CA2407722A1 - Blind carrier offset detection for quadrature modulated digital communication systems - Google Patents

Blind carrier offset detection for quadrature modulated digital communication systems Download PDF

Info

Publication number
CA2407722A1
CA2407722A1 CA002407722A CA2407722A CA2407722A1 CA 2407722 A1 CA2407722 A1 CA 2407722A1 CA 002407722 A CA002407722 A CA 002407722A CA 2407722 A CA2407722 A CA 2407722A CA 2407722 A1 CA2407722 A1 CA 2407722A1
Authority
CA
Canada
Prior art keywords
frequency
complex
delta
function
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002407722A
Other languages
French (fr)
Inventor
Leonid Kazakevich
Fatih Ozluturk
Alexander Reznik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InterDigital Technology Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2407722A1 publication Critical patent/CA2407722A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3818Demodulator circuits; Receiver circuits using coherent demodulation, i.e. using one or more nominally phase synchronous carriers
    • H04L27/3836Demodulator circuits; Receiver circuits using coherent demodulation, i.e. using one or more nominally phase synchronous carriers in which the carrier is recovered using the received modulated signal or the received IF signal, e.g. by detecting a pilot or by frequency multiplication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/233Demodulator circuits; Receiver circuits using non-coherent demodulation
    • H04L27/2332Demodulator circuits; Receiver circuits using non-coherent demodulation using a non-coherent carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/38Demodulator circuits; Receiver circuits
    • H04L27/3845Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier
    • H04L27/3854Demodulator circuits; Receiver circuits using non - coherent demodulation, i.e. not using a phase synchronous carrier using a non - coherent carrier, including systems with baseband correction for phase or frequency offset
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0044Control loops for carrier regulation
    • H04L2027/0063Elements of loops
    • H04L2027/0065Frequency error detectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0083Signalling arrangements
    • H04L2027/0085Signalling arrangements with no special signals for synchronisation

Abstract

A system and method for estimating the frequency offset experienced between carrier and local oscillator frequencies in communication systems using quadrature modulation. The invention exploits the geometry of the quadrature modulation constellation and estimates actual offset within a predefined carrier offset value without requiring data estimation.

Description

BLIND CARRIER OFFSET DETECTION FOR QUADRATURE MODULATED
DIGITAL COMMUNICATION SYSTEMS
BACKGROUND OF THE INVENTION
Field of the Invention The present invention relates generally to digital communication systems using quadrature modulation techniques. More specifically, the invention relates to a system and method for blind detection of carrier frequency offsets in such systems.
Description of the Prior Art A digital communication system typically transmits information or data using a continuous frequency carrier with modulation techniques that vary its amplitude, frequency or phase. After modulation, the signal is transmitted over a communication medium. The communication media may be guided or unguided, comprising copper, optical fiber or air and is commonly referred to as the communication channel.
The information to be transmitted is input in the form of a bit stream which is mapped onto a predetermined constellation that defines the modulation scheme. The mapping of each bit as symbols is referred to as modulation.
Each symbol transmitted in a symbol duration represents a unique waveform. The symbol rate or simply the rate of the system is the rate at which symbols are transmitted over the communication channel. A prior art digital communication system is shown in FIG.1. While the communication system shown in FIG.1 shows a single, communication link, those skilled in this art recognize that a plurality of multiple access protocols exist. Protocols such as frequency division multiple access (FDMA), time division multiple access (TDMA), carrier sense multiple access (CSMA), code division multiple access (CDMA) and many others allow access to the same communication channel for more than one user. These techniques can be mixed together creating hybrid varieties of multiple access schemes such as time division duplex (TDD). The type of access protocol chosen is independent of the modulation type.
One family of modulation techniques is known as quadrature modulation and is based on two distinct waveforms that are orthogonal to each other. If two waveforms are transmitted simultaneously and do not interfere with each other, they are orthogonal. ~
Two waveforms generally used for quadrature modulation are sine and cosine waveforms at the same frequency.
The waveforms are defined as sl(t) =Acos(Z~f~t) Equation 1 and s2(t) = Asln(2TCf~t) Equation 2 where f is the carrier frequency of the modulated signal and A is the amplitude applied to both signals. The value ofA is irrelevant to the operation of the system and is omitted in the discussion that follows. Each symbol in the modulation alphabet are linear combinations generated from the two basic waveforms and are of the form al cos(2~cf t) + a2 sin(2~cf t) where a1 and a2 are real numbers. The symbols can be represented as complex numbers, a~ + ja2, where j is defined as j _ ,~-1.
The waveforms of Equations 1 and 2 are the most common since all passband transmission systems, whether analog or digital, modulate the two waveforms with the original baseband data signal. Quadrature modulation schemes comprise various pulse amplitude modulation (PAM) schemes (where only one of the two basic waveforms is used), quadrature amplitude modulation (QAM) schemes, phase shift keying (PSK) modulation schemes, and others.
17-b7-2002 CA 02407722 2002-10-24 US001112 A prior art quadrature modulator is shown in FIG. 2. The modulator maps the input data as a pair of numbers {a,, a2} which belong to a set defined by the modulation alphabet. a, represents the magnitude (scaling) of the first waveform and a2 represents the magnitude (scaling) of the second wavefonn. Each magnitude is modulated (i.e.
multiplied) by the orthogonal waveforms. Each individual modulatoraccepts two signal inputs and forms an output signal at the caxrier frequency.
A prior art quadrature demodulator is shown in FIG. 3. The demodulator generates sine and cosine waves at a carrier frequency [ f~J f,~ for demodulation. Ignoring channel effects, the received signal can be represented as r(t) = al (t) cos(2~cf~t + ~o ) + a2 (t) sin(2~tf~t + ~o ) Equation 3 where a,(t) represents the plurality of amplitudes modulated on wavefonn s,(t) as defined by Equation 1 and a2(t) represents the plurality of amplitudes modulated on waveform s2(t) as defined by Equation 2. c~ is an arbitrary phase offset which occurs during transmission.
The cosine and sine demodulator signal components are defined as:
r~ (t) = r(t) * cos(2TCf~t) _ ~ al cos(( f~ - f ~ )t + ~o ) + ~ a2 sin(( f~ - f ~ )t + ~o ) Equation 4 + ~ a~ cos(( f~ + f~ )t + øo ) + ~ a2 sin(( f~ - fLO )t + ~o and AMENDED SHEET

~S (t) _ ~(t) * sin(2~fLOt) _ ~ a2 cos((f~ - fr,o )t + ~o ) - 2 al sin((f~ - fLO )t + ~o ) Equation 5 - 1 a2 cos((f~ + fLO )t + ~o ) + 1 a, sin((f~ - fLO )t + ~o ) The carrier frequency components, f + fLO, are suppressed by the lowpass filters. The signals after filtering are:
y~ (t) _ ~ al cos(( f~ - fLO )t + ~o ) + ~ a2 sin(( f~ - fLO )t + ~o ) Equation 6 and Ys (t) = 2 a2 cos((f~ - fio )t + ~o ) - ~ as sin((f~ - fio )t '~ ~o ) Equation If the local oscillator frequency in Equations 6 and 7 is equal to the carrier frequency, f o =f , and the phase offset is equal to zero, ~o = 0, the right hand sides of Equations 6 and 7 become 'l2 al(t) and'/Z aZ(t) respectively. Therefore, to effect precise demodulation, the local oscillator must have the same frequency and phase as that of the carrier waveform.
However, signal perturbations occurring during transmission as well as frequency alignment errors between the Local oscillators of the transmitter and receiver manifest a difference between the Garner and local oscillator frequencies which is known as carrier offset. A phase difference between the carrier and local oscillator frequency is created as well. However, if the difference in frequencies is corrected, the difference in.phase is simple~to remedy. Phase correction is beyond the scope of the present disclosure.
Carrier frequency offset is defined as:
~f = f~ - f~. Equation 8 To synchronize either parameter,'the frequency and phase offsets need to be estimated.
In prior art receivers, frequency offset estimation is performed after a significant amount of data processing. Without correcting offset first, the quality of downstream signal processing suffers.
"Estimation of Frequency Offset in Mobile Satellite Modems" by Cowley et al.
discloses a circuit for determining a frequency offsets in mobile satellite applications. The frequency offset estimation uses a low pass filter, an M~' power block, a square fast Fourier transform block and a peak search block.
"A method for Course Frequency Acquisition for Nyquist Filtered MPSK" by Ahmed discloses a frequency offset estimator for mobile satellite communications.
The estimator uses a low pass filter, a decimator, a fast Fourier transform block and a search algorithm.
"Carrier and Bit Synchronization in Data Communication - A tutorial Review" by Franks discloses carrier phase recovery circuits using elementary statistical properties and timing recovery based on maximum-likelihood estimation theory.
What is needed is a system and method of detecting and estimating carrier frequency offset before any data signal processing is performed.
AMENDED SHEET

17-07-2002 US001112!
' SUMMARY OF THE INVENTION
The present invention provides a system and method for estimating the frequency offset experienced between carrier and local oscillator frequencies in communication systems using quadrature modulation. The invention exploits the geometry of the quadrature modulation constellation and estimates actual offset within a predefined Garner offset value without requiring data estimation.
Accordingly, it is an object of the invention to provide a less-complex system and method for~blindly estimating carrier frequency offset.
it is another object of the present invention to blindly estimate carrier offset in a communication system using quadrature modulation regardless of the access protocol.
-5 a-AMENDED SHEET
Other objects and advantages of the system and method will become apparent to those skilled in the art after reading a detailed description of the preferred embodiment.
BRIEF DESCRIPTION OF THE FIGURES
FIG. 1 is a simplified system diagram of a prior art digital communication system.
FIG. 2 is a system diagram of the prior art quadrature transmitter shown in FIG.1.
FIG. 3 is a system diagram of the prior art quadrature receiver shown in FIG.
1.
FIG. 4 is a system diagram of the blind carrier offset estimator of the present invention.
FIG. 5 is a detailed system diagram of a blind digital carrier offset estimator of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
The embodiments will be described with reference to the drawing figures where like numerals represent like elements throughout.
Shown in FIG. 4 is an analog or digital blind carrier detector 33 of the present invention.
A quadrature modulated signal r(t) is received from a communication channel (not shown) and is input 19 to a receiver 17. One skilled in this art recognizes that additional conversion means may exist before the detector input 19 to convert the energy used in the transmission media to compatible signals and is beyond the scope of this disclosure. The received signal r(t) is coupled to a cosine mixer 21~ and a sine mixer 215. Each mixer 21~, 215 has a first input 25~, 255 for coupling with the received signal r(t) and a second input 27~, 275 for coupling with the output of a local oscillator LO. The local oscillator LO is programmed to generate cosine and sine waves at the carrier frequency f~ (Equations 4 and 5) of the received signal r(t).

The carrier-frequency demodulated outputs r~(t), rs(t) from each mixer 21~, 215 are input to respective lowpass filters 29~, 295 which suppress high-frequency noise components impressed upon the received signal r(t) during transmission through the transmission media and mixer sum frequencies, f + fLO, (Equations 6 and 7). As in prior art demodulators, the response characteristics of the lowpass filters 29~, 295 may be a bandwidth as narrow as ~1f'~ ~- the maximum allowable carrier offset. The output y~(t), ys(t) from each lowpass filter 29~, 295 is coupled to inputs 31~, 315 of a carrier offset estimator 33.
The carrier offset estimator 33 produces an estimate of the carrier offset 35 before data signal processing commences using a complex power processor 37 in conj unction with a complex Fourier transform processor 39. The filtered, carrier frequency demodulated cosine and sine components of the quadrature signal y~(t) and yS(t) are coupled to the complex power processor 37 which performs an intermediate power calculation of each quadrature component in the form of xy where the powers y comprise integer multiples of four; i. e. y = 4, 8, 12, 16 .... In the preferred embodiment, the powery is 4.
The complex power processor 37 may be implemented to raise the input complex signal to a power which is any positive integer multiple of four. Carrier offset detection systems which use a complex power processor with a power of two or its positive integer multiples are known in the art. However, these prior art systems do not work in quadrature-modulated digital communication systems. To properly detect a carrier offset in a quadrature-modulated digital communication system demodulator, a complex power of four or its integer multiples are necessary.
The complex power processor 37 combines the lowpass filter outputs y~(t) and ys(t) into a single complex value signal y(t) defined as:

y(t) = y~(t) + jyS(t) Equation 9 where j is defined as j = ,l-1. The complex power processor 37 generates two power output signals q~(t) = Re{(y(t))ø} Equation 10 and qs(t) = Im{(y(t))ø} Equation 11 where Re{x} denotes the real part of a complex number x, and Im{x} denotes the imaginary part of the complex numberx. The complex power processor 37 removes the modulation component from each received symbol leaving the carrier frequency. The real q~(t) and imaginary qs(t) signal components axe output and coupled to the complex Fourier transform processor 39.
The complex Fourier transform processor 39 treats the real q~(t) and imaginary qs(t) signal components as a single complex input signal q(t) = q~(t) +jqs(t). The processor observes q(t) for a finite period of time Tw and computes a complex Fourier transform of the observed signal q(t) over this period of time.
The Fourier processor 39 performs a Fourier transform of the power processed signals from the observed period TWand outputs a frequency at which the amplitude of the transform was measured to be maximal Of'~ during that time period TW. The output 35 represents an accurate estimate of ~f' and is signed since the transform input signal is complex. The sign identifies whether the local oscillator LO frequency is less than or greater than the carrier frequency.
A detailed, low-complexity digital implementation of the present invention 53 is shown in FIG. 5. Lowpass filter 29~, 29S output signals y~(t) and ys(t) are sampled at a sampling rate f to produce discrete-time signals y~[n] and ys[n]. To ensure that all possible carrier frequency offsets up to ~f'~ are detected, 2~j'~ < f must be satisfied. The passband of the low pass _g_ filters 29~, 29S must be wider than Af~ to avoid suppressing the signal which contains the carrier offset information.
The sampled signals y~[n] and ys[n] are input 51~, 515 to a complex power processor S7 and combined as a single complex signal, y[h], where y[n] =y~[h] + jys[n]. The power processor 57 produces a complex output defined by q[n] _ (y[n])4. The output q[n] is coupled to a buffer 59 for accumulating N outputs from the complex power processor 57.
The accumulated block of complex numbers Nis coupled to a digital Fourier transform (DFT) processor 61 which performs a transform from the time domain to the frequency domain for the Ncomplex numbers. The DFT processor 61 outputs Ncomplex numbers corresponding with the input N. Each number is associated with a particular frequency ranging from f~12 to (+f~12 -f~ll~. Each frequency is fs/Naway from a neighboring frequency. The frequency domain values output by the DFT 61 are assembled and compared with one another. The value having the largest magnitude represents the best estimate of the carrier frequency offset ~f:
The embodiment described in FIG. 5 is capable of estimating all carrier frequency offsets smaller than f~Z. This follows from the restriction 2tlfM~ < fs imposed above.
The carrier offset 4f is resolved to within a frequency uncertainty of ~ f~.N since the frequencies at the output of the DFT 61 axe quantized to a grid with a spacing of fslN. Since the frequencies are fslN away from each other, the invention 53 renders precision within +%2 of the selected value. Therefore, the number of samples N accumulated for the Fourier processor 61 to transform determines the resolution of the carrier offset estimate ~f. An efficient implementation of the DFT 61 used in the present invention 53 can be achieved using the fast Fourier transforms (FFT) family of algorithms.
The present invention 33, 53 may be physically realized as digital hardware or as software. The lowpass filters shown in FIG. 5 may be realized in digital hardware or software operating at a sampling rate faster than f . In some communication systems, for example those employing CDMA protocols, the lowpass filters and downsamplers fs may be replaced with accumulators and integrate-and-dump processes.
While the present invention has been described in terms of the preferred embodiments, other variations which are within the scope of the invention as outlined in the claims below will be apparent to those skilled in the art.

Claims (12)

What is claimed is:
1. A detector (33) for use in a receiver (17) that estimates a difference (.DELTA..function.) between a received quadrature demodulated communication signal (r(t)) carrier frequency (f c) and a local oscillator (LO) frequency used for demodulation, the detector (33) characterized by:
a complex power processor (37) for receiving the quadrature demodulated communication signal (r(t)) cosine (y c (t)) and sine (y s (t)) components producing real (Re{(y(t)) y}) and imaginary (Im{(y(t)) y}) power signal components, by obtaining a power (y) that is an integer multiple of four for each of the cosine (y c(t)) and sine (y s(t)) components, said power signal components coupled to a complex Fourier transform (39);
said complex Fourier transform (39) performing a complex Fourier transform on said power signal components for a predefined period of time outputting a frequency transform containing a plurality of frequencies observed during said predefined period of time; and said plurality of frequencies having a maximum frequency corresponding to the difference (.DELTA..function.) between the carrier (f c) and local oscillator (LO) frequencies.
2. The detector (33) according to claim 1, wherein said complex Fourier transform (39) maximum frequency is further characterized with a sign (~) indicating whether the difference frequency (.DELTA..function.) is greater than or less than the local oscillator (LO) frequency.
3. A method (33) for estimating a difference (.DELTA..function.) between a received (17) quadrature demodulated communication signal (r(t)) carrier frequency (f c) and a local oscillator (LO) frequency used for demodulation, the method (33) characterized by the steps of:
a) performing a complex power calculation on the received quadrature demodulated communication signal (r(t)) cosine (y c (t)) and sine (y s (t)) components producing real (Re{(y(t)) y}) and imaginary (Im{(y(t)) y}) power signal components by obtaining a power (y) that is an integer multiple of four for each of the cosine (y c (t)) and sine (y s (t)) components;
b) transforming said real (Re{(y(t)) y}) and imaginary (Im{(y(t)) y}) power signal components into Fourier frequency domain values representing a plurality of frequencies;
c) selecting a maximum frequency from said plurality of frequencies and d) outputting said selected frequency as the difference frequency (.DELTA..function.).
4. The method (33) according to claim 4 wherein step d) is further characterized by a step of assigning a sign (~) to said maximum frequency indicating whether the offset frequency (.DELTA..function.) is greater than or less than the local oscillator (LO) frequency.
5. A detector (53) for use in a receiver (17) that estimates a difference (.DELTA..function.) between a received quadrature demodulated communication signal (r(t)) carrier frequency (f c) and a local oscillator (LO) frequency used for demodulation, the detector (53) characterized by:
a sampler (f s) sampling the received quadrature demodulated communication signal (r(t)) components (y c (t)), (y s (t)) into discrete time (y c ([n])), (y s [n]) signal components, said discrete time (y c [n]), (y s [n]) signal components coupled to a complex power processor (57);
said complex power processor (57) performs a complex power calculation on said discrete time (y c [n]), (y s [n]) signal components producing real (Re((y[n]) y}) and imaginary (Im{(y[n]) y}) power signal components by obtaining a power (y) that is an integer multiple of four for each of the cosine (y c (t)) and sine (y s (t)) components which are output (q[n]) to a buffer (59);
said buffer (59) accumulates a plurality (N) of complex power processor (57) outputs (q[n]) for a predefined period of time as a block of data (T w), said block of data (T w) is output to a complex Fourier processor (61);
said complex Fourier transform (61) performs a complex Fourier transform on said block of data (T w) outputting a frequency transform containing a plurality of frequencies (-f/2 to (+f/2 - f/N) observed during said predefined period of time, said output (-f/2 to (+f/2 - f/N) is coupled to a selector; and said selector (63) selects from said plurality of frequencies a maximum frequency which corresponds to the difference (.DELTA..function.) between the carrier (f c) and local oscillator (LO) frequencies.
6. The detector (53) according to claim 7, wherein said sampler (f s)is further characterized by sampling the received quadrature demodulated continuos time (y c (t)), (y s (t)) signal components at a predefined (2.DELTA..function. max <f s) frequency.
7. The detector (53) according to claim 8 wherein said complex Fourier transform (39) maximum frequency is further characterized with a sign {~) indicating whether the difference frequency (.DELTA..function.) is greater than or less than the local oscillator (LO) frequency.
8. The detector (53) according to claim 10, wherein said complex Fourier transform (39) is further characterized as a fast Fourier transform.
9. A method (53) for estimating a difference (.DELTA..function.) between a received (17) quadrature demodulated communication signal (r(t)) carrier frequency (f c) and a local oscillator (LO) frequency used for demodulation, the method (53) characterized by the steps of:
a) sampling (f s) received (r(t)) quadrature demodulated communication signal (r(t)) signal components (y c (t)), (y s (t)) into discrete time (y c [n])), (y s [n]) signal components;
b) performing a complex power calculation (57) on said discrete time (y c [n]), (y s [n]) signal components, said discrete time (y c [n]), (y s [n]) signal components including cosine (y c [n]) and sine (y s [n]) components by obtaining a power (y) that is an integer multiple of four for each of the cosine (y c (t)) and sine (y s (t)) components;
c) buffering (59) an output ((y[n]) y) of said complex power calculation [output ((y[n]) y ] for a plurality (N) of complex power processor (57) outputs for a predefined period of time as a block of data (T w);
d) transforming (61) said block of data (T w) into Fourier frequency domain values representing a plurality of frequencies (-f/2 to (+f/2 - f/N);
e) selecting (63) a maximum frequency from said plurality of frequencies (-f/2 to (+f/2 - f/N); and f) outputting said selected frequency as the difference frequency (.DELTA..function.).
10. The detector (53) according to claim 12, wherein step a) is further characterized by a step of sampling the received quadrature demodulated continuous time (y c (t)), (y s (t)) signal components at a predefined (2.DELTA..function.
MAX<f s) frequency.
11. The method (53) according to claim 13, wherein step d) is further characterized by a step of assigning a sign (~) to said maximum frequency indicating whether the offset frequency (.DELTA..function.) is greater than or less than the local oscillator (LO) frequency.
12. The method (53) according to claim 15, wherein step d) is further characterized as a fast Fourier transform.
CA002407722A 2000-04-25 2000-04-25 Blind carrier offset detection for quadrature modulated digital communication systems Abandoned CA2407722A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2000/011125 WO2001082546A1 (en) 2000-04-25 2000-04-25 Blind carrier offset detection for quadrature modulated digital communication systems

Publications (1)

Publication Number Publication Date
CA2407722A1 true CA2407722A1 (en) 2001-11-01

Family

ID=21741316

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002407722A Abandoned CA2407722A1 (en) 2000-04-25 2000-04-25 Blind carrier offset detection for quadrature modulated digital communication systems

Country Status (9)

Country Link
US (2) US7254189B1 (en)
EP (1) EP1279265A1 (en)
JP (1) JP2003535494A (en)
CN (1) CN1197316C (en)
AU (1) AU2000244907A1 (en)
CA (1) CA2407722A1 (en)
HK (1) HK1058593A1 (en)
NO (1) NO20025112L (en)
WO (1) WO2001082546A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660842B1 (en) 1994-04-28 2003-12-09 Tripep Ab Ligand/receptor specificity exchangers that redirect antibodies to receptors on a pathogen
US6933366B2 (en) 1996-12-27 2005-08-23 Tripep Ab Specificity exchangers that redirect antibodies to bacterial adhesion receptors
GB2399470B (en) * 2000-05-12 2004-12-29 Global Silicon Ltd Radio receiver
KR100457925B1 (en) * 2002-11-15 2004-11-18 한국전자통신연구원 A frequency offset calculation method using log transform and linear approximation
US7335359B2 (en) 2003-02-06 2008-02-26 Tripep Ab Glycosylated specificity exchangers
CN1747970A (en) 2003-02-06 2006-03-15 三肽公司 Antigen/antibody or ligand/receptor glycosylated specificity exchangers
WO2005027353A2 (en) * 2003-09-12 2005-03-24 Ems Technologies Canada, Ltd. Hybrid frequency offset estimator
US7903764B2 (en) * 2004-05-10 2011-03-08 Broadcom Corporation Integrated burst FSK receiver
CN101453441B (en) * 2007-11-29 2012-10-03 Nxp股份有限公司 Robust integral time carrier wave frequency offset estimator
TWI373944B (en) * 2008-04-09 2012-10-01 Mstar Semiconductor Inc Apparatus for estimating frequency offset and estimating method thereof
CN101789800A (en) * 2009-01-23 2010-07-28 雷凌科技股份有限公司 Testing method for wireless signal receiver and relevant testing device thereof
US8682182B2 (en) * 2011-05-17 2014-03-25 At&T Intellectual Property I, L.P. Blind carrier frequency offset detection for coherent receivers using quadrature amplitude modulation formats
US9118335B2 (en) * 2012-09-16 2015-08-25 Technische Universiteit Delft High resolution millimeter wave digitally controlled oscillator with reconfigurable distributed metal capacitor passive resonators
US9019224B2 (en) * 2013-03-15 2015-04-28 Tactual Labs Co. Low-latency touch sensitive device
GB2512935A (en) * 2013-04-12 2014-10-15 Nordic Semiconductor Asa Digital Radio Transmissions
CN104702554B (en) * 2013-12-09 2017-12-15 瑞昱半导体股份有限公司 Offset correction of carrier frequency method
TWI635719B (en) * 2016-08-19 2018-09-11 晨星半導體股份有限公司 Apparatus and method for estimating carrier frequency offset
TWI635738B (en) * 2016-09-13 2018-09-11 晨星半導體股份有限公司 Apparatus and method for estimating carrier frequency offset

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6728326B1 (en) * 2000-03-20 2004-04-27 Ericsson Inc. Reduced complexity for initial mobile terminal synchronization
US6687309B1 (en) * 2000-09-29 2004-02-03 Agilent Technologies, Inc. System for estimating carrier frequencies of quadrature amplitude modulated signals having high symbol rates

Also Published As

Publication number Publication date
JP2003535494A (en) 2003-11-25
CN1197316C (en) 2005-04-13
NO20025112L (en) 2002-12-04
US20070268978A1 (en) 2007-11-22
NO20025112D0 (en) 2002-10-24
AU2000244907A1 (en) 2001-11-07
WO2001082546A1 (en) 2001-11-01
EP1279265A1 (en) 2003-01-29
CN1454422A (en) 2003-11-05
US7254189B1 (en) 2007-08-07
HK1058593A1 (en) 2004-05-21

Similar Documents

Publication Publication Date Title
US7254189B1 (en) Blind carrier offset detection for quadrature modulated digital communication systems
CN108347397B (en) Receiver for receiving modulated signal and method for synchronizing the same
US5602835A (en) OFDM synchronization demodulation circuit
EP0772330A2 (en) Receiver and method for receiving OFDM signals
KR100376803B1 (en) Apparatus for compensating frequency offset and method thereof in orthogonal frequency division multiplexing system
CA2386418A1 (en) Method and apparatus for carrier phase tracking
CN110912847B (en) GMSK signal demodulation method
KR20010042708A (en) Method and apparatus for fine frequency synchronization in multi-carrier demodulation systems
CN108512791A (en) Satellite-borne AIS demodulation method based on timing frequency offset compensation
EP1332592A1 (en) Joint dc offset and channel estimation by using a least squares (ls) algorithm
WO2003041354A1 (en) Dat-aided frequency offset detection using phase unwrapping
US20170324595A1 (en) Circuits and methods for frequency offset estimation in fsk communications
JP2008530951A (en) Demodulator and receiver for pre-encoded partial response signals
KR100542091B1 (en) Symbol timing recovery network for a carrierless amplitude phasecap signal
JP4557486B2 (en) Spread Spectrum Communication System Using Differential Code Shift Keying
US8175202B2 (en) Receiver with clock drift compensation
Webber et al. Implementing a/4 shift D-QPSK baseband modem using the TMS320C50
JPH11154925A (en) Digital transmitter
KR100245330B1 (en) Phase and frequency detector of digital communication system
JP3973332B2 (en) Digital modulation / demodulation synchronization system
KR100719864B1 (en) Blind carrier offset detection for quadrature modulated digital communication systems
JP4297573B2 (en) Digital signal processing method
JP3267785B2 (en) Fading distortion compensator
Wang et al. Packet acquisition in upstream transmission of the DOCSIS standard
JP3449281B2 (en) Synchronous circuit for multicarrier receiver and multicarrier receiver

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued