CA2411245C - Method for controlling the position of a permanent magnetically supported rotating component - Google Patents

Method for controlling the position of a permanent magnetically supported rotating component Download PDF

Info

Publication number
CA2411245C
CA2411245C CA002411245A CA2411245A CA2411245C CA 2411245 C CA2411245 C CA 2411245C CA 002411245 A CA002411245 A CA 002411245A CA 2411245 A CA2411245 A CA 2411245A CA 2411245 C CA2411245 C CA 2411245C
Authority
CA
Canada
Prior art keywords
position sensor
control current
rotating component
current
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002411245A
Other languages
French (fr)
Other versions
CA2411245A1 (en
Inventor
Jan Hoffmann
Andreas Arndt
Tobias Merkel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Berlin Heart GmbH
Original Assignee
Berlin Heart GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Berlin Heart GmbH filed Critical Berlin Heart GmbH
Publication of CA2411245A1 publication Critical patent/CA2411245A1/en
Application granted granted Critical
Publication of CA2411245C publication Critical patent/CA2411245C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/148Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/165Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart
    • A61M60/178Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart drawing blood from a ventricle and returning the blood to the arterial system via a cannula external to the ventricle, e.g. left or right ventricular assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • A61M60/237Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly axial components, e.g. axial flow pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/422Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being electromagnetic, e.g. using canned motor pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/82Magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0606Canned motor pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0646Units comprising pumps and their driving means the pump being electrically driven the hollow pump or motor shaft being the conduit for the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/048Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D3/00Axial-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • F16C32/0457Details of the power supply to the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/047Details of housings; Mounting of active magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0476Active magnetic bearings for rotary movement with active support of one degree of freedom, e.g. axial magnetic bearings
    • F16C32/0478Active magnetic bearings for rotary movement with active support of one degree of freedom, e.g. axial magnetic bearings with permanent magnets to support radial load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2316/00Apparatus in health or amusement
    • F16C2316/10Apparatus in health or amusement in medical appliances, e.g. in diagnosis, dentistry, instruments, prostheses, medical imaging appliances
    • F16C2316/18Pumps for pumping blood
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/128Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas using air-gap sleeves or air-gap discs

Abstract

As especially at a pulsating flow through a pump with a magnetically supported rotor (permanent magnets and additional control current coils) continuous interference forces act on the rotor, the position control has to adjust the changed axial rotor position very quickly. On the other hand the control current should cause a low dissipation.

According to the present method the current through the control current coils is pulse width modulatedly controlled by a desired value, set in a controller arranged behind the position sensory analysis mechanism and the actual value of the position sensory analysis is stored for a defined time interval, respectively starting latest with the pulse edge of the control current, and the position sensory analysis is stopped for this time interval.

Description

Method for controlling the position of a permanent magnetically supported rotating component Description The invention relates to a method for controlling the position of a permanent magnetically supported rotating component, e.g. of the rotor of a synchronous motor without brushes, by means of a position determination of this component by means of a position sensory analysis and additional control current coils, influencing the magnetic field of the permanent magnetic support and which current value is determined by the position of the component. The synchronous motor can for example serve as a drive for an axial fluid delivery pump.
Multiphase fluids, e.g. emulsions and dispersions with a low stability can easily reach into instable areas during the delivery in corresponding delivery systems.
An especially sensitive fluid is blood. Blood is hermetically shielded in the natural recirculation system from the environment, so that no foreign interferences are acting upon it. If, however, the necessity exists, to substitute the heart by an artificial blood pump or to support the recirculation by an additional heart pump, reactions of the blood with the technical system are produced. The blood is subjected, then, easily to the haemolysis or the formation of thrombus with the corresponding disadvantageous effects for the patient. Therefore, recently large efforts were made, to form fluid delivery pumps in such a way, that the blood or other sensitive fluids are subjected to the lowest possible mechanical influences. One possibility for this is the magnetic support of the rotating element of a pump drive. The advantage of the magnetic support is not only, that no components mechanically in a frictional way are present any more, but that also the achievable rotational acceleration of the rotating element is increased and the controllability of the rotational speed and therewith, of the volume flow can be improved.

Such a fluid pump can be integrated in the known way in a synchronous motor without brushes. The fluid pump consists according to WO 00/640 30 essentially of a cylindrical tube, which can be connected at both sides to a fluid system. The tube is surrounded by the stator, consisting of the metal packet, the winding and the iron flux return hood. The rotor comprises permanent magnetic field exciters and has on its outer cover delivery devices for the fluid, so that the fluid can be axially delivered in the annular space between the tube and the rotor.
The rotor is magnetically supported. It carnes for the purpose on its both end sides cylindrical or annular permanent magnets attached thereon, which are magnetised in the axial direction. The permanent magnets of the rotor are opposed by counter magnetised permanent magnets, which e.g. can be arranged in the end sides of guiding devices, which themselves are mounted in the cylindrical tube.
Both magnet pairs act stabilisingly in radial direction, when they are orientated to attract each other, i.e., the radial support is passively stable. The rotor is, however, instable in the axial direction.
Without additional stabilisation the rotor would be attracted by one of the two pairs of permanent magnets. Therefore, control coils are arranged on the stator sides in such a way, that a current weakens by the in series connected control coils the magnetic field of one of the pairs of permanent magnets and increases the magnetic field of the other pair of permanent magnets. The control current has to be adjusted in dependency of the actual axial rotor position. For this, the rotor position has to be determined by means of position sensors.
The position sensors consist for example of two sensor coils, which can be arranged on the end sides of the guiding devices. The sensor coils are opposed on the ends of the rotor by aluminium bodies, in which eddy currents are formed, when the sensor coils are loaded by an alternating current. By the axial movement of the rotor a change in the inductance of the sensor coils is produced, which in an arrangement in a bridge connection can be evaluated as a measuring signal for the rotor position.
As especially in a pulsating flow through the pump disturbing forces act continuously on the rotor, the position control has to be able to quickly adjust a changed axial rotor position. On the other hand the control current should cause a low dissipation, which is especially important for blood pumps, as the produced heat energy should be kept S as small as possible. Furthermore, the drive energy has to be taken from implanted batteries, which operation time should be as long as possible.
The invention has the object to provide a method for controlling the position of a magnetically supported component, with which a dissipation of the control of the position can be kept small.
The object is solved according to the invention by the features of claim 1.
Suitable embodiments are subject of the dependent claims.
According to this the current through the control current coils is pulse width modulated according to a desired value, to which a controller arranged behind the position sensory analysis is set, wherein at a high desired value a switching to a higher voltage level takes place. This has the advantage, that the adjustment times can be kept very small and the necessary power can still be kept low.
The actual value of the position sensory analysis is stored for a defined time interval, respectively starting latest with the pulse edge of the control current and the position sensory analysis is stopped during this time interval.
Advantageously in the use of the position control in a synchronous motor without brushes, the actual value of the position sensory analysis is also temporarily stored in reference to the gatting impulse of the motor coils for a defined time interval, starting latest with the pulse edge of the gatting impulse, and the position sensory analysis is stopped for this time interval.
The interferences produced by the timing concerning the position determination are controlled by the stopping of the measuring during these time periods and by the storing of the measured values.
For specific applications it can be suitable, to take the square of the desired value of the controller arranged behind the position sensory analysis mechanism and to stop the position adjustment at a time-averaged overshooting of the threshold of this value until the next undershooting of the threshold. Thus, a rise in temperature of the control coils is reproduced and therefore, an overheating is prevented.
Appropriately, a PID-controller with an IZ-component is used for the controller arranged behind the position sensory analysis mechanism.
The invention is described in detail by means of an embodiment. In the corresponding drawings:
Fig. 1 shows a sectional view through a fluid delivery pump, which is suitable for the execution of the method according to the invention;
Fig. 2 shows a representation of the principal of the position control with the additional flow control according to the invention; and Fig. 3 shows a block circuit diagram of the position controller.
Fig. 1 shows such an axial pump suitable for the execution of the method. The drive of the blood pump works according to the principal of an electronic commutated synchronous motor. The motor has a stator, consisting of a metal sheet packet 31, of windings 33 and iron flux return hoods 2, 2a and a rotor 5 with a permanent magnetic core 32. The stator encloses a tubular hollow body 1, in which in axial direction a fluid, in the present case blood, is delivered. The rotor 5 is supported magnetically free of contact.
The magnetical support (bearing) consists of permanent magnets 42, 42a on the rotor end sides and permanent magnets 41, 41a on the end sides of the guiding devices 6 and 7. The guiding devices 6, 7 are mounted on the inner wall of the tubular hollow body 1.
To the magnetic support (bearing) further belong control coils 12, 12a. Sensor coils 43, 43a in the guiding devices 6, 7 and short circuit rings 80, 80a arranged opposed thereto, serve for measuring the actual rotor position.
The pairs of permanent magnets 41, 42; 41a, 42a are, respectively, polarised for attracting each other. Magnetically the pairs are arranged in series.
Without an additional stabilisation the rotor 5 would, however, be attracted to one side, therefore. An instable equilibrium exists in axial direction. In radial direction both magnet pairs act self centring, and, therefore, the radial position is passively stable.
The control coils 12, 12a are connected electrically in series and are magnetically arranged in such a way, that a current weakens the magnetic field of the one pair of magnets and increases the magnetic field of the other pair. The magnetic flux return path is produced via the iron flux return hoods 2, 2a and the metal sheet packet 31 of the stator.
The axial position of the rotor 5 can be determined by means of the sensor coils 43, 43a. The sensor coils 43, 43a are loaded by a higher frequent voltage. By the axial movement of the rotor 5 a change of the inductivity of the sensor coils 43, 43a is produced. By the arrangement of the sensor coils 43, 43a in a bridge connection a measuring signal for the axial position of the rotor 5 can be achieved.
As shown in Fig. 2, at the outlet of a controller, arranged behind the position sensory analysis mechanism, an operating value of the control current is produced by the control coils 12, 12a. The control current is transmitted by means of a current controller to the control coils 12, 12a. The current controller acts as a closed control circle, i.e. it measures the current by means of the control coils 12, 12a and compares the result with a default value (desired current) of the position controller.
By means of a pulse width modulation of a pulsed power stage the actual current is adjusted to the desired current. This process necessitates a specific time, which depends on the difference of the desired current and the actual current. The higher the voltage is, with which the power stage operates, the shorter is the adjustment time of the current controller. On the other hand the dissipation in the power stage increases with the voltage. To be able to achieve a quick reaction of the current controller and a lower dissipation, a higher voltage is additionally switched on, only when a large difference between the desired current and the actual current is present; otherwise it operates with a lower voltage.
By the excitation of the control coils 12, 12a by means of the pulsed power stage interferences, which can disturb the position determination of the rotor 5, are produced in the sensor coils 43, 43a. These interferences couple with each pulse edge on the control coils 12, 12a to the sensor coils 43, 43a and fade out after a defined time interval. Therefore, for the expected time interval of these interferences, the position signal, achieved directly beforehand, is temporarily stored and the position determination is stopped. The position controller works during this time interval with the stored value. When the interference is faded out, the position is again determined by means of the sensor coils 43, 43a. Similar interferences can also be produced by the excitation of the windings 33. Also for these the method of the temporary storing is used. The electronics of the interference suppression receive from the current controller and from the excitation electronics of the motor the exact time of the possible starting point of the interferences, so that they can store the position signals.
Fig. 3 shows the circuitry for the position control of the magnetic support.
From the measured position of the rotor, which loads the path 21, a set current for the control coils 12, 12a, which leads to a secure hovering of the rotor 5 in all operating conditions, is determined and transmitted to the outlet 22 of the position controller.
The position controller consists of a PID-controller, which is characterised by the time constants of the integrator Ti and of the differentiator Td as well as by the multiplication factor kr of a variable gain amplifier. To protect the control coils 12, 12a against a thermal overload the to be expected dissipation is additionally determined from the current square. During a threshold overshooting time averaged over a low-pass, the position control is switched-off, until the threshold is again undershot. The position controller has as an additional function, to keep the current through the control coils 12, 12a as low as possible. By means of an integrator (IZ-component) the set current is coupled back to the controller inlet. As a result the rotor is always positioned at the axial position in the pump, at which only a minimal current flows through the control coils 12, 12a.
' , ~ , 3623 0003 PCT/EP02/04737 Reference numerals list 1 Tubular hollow body 2 Iron flux return hood 2a Iron flux return hood 5 Rotor 6 Guiding device 7 Guiding device 12 Control coil 12a Control coil 31 Metal sheet packet 32 Permanent magnetic core 33 Windings 41 Permanent magnet 41 a Permanent magnet 42 Permanent magnet 42a Permanent magnet 43 Sensor coil 43a Sensor coil 21 Path 22 Outlet 80 Short circuit ring 80a Short circuit ring Ti Integrator Td Differentiator kr Multiplication factor

Claims (6)

Claims
1. A method for controlling the position of a rotating component which is supported by a permanent magnetic support, comprising the steps of:
determining the position of the rotating component with a position sensor;
providing control current coils for influencing the magnetic field of the permanent magnetic support;
providing an adjustable control current through the control current coils, the strength of the control current being determined by the position of the rotating component, and being pulse width modulated according to a predefined value which is set in a controller coupled to the position sensor;
switching the control current to a higher voltage stage when a higher target value is required by the controller; and storing the actual value of the position sensor for a first defined time interval starting, at the latest, with a pulse edge of the control current, and stopping the position sensor for the first defined time interval.
2. The method according to claim 1, wherein the rotating component is driven by a synchronous brushless motor having motor windings excitable by a pulse width modulated excitation current having pulse edges, the method further comprising the step of:
temporarily storing the actual value of the position sensor for a second defined time interval starting, at the latest, with a pulse edge of the excitation current and stopping the position sensor for the second time interval.
3. The method according to claim 1, further comprising a step of:
providing a PID-controller with an 1 2-component for the controller coupled to the position sensor.
4. A method for controlling the position of a rotating component which is supported by a permanent magnetic support, comprising the steps of:
providing a position sensor to determine the position of the rotating component;

providing control current coils for influencing the magnetic field of the permanent magnetic support; and determining a control current by the position of the rotating component, by adjusting the pulse width of the control current through the control current coils, the pulse width being modulated according to a predefined value which is set in a controller coupled to the position sensor;
switching the control current to a higher voltage when the predefined value is high; and storing an actual value of the position sensor for a defined time interval starting, at the latest, with a pulse edge of the control current, and stopping the position sensor for said defined time interval.
5. A method for adjusting the position of a rotating component, which is supported by means of a permanent magnet and coils carrying a controlled current influencing the magnetic field of the permanent magnet, the method comprising the steps of:
determining the position of the rotating component with a position sensor;
controlling the controlled current delivered to the coils by varying the pulse width of the controlled current based on the position of the rotating component to achieve a target value;
switching the controlled current to a higher voltage if the target value is too high to be achieved by pulse width modulation;
storing the position of the rotating component for a defined period beginning, at the latest, with the pulse edge of the control current; and deactivating the position sensor during said defined period.
6. The method of claim 1 or 5 further comprising the steps of:
calculating the square of the target value specified by the controller coupled to the position sensor;
deactivating the position sensor whenever the time averaged value of the square of the target value exceeds a threshold value; and maintaining the deactivation of the position sensor until the square of the target value drops below the threshold value.
CA002411245A 2001-04-30 2002-04-29 Method for controlling the position of a permanent magnetically supported rotating component Expired - Fee Related CA2411245C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10123138.5 2001-04-30
DE10123138A DE10123138B4 (en) 2001-04-30 2001-04-30 Method for position control of a permanently magnetically mounted rotating component
PCT/EP2002/004737 WO2002088548A1 (en) 2001-04-30 2002-04-29 Method for adjusting the position of a rotating component which is borne by means of a permanent-magnet

Publications (2)

Publication Number Publication Date
CA2411245A1 CA2411245A1 (en) 2002-12-02
CA2411245C true CA2411245C (en) 2008-06-17

Family

ID=7684548

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002411245A Expired - Fee Related CA2411245C (en) 2001-04-30 2002-04-29 Method for controlling the position of a permanent magnetically supported rotating component

Country Status (10)

Country Link
US (1) US7229474B2 (en)
EP (1) EP1386081B1 (en)
JP (2) JP3994343B2 (en)
CN (1) CN1178006C (en)
AT (1) ATE337491T1 (en)
AU (1) AU2002254996B2 (en)
CA (1) CA2411245C (en)
DE (1) DE10123138B4 (en)
RU (1) RU2277936C2 (en)
WO (1) WO2002088548A1 (en)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0410168D0 (en) * 2004-05-06 2004-06-09 Rolls Royce Plc A magnetic bearing
FR2872644B1 (en) * 2004-06-30 2006-10-06 Valeo Equip Electr Moteur DEVICE FOR CONTROLLING A ROTATING ELECTRIC MACHINE
US20060275155A1 (en) * 2005-01-28 2006-12-07 Robert Thibodeau Rotational apparatus
DE102006003013B4 (en) * 2005-06-17 2011-03-03 Koenig & Bauer Aktiengesellschaft flexographic printing
DE102006003005B3 (en) * 2005-06-17 2006-11-23 Koenig & Bauer Ag Press for flexographic printing has drive motor in form of synchronous motor with permanent magnet excitation
EP2059276A2 (en) * 2006-08-31 2009-05-20 Smartin Technologies, LLC Implantable fluid pump
DE102007014224A1 (en) * 2007-03-24 2008-09-25 Abiomed Europe Gmbh Blood pump with micromotor
JP5101309B2 (en) * 2008-01-15 2012-12-19 三菱重工業株式会社 MOTOR POSITION DETECTION METHOD, MOTOR DRIVE DEVICE, AND PUMP
DE102008060569A1 (en) 2008-12-04 2010-06-10 Schaeffler Kg Bearing arrangement with magnetic bearing portion and method for controlling one or the bearing assembly
EP2372160B1 (en) * 2008-12-08 2014-07-30 Thoratec Corporation Centrifugal pump device
GB2469130B (en) * 2009-04-04 2014-01-29 Dyson Technology Ltd Control system for an electric machine
GB2469129B (en) 2009-04-04 2013-12-11 Dyson Technology Ltd Current controller for an electric machine
GB2469133B (en) * 2009-04-04 2014-04-23 Dyson Technology Ltd Control system for an electric machine
GB2469128A (en) * 2009-04-04 2010-10-06 Dyson Technology Ltd Generating control signals for an electric machine from a position sensor
GB2469140B (en) 2009-04-04 2013-12-11 Dyson Technology Ltd Control of an electric machine
US9782527B2 (en) 2009-05-27 2017-10-10 Tc1 Llc Monitoring of redundant conductors
EP2330405A1 (en) 2009-11-30 2011-06-08 Berlin Heart GmbH Method and device for measuring flow resistance parameters
US8562508B2 (en) 2009-12-30 2013-10-22 Thoratec Corporation Mobility-enhancing blood pump system
US9555174B2 (en) 2010-02-17 2017-01-31 Flow Forward Medical, Inc. Blood pump systems and methods
US9662431B2 (en) 2010-02-17 2017-05-30 Flow Forward Medical, Inc. Blood pump systems and methods
EP2536465B1 (en) 2010-02-17 2018-05-30 Flow Forward Medical, Inc. System to increase the overall diameter of veins
JP5540153B2 (en) 2010-06-22 2014-07-02 ソラテック コーポレーション Device for modifying the pressure-flow characteristics of a pump
WO2012012552A1 (en) 2010-07-22 2012-01-26 Thoratec Corporation Controlling implanted blood pumps
EP3248628B1 (en) 2010-08-20 2019-01-02 Tc1 Llc Implantable blood pump
JP5577506B2 (en) 2010-09-14 2014-08-27 ソーラテック コーポレイション Centrifugal pump device
EP3020426B1 (en) 2010-09-24 2017-12-27 Tc1 Llc Generating artificial pulse
US8442793B2 (en) * 2010-09-28 2013-05-14 Ford Global Technologies, Llc System for determining quality of a rotating position sensor system
US8610323B2 (en) 2011-02-04 2013-12-17 Hamilton Sundstrand Corporation Bearingless machine
EP2693609B1 (en) 2011-03-28 2017-05-03 Thoratec Corporation Rotation and drive device and centrifugal pump device using same
EP2744534A4 (en) 2011-08-17 2015-07-29 Novita Therapeutics Llc Blood pump systems and methods
AU2012296563B2 (en) 2011-08-17 2017-05-04 Artio Medical, Inc. System and method to increase the overall diameter of veins and arteries
CN102606505B (en) * 2012-03-29 2014-07-02 北京中科科仪股份有限公司 Magnetic suspension molecular pump rotor floating position selection method and rotor floating control method
CN102619772B (en) * 2012-03-29 2014-04-30 北京中科科仪股份有限公司 Selection method for rotor floating position of magnetic suspension molecular pump and rotor floating control method
US10258730B2 (en) 2012-08-17 2019-04-16 Flow Forward Medical, Inc. Blood pump systems and methods
US9579436B2 (en) 2012-08-31 2017-02-28 Thoratec Corporation Sensor mounting in an implantable blood pump
EP2890419B1 (en) 2012-08-31 2019-07-31 Tc1 Llc Start-up algorithm for an implantable blood pump
US9634977B2 (en) 2012-10-01 2017-04-25 Salesforce.Com, Inc. Systems and methods of redactive messaging
US9371826B2 (en) 2013-01-24 2016-06-21 Thoratec Corporation Impeller position compensation using field oriented control
US9556873B2 (en) 2013-02-27 2017-01-31 Tc1 Llc Startup sequence for centrifugal pump with levitated impeller
US10052420B2 (en) 2013-04-30 2018-08-21 Tc1 Llc Heart beat identification and pump speed synchronization
RU2563884C2 (en) * 2013-12-17 2015-09-27 Вячеслав Евгеньевич Вавилов Controlled magnetic bearing on permanent magnets and their control method
US9849224B2 (en) 2014-04-15 2017-12-26 Tc1 Llc Ventricular assist devices
EP3131598B1 (en) 2014-04-15 2020-10-21 Tc1 Llc Systems for upgrading ventricle assist devices
WO2015160991A1 (en) 2014-04-15 2015-10-22 Thoratec Corporation Methods and systems for controlling a blood pump
US9786150B2 (en) 2014-04-15 2017-10-10 Tci Llc Methods and systems for providing battery feedback to patient
WO2015160992A1 (en) 2014-04-15 2015-10-22 Thoratec Corporation Methods and systems for lvad operation during communication losses
US9623161B2 (en) 2014-08-26 2017-04-18 Tc1 Llc Blood pump and method of suction detection
EP3256183A4 (en) 2015-02-11 2018-09-19 Tc1 Llc Heart beat identification and pump speed synchronization
US10166318B2 (en) 2015-02-12 2019-01-01 Tc1 Llc System and method for controlling the position of a levitated rotor
US10371152B2 (en) 2015-02-12 2019-08-06 Tc1 Llc Alternating pump gaps
US10245361B2 (en) 2015-02-13 2019-04-02 Tc1 Llc Impeller suspension mechanism for heart pump
EP3313471A4 (en) 2015-06-29 2019-02-20 Tc1 Llc Ventricular assist devices having a hollow rotor and methods of use
EP3115069A1 (en) * 2015-07-07 2017-01-11 Berlin Heart GmbH Device for determining the position of a movable component
WO2017015268A1 (en) 2015-07-20 2017-01-26 Thoratec Corporation Flow estimation using hall-effect sensors
US10722630B2 (en) 2015-07-20 2020-07-28 Tc1 Llc Strain gauge for flow estimation
US10117983B2 (en) 2015-11-16 2018-11-06 Tc1 Llc Pressure/flow characteristic modification of a centrifugal pump in a ventricular assist device
EP3400033A1 (en) 2016-01-06 2018-11-14 Bivacor Inc. Heart pump with impeller axial position control
EP3448487A4 (en) 2016-04-29 2020-04-29 Flow Forward Medical, Inc. Conduit tips and systems and methods for use
AU2018250273B2 (en) 2017-04-05 2023-06-08 Bivacor Inc. Heart pump drive and bearing
EP4275737A3 (en) 2018-01-10 2023-12-20 Tc1 Llc Bearingless implantable blood pump

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1270152B (en) * 1964-09-11 1968-06-12 Siemens Ag Device to shorten the switch-on time of an inductive consumer
DE3202866A1 (en) * 1982-01-29 1983-08-11 Teldix Gmbh, 6900 Heidelberg Control loop
US5078741A (en) * 1986-10-12 1992-01-07 Life Extenders Corporation Magnetically suspended and rotated rotor
US4944748A (en) 1986-10-12 1990-07-31 Bramm Gunter W Magnetically suspended and rotated rotor
DE3343186A1 (en) 1983-11-29 1985-06-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München MAGNETIC ROTOR BEARING
US4779614A (en) 1987-04-09 1988-10-25 Nimbus Medical, Inc. Magnetically suspended rotor axial flow blood pump
DE3808331A1 (en) 1988-03-12 1989-09-28 Kernforschungsanlage Juelich MAGNETIC STORAGE WITH PERMANENT MAGNETS TO RECEIVE THE RADIAL BEARING FORCES
US5112200A (en) 1990-05-29 1992-05-12 Nu-Tech Industries, Inc. Hydrodynamically suspended rotor axial flow blood pump
US5211546A (en) 1990-05-29 1993-05-18 Nu-Tech Industries, Inc. Axial flow blood pump with hydrodynamically suspended rotor
US5676651A (en) * 1992-08-06 1997-10-14 Electric Boat Corporation Surgically implantable pump arrangement and method for pumping body fluids
US5399074A (en) 1992-09-04 1995-03-21 Kyocera Corporation Motor driven sealless blood pump
US5405251A (en) 1992-09-11 1995-04-11 Sipin; Anatole J. Oscillating centrifugal pump
JPH06147808A (en) 1992-11-12 1994-05-27 Ebara Corp Sensor circuit for electromagnetic induction sensor
DE4301076A1 (en) 1993-01-16 1994-07-21 Forschungszentrum Juelich Gmbh Magnetic bearing cell with rotor and stator
JP3085835B2 (en) 1993-04-28 2000-09-11 京セラ株式会社 Blood pump
DE4321260C1 (en) 1993-06-25 1995-03-09 Westphal Dieter Dipl Ing Dipl Blood pump as a centrifugal pump
FR2715201B1 (en) 1994-01-19 1996-02-09 Inst Nat Polytech Grenoble Magnetic bearing and assembly comprising a stator part and a rotor part suspended by such a bearing.
US5507629A (en) 1994-06-17 1996-04-16 Jarvik; Robert Artificial hearts with permanent magnet bearings
JPH0828563A (en) 1994-07-12 1996-02-02 Daikin Ind Ltd Magnetic bearing device
JP4076581B2 (en) 1995-04-03 2008-04-16 レビトロニクス エルエルシー Rotating equipment having an electromagnetic rotary drive device
US5725357A (en) * 1995-04-03 1998-03-10 Ntn Corporation Magnetically suspended type pump
US5588812A (en) 1995-04-19 1996-12-31 Nimbus, Inc. Implantable electric axial-flow blood pump
US5707218A (en) 1995-04-19 1998-01-13 Nimbus, Inc. Implantable electric axial-flow blood pump with blood cooled bearing
US5575630A (en) 1995-08-08 1996-11-19 Kyocera Corporation Blood pump having magnetic attraction
US5947703A (en) 1996-01-31 1999-09-07 Ntn Corporation Centrifugal blood pump assembly
US5840070A (en) 1996-02-20 1998-11-24 Kriton Medical, Inc. Sealless rotary blood pump
US5695471A (en) 1996-02-20 1997-12-09 Kriton Medical, Inc. Sealless rotary blood pump with passive magnetic radial bearings and blood immersed axial bearings
US6074180A (en) 1996-05-03 2000-06-13 Medquest Products, Inc. Hybrid magnetically suspended and rotated centrifugal pumping apparatus and method
JP3776162B2 (en) * 1996-05-10 2006-05-17 Ntn株式会社 Magnetic levitation blood pump
US6015272A (en) * 1996-06-26 2000-01-18 University Of Pittsburgh Magnetically suspended miniature fluid pump and method of designing the same
US6071093A (en) * 1996-10-18 2000-06-06 Abiomed, Inc. Bearingless blood pump and electronic drive system
JP3663794B2 (en) 1997-01-10 2005-06-22 株式会社デンソー Method and apparatus for measuring steady deviation of PID control circuit
US5705218A (en) * 1997-01-10 1998-01-06 Fmc Corporation Extended agitation rotary sterilizer
JP3701115B2 (en) * 1998-02-12 2005-09-28 株式会社荏原製作所 Magnetic bearing control device
WO2000064030A1 (en) * 1999-04-20 2000-10-26 Berlin Heart Ag Device for delivering single-phase or multiphase fluids without altering the properties thereof
BR0011051A (en) * 1999-06-03 2002-03-19 Michael P Goldowsky Magnetic suspension blood pump
DE10003531A1 (en) * 1999-12-16 2001-07-05 Siemens Ag Load switching involves holding switching voltage constant until switch-off time if load current falls or remains constant during first time interval, reducing if load current increases
US6589030B2 (en) * 2000-06-20 2003-07-08 Ntn Corporation Magnetically levitated pump apparatus

Also Published As

Publication number Publication date
US20030187321A1 (en) 2003-10-02
WO2002088548A1 (en) 2002-11-07
CN1462344A (en) 2003-12-17
ATE337491T1 (en) 2006-09-15
RU2277936C2 (en) 2006-06-20
JP2004519994A (en) 2004-07-02
EP1386081B1 (en) 2006-08-23
JP2006087298A (en) 2006-03-30
AU2002254996B2 (en) 2004-08-19
JP3994343B2 (en) 2007-10-17
CA2411245A1 (en) 2002-12-02
DE10123138B4 (en) 2007-09-27
DE10123138A1 (en) 2002-11-28
CN1178006C (en) 2004-12-01
US7229474B2 (en) 2007-06-12
EP1386081A1 (en) 2004-02-04

Similar Documents

Publication Publication Date Title
CA2411245C (en) Method for controlling the position of a permanent magnetically supported rotating component
CA2419507C (en) Method for controlling an assist pump for fluid delivery systems with pulsatile pressure
US4763032A (en) Magnetic rotor bearing
JP4787726B2 (en) Sensorless magnetic bearing blood pump device
NL1014329C2 (en) Blood pump with magnetically suspended stator and rotor element and axial position actuator.
AU765716B2 (en) Active magnetic bearing system for blood pump
US6589030B2 (en) Magnetically levitated pump apparatus
EP2961984B1 (en) Startup sequence for centrifugal pump with levitated impeller
EP1668764B1 (en) Rotary pump with electromagnetic lcr bearing
US6129660A (en) Method of controlling blood pump
AU6953200A (en) Method and apparatus for controlling brushless dc motors in implantable medical devices
CN108696227A (en) Pump group part and control method
KR20220131526A (en) Axial magnetic bearings for centrifugal refrigerant compressors
JP2005282675A (en) Magnetically levitating pump device
NL1023970C2 (en) Blood pump with magnetically suspended stator and rotor element with a flow rate controller.
JP2002005073A (en) Method for controlling magnetic levitation pump

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed