic jet delivering controlled flow to sensor system
US10214716B2 (en) 2015-05-08 2019-02-26 Flownamics Analytical Instruments, Inc. Method and apparatus for continuous automated perfusion system harvesting from in-situ filtration probe
JP6651753B2 (en) * 2015-09-09 2020-02-19 富士電機株式会社 Particle composition analyzer
CN109690310B (en) * 2016-07-04 2022-04-15 弗劳恩霍夫应用研究促进协会 Apparatus with micro-fluidic actuator
US10302599B2 (en) * 2016-10-27 2019-05-28 Infineon Technologies Ag Photoacoustic gas detector
WO2018191703A1 (en) 2017-04-14 2018-10-18 Johnson Controls Technology Company Thermostat with preemptive heating, cooling, and ventilation in response to elevated occupancy detection via proxy
EP3527826B1 (en) * 2018-02-16 2020-07-08 ams AG Pumping structure, particle detector and method for pumping
CN110457296B (en) * 2019-07-05 2021-12-03 中国船舶重工集团公司第七一九研究所 Cleaning method for running data of constant speed pump

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH579418A5 (en) 1974-06-12 1976-09-15 Sicpa Int Sa Pumping and mixing liquids with single pump - using three way valves and jet mixer with rotating arms
JPS5681451A (en) * 1979-12-07 1981-07-03 Olympus Optical Co Ltd Separately-injecting nozzle
US4478096A (en) * 1983-06-29 1984-10-23 The United States Of America As Represented By The Secretary Of Agriculture Shielded sniffing device
US4997627A (en) * 1987-07-17 1991-03-05 Fisher Scientific Company Sample analysis
US5158868A (en) * 1987-07-17 1992-10-27 Iniziative Marittime 1991, S.R.L. Method of sample analysis
US4920263A (en) * 1988-01-26 1990-04-24 Gemini Research, Inc. Radon detection system
US4947339A (en) * 1988-12-01 1990-08-07 Jan Czekajewski Method and apparatus for measuring respiration, oxidation and similar interacting between a sample and a selected component of a fluid medium
US5133937A (en) * 1989-06-01 1992-07-28 Iniziative Marittime, 1991 S.R.L. Analysis system having a removable reaction cartridge and temperature control
DE3925749C1 (en) 1989-08-03 1990-10-31 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De
SE508435C2 (en) 1993-02-23 1998-10-05 Erik Stemme Diaphragm pump type pump
US5659171A (en) * 1993-09-22 1997-08-19 Northrop Grumman Corporation Micro-miniature diaphragm pump for the low pressure pumping of gases
US5758823A (en) * 1995-06-12 1998-06-02 Georgia Tech Research Corporation Synthetic jet actuator and applications thereof
US5875823A (en) * 1995-08-22 1999-03-02 National Safety Advisors Inc. Siphoning device for use in basting, measuring or immiscible liquid separation
EP0879357B1 (en) 1996-02-09 2002-11-13 Westonbridge International Limited Micropump comprising a micromachined filter
US5900216A (en) * 1996-06-19 1999-05-04 Earth Resources Corporation Venturi reactor and scrubber with suckback prevention
KR100210224B1 (en) 1996-07-03 1999-07-15 김성철 Diaphragm pump
US5720330A (en) * 1997-01-23 1998-02-24 Schmalz, Jr.; John W. Squeeze bulb for liquid extraction device
US6037592A (en) * 1997-02-14 2000-03-14 Underground Systems, Inc. System for measuring gases dissolved in a liquid
NL1006211C2 (en) * 1997-06-03 1998-12-04 Applikon B V Analysis device.
US6082185A (en) * 1997-07-25 2000-07-04 Research International, Inc. Disposable fluidic circuit cards
US5836750A (en) 1997-10-09 1998-11-17 Honeywell Inc. Electrostatically actuated mesopump having a plurality of elementary cells
US6085576A (en) * 1998-03-20 2000-07-11 Cyrano Sciences, Inc. Handheld sensing apparatus
US6179586B1 (en) * 1999-09-15 2001-01-30 Honeywell International Inc. Dual diaphragm, single chamber mesopump
US6432721B1 (en) * 1999-10-29 2002-08-13 Honeywell International Inc. Meso sniffer: a device and method for active gas sampling using alternating flow
US6703241B1 (en) * 1999-11-15 2004-03-09 Cyrano Sciences, Inc. Referencing and rapid sampling in artificial olfactometry
US6568286B1 (en) * 2000-06-02 2003-05-27 Honeywell International Inc. 3D array of integrated cells for the sampling and detection of air bound chemical and biological species

Also Published As

Publication number Publication date
WO2001030497A2 (en) 2001-05-03
DE60043353D1 (en) 2009-12-31
US7197949B2 (en) 2007-04-03
US20030186462A1 (en) 2003-10-02
EP1224458B1 (en) 2009-11-18
WO2001030497A3 (en) 2002-01-17
JP2003512632A (en) 2003-04-02
AU3634101A (en) 2001-05-08
EP1224458A2 (en) 2002-07-24
US6432721B1 (en) 2002-08-13
ATE449328T1 (en) 2009-12-15

Similar Documents

Publication Publication Date Title
EP1224458B1 (en) The meso sniffer: a device and method for active gas sampling using alternating flow
US6889567B2 (en) 3D array integrated cells for the sampling and detection of air bound chemical and biological species
US8721892B2 (en) Integrated chromatography devices and systems for monitoring analytes in real time and methods for manufacturing the same
US6455003B1 (en) Preconcentrator for chemical detection
US8127595B2 (en) Pre-concentrator and sample interface
US9658196B2 (en) Gas collection and analysis system with front-end and back-end pre-concentrators and moisture removal
US6656738B1 (en) Internal heater for preconcentrator
EP2102628B1 (en) Gas sensor with an analyte modulator
US7841244B2 (en) Apparatus and method for mobile collection of atmospheric sample for chemical analysis
EP1440309B1 (en) Ram-air sample collection device for a chemical warfare agent sensor
CN101441143A (en) Apparatus for mobile collection of atmospheric sample for chemical analysis
ATE121196T1 (en) INVESTIGATION METHOD AND DEVICE.
JPH09506284A (en) Measuring device for fluid analysis
CA2391452A1 (en) Apparatus and method for collecting and detecting chemicals
AU2665999A (en) A valveless gas chromatographic system with pulsed injection and temperature programmed elution
JP4225545B2 (en) Mustard detection device
JP4172779B2 (en) Louisite detector

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued