CA2412485C - Method and apparatus for mask free delivery of an inspired gas mixture and gas sampling - Google Patents

Method and apparatus for mask free delivery of an inspired gas mixture and gas sampling Download PDF

Info

Publication number
CA2412485C
CA2412485C CA002412485A CA2412485A CA2412485C CA 2412485 C CA2412485 C CA 2412485C CA 002412485 A CA002412485 A CA 002412485A CA 2412485 A CA2412485 A CA 2412485A CA 2412485 C CA2412485 C CA 2412485C
Authority
CA
Canada
Prior art keywords
gas
person
lumens
nasal
sampling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002412485A
Other languages
French (fr)
Other versions
CA2412485A1 (en
Inventor
Randall S. Hickle
Samsun Lampotang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Scott Laboratories Inc
Original Assignee
Scott Laboratories Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scott Laboratories Inc filed Critical Scott Laboratories Inc
Publication of CA2412485A1 publication Critical patent/CA2412485A1/en
Application granted granted Critical
Publication of CA2412485C publication Critical patent/CA2412485C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/083Measuring rate of metabolism by using breath test, e.g. measuring rate of oxygen consumption
    • A61B5/0836Measuring rate of CO2 production
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/097Devices for facilitating collection of breath or for directing breath into or through measuring devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • A61B5/6819Nose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • A61M16/0666Nasal cannulas or tubing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • A61M16/0666Nasal cannulas or tubing
    • A61M16/0672Nasal cannula assemblies for oxygen therapy
    • A61M16/0677Gas-saving devices therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0816Joints or connectors
    • A61M16/0841Joints or connectors for sampling
    • A61M16/085Gas sampling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0816Joints or connectors
    • A61M16/0841Joints or connectors for sampling
    • A61M16/0858Pressure sampling ports
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • A61M16/0683Holding devices therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0808Condensation traps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/02General characteristics of the apparatus characterised by a particular materials
    • A61M2205/0216Materials providing elastic properties, e.g. for facilitating deformation and avoid breaking
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3375Acoustical, e.g. ultrasonic, measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/06Head
    • A61M2210/0618Nose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2210/00Anatomical parts of the body
    • A61M2210/06Head
    • A61M2210/0625Mouth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics
    • A61M2230/43Composition of exhalation
    • A61M2230/432Composition of exhalation partial CO2 pressure (P-CO2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics
    • A61M2230/43Composition of exhalation
    • A61M2230/437Composition of exhalation the anaesthetic agent concentration

Abstract

Disclosed is an apparatus and method for the delivery of inspired gas, e.g., supplemental O2, to a person combined with gas sampling, including for the purpose of monitoring of the ventilation of the person. In the invention, the delivery of inspired gas and gas sampling are accomplished without the use of a sealed face mask. The apparatus of one embodiment of the present invention comprises an oxygen delivery device, nasal airway pressure sampling devices, optionally an oral airway pressure sampling device and at least one pressure analyzer connected to the sampling devices which determine the phase of the person's respiration cycle and the person's primary airway. The oxygen delivery device is connected to a controller such that it delivers a higher flow of oxygen to the person during the inhalation phase of the person's respiratory cycle. The invention thus increases end tidal oxygen concentrations. The invention further comprises carbon dioxide sampling tubes that continuously sample gas from two nasal sites and the mouth. The nasal sampling tubes are connected to a switching valve that is in turn connected to a capnometer which determines carbon dioxide concentration during exhalation.
The oral gas sampling site is connected to a second capnometer.

Description

METHOD AND APPARATUS FOR
MASK FREE DELIVERY OF AN INSPIRED GAS MIXTURE
AND
GAS SAMPLING

BACKGROUND OF THE INVENTION
1. Field of the Invention The invention relates to an apparatus and method for the delivery of an inspired gas (e.g., supplemental oxygen (02) gas) to a person combined with sampling of the gas exhaled by the person, such sampling for use, for example, in monitoring the ventilation of the person or for inferring the concentration of a drug or gas in the person's blood stream.
More particularly, the invention relates to an apparatus and method where such delivery of the inspired gas and gas sampling are accomplished without the use of a sealed face mask.
2. Description of Related Art In various medical procedures and treatments performed on patients, there is a need to deliver a desired inspired gas composition, e.g., supplemental oxygen, to the patient. In procedures involving the delivery of anesthesia or where a patient is otherwise unconscious and ventilated, the delivery of oxygen and gaseous or vaporized or nebulized drugs is typically accomplished via a mask that fits over the patient's nose and mouth and is sealed thereto or by a tracheal tube. In other procedures, however, for example, where a patient may be sedated, but conscious and breathing on their own, the delivery of supplemental oxygen or inspired gas may be accomplished via a mask or by nasal cannulae (tubes placed up each nare of a patient's nose), connected to a supply of oxygen or the desired gas composition.

Taking oxygen as one example of an inspired gas to be delivered to a person, the primary goal of oxygen supplementation (whether mask-free or otherwise) is to enrich the oxygen concentration of the alveolar gas, namely, the mixture of gas in the alveoli (microscopically tiny clusters of air-filled sacs) in the lungs.
In a person with normal lung function, the level of oxygen in the deepest portion of the alveolar sacs is essentially reflected at the end of each "tidal volume" of exhaled gas (the volume of gas in one complete exhalation). The gas sample measured at the end of a person's exhalation is called the "end-tidal" gas sample.

So, for example, if a person breathes room air, room air contains 21% oxygen. When the person exhales, the end tidal gas will have about 15% oxygen; the capillary blood has thus removed SUBSTITUTE SHEET (RULE 26) 6% of the oxygen from the inhaled gas in the alveoli, to be burned by the body in the process of inetabolism. Again, a simple goal of any form of oxygen supplementation is to increase the concentration of oxygen in the alveolar sacs. A convenient method of directly measuring or sampling the gas in alveolar sacs is by continuously sampling the exhaled gas at the mouth or nose and identifying the concentration of oxygen at the end-tidal point, a value that is reasonably reflective of the oxygen concentration in the alveolar sacs. Thus, one can compare the effectiveness of oxygen delivery systems by the amount that they increase the end tidal oxygen concentration.

If a person breathes through a sealing face mask attached to one-way valves and inhales a supply of 100% oxygen, the end tidal concentration of oxygen goes up to 90%. More specifically, once inert nitrogen gas has been eliminated from the lungs (after pure oxygen has been breathed for several minutes), alveolar gas will contain about 4% water vapor and 5% carbon dioxide. The remainder (about 90%) will be oxygen. Thus, the best oxygen delivery systems typically increase end tidal oxygen from a baseline of 15%, when breathing non-supplemented room air, to 90% when breathing pure oxygen. Although sealed face-masks are relatively effective oxygen delivery systems, conscious patients, even when sedated, often find masks significantly uncomfortable; masks SUBSTITUTE SHEET (RULE 26) inhibit the ability of a patient to speak and cause anxiety in some patients.

Nasal cannulae,, on the other hand, do not typically cause the level of discomfort or anxiety in conscious patients that masks do, and thus, from a patient comfort standpoint, are preferable over masks for the delivery of oxygen to conscious patients. Nasal cannulae are, however, significantly less effective oxygen delivery systems than sealed face masks. Nasal cannulae generally increase the end tidal oxygen concentration to about 40% (as compared to 90% for a sealed mask). Nasal cannulae are less effective for at least two reasons.

First, when a person inhales, they frequently breathe through both nasal passages and the mouth (three orifices). Thus, the weighed average concentration of inhaled oxygen is substantially diluted to the extent of mouth breathing because 21%
times the volume of air breathed through the mouth "weights down the weighted average."

Second, even if a person breathes only through their nose, the rate of inhalation significantly exceeds the supply rate of the nasal cannula (typically 2-5liters/min.) so the person still dilutes the inhaled oxygen with a supply of 21% 02 room air. If the nasal cannula is flowing at 2 liters per minute and a person is inhaling a liter of air over 2 seconds, the inhalation rate is 30 liters per SUBSTITUTE SHEET (RULE 26) minute, and thus, most of the inhaled volume is not coming from the nasal cannula, but rather from the room. Increasing the oxygen flow rate does not effectively solve this problem. First, patients generally find increased flow very uncomfortable. Second, increased inspired gas flow dilutes (washes away) exhaled gases like carbon dioxide and/or exhaled vapors of intravenous anesthetics or other drugs. When this happens carbon dioxide cannot be accurately sampled as a measure of respiratory sufficiency. Also, a drug such as an inhalational or intravenous anesthetic, cannot be accurately sampled as a measure of the arterial concentration of the drug from which, for example, the level of sedation might be inferred. There is a need in various medical procedures and treatments to monitor patient physiological conditions such as patient ventilation (the movement of gas into and out of the lungs, typically measured as a volume of gas per minute). If the patient does not move air into and out of the lungs then the patient will develop oxygen deficiency (hypoxia), which if severe and progressive is a lethal condition.
Noninvasive monitoring of hypoxia is now available via pulse oximetry. However, pulse oximetry may be late to diagnose an impending problem because once the condition of low blood oxygen is detected, the problem already exists. Hypoventilation is frequently the cause of hypoxemia. When this is the case, hypoventilation can precede hypoxemia by several minutes. A good SUBSTITUTE SHEET (RULE 26) monitor of ventilation should be able to keep a patient "out of trouble" (if the condition of hypoventilation is diagnosed early and corrected) whereas a pulse oximeter often only diagnoses that a patient is now "in" trouble. This pulse oximetry delay compared to ventilatory monitoring is especially important in acute settings where respiratory depressant drugs are administered to the patient, as is usually the case during painful procedures performed under conscious sedation.

Ventilatory monitoring is typically measured in terms of the total volumetric flow into and out of a patient's lungs. One method of effective ventilatory monitoring is to count respiratory rate and then to measure one of the primary effects of ventilation (removing carbon dioxide from the body). Certain methods of monitoring ventilation measure the "effect" of ventilation (pressure oscillations, gas flow, breath sound and exhaled humidity, heat or CO2 at the airway). Other ventilation methods measure the "effort" of ventilation (e.g., transthoracic impedance plethysmography, chest belts, respiratory rate extraction from optoplethysmograms).
Effort-based ventilation monitors may be less desirable because they may fail to detect a blocked airway where the patient generates the effort (chest expansion, shifts in blood volume, etc.) but does not achieve the desired effects that accompany gas exchange.
SUBSTITUTE SHEET (RULE 26) There are a variety of ventilation monitors such as 1) airway flowmeters and 2) capnometers (carbon dioxide analyzers). These monitors are used routinely for patients undergoing general anesthesia. These types of monitors work well when the patient's airway is "closed" in an airway system such as when the patient has a sealing face mask or has the airway sealed with a tracheal tube placed into the lungs. However, these systems work less well with an "open" airway such as when nasal cannulae are applied for oxygen supplementation. Thus, when a patient has a non-sealed airway, the options for tidal volume monitoring are limited. With an open airway, there have been attempts to monitor ventilation using capnometry, impedance plethysmography, humidity, heat, sound and respiratory rate derived from the pulse oximeter's plethysmogram. Some of the limitations are discussed below.

Nasal capnometry is the technique of placing a sampling tube into one of the nostrils and continuously analyzing the carbon dioxide content present in the gas stream thereof. Nasal capnometry is relatively effective provided that 1) the patient always breathes through his/her nose, and 2) nasal oxygen is not applied. More specifically, if the patient is talking, most of the exhalation is via the mouth, and frequent false positive alarms sound because the capnometer interprets the absence of carbon dioxide in the nose as apnea, when in fact, it is merely evidence of SUBSTITUTE SHEET (RULE 26) talking. Some devices in the prior art have tried to overcome this problem by: manual control of sampling from the nose or mouth ~
(Nazorcap); supplementing oxygen outside of the nose while sampling for CO2 up inside the nose (BCI); providing oxygen in the nose while sampling CO2 from the mouth (BCI); and supplying oxygen up one nostril and sampling for CO2 up inside the other nostril (Salter Labs). None of these already-existing systems provide oxygen to both the nose and mouth or allow automatic control of sampling from either site or account for the possibility that one nostril may be completely or partially obstructed compared to the other one. Further, if nasal oxygen is applied to the patient, the carbon dioxide in each exhalation can be diluted significantly by the oxygen supply. In this case, the capnometer may interpret the diluted C02 sample as apnea (stoppage in breathing), resulting once again, in frequent false positive alarms. Dilution of COz may also mask hypoventilation (detected by high C02) by making a high CO2 value appear artifactuaIly normal and thus lull the clinician into a false sense of security, that all is well with the patient.

Impedance plethysmography and plethysmogram respiratory rate counting also suffer drawbacks as primary respiratory monitors. Both devices measure the "effort" of the patient (chest expansion, shifts in blood volume). Impedance plethysmography is done via the application of a small voltage across two ECG electrode *Trade-mark 8 pads placed on each side of the thoracic cage. In theory, each respiration could be detected as the phasic change of thoracic impedance. Unfortunately, the resulting signal often has too much noise/artifact which can adversely affect reliability. Respiratory rate derived from the pulse oximeter's plethysmogram may not diagnose apnea and distinguish it from complete airway obstruction, thus misdiagnosing apnea as a normal condition (a false negative alarm state).

The arterial concentration of an inhalational or intravenous drug or gas is clinically useful and may be inferred from the end-tidal concentration of the drug or gas measured in the gases exhaled by the patient. The end-tidal concentration of a desired component of the exhaled gas mixture can be monitored and used to infer the arterial concentration. Examples of drugs and gases that can be monitored include, among other things: propofol, xenon, intravenous anesthetics and sedatives, and water vapor.
Various inspired gas compositions may be administered to patients for different purposes. Oxygen diluted with air may be used instead of pure 02 to reduce the risk of an oxygen-enriched micro-environment that may support or promote ignition of a fire, especially for those procedures using lasers (such as laser resurfacing of the face). An oxygen-helium mixture may be used to reduce the resistance to flow. An oxygen/air/bronchodilator mixture SUBSTITUTE SHEET (RULE 26) may be used to treat bronchoconstriction, bronchospasm or chronic obstructive pulmonary disease (COPD). A mixture of Q2 and water vapor may be used to humidify and loosen pulmonary secretions.
In view of the above drawbacks to current systems for delivering inspired gas and gas sampling, including monitoring ventilation, there is a. need for an improved combined system to accomplish these functions.

SUMMARY OF THE INVENTION

One of the purposes of the current invention is to increase the alveolar concentration of an inspired gas, such as oxygen, without the requirement for a patient to wear a face mask. This is done by, among other things: a) determining the patient's breath phase, namely whether the person is in the inhalation or exhalation phase of their respiratory cycle; and b) delivering a higher flow of inspired gas during the inhalation part of the respiratory cycle thereby making this higher flow of inspired gas acceptable to patients. In one aspect of the invention the inspired gas flow may be provided to all three respiratory orifices i.e., both nostrils and the mouth) or directly in front of the mouth, during the inhalation cycle. Thus, dilution of inhaled gas by room air at an inhalation portal is reduced.

A second purpose of the invention is to more effectively sample exhaled gases, such sampling could be used, for example, to SUBSTITUTE SHEET (RULE 26) monitor patient ventilation, in combination with mask-free delivery of inspired gas to the patient. In this aspect, the invention includes placing pressure lumens and gas-sampling lumens inside, or near, at least one of a patient's nostrils and, in some embodiments, the mouth. The pressure lumens are connected to pressure transducers that in turn are connected to a controller or processor running custom software algorithms for determining breath phase (inhalation or exhalation) and rate. The pressure samples from the respective lumens are compared with one another to determine the primary ventilatory path. The gas sampling tubes may be connected to gas analyzers or monitors, e.gõ CO2 analyzers, that measure the level of a gas or drug in the exhaled gas.

Other aspects of the invention will be apparent from the description below.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a side, cut out view of the disposable portion of the apparatus placed on a patient in accordance with one embodiment of the invention.

FIG. 2 shows a perspective exterior view of the disposable portion of the apparatus in accordance with one embodiment of the invention.

SUBSTITUTE SHEET (RULE 26) FIG. 3 is a blow-up view showing the lower, middle and cover portions of the disposable portion of the apparatus in accordance with one embodiment of the invention.

FIG. 4 shows an embodiment of the disposable portion of the apparatus with an oral collection chamber in accord with one embodiment of the invention.

FIG. 5A is a schematic diagram of a gas delivery and gas sampling system in accordance with one embodiment of the invention.

FIG. 5B is a schematic diagram of a gas delivery and gas sampling system in accordance with an alternative embodiment of the invention. FIG. 6 is a schematic diagram of pressure transducer circuitry in one embodiment of the invention.

FIG. 7 is a diagram of a pressure waveform during a respiration cycle used in one method of the invention.

FIG. 8 is a flow chart of a preferred embodiment of one method of the invention.

FIG. 9 is a schematic diagram of a gas delivery and gas sampling system in accordance with an alternative embodiment of the invention.

FIG. 10 is a perspective diagram of an alternative embodiment of an oronasal gas diffuser and gas sampling device in accord with the invention.

SUBSTITUTE SHEET (RULE 26) FIG. 11 is a side-elevation frontal view of the device shown in FIG. 10.

FIG. 12 is a plan view of the bottom of the device shown in FIG. 10.

FIG. 13 is a side-elevation back view of the device shown in FIG. 10.

FIG. 14 is a cross-sectional view of the tubing that connects the device in FIG. 10 to the circuitry in FIG. 9.

FIG. 15 is a view of a connector that interfaces the machine end of the extruded tubing of FIG. 14 to a medical device.
DESCRIPTION OF PREFERRED EMBODIMENTS

Single Capnometer Embodiment The concept of the invention will now be described using, merely by way of example, supplemental oxygen as the inspired gas mixture and gas sampling of carbon dioxide in the patient's exhalations. It should be understood that the concept of the invention is not limited to supplemental 02 administration and CO2 sampling.

FIG. 1 shows a cut-out view of the disposable portion 4 of an apparatus in accordance with the invention placed on a patient 10.
The apparatus provides for the mask-free delivery of supplemental oxygen gas to the patient combined with the monitoring of patient ventilation. Oxygen gas is supplied to the SUBSTITUTE SHEET (RULE 26) patient from an 02 supply tube 12 and exits portion 4 from a diffuser grid 14 in housing 16 (shown in more detail in FIG. 2).
Diffuser grid 14 blows diffused oxygen into the immediate area of the patient's nose and mouth. Two thin lumens (tubes) are mounted adjacent one another to portion 4 and placed in one of the patient's nostrils (nasal lumens 18). Another two thin lumens are also mounted adjacent to one another to portion 4 and placed in front of the patient's mouth (oral lumens 20).

Of nasal lumens 18, one lumen is a pressure lumen for sampling the pressure resulting from a patient's nose breathing and the other lumen continuously samples the respiratory gases so they may be analyzed in a capnometer to determine the concentration of carbon dioxide. This arrangement is essentially the same for oral lumens 20, namely, one lumen is a pressure lumen (samples pressure in mouth breathing) and the other lumen continuously samples the respiratory gases involved in mouth breathing.
Nasal lumens 18 and oral lumens 20 are each connected to their own pneumatic tubes, e.gõ 22, which feed back the nasal and oral pressure samples to pressure transducers (not shown) and which feed back the nasal and oral gas samples to a capnometer (not shown). All of portion 4; lumens 18, 20; oxygen supply tubing 12 and feedback tubing 22 are disposable (designed to be discarded, SUBSTITUTE SHEET (RULE 26) e.g., after every patient use), and preferably constructed of pliable plastic material such as extruded polyvinyl chloride.

As shown in FIG. 2, lumens 18, 20 and tubings 12 and 22, although shown as a portion cut-out in FIG. 1 in a preferred embodiment, are housed in cover 30. Also, in FIG. 2, nasal lumens 18 (including pressure lumen 28 and gas sampling lumen 26) are preferably formed from a double-holed, single-barrel piece. Oral lumens 20 (which include pressure lumen 32 and gas sampling lumen 34) are preferably formed from a double barrel piece.

Diffuser grid 36 is formed in cover 30 and functions as an oxygen diffuser which releases a cloud of oxygen into the immediate oral and nasal area of the patient 10.

FIG. 3 shows disposable portion 4 including cover 30 in more detail in cut-out fashion. Specifically, lower portion 110, formed from a suitably firm, but not rigid, plastic, has an opening 120 for insertion of oxygen supply tube 12. Slot 114 in portion 110 receives the oxygen gas from the tube 12, retains it, and forces it up through opening 148 in middle portion 112. Middle portion 112 is affixed to lower portion 1101ying flat on portion 110. From opening 148, the oxygen gas travels into cover 130 (afEixed directly onto middle portion 112) and travels lengthwise within cover 130 to the diffuser portion, whereupon the oxygen exits cover 130 through diffuser grid 136 into the immediate vicinity of the patient's nose and mouth in a cloud-like fashion. It is preferable to supply oxygen flow to all three respiratory orifices (both nostrils and mouth) to increase the concentration of oxygen provided to the patient. By providing flow to all three orifices, dilution of inhaled gas at an inhalation portal by pure room air is reduced. Also, a diffused stream such as that created by grid 136 is a preferred embodiment for the oxygen stream delivered to the patient. This is because a stream of oxygen delivered through a single lumen cannula is typically uncomfortable at the higher flow rates necessary for sufficient oxygen delivery.

Further, at those flow rates, a single lumen can create an undesirable Bernoulli effect. It is noted that an alternative to the diffuser grid 136 is a cup-shaped or other chamber which receives the 02 jet stream and includes a foam or filler paper section for diffusing the jet stream of 02.

As is also shown in FIG. 3, feedback tubing 22 enters lower portion 110 at openings 122. At opening 122 begin grooves 146 and 140 formed in lower portion 110 each for receiving the feedback pressure sample from lumens 128 and 132. At opening 122 begin grooves 144 and 142, formed in lower portion 110 each for receiving the feedback CO2 sample from lumens 126 and 134. Grooves 146, 144, 140 and 142, all formed in lower portion 110, connect at one end to their respective sampling lumens (128, 126, 132 and 134) and at their other end to feedback tubing 22; middle portion 112 lies flat SUBSTITUTE SHEET (RULE 26) on and affixed to portion 110 such that the grooves 146, 144, 140 and 142 form passageways for the respective feedback samples. As can be seen, when assembled, portions 130, 112 and 110 together form whole disposable piece 4, shown perspectively in FIG. 2.

FIG. 4 shows a preferred embodiment of disposable portion 4 (here portions 110 and 112 are shown affixed to one another) with an oral sample collection chamber 210 fitting over oral lumens 220 (nasal lumens are shown at 218 and the opening for the oxygen supply tube is shown at 212). Oral sample collector 210 is preferably constructed of plastic and creates a space in chamber 214 that collects a small volume of gas the patient has breathed orally.
That volume of gas is then sampled by lumens 220 and fed back for analysis through the respective pressure and CO2 feedback tubing to pressure transducers and the capnometer described above.

Collector 210 thus acts as a storage container for better sampling of the oral site. It also serves as a capacitor for better monitoring of oral site pressure (exhalation contributes to volume and pressure increases, while inhalation removes gas molecules from volume 214 and pressure decreases).

In one preferred embodiment, collector 210 is provided in a variety of sizes and shapes to collect different volumes of air or to facilitate different medical procedures which may be performed in or near the mouth. In another preferred embodiment collector 210 SUBSTITUTE SHEET (RULE 26) is adjustable in that it is capable of sliding over lumens 220 to enable positioning directly over the mouth's gas stream. In a further embodiment, lumens 220 are themselves also slidably mounted to portion 222 so as to be extendable and retractable to enable positioning of both the lumens and collector directly in front of the oral gas stream.

The present invention generally provides that in the event that positive pressure ventilation has to be applied via face mask, it should be possible to leave the apparatus of the invention in place on the person to minimize user actions during an emergency. Thus, the apparatus of the invention allows a face mask to be placed over it without creating a significant leak in the pillow seal of the face mask. The material of the apparatus in contact with the face is preferably soft (e.gõ plasticized PVC, etc.) and deformable. This prevents nerve injury, one of the most common complications of anesthesia, which is often caused by mechanical compression or hyperextension that restricts or shuts off the blood supply to nerves.

FIG. 5A shows a schematic circuit diagram of a preferred embodiment of the oxygen delivery and gas sampling system of the invention. As described above, disposable portion 304 includes nasal lumens which sample a nasal (nares) volume 318 of gas SUBSTITUTE SHEET (RULE 26) breathed through the patient's nostril; an oral sample collector which creates an oral volume of gas 320 effecting sampling of gas breathed through a patient's mouth; and an oxygen diffuser 336 which enriches the immediate breathing area of a patient with oxygen, increasing the patient's fraction of inspired oxygen and thereby increasing the patient's alveolar oxygen levels. The diffuser 336 ensures that a high rate of oxygen flow is not uncomfortable for the patient.

Oxygen gas is supplied to diffuser 336 from an oxygen supply (02 tank or in-house oxygen). If the supply of 02 is from an in-house wall source, DISS fitting 340 is employed. The DISS fitting 340 (male body adaptor) has a diameter indexed to only accept a Compressed Gas Association standard oxygen female nut and nipple fitting. A source pressure transducer 342 monitors the oxygen source pressure and allows custom software running on a processor (not shown) to adjust the analog input signal sent to proportional valve 346 in order to maintain a user-selected flow rate as source pressure fluctuates. Pressure relief valve 348 relieves pressure to the atmosphere if the source pressure exceeds 75 psig.

Proportional valve 346 sets the flow rate of oxygen (e.2.0 to 15.0 liters per minute) through an analog signal and associated driver circuitry (such circuitry is essentially a voltage to current converter which takes the analog signal to a dictated current to be applied to SUBSTITUTE SHEET (RULE 26) the valve 346, essentially changing the input signal to the valve in proportion to the source pressure, as indicated above). It is noted that flowrates of 2.0 and 15.0 L/min could also be accomplished by 2 less expensive on/off valves coupled with calibrated flow orifices instead of one expensive proportional flow control valve.
Downstream pressure transducer 350 monitors the functionality of proportional valve 346. Associated software running on a processor (not shown) indicates an error in the delivery system if source pressure is present, the valve is activated, but no downstream pressure is sensed. As described above, the nares volume 318 and oral collection volume 320 are fed back to the capnometer 352 via a three-way valve 354. The capnometer 352 receives the patient airway gas sample and monitors the CO2 content within the gas sample. Software associated with capnometer 352 displays pertinent parameters (such as a continuous carbon dioxide graphic display known as a capnogram and digital values for end-tidal CO2 and respiration rate) to the user. A suitable capnometer may be that manufactured by Nihon Kohden (Sj5i2) or CardioPulmonary Technologies (CO2WFA OEM). Three-way valve 354 automatically switches the sample site between the oral site and the nasal site depending on which site the patient is primarily breathing through.
This method is described in more detail below, but briefly, associated software running on a processor (not shown) switches the SUBSTITUTE SHEET (RULE 26) sample site based on logic that determines if the patient is breathing through the nose or mouth. It is preferable to have a short distance between the capnometer and valve 354 to minimize dead space involved with switching gas sample sites.

Also as described above, the nares volume 318 collected is fed back to a nasal pressure transducer 356 and nasal microphone 358.
Transducer 356 (such as a Honeywell DCXL01DN, for example) monitors the pressure in the nares volume 318 through the small bore tubing described above. Associated software running on a processor (not shown) determines through transducer 356 if the patient is breathing primarily through the nose. Associated offset, gain and temperature compensation circuitry (described below) ensures signal quality. Nasal microphone 358 monitors the patient's breath sounds detected at the nasal sample site.

Associated software allows the user to project sound to the room and control audio volume. Output from nasal microphone 358 may be summed with output of the oral microphone 360 for a total breath sound signal. In an additional embodiment the breath sound signals are displayed to the user and/or further processed and analyzed in monitoring the patient's physiological condition.
Oral pressure transducer 362 (such as a Honeywell DCXLOIDN, for example) monitors pressure at the oral collection volume 320 through the small bore tubing described above.

SUBSTITUTE SHEET (RULE 26) Associated software running on a processor (not shown) determines via pressure transducer 362 if the patient is primarily breathing through the mouth. Offset gain and temperature compensation circuitry ensure signal quality. Oral microphone 360 operates as nasal microphone 358 described above that amplifies and projects breath sounds to the room. Alternatively, a white noise generator reproduces a respiratory sound proportional to the amplitude of the respiratory pressure and encoded with a sound (WAV file) of a different character for inhalation versus exhalation so that they may be heard and distinguished by a care giver in the room.

A dual chamber water trap 364 guards against corruption of the CO2 sensors by removing water from the sampled gases.
Segregated chambers collect water removed by hydrophobic filters associated with the nasal and oral sites. This segregation ensures that the breathing site selected as the primary site is the only site sampled. The disposable element 304 is interfaced to the non-disposable elements via a single, multi-lumen connector 344 that establishes five flow channels in a single action, when it is snapped to the medical device containing the non-disposable equipment.

FIG. 5B shows an additional embodiment of the system circuit of the present invention, including a gas sample bypass circuit which keeps the gas sample at the oral and nasal sites flowing at the same rate, regardless of whether the site is being SUBSTITUTE SHEET (RULE 26) sampled by the capnometer or bypassed. Specifically, nasal diverter valve 555 switches the nasal gas sample site between the capnometer and the bypass line. Activation of the valve 555 is linked to activation of oral diverter valve 557 in order to ensure that one sample site is connected to the bypass line while the other sample site is connected to the capnometer. This allows two states:
1) the oral gas sample site fed back to the capnometer, with the nasal gas sample site connected to the bypass; and 2) the nasal gas sample site fed back to the capnometer with the oral gas sample site on bypass. As described above, the control software switches the gas sample site based on logic that determines if the patient is breathing through the nose or mouth. Oral diverter valve 557 switches the oral gas sample site between the capnometer and the bypass line and operates as described with respect to nasal diverter valve 555.

Bypass pump 559 maintains flow in the bypass line 561 that is equivalent to flow dictated by the capnometer e.(., 200 cc/min.).
The pump 559 also ensures that the gas sample sites are synchronized with one another so that the CO2 waveform and respiration rate calculations are not corrupted when gas sample sites are switched. Flow sensor 563 measures the flow rate obtained through the bypass line 561 and provides same to SUBSTITUTE SHEET (RULE 26) electronic controller 565 necessary for flow control. Controller 565 controls the flow of pump 559.

As can be seen from FIG. 5B, balancing the flow between the active gas sample line and the bypass line e(., maintaining a flow in the bypass equivalent or near equivalent to the flow within the CO2 sampling line, e.., 200 cc/min) is desired. This prevents corruption of the CO2 waveform and respiration rate calculations in the event one site became occluded such that the bypass and capnometer lines flowed at different rates.

FIG. 6 shows a schematic of the electronic circuitry associated with pressure transducers 356 and 362. Such circuitry includes a pressure sensor 402, a hi-gain amplifier 404, a temperature compensation and zeroing circuit 406 and a low pass filter 408. The gain and temperature zeroing circuit ensure signal quality for the pressure transducer output. Depending on the signal to noise ratio of the pressure transducer 402, the low pass filter 408 may be optional.

FIG. 7 is a diagram of the pressure reading (oral or nasal) during a typical respiration cycle with thresholds A, B, C and D

identified in accordance with the preferred method of the invention.
As is shown, as exhalation 706 begins, the pressure becomes positive, eventually reaching a peak then dropping back to zero (atmospheric pressure) as the exhalation completes. The beginning SUBSTITUTE SHEET (RULE 26) of inhalation 708 is indicated by the pressure becoming negative (sub-atmospheric). The pressure will become more negative during the first portion of inhalation then trend back towards zero as inhalation ends.

The control software of the present invention defines an upper and a lower threshold value 702, 704, respectively. Both are slightly below zero, with the lower threshold 704 being more negative than the upper threshold 702. During each respiration cycle the software determines when the thresholds 702, 704 are crossed (points A, B, C, and D, FIG. 7) by comparing the pressures to one of the two thresholds. The crossings are expected to occur in sequence, i.e., first A, then B followed by C, and finally D. An 02 source valve is turned up e.(., to 10-15 liters/min of flow) when point A, 710, is reached and turned down (e~, to 2-3 liters/min of flow) when C, 712, is reached, thus providing the higher oxygen flow during the majority of the inhalation phase.

To determine when the threshold crossings occur, the software examines the pressures from the oral and nasal pressure sensors at periodic intervals, e.g., at 50 milliseconds see FIG. 8, step 820). During each examination, the software conibines the oral and nasal pressures and then compares the combined pressure to one of the two thresholds as follows.

SUBSTITUTE SHEET (RULE 26) As shown by the flowchart of FIG. 8, when the software begins execution, it reads the nasal and oral pressures, step 802, and awaits a combined pressure value less thar.Jthe upper threshold (point A), step 804. When this condition is met, the software turns up the 02 valve, step 806, to a higher desired flow (e.g., 10-15 liters/min) then begins looking for a combined pressure value less than the lower threshold (point B), step 808. When this occurs the software waits for a combined pressure value that is greater than the lower threshold (point C). When this value is read, the 02 is turned down to the lower desired flow rate (e.g., 2-3 liters/min), step 810, and the software awaits a pressure value that exceeds the upper threshold (point D). Once this value is read, the cycle begins again for the next breath. In the case of oxygen, the invention may thus increase end tidal oxygen concentrations from the baseline 15% (breathing room air) up to 50-55%. Whereas this may not be as effective as face mask oxygen supplementation, it is significantly better than the prior art for open airway oxygen supplementation devices.

Also, instead of completely shutting off inspired gas flow during exhalation, the invention selects a baseline lower flow of inspired gas, e.., 2 L/min, so that the flow interferes minimally with the accuracy of exhaled gas sampling. The non-zero inspired gas flow during exhalation enriches the ambient air around the SUBSTITUTE SHEET (RULE 26) nose and mouth that is drawn into the lungs in the subsequent inhalation. Further, in the event that 02 is the inspired gas and that the software malfunctions such that the algorithm stays stuck in the exhalation mode, a non-zero baseline flow of 02 will ensure that the patient breathes partially 02-enriched room air rather than only room air.

As described above, a capnometer may be used to provide information such as end-tidal CO2 and respiration rate by continually sampling the level of CO2 at a single site. Since breathing can occur through the nose, mouth, or both, the software must activate valve 354 (FIG. 5A) or valves 555 and 557 (FIG. 5B), that switch the capnometer-sampling site to the source providing the best sample, i.e., mouth or nose.

As is also shown in FIG. 8, the software determines the best sampling site by examining the oral and nasal pressure readings at periodic intervals. During each examination, the current and prior three oral pressure values are compared to the corresponding nasal pressure values. If the combined nasal pressures exceed the combined oral pressures by more than a factor of three, the capnometer sample is obtained at the nose. If the combined oral pressures exceed the combined nasal pressures by more than a factor of three, the sampling occurs at the mouth.

SUBSTITUTE SHEET (RULE 26) It is further noted that the gas sampling lumens may be connected together at a switching valve to minimize the number of gas analyzers required. Via the switching valve, the gas sampling lumen connected to the primary ventilatory path is routed to the gas analyzer. Additionally, in some aspects of the invention, the user sees a display from one gas analyzer. For example, for a capnometry application, the CO2 tracing that has the highest averaged value (area under the curve over the last n seconds, e.., seconds) is displayed. Because the present invention measures 10 the "effect," i.e., the CO2 and airway pressure variations with each breath, it would not fail to detect a complete airway obstruction.
Multiple Capnometer Embodiment An alternative embodiment of the invention uses two capnometers as shown in FIG. 9, 912 and 914. Pressure transducer 15 906 monitors the pressure at nose tap 938. Pressure transducer 908 monitors the pressure at nose tap 940. Each nose tap 938 and 940 samples the pressure in one of the patient's nares. Pressure transducers 906 and 908 can be momentarily connected to atmosphere for zeroing purposes via valves 904 and 902 respectively. Pressure is not monitored at the mouth. The primary nasal ventilatory path is determined from analysis of the pressure trace at each nares. The nare whose pressure trace exhibits the SUBSTITUTE SHEET (RULE 26) larger amplitude of pressure oscillation is considered to be the primary nasal ventilatory path.

Gas sample lumens are placed at both nares and at the mouth. The oral gas sample lumeri 932 is directly connected to the oral capnometer 914. The nasal capnometer 912 can be connected to either of the nasal gas sampling lumens 934 or 936 via a switching valve 910. Once the pressure transducers and the software determine the primary nasal ventilatory path, the switching valve routes the gas sample from the primary nasal ventilatory path to the nasal capnometer 912. Thus, exhaled gas is sampled continuously from either the right or left nasal passage.
The software analyzes the sum of the pressures sampled from the two nasal orifices to determine whether the patient is inhaling or exhaling. Obviously, different algorithms may be possible like determining the breath phase from only the pressure trace at the primary nasal ventilatory path, instead of adding the pressures from both nares. Software running on a processor (not shown) opens a valve 922 connected to an oxygen source so that oxygen flow is high (e g_, 15 L/min) during the inhalation phase of the patient's breathing. A high pressure relief valve 918 relieves pressure if the 02 supply pressure exceeds 75 psig. A pressure transducer 920 monitors the 02 supply pressure such that the software can adjust the opening of the valve 922 to compensate for 02 supply pressure SUBSTITUTE SHEET (RULE 26) fluctuations. A pressure relief valve 924 downstream of the valve 922 prevents pressure buildup on the delivery side. Components 918, 920, 922 and 924 are mounted on a gas manifold 916 with internal flow passages (not shown) to m;n;mize the number of pneumatic connections that have to be manually performed.

An audio stimulus generated by sub-system 926 is used to prompt the patient to perform a specific action like pressing a button as a means of assessing responsiveness to commands as an indirect measure of patient consciousness. This automated responsiveness test is useful in a conscious sedation system li_ke, for example, that described in U.S. patent No. 6,807,965 issued October 26, 2004.

The oronasal piece 1000 in FIG. 10 is intended for use with the circuit in FIG. 9. A pressure sampling lumen 1008 and a gas sampling lumen 1006 are contained within left nostril insert 1004 that fits into the left nare of the patient. A pressure sampling lumen 1058 and a gas sampling lumen 1056 are contained within right nostril insert 1054 that fits into the right nare of the patient.
A multiplicity of holes 1012 diffuse 02 near the region of the nares.

A similar multiplicity of holes 1026 (FIG. 12) diffuse 02 near the region of the mouth, to account for the possibility of mouth breathing. The oronasal piece 1000 is held onto the patient's face via an adjustable loop of cord or elastic band 1014 that is designed to be rapidly adjusted to the patient. A single cord or elastic band is made to form a loop by passing both cut ends via an adjustment bead 1018. The loop is attached in one motion to bayonet-type notches 1020 on oronasal piece 1000 that securely hold the cord in place on the oronasal piece while it is being wrapped around the back of the patient's head. The adjustment bead 1018 is then slid along the loop to adjust the tension on the cord. Once adjusted, the loop is then released over the stud 1016 such that the stud tends to splay the two pieces of cord apart, thus locking the adjustment bead to prevent inadvertent loosening of the adjustment bead. The gas sample lumen 1024 (FIG. 11) is contained within protuberance 1022 which is designed to stick out into the stream of gas flowing to and from the mouth.

Referring now to FIG. 13, lumen 1038 on the oronasal piece 1000 is internally connected to the gas sample lumen 1006 (FIG. 10) for the left nare. Lumen 1036 (FIG. 13) on the oronasal piece 1000 is internally connected to the oral gas sample lumen 1024 (FIG. 11).
Lumen 1034 (FIG. 13) on the oronasal piece 1000 is internally connected to the pressure sampling lumen 1008 (FIG. 10) for the left nare. Lumen 1030 (FIG. 13) on the oronasal piece 1000 is internally connected to the gas sample lumen 1056 (FIG. 10) for the right nare. Lumen 1028 (FIG. 13) on the oronasal piece 1000 is internally connected to the multiplicity of holes 1012 and 1026 SUBSTITUTE SHEET (RULE 26) (FIGS. 10 and 12) that allow 02 to diffuse into the regions close to the nose and mouth. Lumen 1032 (FIG. 13) on the oronasal piece 1000 is internally connected to the pressure sampling lumen 1058 (FIG. 10) for the right nare. The details of the internal flow passages in oronasal piece 1000 to accomplish the above connections will be evident to one skilled in the art.

Referring to FIG. 14, the oronasal piece 1000 of FIG. 10 is connected to the circuit of FIG. 9 via the extruded tear-apart tubing of FIG. 14. The extruded tubing contains seven lumens grouped in three clusters (1142, 1144 and 1146) that can be separated from each other by manually tearing along the tear lines 1143 and 1145.
Lumen 1130 in cluster 1142 channels the flow of 02 to the oronasal piece and is of larger bore to accommodate the high flow of 02 and present minimal flow resistance. Lumen 1128 in cluster 1146 carries the audio stimulus that prompts the patient to squeeze a button as part of an automated responsiveness test (ART) system.
Lumen 1132 in the middle of cluster 1144 carries the oral gas sample. Lumens 1138 and 1134 in cluster 1142 carry the pressure and gas samples from one nasal insert. Lumens 1140 and 1136 in cluster 1144 carry the pressure and gas samples from the other nasal insert. The cross-section of each cluster is shaped like an aerofoil to adapt to the indentation of the facemask pillow seal and the cheek of the patient when a facemask is placed over the SUBSTITUTE SHEET (RULE 26) separated clusters. The lumens are arranged such that the larger bore lumens are in the middle of each cluster, taking advantage of the aerofoil like cross-section of each cluster.

An additional feature of the invention is that the pneumatic harness (shown in cross-section in FIG. 14) can be,connected to a standard, male, medical 02 barbed outlet connector commonly referred to as a "Christmas tree," so that the oronasal piece of the invention can also be used post-procedurally to deliver 02-enriched air to the patient. Another feature of the invention is that the pneumatic harness of FIG. 14 can be snapped onto a medical device with a single action. To accomplish both design objectives, the connector of FIG. 15 is used to adapt the pneumatic harness of FIG.
14 for connection to a medical device. The pneumatic harness of FIG. 14 is mounted onto adapter 1148 using seven male ports like ports 1150 and 1152. Port 1152 carries the oxygen inflow and port 1150 pipes in the audio stimulus. The adapter 1148 has a tapered inlet connected to the 02 delivery lumen 1130 (FIG. 14). The tapered inlet is made of soft material and is designed to mate to a standard male 02 barbed connector known as a Christmas tree.

The connector snaps into a socket on the medical device to establish seven airtight pneumatic connections with only one action. Tapered male port 1158 on the medical device delivers oxygen into lumen 1130 via port 1152. Port 1156 brings in the pressure signal from SUBSTITUTE SHEET (RULE 26) nose pressure tap 2. Pegs 1154 allow the multi-lumen connector 1148 to be held in tightly and securely once snapped into the medical device to prevent accidental disconnection.

The above-described systems and methods thus provide improved delivery of inspired gas and gas sampling, including CO2 sampling, without use of a face mask. The system and method may be particularly useful in medical environments where patients are conscious (thus comfort is a real factor) yet may be acutely ill, such as in hospital laboratories undergoing painful medical procedures, but also in the ICU, CCU, in ambulances or at home for patient-controlled analgesia, among others. It should be understood that the above describes only preferred embodiments of the invention. It should also be understood that while the preferred embodiments discuss gas sampling, such as CO2 sampling and analysis, the concept of the invention includes sampling and analysis of other medical gases and vapors like propofol, oxygen, xenon and intravenous anesthetics. It should further be understood that although the preferred embodiments discussed address supplemental 02 delivery, the concept of the invention is applicable to delivery of pure gases or mixtures of gases such as 02/helium, 02/air, and others.

SUBSTITUTE SHEET (RULE 26)

Claims (25)

CLAIMS:
1. A mask-free delivery apparatus that delivers inspired gas to a person and samples expired gases from the person, said apparatus comprising:

an inspired gas delivery device comprising nasal lumens and oral lumens adapted to receive the expired gases from each of the person's nostrils and the person's mouth, respectively, of said nasal lumens and oral lumens one lumen is a pressure lumen for sampling pressure resulting from a person's nose and mouth breathing and the other lumen continuously samples the respiratory gases, said inspired gas delivery device being connected to a controller that modulates a flow of inspired gas in accordance with the phase of the person's respiratory cycle;

a pressure analyzer being connected to said nasal lumens and said oral lumens, said pressure analyzer determining the phase of the person's respiratory cycle;

at least one gas analyzer being connected to said nasal lumens and said oral lumens, the said at least one gas analyzer measuring the level of a gas or drug in the exhaled gas; and said inspired gas delivery device including an oxygen diffuser which provides diffused oxygen into the immediate area of the person's nose and mouth.
2. The apparatus of claim 1, wherein each of said nasal lumens are formed from a double-holed, single-barrel piece.
3. The apparatus of claim 1, wherein the controller delivers a higher flow of supplied gas during the inhalation phase of the person's respiratory cycle.
4. The apparatus of claim 3, wherein said higher flow of supplied gas is delivered during a portion of the inhalation phase of the person's respiratory cycle, and wherein said portion of the inhalation phase ends in advance of the exhalation phase.
5. The apparatus of claim 1, wherein at least two of the nasal and oral lumens are connected to a pressure comparator which determines the person's primary respiratory site.
6. The apparatus of claim 1, wherein the controller provides a reduced flow of supplied gas during the exhalation phase.
7. The apparatus of claim 1, wherein said lumens and said inspired gas delivery device comprise a pneumatic harness, and wherein said lumens are prepackaged in one or more clusters, said clusters being manually separable from one another and attachable to said elongated body prior to positioning on the person.
8. The apparatus of claim 1, wherein said pressure analyzer monitors changes in a sum of the pressures detected at both the nostrils.
9. The apparatus of claim 1 further comprising a gas sampling device.
10. The apparatus of claim 9, wherein the gas sampling device is a capnometer.
11. The apparatus of claim 9, wherein the gas sampling device comprises a nasal gas sampling device and an oral gas sampling device and wherein the controller selects at least the gas stream from the primary respiratory site for monitoring.
12. The apparatus of claim 11, wherein the oral and nasal gas sampling devices are capnometers.
13. The apparatus of claim 1 further comprising an auditory breath sonification device that amplifies breath sounds.
14. The apparatus of claim 13, wherein the auditory breath sonification device is a microphone that amplifies actual breath sounds.
15. The apparatus of claim 13, wherein the auditory breath sonification device comprises a white noise generator that provides simulated breath sounds.
16. The apparatus of claim 15, wherein said simulated breath sounds distinguish between inhalation and exhalation breath sounds.
17. The apparatus of claim 9, wherein the gas sampling device samples CO_ gas.
18. The apparatus of claim 9, wherein the gas sampling device samples xenon gas.
19. The apparatus of claim 9, wherein the gas sampled is a drug.
20. The apparatus of claim 19, wherein the drug is an intravenous anesthetic.
21. The apparatus of claim 19, wherein the drug is propofol.
22. The apparatus of claim 1, wherein the inspired gas delivery device comprises a diffuser.
23. The apparatus of claim 1 further comprising a plurality of lumens which effect one or more of delivering of inspired gas, respiratory site sampling and gas sampling and wherein said lumens are affixed to one another along separable tear lines.
24. The apparatus of claim 23, wherein the lumen that accommodates the flow of inspired gas is of larger circumference than the other lumens.
25. An apparatus according to claim 23 wherein one of said lumens is a stimulus channel that carries an auditory prompt to the person.
CA002412485A 2000-06-13 2001-06-13 Method and apparatus for mask free delivery of an inspired gas mixture and gas sampling Expired - Fee Related CA2412485C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/592,943 US6938619B1 (en) 2000-06-13 2000-06-13 Mask free delivery of oxygen and ventilatory monitoring
US09/592,943 2000-06-13
PCT/US2001/018891 WO2001095971A2 (en) 2000-06-13 2001-06-13 Apparatus and method for mask free delivery of an inspired gas mixture and gas sampling

Publications (2)

Publication Number Publication Date
CA2412485A1 CA2412485A1 (en) 2001-12-20
CA2412485C true CA2412485C (en) 2009-04-14

Family

ID=24372686

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002412485A Expired - Fee Related CA2412485C (en) 2000-06-13 2001-06-13 Method and apparatus for mask free delivery of an inspired gas mixture and gas sampling

Country Status (8)

Country Link
US (3) US6938619B1 (en)
EP (1) EP1359960A2 (en)
JP (1) JP3842212B2 (en)
CN (1) CN100361716C (en)
AU (2) AU6834901A (en)
CA (1) CA2412485C (en)
MX (1) MXPA02012452A (en)
WO (1) WO2001095971A2 (en)

Families Citing this family (266)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7640932B2 (en) * 1997-04-29 2010-01-05 Salter Labs Nasal cannula for acquiring breathing information
IL141095A0 (en) * 1998-08-19 2002-02-10 Rtp Pharma Inc Injectable aqueous dispersions of propofol
WO2001034024A1 (en) 1999-11-08 2001-05-17 University Of Florida Research Foundation, Inc. Marker detection method and apparatus to monitor drug compliance
US20050233459A1 (en) * 2003-11-26 2005-10-20 Melker Richard J Marker detection method and apparatus to monitor drug compliance
US6938619B1 (en) * 2000-06-13 2005-09-06 Scott Laboratories, Inc. Mask free delivery of oxygen and ventilatory monitoring
US6814073B2 (en) 2000-08-29 2004-11-09 Resmed Limited Respiratory apparatus with improved flow-flattening detection
US20070258894A1 (en) * 2000-11-08 2007-11-08 Melker Richard J System and Method for Real-Time Diagnosis, Treatment, and Therapeutic Drug Monitoring
US7104963B2 (en) * 2002-01-22 2006-09-12 University Of Florida Research Foundation, Inc. Method and apparatus for monitoring intravenous (IV) drug concentration using exhaled breath
US7462154B2 (en) * 2001-03-08 2008-12-09 Nihon Kohden Corporation Sensor for measuring carbon dioxide in respiratory gas
EP1405067A2 (en) * 2001-05-23 2004-04-07 University Of Florida Method and apparatus for detecting illicit substances
US7052854B2 (en) * 2001-05-23 2006-05-30 University Of Florida Research Foundation, Inc. Application of nanotechnology and sensor technologies for ex-vivo diagnostics
US7052468B2 (en) * 2001-05-24 2006-05-30 University Of Florida Research Foundation, Inc. Method and apparatus for detecting environmental smoke exposure
US6651656B2 (en) 2001-05-29 2003-11-25 Deka Products Limited Partnership Method and apparatus for non-invasive breathing assist
CA2447705A1 (en) * 2001-06-18 2002-12-27 Michael A. Riggins A nasal cannula apnea detection device
US8152991B2 (en) 2005-10-27 2012-04-10 Nanomix, Inc. Ammonia nanosensors, and environmental control system
US8154093B2 (en) 2002-01-16 2012-04-10 Nanomix, Inc. Nano-electronic sensors for chemical and biological analytes, including capacitance and bio-membrane devices
US20070167853A1 (en) 2002-01-22 2007-07-19 Melker Richard J System and method for monitoring health using exhaled breath
AU2003207984A1 (en) * 2002-02-15 2003-09-04 Oridion Medical 1987 Ltd. Dual function nasal cannula
US7522040B2 (en) * 2004-04-20 2009-04-21 Nanomix, Inc. Remotely communicating, battery-powered nanostructure sensor devices
US20070048181A1 (en) * 2002-09-05 2007-03-01 Chang Daniel M Carbon dioxide nanosensor, and respiratory CO2 monitors
US20070048180A1 (en) * 2002-09-05 2007-03-01 Gabriel Jean-Christophe P Nanoelectronic breath analyzer and asthma monitor
US7714398B2 (en) * 2002-09-05 2010-05-11 Nanomix, Inc. Nanoelectronic measurement system for physiologic gases and improved nanosensor for carbon dioxide
EP1573450A4 (en) * 2002-05-13 2008-03-26 Scott Lab Inc System and method for transparent early detection, warning, and intervention during a medical procedure
AU2003241480B2 (en) * 2002-05-16 2010-03-04 Scott Laboratories, Inc. User authorization system and method for a sedation and analgesia system
CN1668358A (en) * 2002-05-16 2005-09-14 斯科特实验室公司 Kits of medical supplies for sedation and analgesia
US7948041B2 (en) 2005-05-19 2011-05-24 Nanomix, Inc. Sensor having a thin-film inhibition layer
WO2004030723A2 (en) * 2002-10-03 2004-04-15 Scott Laboratories, Inc. Bite block apparatus and method for use with a sedation an analgesia system
US20060160134A1 (en) * 2002-10-21 2006-07-20 Melker Richard J Novel application of biosensors for diagnosis and treatment of disease
AU2003293197A1 (en) * 2002-12-02 2004-06-23 Scott Laboratories, Inc. Respiratory monitoring systems and methods
WO2004066839A1 (en) * 2003-01-23 2004-08-12 University Of Florida Research Foundation, Inc. Method and apparatus for monitoring intravenous (iv) drug concentration using exhaled breath
JP4247758B2 (en) * 2003-02-18 2009-04-02 日本光電工業株式会社 Carbon dioxide gas sensor
BRPI0408089A (en) * 2003-03-04 2006-02-14 Ethicon Endo Surgey Inc patient monitoring and drug administration system and use process
US8381729B2 (en) 2003-06-18 2013-02-26 Breathe Technologies, Inc. Methods and devices for minimally invasive respiratory support
US7588033B2 (en) * 2003-06-18 2009-09-15 Breathe Technologies, Inc. Methods, systems and devices for improving ventilation in a lung area
DE10337138A1 (en) * 2003-08-11 2005-03-17 Freitag, Lutz, Dr. Method and arrangement for the respiratory assistance of a patient as well as tracheal prosthesis and catheter
US7066180B2 (en) * 2003-07-09 2006-06-27 Airmatrix Technologies, Inc. Method and system for measuring airflow of nares
US8225796B2 (en) * 2003-07-28 2012-07-24 Salter Labs Respiratory therapy system including a nasal cannula assembly
FR2858236B1 (en) 2003-07-29 2006-04-28 Airox DEVICE AND METHOD FOR SUPPLYING RESPIRATORY GAS IN PRESSURE OR VOLUME
AU2004264256B2 (en) * 2003-08-13 2009-09-17 Thomas J. Borody Improved oral oxygenating appliance
AU2003904278A0 (en) 2003-08-13 2003-08-28 Thomas J. Borody Improved oral oxygenating device
JP2007506480A (en) 2003-08-18 2007-03-22 ワンドカ,アンソニー・ディ Methods and apparatus for non-invasive ventilation with a nasal interface
JP2007505323A (en) * 2003-09-12 2007-03-08 ナノミックス・インコーポレーテッド Nanoelectronic sensor for carbon dioxide
US7261106B2 (en) * 2003-09-25 2007-08-28 Ethicon Endo-Surgery, Inc. Response testing for conscious sedation utilizing a cannula for support/response
US7198605B2 (en) * 2003-09-29 2007-04-03 Ethicon Endo-Surgery, Inc. Response testing for conscious sedation utilizing a non-ear-canal-contacting speaker
US20050070815A1 (en) * 2003-09-29 2005-03-31 Nasir Shahrestani Automated audio calibration for conscious sedation
US20050070814A1 (en) * 2003-09-29 2005-03-31 Donofrio William T. Personalized audio requests for conscious sedation
US20050070824A1 (en) * 2003-09-29 2005-03-31 Edward Rhad Response testing for conscious sedation using finger movement response assembly
US7007692B2 (en) * 2003-10-29 2006-03-07 Airmatrix Technologies, Inc. Method and system of sensing airflow and delivering therapeutic gas to a patient
US20050092322A1 (en) * 2003-11-05 2005-05-05 Collins William L.Jr. Cannula assembly and medical system employing a known carbon dioxide gas concentration
EP1694393A1 (en) * 2003-12-15 2006-08-30 Bespak plc Nasal drug delivery
US20050191757A1 (en) * 2004-01-20 2005-09-01 Melker Richard J. Method and apparatus for detecting humans and human remains
US7213594B2 (en) * 2004-05-20 2007-05-08 Acoba, L.L.C. Method and system to determine nasal resistance to airflow
US7007694B2 (en) * 2004-05-21 2006-03-07 Acoba, Llc Nasal cannula
US7935081B2 (en) * 2004-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Drug delivery cassette and a medical effector system
US20060062734A1 (en) * 2004-09-20 2006-03-23 Melker Richard J Methods and systems for preventing diversion of prescription drugs
KR20070108141A (en) 2004-11-16 2007-11-08 로버트 엘 베리 Device and method for lung treatment
FR2878751A1 (en) * 2004-12-03 2006-06-09 Vincent Gerard Henri Dufour User e.g. aquanaut, monitoring device, for e.g. subaquatic medium, has sensors transmitting parameters of physiology, respiratory apparatus and environment to case with controller storing parameters and display screen displaying parameters
US20060169281A1 (en) * 2005-02-03 2006-08-03 Aylsworth Alonzo C Continuous flow selective delivery of therapeutic gas
US20060174883A1 (en) * 2005-02-09 2006-08-10 Acoba, Llc Method and system of leak detection in application of positive airway pressure
US9757052B2 (en) 2005-05-10 2017-09-12 Oridion Medical (1987) Ltd. Fluid drying mechanism
US20060257883A1 (en) * 2005-05-10 2006-11-16 Bjoraker David G Detection and measurement of hematological parameters characterizing cellular blood components
US7644714B2 (en) 2005-05-27 2010-01-12 Apnex Medical, Inc. Devices and methods for treating sleep disorders
US8333199B2 (en) * 2005-09-12 2012-12-18 Mergenet Medical, Inc. High flow therapy artificial airway interfaces and related methods
US11497407B2 (en) 2005-09-12 2022-11-15 ResMed Pty Ltd High flow therapy device utilizing a non-sealing respiratory interface and related methods
US11833301B2 (en) 2005-09-12 2023-12-05 ResMed Pty Ltd High flow therapy device utilizing a non-sealing respiratory interface and related methods
US11696992B2 (en) 2005-09-12 2023-07-11 ResMed Pty Ltd High flow therapy device utilizing a non-sealing respiratory interface and related methods
US11458270B2 (en) 2005-09-12 2022-10-04 ResMed Pty Ltd High flow therapy device utilizing a non-sealing respiratory interface and related methods
US11717174B2 (en) 2005-09-12 2023-08-08 ResMed Pty Ltd High flow therapy device utilizing a non-sealing respiratory interface and related methods
EP1926517A2 (en) 2005-09-20 2008-06-04 Lutz Freitag Systems, methods and apparatus for respiratory support of a patient
EP1951347B1 (en) * 2005-11-16 2017-01-11 TreyMed, Inc. Side-stream respiratory gas monitoring system
US20070113847A1 (en) * 2005-11-22 2007-05-24 General Electric Company Respiratory monitoring with cannula receiving first respiratory airflows and second respiratory airflows
US7422015B2 (en) 2005-11-22 2008-09-09 The General Electric Company Arrangement and method for detecting spontaneous respiratory effort of a patient
US20070113848A1 (en) * 2005-11-22 2007-05-24 General Electric Company Respiratory monitoring with cannula receiving respiratory airflows and exhaled gases
US7305988B2 (en) 2005-12-22 2007-12-11 The General Electric Company Integrated ventilator nasal trigger and gas monitoring system
US20070113850A1 (en) * 2005-11-22 2007-05-24 General Electric Company Respiratory monitoring with cannula receiving respiratory airflows and differential pressure transducer
US20070113856A1 (en) * 2005-11-22 2007-05-24 General Electric Company Respiratory monitoring with cannula receiving respiratory airflows
US20080078393A1 (en) * 2005-11-22 2008-04-03 General Electric Company Respiratory monitoring with cannula receiving respiratory airflows, differential pressure transducer, and ventilator
US7578294B2 (en) 2005-12-02 2009-08-25 Allegiance Corporation Nasal continuous positive airway pressure device and system
US7762253B2 (en) 2005-12-12 2010-07-27 General Electric Company Multiple lumen monitored drug delivery nasal cannula system
CA2622734A1 (en) * 2005-12-14 2007-06-14 Mergenet Medical, Inc. High flow therapy device utilizing a non-sealing respiratory interface and related methods
AT503096B1 (en) * 2005-12-16 2009-04-15 Carl Reiner Gmbh JET ENDOSKOP
FR2896697B1 (en) * 2006-02-01 2009-04-17 Air Liquide DEVICE FOR DELIVERING APPROPRIATE RESPIRATORY OXYGEN QUALITY
CN101541365A (en) * 2006-05-18 2009-09-23 呼吸科技公司 Tracheostoma tracheotomy method and device
US8028701B2 (en) * 2006-05-31 2011-10-04 Masimo Corporation Respiratory monitoring
DE102006025263B3 (en) * 2006-05-31 2007-12-06 DRäGER AEROSPACE GMBH Sauerstoffnotversorgungsvorrichtung
NZ738046A (en) 2006-07-28 2019-06-28 ResMed Pty Ltd Delivery of respiratory therapy
US8161971B2 (en) 2006-08-04 2012-04-24 Ric Investments, Llc Nasal and oral patient interface
RU2447871C2 (en) * 2006-08-04 2012-04-20 РИК ИНВЕСТМЕНТС ЭлЭлСи. Nasal and oral patient interface
US7914460B2 (en) 2006-08-15 2011-03-29 University Of Florida Research Foundation, Inc. Condensate glucose analyzer
US11318267B2 (en) 2006-09-12 2022-05-03 ResMed Pty Ltd High flow therapy device utilizing a non-sealing respiratory interface and related methods
JP5034406B2 (en) * 2006-09-22 2012-09-26 ヤマハ株式会社 Electronic wind instrument
US9913982B2 (en) 2011-01-28 2018-03-13 Cyberonics, Inc. Obstructive sleep apnea treatment devices, systems and methods
ES2722849T3 (en) 2006-10-13 2019-08-19 Cyberonics Inc Devices and systems for the treatment of obstructive sleep apnea
US8855771B2 (en) 2011-01-28 2014-10-07 Cyberonics, Inc. Screening devices and methods for obstructive sleep apnea therapy
US9205262B2 (en) 2011-05-12 2015-12-08 Cyberonics, Inc. Devices and methods for sleep apnea treatment
US9186511B2 (en) 2006-10-13 2015-11-17 Cyberonics, Inc. Obstructive sleep apnea treatment devices, systems and methods
US9744354B2 (en) 2008-12-31 2017-08-29 Cyberonics, Inc. Obstructive sleep apnea treatment devices, systems and methods
US20080177152A1 (en) * 2007-01-24 2008-07-24 Donofrio William T Response testing for conscious sedation utilizing a non-ear-canal-contacting speaker
EP1961438A1 (en) * 2007-02-23 2008-08-27 The General Electric Company Inhalation anaesthesia delivery system and method
EP1980285B1 (en) * 2007-04-11 2009-11-18 PARI GmbH Spezialisten für effektive Inhalation Aerosol therapy device
US8001968B2 (en) * 2007-05-09 2011-08-23 Doty Robert H Apparatus for delivering and/or scavenging gas in the nose/mouth area of a patient
WO2008144589A1 (en) 2007-05-18 2008-11-27 Breathe Technologies, Inc. Methods and devices for sensing respiration and providing ventilation therapy
KR101397207B1 (en) * 2007-06-12 2014-05-20 삼성전자주식회사 Method and apparatus for receiving/transmitting common control channels in a mobile communication system
US8240306B2 (en) 2007-07-18 2012-08-14 Vapotherm, Inc. Base unit for breathing gas heating and humidification system
US20090065007A1 (en) 2007-09-06 2009-03-12 Wilkinson William R Oxygen concentrator apparatus and method
JP5513392B2 (en) 2007-09-26 2014-06-04 ブリーズ・テクノロジーズ・インコーポレーテッド Method and apparatus for treating sleep apnea
US8567399B2 (en) 2007-09-26 2013-10-29 Breathe Technologies, Inc. Methods and devices for providing inspiratory and expiratory flow relief during ventilation therapy
US8905023B2 (en) 2007-10-05 2014-12-09 Vapotherm, Inc. Hyperthermic humidification system
US9205215B2 (en) * 2007-11-16 2015-12-08 Fisher & Paykel Health Limited Nasal pillows with high volume bypass flow and method of using same
US8220458B2 (en) 2007-11-29 2012-07-17 Mergenet Medical, Inc. Artificial airway interfaces and methods thereof
CN101468236B (en) * 2007-12-25 2012-03-28 北京谊安医疗系统股份有限公司 Certificated valve
US8683998B2 (en) * 2008-01-04 2014-04-01 Koninklijke Philips N.V. Multipurpose cannula
CA2712481A1 (en) * 2008-01-18 2009-07-23 Breathe Technologies, Inc. Methods and devices for improving efficacy of non-invasive ventilation
CA2713012A1 (en) * 2008-01-25 2009-07-30 Salter Labs Respiratory therapy system including a nasal cannula assembly
US8425428B2 (en) 2008-03-31 2013-04-23 Covidien Lp Nitric oxide measurements in patients using flowfeedback
US8770193B2 (en) 2008-04-18 2014-07-08 Breathe Technologies, Inc. Methods and devices for sensing respiration and controlling ventilator functions
WO2009151791A2 (en) 2008-04-18 2009-12-17 Breathe Technologies, Inc. Methods and devices for sensing respiration and controlling ventilator functions
US8251876B2 (en) 2008-04-22 2012-08-28 Hill-Rom Services, Inc. Breathing exercise apparatus
EP2285269B1 (en) * 2008-04-29 2012-11-07 Oridion Medical 1987 Ltd. Wireless capnography
US8457706B2 (en) 2008-05-16 2013-06-04 Covidien Lp Estimation of a physiological parameter using a neural network
US20090283097A1 (en) * 2008-05-19 2009-11-19 Ethicon Endo-Surgery, Inc. Medical cannula assembly for use with a patient
US20090306529A1 (en) * 2008-06-06 2009-12-10 Salter Labs Adaptive temperature sensor for breath monitoring device
AU2009256038A1 (en) 2008-06-06 2009-12-10 Salter Labs Adaptive temperature sensor for breath monitoring device
US20100168601A1 (en) * 2008-06-06 2010-07-01 Salter Labs Combined cannula and airflow temperature sensor and the method of using the same
US20090306528A1 (en) * 2008-06-06 2009-12-10 Salter Labs Adaptive temperature sensor for breath monitoring device
JP5715950B2 (en) 2008-08-22 2015-05-13 ブリーズ・テクノロジーズ・インコーポレーテッド Method and apparatus for providing mechanical ventilation with an open airway interface
US8652064B2 (en) 2008-09-30 2014-02-18 Covidien Lp Sampling circuit for measuring analytes
US8302602B2 (en) 2008-09-30 2012-11-06 Nellcor Puritan Bennett Llc Breathing assistance system with multiple pressure sensors
EP2344791B1 (en) 2008-10-01 2016-05-18 Breathe Technologies, Inc. Ventilator with biofeedback monitoring and control for improving patient activity and health
US9044565B2 (en) * 2008-10-30 2015-06-02 Oridion Medical (1987) Ltd. Oral-nasal cannula system enabling CO2 and breath flow measurement
US8082312B2 (en) 2008-12-12 2011-12-20 Event Medical, Inc. System and method for communicating over a network with a medical device
IL203129A (en) * 2009-01-05 2013-10-31 Oridion Medical Ltd Exhaled breath sampling systrm with delivery of gas
US9132250B2 (en) 2009-09-03 2015-09-15 Breathe Technologies, Inc. Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature
WO2010096350A1 (en) * 2009-02-18 2010-08-26 O'leary John P Apparatus for positioning a nasal cannula
US8434479B2 (en) 2009-02-27 2013-05-07 Covidien Lp Flow rate compensation for transient thermal response of hot-wire anemometers
EP4218876A1 (en) 2009-04-02 2023-08-02 Breathe Technologies, Inc. Systems for non-invasive open ventilation with gas delivery nozzles within an outer tube
US9962512B2 (en) 2009-04-02 2018-05-08 Breathe Technologies, Inc. Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with a free space nozzle feature
WO2010149374A1 (en) * 2009-06-25 2010-12-29 Clearway Medical Limited A respiratory monitoring system
US9364623B2 (en) 2009-07-15 2016-06-14 UNIVERSITé LAVAL Method and device for administering oxygen to a patient and monitoring the patient
JP2013501921A (en) 2009-08-07 2013-01-17 ナノミックス・インコーポレーテッド Biological detection based on magnetic carbon nanotubes
EP2283773A1 (en) * 2009-08-10 2011-02-16 Koninklijke Philips Electronics N.V. Processing a breathing signal
ES2823307T3 (en) 2009-08-13 2021-05-06 Hidetsugu Asanoi Device for calculating respiratory waveform information and medical device that uses respiratory waveform information
CN102762250B (en) * 2009-09-03 2017-09-26 呼吸科技公司 Mthods, systems and devices for including the invasive ventilation with entrainment port and/or the non-tight vented interface of pressure characteristic
CN102625720B (en) * 2009-09-03 2019-04-12 呼吸科技公司 For including the mthods, systems and devices with the invasive ventilation of non-tight vented interface of free space nozzle characteristics
CA2773048C (en) 2009-09-03 2017-01-03 Breathe Technologies, Inc. Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with a free space nozzle feature
JP5795590B2 (en) * 2009-11-03 2015-10-14 コーニンクレッカ フィリップス エヌ ヴェ System and method for monitoring respiration
US8469031B2 (en) 2009-12-01 2013-06-25 Covidien Lp Exhalation valve assembly with integrated filter
US8439037B2 (en) 2009-12-01 2013-05-14 Covidien Lp Exhalation valve assembly with integrated filter and flow sensor
US8439036B2 (en) 2009-12-01 2013-05-14 Covidien Lp Exhalation valve assembly with integral flow sensor
US8469030B2 (en) 2009-12-01 2013-06-25 Covidien Lp Exhalation valve assembly with selectable contagious/non-contagious latch
JP5814936B2 (en) 2009-12-29 2015-11-17 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. System for monitoring respiration of a subject and method of operating such a system
AU2010342760B2 (en) 2010-01-13 2016-01-07 Thomas Julius Borody A mask for use with a patient undergoing a sedated endoscopic procedure
US8171094B2 (en) 2010-01-19 2012-05-01 Event Medical, Inc. System and method for communicating over a network with a medical device
USD655405S1 (en) 2010-04-27 2012-03-06 Nellcor Puritan Bennett Llc Filter and valve body for an exhalation module
USD653749S1 (en) 2010-04-27 2012-02-07 Nellcor Puritan Bennett Llc Exhalation module filter body
USD655809S1 (en) 2010-04-27 2012-03-13 Nellcor Puritan Bennett Llc Valve body with integral flow meter for an exhalation module
US8905019B2 (en) * 2010-05-11 2014-12-09 Carefusion 207, Inc. Patient circuit integrity alarm using exhaled CO2
US8695591B2 (en) 2010-05-26 2014-04-15 Lloyd Verner Olson Apparatus and method of monitoring and responding to respiratory depression
EP2605836A4 (en) 2010-08-16 2016-06-01 Breathe Technologies Inc Methods, systems and devices using lox to provide ventilatory support
US8616207B2 (en) 2010-09-07 2013-12-31 Inova Labs, Inc. Oxygen concentrator heat management system and method
US8603228B2 (en) 2010-09-07 2013-12-10 Inova Labs, Inc. Power management systems and methods for use in an oxygen concentrator
US8638364B2 (en) 2010-09-23 2014-01-28 Sony Computer Entertainment Inc. User interface system and method using thermal imaging
US8786698B2 (en) * 2010-09-23 2014-07-22 Sony Computer Entertainment Inc. Blow tracking user interface system and method
CN103124575B (en) 2010-09-30 2015-12-16 呼吸科技公司 For the mthods, systems and devices of moistening respiratory tract
US8567400B2 (en) 2010-10-05 2013-10-29 Carefusion 207, Inc. Non-invasive breathing assistance device with flow director
US8607794B2 (en) 2010-10-05 2013-12-17 Carefusion 207, Inc. Non-invasive breathing assistance apparatus and method
EP3556416B1 (en) * 2010-10-18 2023-11-29 Fisher & Paykel Healthcare Limited A nasal cannula, conduit and securement system
DE102010054397A1 (en) * 2010-12-08 2012-06-14 Aerocrine Ab Method and apparatus for gas sampling
JP2014505532A (en) * 2010-12-31 2014-03-06 オーツーオーオーエル,エルエルシー Nasal cannula positioning device
WO2012095813A1 (en) * 2011-01-13 2012-07-19 UNIVERSITé LAVAL Method and system for the delivery of carbon dioxide to a patient
CA2825128A1 (en) * 2011-03-24 2012-09-27 Oskar Franberg Gas dosing device
US9629971B2 (en) 2011-04-29 2017-04-25 Covidien Lp Methods and systems for exhalation control and trajectory optimization
US9092559B2 (en) 2011-08-16 2015-07-28 Ethicon Endo-Surgery, Inc. Drug delivery system with open architectural framework
US9138169B2 (en) 2011-09-07 2015-09-22 Monitor Mask Inc. Oxygen facemask with capnography monitoring ports
MX2014003317A (en) * 2011-09-22 2014-04-25 Koninkl Philips Nv Supplemental gas delivery and monitoring system.
US20130092165A1 (en) * 2011-09-26 2013-04-18 Anthony David Wondka Nasal Ventilation Cannula System and Methods
EP2747818B1 (en) * 2011-10-19 2016-09-14 Koninklijke Philips N.V. Detecting mouth-breathing in early phase expiration
US9089657B2 (en) 2011-10-31 2015-07-28 Covidien Lp Methods and systems for gating user initiated increases in oxygen concentration during ventilation
US9364624B2 (en) 2011-12-07 2016-06-14 Covidien Lp Methods and systems for adaptive base flow
US9498589B2 (en) 2011-12-31 2016-11-22 Covidien Lp Methods and systems for adaptive base flow and leak compensation
BR112014019360A8 (en) * 2012-02-09 2017-07-11 Koninklijke Philips Nv GAS SAMPLING DEVICE, GAS SAMPLING SET, AND METHOD FOR GAS ANALYSIS
US9180271B2 (en) 2012-03-05 2015-11-10 Hill-Rom Services Pte. Ltd. Respiratory therapy device having standard and oscillatory PEP with nebulizer
US8844526B2 (en) 2012-03-30 2014-09-30 Covidien Lp Methods and systems for triggering with unknown base flow
US9144658B2 (en) 2012-04-30 2015-09-29 Covidien Lp Minimizing imposed expiratory resistance of mechanical ventilator by optimizing exhalation valve control
FR2992223B1 (en) 2012-06-21 2015-05-01 Deltamedics OROPHARY NERVE CANNULA COMPRISING A DIOXYGEN ARRIVAL AND A CARBON DIOXIDE EXTRACTION
AU2013328916A1 (en) 2012-10-12 2015-05-14 Inova Labs, Inc. Oxygen concentrator systems and methods
WO2014059405A1 (en) 2012-10-12 2014-04-17 Inova Labs, Inc. Method and systems for the delivery of oxygen enriched gas
WO2014059408A1 (en) 2012-10-12 2014-04-17 Inova Labs, Inc. Dual oxygen concentrator systems and methods
US9375542B2 (en) 2012-11-08 2016-06-28 Covidien Lp Systems and methods for monitoring, managing, and/or preventing fatigue during ventilation
KR102223425B1 (en) 2012-12-04 2021-03-08 말린크로트 하스피탈 프로덕츠 아이피 리미티드 Cannula for minimizing dilution of dosing during nitric oxide delivery
US9795756B2 (en) 2012-12-04 2017-10-24 Mallinckrodt Hospital Products IP Limited Cannula for minimizing dilution of dosing during nitric oxide delivery
WO2014110181A1 (en) * 2013-01-08 2014-07-17 Capnia, Inc. Breath selection for analysis
EP2953538B1 (en) 2013-02-11 2018-10-17 Monitor Mask Inc. Oxygen face mask and component system
USD731049S1 (en) 2013-03-05 2015-06-02 Covidien Lp EVQ housing of an exhalation module
USD731048S1 (en) 2013-03-08 2015-06-02 Covidien Lp EVQ diaphragm of an exhalation module
USD693001S1 (en) 2013-03-08 2013-11-05 Covidien Lp Neonate expiratory filter assembly of an exhalation module
USD744095S1 (en) 2013-03-08 2015-11-24 Covidien Lp Exhalation module EVQ internal flow sensor
USD701601S1 (en) 2013-03-08 2014-03-25 Covidien Lp Condensate vial of an exhalation module
USD692556S1 (en) 2013-03-08 2013-10-29 Covidien Lp Expiratory filter body of an exhalation module
USD736905S1 (en) 2013-03-08 2015-08-18 Covidien Lp Exhalation module EVQ housing
USD731065S1 (en) 2013-03-08 2015-06-02 Covidien Lp EVQ pressure sensor filter of an exhalation module
US9981096B2 (en) 2013-03-13 2018-05-29 Covidien Lp Methods and systems for triggering with unknown inspiratory flow
CA2903966C (en) 2013-03-15 2023-04-25 Fisher & Paykel Healthcare Limited Nasal cannula assemblies and related parts
FR3003176B1 (en) 2013-03-15 2015-03-13 Deltamedics NASOPHARYNGEE CANNULA FOR SECONDARY FLOW CAPNOGRAPHY
US9950135B2 (en) 2013-03-15 2018-04-24 Covidien Lp Maintaining an exhalation valve sensor assembly
DE102013206111A1 (en) 2013-04-08 2014-10-09 Robert Bosch Gmbh Device for combined respiratory gas analysis and pulmonary function testing
US9566407B2 (en) * 2013-06-28 2017-02-14 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Nasal cannula assembly with flow control passage communicating with a deformable reservoir
US9522247B2 (en) * 2013-06-28 2016-12-20 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method of treating a patient having pulmonary hypertension by long term NO therapy
US9492626B2 (en) * 2013-06-28 2016-11-15 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Breathing assistance assemblies suitable for long term no therapy
US9486600B2 (en) * 2013-06-28 2016-11-08 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Nasal cannula assembly with inhalation valves communicating with a deformable reservoir
US9517318B2 (en) * 2013-06-28 2016-12-13 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method of delivering medical gases via a nasal cannula assembly with flow control passage communicating with a deformable reservoir
US9522248B2 (en) * 2013-06-28 2016-12-20 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Breathing assistance apparatus for delivery of nitric oxide to a patient by means of a nasal cannula assembly with flow control passage
WO2015020540A1 (en) 2013-08-09 2015-02-12 Fisher & Paykel Healthcare Limited Asymmetrical nasal delivery elements and fittings for nasal interfaces
DE202013103647U1 (en) 2013-08-12 2013-09-02 Aspect Imaging Ltd. A system for online measurement and control of O2 fraction, CO fraction and CO2 fraction
USD753816S1 (en) 2013-12-12 2016-04-12 Monitor Mask Inc. Oxygen face mask with capnography monitoring ports
EP4241662A1 (en) 2014-02-11 2023-09-13 Cyberonics, Inc. Systems for detecting and treating obstructive sleep apnea
US9440179B2 (en) 2014-02-14 2016-09-13 InovaLabs, LLC Oxygen concentrator pump systems and methods
US10610653B2 (en) * 2014-04-11 2020-04-07 Fisher & Paykel Healthcare Limited Gas therapy system providing positive and negative gas flows
US11413416B2 (en) 2014-07-23 2022-08-16 Diana B. Thomas Endopharyngeal airway positive pressure ventilation device
US9808591B2 (en) 2014-08-15 2017-11-07 Covidien Lp Methods and systems for breath delivery synchronization
US20200188617A1 (en) * 2014-10-03 2020-06-18 Auckland University Of Technology Method and apparatus for the controlled delivery of gases
US9950129B2 (en) 2014-10-27 2018-04-24 Covidien Lp Ventilation triggering using change-point detection
US10159815B2 (en) 2014-12-12 2018-12-25 Dynasthetics, Llc System and method for detection of oxygen delivery failure
US10143820B2 (en) 2014-12-12 2018-12-04 Dynasthetics, Llc System and method for delivery of variable oxygen flow
JP6574484B2 (en) * 2014-12-30 2019-09-11 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Capnometry system with auxiliary oxygen detection and method of operation thereof
US10596345B2 (en) 2014-12-31 2020-03-24 Vapotherm, Inc. Systems and methods for humidity control
US9925346B2 (en) 2015-01-20 2018-03-27 Covidien Lp Systems and methods for ventilation with unknown exhalation flow
FR3033704A1 (en) 2015-03-20 2016-09-23 Deltamedics IMPROVED ORO- OR NASO-PHARYNGEAL CANNULA
US10398871B2 (en) 2015-03-31 2019-09-03 Vapotherm, Inc. Systems and methods for patient-proximate vapor transfer for respiratory therapy
CN114028666A (en) * 2015-03-31 2022-02-11 费雪派克医疗保健有限公司 User interface and system for supplying gas to an airway
CN107735135B (en) 2015-04-02 2020-06-26 希尔-罗姆服务私人有限公司 Manifold for a respiratory device
USD775345S1 (en) 2015-04-10 2016-12-27 Covidien Lp Ventilator console
WO2016201358A1 (en) 2015-06-11 2016-12-15 Revolutionary Medical Devices, Inc. Ventilation mask
CN107029332A (en) * 2015-07-22 2017-08-11 卢永英 A kind of internal medicine oxygen face mask
AU2017257443A1 (en) * 2016-04-29 2018-11-22 Fisher & Paykel Healthcare Limited System for determining airway patency
WO2017192660A1 (en) 2016-05-03 2017-11-09 Inova Labs, Inc. Method and systems for the delivery of oxygen enriched gas
CN105944212A (en) * 2016-05-18 2016-09-21 湖南明康中锦医疗科技发展有限公司 Noise-reducing mask of respirator and respirator provided with noise-reducing mask
CN106037745A (en) * 2016-07-08 2016-10-26 宋颖霞 Respiration detecting device for medical nursing and diagnosis
WO2018048883A1 (en) 2016-09-06 2018-03-15 H. Lee Moffitt Cancer Center & Research Institute, Inc. Anesthesia gas delivery and monitoring system
USD870269S1 (en) 2016-09-14 2019-12-17 Fisher & Paykel Healthcare Limited Nasal cannula assembly
WO2018052673A1 (en) * 2016-09-14 2018-03-22 Revolutionary Medical Devices, Inc. Ventilation mask
CN211383329U (en) 2016-10-14 2020-09-01 蒸汽热能公司 System for delivering respiratory gases
CN106860988B (en) * 2017-03-09 2023-05-26 南昌大学第二附属医院 Intelligent regulation and control artificial nose safety airbag control system
CN108685575B (en) * 2017-04-10 2023-06-02 中国人民解放军总医院 Respiratory system function test method and device
CN107096104A (en) * 2017-06-08 2017-08-29 湖南明康中锦医疗科技发展有限公司 A kind of Oxygen therapy apparatus and its nasal tube road
SE542712C2 (en) * 2017-08-10 2020-06-30 Dr No Invest As Medical tube fixation arrangement
EP3672670B1 (en) * 2017-08-22 2021-10-06 Koninklijke Philips N.V. Breathing mask and mask control method
US10792449B2 (en) 2017-10-03 2020-10-06 Breathe Technologies, Inc. Patient interface with integrated jet pump
ES2927580T3 (en) * 2018-02-20 2022-11-08 Univ Minnesota Mask and breath sampling system
US11859750B2 (en) 2018-03-16 2024-01-02 Dirtt Environmental Solutions Ltd. Med-gas panel connectors for reconfigurable walls
CN108744213A (en) * 2018-03-31 2018-11-06 湖南明康中锦医疗科技发展有限公司 Breathing mask and its application
USD885556S1 (en) 2018-04-13 2020-05-26 Fisher & Paykel Healthcare Limited Tip, tube and clip assembly for a gas sampling apparatus
US11191915B2 (en) 2018-05-13 2021-12-07 Ventec Life Systems, Inc. Portable medical ventilator system using portable oxygen concentrators
CN108888233A (en) * 2018-08-17 2018-11-27 广州维力医疗器械股份有限公司 It is a kind of monitoring end-expiratory carbon dioxide and can oxygen supply oral scope be difficult to articulate
CN109276788A (en) * 2018-08-24 2019-01-29 广州康智件科技有限公司 A kind of respiratory rate acquisition method and its device for oxygen uptake monitoring
CN110327525B (en) * 2019-05-27 2021-06-08 西昌市人民医院 Nasal obstruction catheter fixing device matched with CPAP (continuous positive airway pressure) breathing machine for neonates
US11324954B2 (en) 2019-06-28 2022-05-10 Covidien Lp Achieving smooth breathing by modified bilateral phrenic nerve pacing
CN110665134B (en) * 2019-09-02 2021-01-12 余继跃 Ear-wearing waist-hanging body-building aerator
CN111330130A (en) * 2020-03-04 2020-06-26 深圳市量子氢生物技术有限公司 Cavity-divided type nasal suction tube
US11896767B2 (en) 2020-03-20 2024-02-13 Covidien Lp Model-driven system integration in medical ventilators
US11878120B2 (en) * 2020-08-11 2024-01-23 3B Medical, Inc. Control system for portable oxygen concentrator
DE102020121871A1 (en) * 2020-08-20 2022-02-24 Drägerwerk AG & Co. KGaA High flow oxygen therapy ventilator
WO2022183099A1 (en) * 2021-02-26 2022-09-01 Pneuma Therapeutics, Inc. Oral end tidal collection apparatus and method
CN113018627A (en) * 2021-03-08 2021-06-25 南昌大学第一附属医院 Nasal oxygen inhalation catheter connector capable of being connected with anesthesia machine
CN113606763A (en) * 2021-07-09 2021-11-05 武汉天富海科技发展有限公司 Intelligent dispersed oxygen supply control terminal
CN114403851B (en) * 2022-03-09 2023-09-08 山东省千佛山医院 Converter for monitoring end-tidal carbon dioxide and application method thereof

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4151843A (en) 1976-06-28 1979-05-01 Brekke John H Apparatus for administration of a gas to a human and the exhausting thereof
SE402569B (en) 1976-11-09 1978-07-10 Aga Ab DEVICE FOR A DIVERSE DEVICE FOR DIVERS
US4263908A (en) * 1979-07-25 1981-04-28 Mizerak Vladimir S Nasal cannula mask
US4550726A (en) 1982-07-15 1985-11-05 Mcewen James A Method and apparatus for detection of breathing gas interruptions
US4602644A (en) * 1982-08-18 1986-07-29 Plasmedics, Inc. Physiological detector and monitor
US4618099A (en) 1984-07-13 1986-10-21 Kyushu Hitachi Maxell, Ltd. Electric spray
US4612928A (en) 1984-08-28 1986-09-23 Tiep Brian L Method and apparatus for supplying a gas to a body
US4686975A (en) 1985-05-03 1987-08-18 Applied Membrane Technology, Inc. Electronic respirable gas delivery device
JPS6294175A (en) 1985-10-18 1987-04-30 鳥取大学長 Respiration synchronous type gas blowing apparatus and method
JPH0622135Y2 (en) 1986-01-13 1994-06-08 石川ガスケット株式会社 Metal stack type manifold gasket
US5050614A (en) 1986-08-06 1991-09-24 Spacelabs, Inc. Apparatus and method for inspiration detection
US5099836A (en) 1987-10-05 1992-03-31 Hudson Respiratory Care Inc. Intermittent oxygen delivery system and cannula
US4924876A (en) 1987-11-04 1990-05-15 Peter Cameron Nasal breath monitor
US5003985A (en) 1987-12-18 1991-04-02 Nippon Colin Co., Ltd. End tidal respiratory monitor
US4858476A (en) * 1988-01-25 1989-08-22 The United States Of America As Represented By The United States Department Of Energy Breathing zone air sampler
US5074299A (en) 1988-05-02 1991-12-24 Dietz Henry G Monitor for controlling the flow of gases for breathing during inhalation
FI82803C (en) 1988-09-02 1991-04-25 Instrumentarium Oy A method for determining the content of a gas component in a patient's breathing air
GB8824865D0 (en) 1988-10-24 1988-11-30 Antec Systems Gas sampling device & water trap
US5005571A (en) * 1988-11-25 1991-04-09 Dietz Henry G Mouth nose mask for use with an inhalation therapy and/or breathing monitoring apparatus
US5632269A (en) * 1989-09-22 1997-05-27 Respironics Inc. Breathing gas delivery method and apparatus
US5046491A (en) 1990-03-27 1991-09-10 Derrick Steven J Apparatus and method for respired gas collection and analysis
DE69131836T2 (en) * 1990-09-19 2000-07-27 Univ Melbourne Parkville CONTROL CIRCUIT FOR MONITORING THE ARTERIAL CO 2 CONTENT
US5365922A (en) 1991-03-19 1994-11-22 Brigham And Women's Hospital, Inc. Closed-loop non-invasive oxygen saturation control system
DE4111965C2 (en) 1991-04-12 2000-03-23 Draegerwerk Ag Method for calibrating a flow sensor in a breathing system
US5099834A (en) * 1991-07-16 1992-03-31 Union Carbide Industrial Gases Technology Corporation Method for anesthesia
US5490502A (en) * 1992-05-07 1996-02-13 New York University Method and apparatus for optimizing the continuous positive airway pressure for treating obstructive sleep apnea
CA2096302A1 (en) 1992-05-15 1993-11-16 David Kilis Air flow controller and recording system
US5400781A (en) * 1993-08-03 1995-03-28 Davenport; Richard A. CO2 gas sampling mask having a bevelled sampling tube extending into the mask
US5485850A (en) 1993-08-13 1996-01-23 Dietz; Henry G. Monitor of low pressure intervals with control capabilities
US5474060A (en) 1993-08-23 1995-12-12 Evans; David Face mask with gas sampling port
US5433195A (en) * 1993-09-30 1995-07-18 Sherwood Medical Company Respiratory support system
US5386833A (en) 1993-12-23 1995-02-07 Biochem International, Inc. Method for calibrating a carbon dioxide monitor
US5509414A (en) * 1994-09-27 1996-04-23 Hok Instrument Ab Apparatus and method for non-contacting detection of respiration
FI96579C (en) * 1994-11-14 1996-07-25 Instrumentarium Oy Method to prevent the formation of dangerous vacuum in the respiratory system
US5800361A (en) 1995-02-06 1998-09-01 Ntc Technology Inc. Non-invasive estimation of arterial blood gases
US5626131A (en) * 1995-06-07 1997-05-06 Salter Labs Method for intermittent gas-insufflation
US5735268A (en) * 1995-06-07 1998-04-07 Salter Labs Intermitten gas-insufflation apparatus and method therefor
AUPN344195A0 (en) * 1995-06-08 1995-07-06 Rescare Limited Monitoring of oro-nasal respiration
AUPN474195A0 (en) 1995-08-09 1995-08-31 Rescare Limited Apparatus and methods for oro-nasal respiration monitoring
US5694923A (en) * 1996-08-30 1997-12-09 Respironics, Inc. Pressure control in a blower-based ventilator
US5865174A (en) 1996-10-29 1999-02-02 The Scott Fetzer Company Supplemental oxygen delivery apparatus and method
US6439234B1 (en) * 1998-04-03 2002-08-27 Salter Labs Nasal cannula
US6532958B1 (en) * 1997-07-25 2003-03-18 Minnesota Innovative Technologies & Instruments Corporation Automated control and conservation of supplemental respiratory oxygen
US6371114B1 (en) * 1998-07-24 2002-04-16 Minnesota Innovative Technologies & Instruments Corporation Control device for supplying supplemental respiratory oxygen
AU8592898A (en) 1997-07-25 1999-02-16 Minnesota Innovative Technologies & Instruments Corporation (Miti) Control device for supplying supplemental respiratory oxygen
SE9703290D0 (en) * 1997-09-11 1997-09-11 Siemens Elema Ab ventilator
SE9703291L (en) 1997-09-11 1998-10-05 Siemens Elema Ab inspiration Hose
US5937858A (en) * 1997-12-05 1999-08-17 Connell; Donald G. Oro/nasopharyngeal airway for administering/sampling inhalent/expired gases
IL123122A0 (en) * 1998-01-29 1998-09-24 Oridion Medical Ltd Oral/nasal cannula
US6017315A (en) 1998-02-25 2000-01-25 Respironics, Inc. Patient monitor and method of using same
JP4080591B2 (en) 1998-04-24 2008-04-23 株式会社群馬コイケ Respiratory oxygen supply device
US6192884B1 (en) 1998-05-22 2001-02-27 Duke University Method and apparatus for supplemental oxygen delivery
US6213955B1 (en) * 1998-10-08 2001-04-10 Sleep Solutions, Inc. Apparatus and method for breath monitoring
US6467477B1 (en) * 1999-03-26 2002-10-22 Respironics, Inc. Breath-based control of a therapeutic treatment
US6401713B1 (en) * 1999-05-05 2002-06-11 Respironics, Inc. Apparatus and method of providing continuous positive airway pressure
US6247470B1 (en) * 1999-07-07 2001-06-19 Armen G. Ketchedjian Oxygen delivery, oxygen detection, carbon dioxide monitoring (ODODAC) apparatus and method
US6379312B2 (en) * 1999-12-28 2002-04-30 O'toole James End tidal carbon dioxide sampling device
US6938619B1 (en) * 2000-06-13 2005-09-06 Scott Laboratories, Inc. Mask free delivery of oxygen and ventilatory monitoring

Also Published As

Publication number Publication date
AU2001268349B2 (en) 2005-11-17
US20020017300A1 (en) 2002-02-14
AU6834901A (en) 2001-12-24
CN1455690A (en) 2003-11-12
JP2004506457A (en) 2004-03-04
US6938619B1 (en) 2005-09-06
CN100361716C (en) 2008-01-16
WO2001095971A2 (en) 2001-12-20
CA2412485A1 (en) 2001-12-20
US7997271B2 (en) 2011-08-16
US7152604B2 (en) 2006-12-26
US20070095347A1 (en) 2007-05-03
WO2001095971A3 (en) 2003-08-28
JP3842212B2 (en) 2006-11-08
MXPA02012452A (en) 2004-01-26
EP1359960A2 (en) 2003-11-12

Similar Documents

Publication Publication Date Title
CA2412485C (en) Method and apparatus for mask free delivery of an inspired gas mixture and gas sampling
AU2001268349A1 (en) Apparatus and method for mask free delivery of an inspired gas mixture and gas sampling
US20230256185A1 (en) Oxygen masks
US11679218B2 (en) Oxygen masks
JP5318752B2 (en) Method and apparatus for controlling respiration
US7305988B2 (en) Integrated ventilator nasal trigger and gas monitoring system
CA2609856C (en) Apparatus and method for controlling fraction of inspired oxygen
EP0364567B1 (en) Method and apparatus for inhalation of treating gas and sampling of exhaled gas for quantitative analysis
US20030127094A1 (en) Apparatus for delivering inhalant and monitoring exhaled fluid, method of making same, and method of delivering inhalant and monitoring exhaled fluid
US20030075178A1 (en) Continuous gas leakage for elimination of ventilator dead space
JP2023515627A (en) Improvements related to gas flow delivery
AU2002348458A1 (en) Continuous gas leakage for elimination of ventilator dead space

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20140613