CA2422009C - Flexible heart valve having moveable commissures - Google Patents

Flexible heart valve having moveable commissures Download PDF

Info

Publication number
CA2422009C
CA2422009C CA002422009A CA2422009A CA2422009C CA 2422009 C CA2422009 C CA 2422009C CA 002422009 A CA002422009 A CA 002422009A CA 2422009 A CA2422009 A CA 2422009A CA 2422009 C CA2422009 C CA 2422009C
Authority
CA
Canada
Prior art keywords
valve
cusp
heart valve
support structure
commissure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002422009A
Other languages
French (fr)
Other versions
CA2422009A1 (en
Inventor
Dongbu Cao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Edwards Lifesciences Corp
Original Assignee
Edwards Lifesciences Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Edwards Lifesciences Corp filed Critical Edwards Lifesciences Corp
Publication of CA2422009A1 publication Critical patent/CA2422009A1/en
Application granted granted Critical
Publication of CA2422009C publication Critical patent/CA2422009C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2409Support rings therefor, e.g. for connecting valves to tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0075Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements sutured, ligatured or stitched, retained or tied with a rope, string, thread, wire or cable

Abstract

A flexible prosthetic tissue-type heart valve having commissures that are substantially decoupled from a cusp support structure. The valve includes three leaflets having arcuate cusp edges and opposed free edges, with outwardly-directed attachment tabs therebetween. A cusp support structure in either one or more pieces attaches to the leaflet cusp edges. Three commissures are each formed partly with an axially-extending insert member t o which two adjacent leaflet tabs attach. An inverted V-shaped clip maintains close contact between the adjacent leaflet tabs and provides a stress- relieving clamping action in conjunction with the insert member. The insert member attaches about its lower end to base sections of the cusp support structure, or to an intermediate sewing ring, so that the commissures may pivot about the cusp support structure. The sewing band is scalloped and enables attachment of the valve along the scalloped aortic root so as to couple the valve to the natural motion of the aorta. Increased vibrational damping results from this biomechanical coupling.

Description

FLEXIBLE HEART VALVE HAVING MOVEABLE COMMISSURES

Field of the Invention The present invention relates generally to medical devices and particularly to flexible tissue-type heart valve prostlzeses designed to attach along the valve annulus and adjacent anatomical wall structure.

Background of the Invention Prosthetic heart valves are used to replace damaged or diseased heart valves. In vertebrate animals, the heart is a hollow muscular organhaving four pumping chambers: the left and right atria and the left and right ventricles, each provided with its own one-way valve. The natural heart valves are identified as the aortic, mitral (or bicuspid), tricuspid and pulmonary valves. Prosthetic lEart valves can be used to replace any of these naturally occurring valves, although repair or replacement of the aortic or mitral valves is most common because they reside in the left side of the heart where pressures are the greatest.

Where replacement of a heart valve is indicated, the dysfunctional valve is typically cut out and replaced with either a mechanical valve, or a tissue valve.
Tissue valves are often preferred over mechanical valves because they typically do not require long-term treatment with anticoagulants. The most common tissue valves are constructed with whole porcine (pig) valves, or with separate leaflets cut from bovine (cow) pericardium. Although so-called stentless valves, comprising a section of porcine aorta along with the valve, are available, the most widely used valves include some form of stent or synthetic leaflet support. Typically, a wireform having alternating arcuate cusps and upstanding commissures supports the leaflets within the valve, in combination with an annular stent and a sewing ring. The alternating cusps and commissures mimic the natural contour of leaflet attachment. Importantly, the wireform provides continuous support for each leaflet along the cusp region so as to better simulate the natural support stracture.
However, the tissue material tends to calcify after the long term implantation. That is, calcium compound accumulates in the tissue leaflets, eventually making them stiff. The tissue leaflet area along the wireform is especially susceptible to the calcification because of the high bending stresses imposed at that interface.
Many prior art stented valves are relatively rigid, typically containing an annular metal or plastic stent ring that provides internal support for an outer sewing ring and the wireform-mounted valve cusps and commissures. This design also provides a basic structure to facilitate valve assembly, which is hand made by highly skilled workers. Although this type of valve has been proven effective, some researchers assert that it excessively occludes the natural orifice area, and thus reduces potential blood flow therethrough. Although stentless valves generally provide greater orifice area, they do not have the advantage of the reliable leaflet support structure of stented valves. Moreover, a stentless valve is more difficult to make, and the implantation of such a device requires much more skill and experience of the cardiac surgeon. Only a few heart centers in the United States are able to perfomi such a procedure and thus the use of stentless valves is restricted.

More flexible stented valves have been proposed, including U.S. Patent No.
5,549,665 to Vesely, et al. In the Vesely patent, the valve stent commissures may attach to the ascending aorta and may pivot outward for the purpose of reducing localized stresses in the leaflets. The stent commissures are prevented by stops from inward pivoting to ensure proper valve f-unctioning. However, the stent structure appears to be relatively complex, with numerous interior surfaces, thus raising concerns of thromboeinbolisms and even component failure.
In view of the foregoing, it is evident that an improved flexible valve that addresses the apparent deficiencies in existing heart valves is necessary and desired. In particular, there is a need for a bioprosthetic valve that provides a large orifice opening and has a dimensionally stable stent to facilitate the valve assembly and implantation.
Summary of the Invention This invention details a partially stented valve design. The stent is to be completed by the natural aortic root when the valve is implanted. The final valve conforms to the movement of the natural aortic root and therefore provides a larger orifice area like a stentless valve. The valve, however, includes a stent Etructure that will facilitate the valve assembly and implantation procedures. The movement of the stent structure and leaflet shape also helps to reduce stress concentration in the valve leaflet.
In one embodiment, the present invention provides a heart valve for implantation in an annulus of a heart having commissures on an outflow end adapted to move in conformity with an anatomical wall structure adjacent the annulus. The heart valve comprises three leaflets made of a biocoinpatible and compliant material, each leaflet having a rounded cusp edge opposite a free edge, and a pair of generally oppositely-directed tabs separating the cusp edge and free edge. A cusp support structure generally defines a ring and a valve axis and has three rounded sections each adapted to conform to the cusp edge of the leaflets.
The cusp edge of each leaflet is attached to a different rounded section of the cusp support structure so that the three leaflets are arranged generally evenly about the valve axis, the attached leaflet cusp edges and rounded sections together defining valve cusps curving toward an inflow end of the valve. Three valve commissure posts disposed between the valve cusps project generally axially toward an outflow end of the valve. The commissure posts are defined by two adjacent leaflet tabs, a generally axially extending insert member, and an inverted V-shaped clip positioned radially inward from the insert member. The adjacent leaflet tabs are juxtaposed to extend radially outward with respect to the axis through the inverted V-shaped clip and are wrapped around and secured to the insert member, an inflow end of each commissure post is generally pivotally coupled with respect to the cusp support structure so as to permit both radially inward and outwaid movement thereof, the valve commissure posts being attachable to the anatomical wall structure.
Finally, a sewing band shaped to follow the valve cusps and being attached therealong provides a platform for implanting the heart valve such that the valve cusps are attachable adjacent the annulus or in the supraannular position (i.e., just above the annulus).
In another aspect of the invention, an aortic heart valve adapted to have reduced vibration related strain is provided, comprising three leaflets each having arcuate cusp edges on their inflow ends, free edges on the outflow ends, and two side tabs. Three cusp supports each attach to the cusp edge of one of the leaflets to define valve cusps, the cusps being disposed generally in a circle about a valve axis at an inflow end of the valve. Three generally axially extending commissure posts are disposed in between the valve cusps around the circle and extend toward an outflow end of the valve. The commissure posts are defined by an insert (e.g. a relatively rigid insert) and adjacent tabs of two leaflets attached thereto. The inserts are structurally separate from the three cusp supports but coupled thereto at an end closest to the cusp supports to enable radial pivoting of the outflow end of the commissure posts relative to the cusp supports. Finally, a sewing band shaped to follow the valve cusps and attached therealong is provided. The sewing band and inserts providing a platform for implanting the aortic heart valve such that the valve cusps are attachable adjacent the annulus, and the inserts are attachable to the ascending aorta.
In this manner, the commissure posts are freely moveable with respect to the valve cusps so as to generally pivot radially in and out in conjunction with movement of the ascending aorta during the repetitive cycles of systole and diastole such that the heart valve is dynamically coupled to the damping characteristics of the ascending aorta.
In a further aspect of the invention, a tissue-type heart valve adapted to have reduced stress risers in the leaflets, comprises three leaflets each having arcuate cusp edges on their inflow ends, free edges on the outflow ends, and two side tabs, the free edges extending between the side tabs in a concave fashion. The valve may include commissure posts to which adjacent leaflet tabs attach, each post.

including an insert around which the leaflet tabs wrap. The valve further may include a cusp support structure attached to the cusps of each leaflet, wherein the insert is pivotally coupled to the cusp support structure. Desirably, asewing band for attachment to a valve annulus that surrounds the cusp support structure and is 5 truncated in the region of the inserts to permit direct attaclunent of the commissure posts to an anatomical wall structure adjacent the annulus. Each leaflet free edge further may include a region that is above a line extending between the middle of the free edge and the side tabs so that the region is not placed in direct tension during closure of the valve. The region is preferably generally triangular and culminates in an apex, and a concave filet may exist between the apex and the side tab.
A further understanding of the nature advantages of the invention will become apparent by reference to the remaining portions of the specification and drawings.

Brief Description of the Drawings Figure 1 is an assembled perspective view of the flexible heart valve of the present invention;
Figure 2 is an exploded perspective view of the heart valve of Figure 1;
Figure 2A is a sectional view through a cusp support structure of the heart valve of Figure 1, taken through line 2A-2A of Figure 2;
Figure 3 is a perspective view of components of the three commissures of the heart valve of Figure 1 positioned witli respect to the cusp support structure shown in phantom;

Figure 4A is an elevational view of an inverted V-shaped clip forming a portion of each of the valve commissures;

Figure 4B is a perspective view of the inverted V-shaped clip of Figure 4A
showing a fabric-covering thereon;
Figures 5A and 5B are front and side elevational views, respectively, of an insert member that forms another portion of each of the valve commissures;
Figure 6 is a vertical sectional view through a valve cusp taken along line 6=
6 of Figure 1;

Figure 7 is a vertical sectional view through a valve commissure taken along line 7-7 of Figure 1;

Figure 8 is a horizontal sectional view through a valve commissure taken along line 8-8 of Figure 1;

Figure 9 is a perspective view of an alternative three-piece cusp support structure for the flexible valve of the present invention, also showing the lo positioning of valve commissure components;
Figure 10 is an elevational view of the alternative cusp support structure and valve commissure components of Figure 9, further illustrating a sewing band in phantom;

Figure 11 is a top plan view of the alternative three-piece cusp support structure of Figure 9;
Figure 12 is a plan view of a valve leaflet of the prior art;
Figure 13A is a plan view of a first embodiment of a valve leaflet for use in the flexible valve of the present invention;

Figure 13B is a plan view of a second embodiment of a valve leaflet for use in the flexible valve of the present invention;

Figure 14 is a perspective view of a cusp support structure as seen in Figure 2, and alternative commissure components for use in a flexible valve of the present invention;
Figure 15 is an elevational view of the assembly of Figure 14, fizrther illustrating a sewing band in phantom; and Figures 16A and 16B are front and side elevational views, respectively, of an insert member of the valve of Figure 14 coupled to a cusp support structure.
Description of the Preferred Embodiments The following detailed description, and the figures to which it refers, are provided for the purpose of describing examples and specific embodiments of the invention only and are not intended to exhaustively describe all possible examples and embodiments of the invention. Identical elements and features are given the same reference number as appropriate for purposes of describing the various embodiments of the present invention.

Referring now to Figures 1 and 2, a replacement tissue type heart valve 21 of the present invention for implantation in an annulus of a heart is constructed about a valve axis 25 that defines an outflow end 27 and an inflow end 29. The valve includes commissures 23 directed to the outflow end and adapted to move in conformity with an anatomical wall structure adjacent the annulus of the heart.
Although the valve 21 of the present invention is particularly suitable for implantation at the aortic valve position, it may also function adequately in other valve positions. The valve has three leaflets 31 made of a biocompatible conipliant material, each of which has a rounded cusp edge 33 opposite a free edge 35 and a pair of generally oppositely-directed tabs 37 separating the cusp edge and the free edge. The specific shapes of alternative embodiments of the leaflets 31 of the present invention are shown in Figures 13A and 13B, and will be described imnore detail below.

A valve cusp support structure 39 is provided, generally defining a ring comprised of three rounded sections 41 connected by commissure base sections 43.
The entire support structure 39, including the rounded sections 41 and base sections 43, is covered with a fabric sleeve 44. Each of the rounded sections conforms and attaches to a rounded cusp edge 33 of a leaflet via the fabric sleeve 44. As seen in the cross-section of Figure 2A, the fabric sleeve 44 exhibits a flap 47 formed by juxtaposed free ends of the fabric material to which the cusp edge 33 of each leaflet 31 attaches, such as with sutures (not shown). The cusp edge 33 of each leaflet 31 is attached to a different rounded section 41 of the cusp support structure 39 so that the three leaflets 31 are arranged generally evenly distributed 120 apart about the valve axis 25. The attached leaflet cusp edges 33 and rounded sections 41 together define valve cusps 45 concavely curved toward the inflow end 29 of the valve.

The three valve commissure posts 23 are disposed between the valve cusps 45 and project generally axially toward the outflow end 27 of the valve. The commissure posts 23 include a generally axially extending insert member 51 attached to two adjoining leaflet tabs 37, here shown sutured together at butt joint 49. Alternatively, as will be described below with respect to Figure 8, the leaflet tabs 3 7 may overlap and can be mutually attached via stitching through holes in the insert member 51. The leaflet free edges 35 coapt in the middle of the valve and the free edges of each two adjacent leaflets are juxtaposed so that the tabs extend radially outwardly from the valve axis 25 through an inverted V-shaped clip 53 positioned radially inward from the insert member 51. Each insert member 51 is sutured to the cover fabric of the commissure base section 43 so as to permit both radially inward and outward movement of the outflow end of the commissure posts. This generally pivoting attachment (shown by arrow 54 in Figure 7) may be accomplished in a number of ways, several of which are disclosed herein, and to some extent decouples the radial movement of the valve commissures 23 from its cusps 45.
A sewing band 55 shaped to follow the valve cusps 45 and to an extent the valve commissures 23 provides a platform for attaching the heart valve to vestigial heart tissue, such as the aortic annulus or aortic root tissue. As partially seen in Figure 1, the sewing band 55 is encompassed within a fabric cover 61 (shown partially cutaway). The valve cusps 45 are attachable adjacent the annulus with the valve commissures 23 attachable to the adjacent anatomical wall structure itself.
Consequently, when implanted, structural support for each valve commissure 23 is provided by the native aorta, through the V-shaped clip 53 and insert member 51.
In the preferred embodiment, the valve 21 is attached to the root tissue that comprised part of the native aortic heart valve. Attachment in this manner allows the replacement valve to more freely move and thus exhibit greater flexibility to match the blood flow capacity of the native aortic heart valve. Moreover, this biomechanical coupling provides natural tissue damping to help suppress excessive vibrations within the valve 21 during its rapid closing.

Referring to the exploded view of Figure 2, the component parts of the invention will be described in more detail. As mentioned, the three tissue leaflets 1o 31 have a tab section 37, a rounded cusp edge 33 and a free edge 35. The inscrt members 51 rest on the relatively rigid fabric-covered commissure base sections 43 (in this embodiment a rod-like element), and are attached thereto. For instance, sutures are passed through each insert member 51 and around the associated commissure base section to allow the insert member to move both radially inwardly and radially outwardly. This allows the finished commissure posts (Figures 7 and 8) to move both radially inwardly and radially outwardly. V-clips 53 and sewing band 55 are shown in their relative orientation in Figure 2 without connecting structure, to be described below.
Figure 3 shows the relative orientation of the V-shaped clip 53 (shown isolated in figures 4A and 4B), and the insert member 51 on the cusp support structure 39 (shown in phantom) when they are assembled. The cusp support structure 39 may be formed in a generally annular or ring like shape. The V-shaped clips 53, seen in Figures 4A and 4B, cinch the tissue leaflet free edges 35 to the commissure posts, as indicated in Figure 8. In a preferred embodiment, a shroud-like fabric cover 56 is provided around each V-shaped clip 53 to facilitate attaclunent to the adjacent valve components. Figures 5A and 5B show front and side views of the insert member 51 having a series of through holes 52.
Figure 6 is a sectional view taken along the 6-6 line of Figure 1, showing the attachment of the rounded cusp edge 33 of the tissue leaflet, the rounded section 41 of the cusp support structure 39 and the sewing band 55. The three pieces are sutured or otherwise attached together in this manner at least along the valve cusps 45 shown in Figure 1.
Figure 7 illustrates one embodiment of the attachment of the insert member 5 51 to the commissure base section 43 of the cusp support structure utilizing a suture 59 looped through holes 52 in the insert member and then around the base section. The insert 51 is thereby freely attached to the cominissure base section 43 to allow its outflow end to move radially inwardly and outwardly, as indicated by arrow 54. The sewing band 55 is not connected to the insert member 51 but instead 10 receives each commissure base section 43 in a groove portion 60. An outflow flange 62 stops short of the insert members 51 and the V-shaped clip 53. That is, the flange 62 of the sewing band 55 is axially truncated so as not to extend fully up each commissure 23. In this arrangement, the valve commissures 23 are exposed to the aortic wall so that they can be sutured directly thereto.
In an alternative embodiment, the commissure base sections 43 of the cusp support structure 39 are omitted to result in three separate cusp supports that attach to the sewing ring 55, such as seen in Figure 6. In such an alternative, each insert member 51 will rest directly on the sewing ring, and its inflow end may be sutured to the sewing ring.
Figures 7 and 8 illustrate the complete structure of the commissures 23 wherein adjacent leaflet tabs 37 wrapped around the insert member 51 and are sutured together on the radially outward side of the insert member. Fabric-covered V-shaped clip 53 is placed over adjoining leaflet tabs 37 and the fabric cover includes a shroud long enough to wrap around the insert member 51. After the V-shaped clip 53 is placed over the leaflets at the commissure 23, the shroud of the fabric cover 56 is pulled down to cover the outward side of the insert member and the leaflet tabs 37, and the free ends thereof are wrapped around the insert member 51 and sutured together (using sutures, not shown). Alsq the fabric cover 56 may be sutured to the insert member 51 and leaflet tabs 37 through the aligned holes at the insert member 51 for additional support, such as by using a stitch 57.
The V-shaped clips 53 are desirably formed of a flexible material thatflexes apart during an opening cycle of the valve wherein fluid flow through the valve causes the free edges 35 of adjacent leaflet tabs 37 to separate.
In this manner the leaflet tabs 37 are anchored to the commissures 23 by the clamping action between the insert 51 and the V-shaped clip 53. That is, each leaflet 31 experiences radially inward forces upon closing of the valve 21, which also tends to pull the insert member 51 inwardly. Because the fabric cover 56 attaches to the surrounding native aorta, and thus the V-shaped clip 53 is retained thereby, this radially inward movement of the insert member 51 clamps the leaflet tabs 37 between the insert member and the clip. This anchoring prevents the sutures, such as suture 57, from being directly stresRd and pulled apart through the leaflet material when the valve closes by blood flow during diastole. Further, this anchoring prevents any tissue stitches from being exposing to direct hemodynamic loading and thus prevent stress concentration.
Figures 9-11 show an alternative embodiment of the invention wlierein a cusp support structure 39' comprises three separate rounded sections 65 each respectively supporting the rounded cusp edge 33 of a leaflet. Adjacent rounded sections may be interconnected with separate connector sections 67 and intermediate V-shaped clips 53. The connector sections 67 may be made of a highly coinpliant material, for example a fabric, silicone or other elastomer to allow the rounded sections to move with respect to one another andmore flexibly accommodate static or dynamic distortions in the shape of the native heart tissue.
As before, insert 51 and V-shaped clips 53 are shown in the relative orientation as before to form the valve commissures to which the leaflet tabs (not shown) attach.
The tliree separate rounded sections 65 may be relatively rigid rod-like elements made of biocompatible metals or polymers. Alternatively, the rounded sections 65 may be made of apre-formed biocompatible fabric having a radially outward tab to which the cusp edge of a leaflet attaches. In the latter case, the rounded sections 65 are less rigid than a metal or polymer material, but provide sufficient stiffness to facilitate fabrication and implantation.

Figure 10 shows the use of the scalloped-shaped cusp support stracture of Figure 9 witli a corresponding scalloped shaped sewing band 55. As is known, this scalloped shape more readily accommodates use of the sewing band as a platform to suture the sewing band to aortic root tissue, which is likewise scalloped.
In this embodiment the sewing band is sutured directly to the valve annulus, with the commissure posts attached to the aortic wall to allow the leaflets to fluctuate radially inwardly and outwardly in a more natural mamier. The inserts 51 are desirably directly sutured to the sewing band 55, and thus there is no direct connection between the inserts 51 and the cusp support structure 39', and the valve commissures remain free to move inwardly and outwardly.
Figure 12 shows a leaflet of prior art tissue-type replacement heart valves.
The free edge 71 of prior art leaflets generally extends straight across between the opposed tabs 73.
For the present invention, the tissue leaflets should be configured as shown in either Figures 13A or 13B for reduced stress in the highly flexible valves.
Leaflet free edge 35 between the tabs 37 is concave with either one or more curvatures (i.e., simple or complex curves). The outline of the free edge 71 of a prior art leaflet is shown in phantom superimposed over the new leaflets. As can be seen, extra material 75 is provided at the leaflet tabs 37 to accommodate the additional stresses imposed upon the leaflets from the increased radially inward and outward movement of the valve commissures. That is, the leaflet tabs 37 are axially higher than the middle portions of the free edges. In the embodiment of Figures 13A, the leaflet tabs 37 continue outward a straight edge 77 from the concave free edge 35. In the embodiment of Figure 13B, a concave transition filet 79 is provided from an apex 81 of the free edge 35 to reduce the height of the tabs at the valve cominissures from that shown in Figure 13A. The triangular region near the apex 81 is not placed in direct tension from valve closure forces, and helps reduce stress concentrations in the integrally connected regions that are in direct tension.
Referring now to Figure 14, in an alternative embodiment, the lower end of each insert member 51' bifurcates to straddle the commissure base section 43.
The lower end of the insert member 51 thus straddles the base section 43 to facilitate radially inward and outward pivoting and reduces the tendency to slip off of the commissure base section. The bifurcation ends 83 seen in Figures 16A and 16B
are disposed on either side of the commissure base section 43 and are secured thereto using a suture 85.
Figure 14 shows the relative orientation of the three valve commissure posts, each including a V-shaped clip 53, an insert member 51' and the cusp support structure 39, when they are assembled. Figure 15 shows the embodiment of Figure 14 further including the sewing band 55 in phantom.

In the various valves of the present invention, structural support from the cusp supports is provided to facilitate fabrication and implantation. The commissures remain flexibly coupled to the rest of the valve to enable aortic wall mounting, and dynamic coupling with the natural tissue. A concave free edge of the leaflet, preferably with an apex region that is not placed in direct tension, further prevents stress risers in the leaflets, and contributes to durability.
While the foregoing is a complete description of the preferred embodiments of the invention, various alternatives, modifications, and equivalents may be used.
Moreover, it will be obvious that certain other modifications may be practiced within the scope of the appended claims.

Claims (36)

WHAT IS CLAIMED IS:
1. A heart valve for implantation in an annulus of a heart having commissures on an outflow end adapted to move in conformity with an anatomical wall structure adjacent the annulus, the heart valve comprising:
three leaflets made of a biocompatible and compliant material, each leaflet having a rounded cusp edge opposite a free edge, and a pair of generally oppositely-directed tabs separating the cusp edge and free edge;
a cusp support structure generally defining a ring and a valve axis and having three rounded sections each adapted to conform to the cusp edge of the leaflets, the cusp edge of each leaflet being attached to a different rounded section of the cusp support structure so that the three leaflets are arranged generally evenly about the valve axis, the attached leaflet cusp edges and rounded sections together defining valve cusps curving toward an inflow end of the valve;
three valve commissure posts disposed between the valve cusps and projecting generally axially toward an outflow end of the valve, the commissure posts being defined by two adjacent leaflet tabs, a generally axially extending insert member, and an inverted V-shaped clip positioned radially inward from the insert member, the adjacent leaflet tabs being juxtaposed to extend radially outward with respect to the axis through the inverted V-shaped clip and being wrapped around and secured to the insert member, an inflow end of each commissure post being generally pivotally coupled with respect to the cusp support structure so as to permit both radially inward and outward movement thereof, the valve commissure posts being attachable to the anatomical wall structure; and a sewing band shaped to follow the valve cusps and being attached therealong, the sewing band providing a platform for implanting the heart valve such that the valve cusps are attachable adjacent the annulus.
2. The heart valve of claim 1, wherein the valve is sized for implantation in an aortic annulus, wherein the anatomical wall structure is the aorta.
3. The heart valve of claim 1, wherein the cusp support structure comprises a one-piece ring.
4. The heart valve of claim 3, wherein the cusp support structure comprises the rounded sections curved toward the inflow end of the valve and connected by commissure base sections about which the valve commissure posts pivot.
5. The heart valve of claim 4, wherein the cusp support structure comprises a relatively rigid rod-like element having a fabric covering, the valve commissure posts being attached to the cusp support structure using sutures through the fabric covering.
6. The heart valve of claim 4, wherein the inflow end of the insert member of each commissure post is bifurcated into divergent legs and straddles the associated commissure base section.
7. The heart valve of claim 6, wherein each commissure base section is circular in cross-section, and wherein the divergent legs of the bifurcated inflow end of the associated insert member are sutured together to capture the commissure base section therebetween.
8. The heart valve of claim 1, wherein the cusp support structure comprises three separate pieces arranged generally evenly about the valve axis to define the ring.
9. The heart valve of claim 8, wherein each piece of the cusp support structure comprises a relatively rigid rod-like element having a fabric covering, the sewing band attaching to the valve cusps using sutures through the fabric covering of each piece of the cusp support structure, and wherein the inflow end of each commissure post is pivotally attached to a portion of the sewing band that bridges one of three gaps defined between the three separate pieces of the cusp support structure.
10. The heart valve of claim 8, wherein each piece of the cusp support structure is made of a pre-formed biocompatible fabric having a radially outward tab to which the cusp edge of a leaflet attaches.
11. The heart valve of claim 8, wherein the three separate pieces of the cusp support structure are coupled by six highly compliant connector sections attached between adjacent ends of the rounded sections and V-shaped clips.
12. The heart valve of claim 11, wherein the connector sections are made of fabric.
13. The heart valve of claim 11, wherein the connector sections are made of an elastomer.
14. The heart valve of claim 1, wherein each V-shaped clip is formed of a flexible material adapted to flex apart during an open cycle of the valve wherein fluid flow through the valve causes the free edges of adjacent leaflet tabs to separate.
15. The heart valve of claim 14, further including a fabric covering around each V-shaped clip that extends around the associated insert member and permits suture attachment of the clip to the insert.
16. The heart valve of claim 1, wherein the three leaflets each have a concave free edge.
17. An aortic heart valve adapted to have reduced vibration-related strain, comprising:
three leaflets each having arcuate cusp edges on their inflow ends, free edges on the outflow ends, and two side tabs;
three cusp supports each attached to the cusp edge of one of the leaflets to define valve cusps, the valve cusps being disposed generally in a circle about a valve axis at an inflow end of the valve;
three generally axially extending commissure posts disposed in between the valve cusps around the circle and extending toward an outflow end of the valve, the commissure posts each being defined by an insert and adjacent tabs of two leaflets attached thereto, wherein the inserts are structurally separate from the three cusp supports but coupled thereto at an end closest to the cusp supports to enable radial pivoting of the outflow end of the commissure posts relative to the cusp supports; and a sewing band shaped to follow the valve cusps and being attached therealong, the sewing band and inserts providing a platform for implanting the aortic heart valve such that the valve cusps are attachable adjacent the annulus, and the inserts are attachable to the ascending aorta, the commissure posts therefore being freely moveable with respect to the valve cusps so as to generally pivot radially in and out in conjunction with movement of the ascending aorta during the repetitive cycles of systole and diastole such that the heart valve is dynamically coupled to the damping characteristics of the ascending aorta.
18. The heart valve of claim 17, wherein the three cusp supports together define a one-piece ring-shaped cusp support structure.
19. The heart valve of claim 18, wherein the cusp support structure comprises the three cusp supports that are curved toward the inflow end of the valve and are connected by three commissure base sections about which the commissure posts pivot.
20. The heart valve of claim 19, wherein the cusp support structure comprises a relatively rigid rod-like element having a fabric covering, the commissure posts being attached to the commissure base sections of the cusp support structure using sutures through the fabric covering.
21. The heart valve of claim 19, wherein the inflow end of the insert member of each commissure post is bifurcated and straddles the associated commissure base section.
22. The heart valve of claim 17, wherein the three cusp supports are separate elements coupled together by mutual attachment to the sewing band.
23. The heart valve of claim 22, wherein each cusp support comprises a relatively rigid rod-like element having a fabric covering, the sewing band attaching to the cusp supports using sutures through the fabric covering of each cusp support, and wherein the inflow end of each commissure post is pivotally attached to a portion of the sewing band that bridges one of three gaps defined between the three separate cusp supports.
24. The heart valve of claim 22, wherein each cusp support is made of a pre-formed biocompatble fabric having a radially outward tab to which the cusp edge of a leaflet attaches.
25. The heart valve of claim 17, wherein each of the commissure posts further includes an inverted V-shaped clip positioned radially inward from the insert, the adjacent leaflet tabs being juxtaposed to extend radially outward with respect to the axis through the inverted V-shaped clip and being wrapped around and secured to the insert.
26. The heart valve of claim 25, wherein each V-shaped clip is formed of a flexible material adapted to flex apart during an open cycle of the valve wherein fluid flow through the valve causes the free edges of adjacent leaflet tabs to separate.
27. The heart valve of claim 25, further including a fabric covering around each V-shaped clip that extends around the associated insert and permits suture attachment of the clip to the insert.
28. The heart valve of claim 25, wherein the three cusp supports are separate elements coupled together by six compliant connector sections attached between adjacent ends of the cusp supports and V-shaped clips.
29. The heart valve of claim 17, wherein the three leaflets each have a concave free edge.
30. A tissue-type heart valve adapted to have reduced stress risers in the leaflets, comprising:
three leaflets each having arcuate cusp edges on their inflow ends, free edges on the outflow ends, and two side tabs, the free edges extending between the side tabs in a concave fashion.
31. The heart valve of claim 30, further including commissure posts to which adjacent leaflet tabs attach, each post including an insert around which the leaflet tabs wrap, the valve further including a cusp support structure attached to the cusps of each leaflet, wherein the insert is pivotally coupled to the cusp support structure.
32. The heart valve of claim 31, further a sewing band for attachment to a valve annulus that surrounds the cusp support structure and is truncated in the region of the inserts to permit direct attachment of the commissure posts to an antomical wall structure adjacent the annulus.
33. The heart valve of claim 30, wherein each leaflet free edge further includes a region that is above a line extending between the middle of the free edge and the side tabs so that the region is not placed in direct tension during closure of the valve.
34. The heart valve of claim 33, wherein the region is generally triangular and culminates in an apex.
35. The heart valve of claim 34, wherein a concave filet exists between the apex and the side tab.
36. The heart valve of any one of claims 17 to 29 wherein the commissure posts are each being defined by a relatively rigid insert and adjacent tabs of two leaflets attached thereto.
CA002422009A 2000-09-22 2001-09-14 Flexible heart valve having moveable commissures Expired - Lifetime CA2422009C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/668,660 US6461382B1 (en) 2000-09-22 2000-09-22 Flexible heart valve having moveable commissures
US09/668,660 2000-09-22
PCT/US2001/028729 WO2002024118A1 (en) 2000-09-22 2001-09-14 Flexible heart valve having moveable commissures

Publications (2)

Publication Number Publication Date
CA2422009A1 CA2422009A1 (en) 2002-03-28
CA2422009C true CA2422009C (en) 2009-12-01

Family

ID=24683245

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002422009A Expired - Lifetime CA2422009C (en) 2000-09-22 2001-09-14 Flexible heart valve having moveable commissures

Country Status (7)

Country Link
US (3) US6461382B1 (en)
EP (1) EP1328215B1 (en)
AT (1) ATE310469T1 (en)
AU (2) AU2001290908B2 (en)
CA (1) CA2422009C (en)
DE (1) DE60115273T2 (en)
WO (1) WO2002024118A1 (en)

Families Citing this family (509)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK124690D0 (en) 1990-05-18 1990-05-18 Henning Rud Andersen FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION
US6006134A (en) 1998-04-30 1999-12-21 Medtronic, Inc. Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers
EP0850607A1 (en) 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
US6530952B2 (en) 1997-12-29 2003-03-11 The Cleveland Clinic Foundation Bioprosthetic cardiovascular valve system
US6736845B2 (en) * 1999-01-26 2004-05-18 Edwards Lifesciences Corporation Holder for flexible heart valve
US8579966B2 (en) 1999-11-17 2013-11-12 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US8016877B2 (en) 1999-11-17 2011-09-13 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US7018406B2 (en) 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
US8241274B2 (en) 2000-01-19 2012-08-14 Medtronic, Inc. Method for guiding a medical device
ES2307590T3 (en) 2000-01-27 2008-12-01 3F Therapeutics, Inc HEART VALVE PROTESICA.
US7749245B2 (en) 2000-01-27 2010-07-06 Medtronic, Inc. Cardiac valve procedure methods and devices
US6872226B2 (en) 2001-01-29 2005-03-29 3F Therapeutics, Inc. Method of cutting material for use in implantable medical device
US6454799B1 (en) 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
WO2002005888A1 (en) 2000-06-30 2002-01-24 Viacor Incorporated Intravascular filter with debris entrapment mechanism
JP2004506469A (en) 2000-08-18 2004-03-04 アトリテック, インコーポレイテッド Expandable implantable device for filtering blood flow from the atrial appendage
US6602286B1 (en) 2000-10-26 2003-08-05 Ernst Peter Strecker Implantable valve system
US7556646B2 (en) 2001-09-13 2009-07-07 Edwards Lifesciences Corporation Methods and apparatuses for deploying minimally-invasive heart valves
US6733525B2 (en) 2001-03-23 2004-05-11 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of use
FR2826863B1 (en) * 2001-07-04 2003-09-26 Jacques Seguin ASSEMBLY FOR PLACING A PROSTHETIC VALVE IN A BODY CONDUIT
FR2828091B1 (en) * 2001-07-31 2003-11-21 Seguin Jacques ASSEMBLY ALLOWING THE PLACEMENT OF A PROTHETIC VALVE IN A BODY DUCT
US7097659B2 (en) 2001-09-07 2006-08-29 Medtronic, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US6893460B2 (en) 2001-10-11 2005-05-17 Percutaneous Valve Technologies Inc. Implantable prosthetic valve
US7201771B2 (en) * 2001-12-27 2007-04-10 Arbor Surgical Technologies, Inc. Bioprosthetic heart valve
US8308797B2 (en) 2002-01-04 2012-11-13 Colibri Heart Valve, LLC Percutaneously implantable replacement heart valve device and method of making same
US7252681B2 (en) * 2002-02-14 2007-08-07 St. Medical, Inc. Heart valve structures
US6752828B2 (en) 2002-04-03 2004-06-22 Scimed Life Systems, Inc. Artificial valve
US8721713B2 (en) 2002-04-23 2014-05-13 Medtronic, Inc. System for implanting a replacement valve
US7608103B2 (en) * 2002-07-08 2009-10-27 Edwards Lifesciences Corporation Mitral valve annuloplasty ring having a posterior bow
US7959674B2 (en) 2002-07-16 2011-06-14 Medtronic, Inc. Suture locking assembly and method of use
DE20321838U1 (en) * 2002-08-13 2011-02-10 JenaValve Technology Inc., Wilmington Device for anchoring and aligning heart valve prostheses
US20040097979A1 (en) * 2002-11-14 2004-05-20 Oleg Svanidze Aortic valve implantation device
US7189259B2 (en) * 2002-11-26 2007-03-13 Clemson University Tissue material and process for bioprosthesis
US20040153145A1 (en) * 2002-11-26 2004-08-05 Clemson University Fixation method for bioprostheses
US8551162B2 (en) 2002-12-20 2013-10-08 Medtronic, Inc. Biologically implantable prosthesis
US6945957B2 (en) 2002-12-30 2005-09-20 Scimed Life Systems, Inc. Valve treatment catheter and methods
US7087086B2 (en) * 2003-01-31 2006-08-08 Depuy Products, Inc. Biological agent-containing ceramic coating and method
US7399315B2 (en) 2003-03-18 2008-07-15 Edwards Lifescience Corporation Minimally-invasive heart valve with cusp positioners
CH696185A5 (en) * 2003-03-21 2007-02-15 Afksendiyos Kalangos Intraparietal reinforcement for aortic valve and reinforced valve has rod inserted in biological tissue or organic prosthesis with strut fixed to one end
WO2005000168A1 (en) 2003-06-27 2005-01-06 University Of South Florida Vascular prosthesis
US8021421B2 (en) 2003-08-22 2011-09-20 Medtronic, Inc. Prosthesis heart valve fixturing device
US20050075725A1 (en) 2003-10-02 2005-04-07 Rowe Stanton J. Implantable prosthetic valve with non-laminar flow
US9579194B2 (en) 2003-10-06 2017-02-28 Medtronic ATS Medical, Inc. Anchoring structure with concave landing zone
US7604650B2 (en) 2003-10-06 2009-10-20 3F Therapeutics, Inc. Method and assembly for distal embolic protection
US10219899B2 (en) * 2004-04-23 2019-03-05 Medtronic 3F Therapeutics, Inc. Cardiac valve replacement systems
US7556647B2 (en) 2003-10-08 2009-07-07 Arbor Surgical Technologies, Inc. Attachment device and methods of using the same
US7854761B2 (en) 2003-12-19 2010-12-21 Boston Scientific Scimed, Inc. Methods for venous valve replacement with a catheter
US8128681B2 (en) 2003-12-19 2012-03-06 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US9526609B2 (en) 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US7329279B2 (en) 2003-12-23 2008-02-12 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US20050137694A1 (en) 2003-12-23 2005-06-23 Haug Ulrich R. Methods and apparatus for endovascularly replacing a patient's heart valve
US11278398B2 (en) 2003-12-23 2022-03-22 Boston Scientific Scimed, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US9005273B2 (en) 2003-12-23 2015-04-14 Sadra Medical, Inc. Assessing the location and performance of replacement heart valves
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
EP1702247B8 (en) 2003-12-23 2015-09-09 Boston Scientific Scimed, Inc. Repositionable heart valve
US8052749B2 (en) 2003-12-23 2011-11-08 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US8343213B2 (en) 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US20050137687A1 (en) 2003-12-23 2005-06-23 Sadra Medical Heart valve anchor and method
US7381219B2 (en) 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
US20120041550A1 (en) 2003-12-23 2012-02-16 Sadra Medical, Inc. Methods and Apparatus for Endovascular Heart Valve Replacement Comprising Tissue Grasping Elements
US7445631B2 (en) 2003-12-23 2008-11-04 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8579962B2 (en) 2003-12-23 2013-11-12 Sadra Medical, Inc. Methods and apparatus for performing valvuloplasty
US8603160B2 (en) 2003-12-23 2013-12-10 Sadra Medical, Inc. Method of using a retrievable heart valve anchor with a sheath
US7780725B2 (en) 2004-06-16 2010-08-24 Sadra Medical, Inc. Everting heart valve
US7871435B2 (en) 2004-01-23 2011-01-18 Edwards Lifesciences Corporation Anatomically approximate prosthetic mitral heart valve
CN101683291A (en) 2004-02-27 2010-03-31 奥尔特克斯公司 Prosthetic heart valve delivery systems and methods
ITTO20040135A1 (en) 2004-03-03 2004-06-03 Sorin Biomedica Cardio Spa CARDIAC VALVE PROSTHESIS
US20050228494A1 (en) * 2004-03-29 2005-10-13 Salvador Marquez Controlled separation heart valve frame
US7758633B2 (en) * 2004-04-12 2010-07-20 Boston Scientific Scimed, Inc. Varied diameter vascular graft
US7309461B2 (en) 2004-04-12 2007-12-18 Boston Scientific Scimed, Inc. Ultrasonic crimping of a varied diameter vascular graft
US7465316B2 (en) * 2004-04-12 2008-12-16 Boston Scientific Scimed, Inc. Tri-petaled aortic root vascular graft
BRPI0510107A (en) 2004-04-23 2007-09-25 3F Therapeutics Inc implantable protein valve
US7462191B2 (en) * 2004-06-30 2008-12-09 Edwards Lifesciences Pvt, Inc. Device and method for assisting in the implantation of a prosthetic valve
US7276078B2 (en) 2004-06-30 2007-10-02 Edwards Lifesciences Pvt Paravalvular leak detection, sealing, and prevention
US7566343B2 (en) 2004-09-02 2009-07-28 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
US20060052867A1 (en) 2004-09-07 2006-03-09 Medtronic, Inc Replacement prosthetic heart valve, system and method of implant
WO2006041505A1 (en) 2004-10-02 2006-04-20 Huber Christoph Hans Methods and devices for repair or replacement of heart valves or adjacent tissue without the need for full cardiopulmonary support
US8562672B2 (en) 2004-11-19 2013-10-22 Medtronic, Inc. Apparatus for treatment of cardiac valves and method of its manufacture
US7758640B2 (en) 2004-12-16 2010-07-20 Valvexchange Inc. Cardiovascular valve assembly
US7575594B2 (en) * 2004-12-30 2009-08-18 Sieracki Jeffrey M Shock dampening biocompatible valve
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
US20060173490A1 (en) 2005-02-01 2006-08-03 Boston Scientific Scimed, Inc. Filter system and method
US7854755B2 (en) 2005-02-01 2010-12-21 Boston Scientific Scimed, Inc. Vascular catheter, system, and method
US7878966B2 (en) 2005-02-04 2011-02-01 Boston Scientific Scimed, Inc. Ventricular assist and support device
US7670368B2 (en) 2005-02-07 2010-03-02 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7780722B2 (en) 2005-02-07 2010-08-24 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
ITTO20050074A1 (en) 2005-02-10 2006-08-11 Sorin Biomedica Cardio Srl CARDIAC VALVE PROSTHESIS
US7867274B2 (en) 2005-02-23 2011-01-11 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US20060195186A1 (en) 2005-02-28 2006-08-31 Drews Michael J Connectors for two piece heart valves and methods for implanting such heart valves
US8083793B2 (en) * 2005-02-28 2011-12-27 Medtronic, Inc. Two piece heart valves including multiple lobe valves and methods for implanting them
CA2598794C (en) * 2005-03-01 2012-01-03 Raymond Andrieu Intraparietal reinforcing device for biological cardiac prosthesis and reinforced biological heart valve prosthesis
US7513909B2 (en) 2005-04-08 2009-04-07 Arbor Surgical Technologies, Inc. Two-piece prosthetic valves with snap-in connection and methods for use
US7722666B2 (en) 2005-04-15 2010-05-25 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US7962208B2 (en) 2005-04-25 2011-06-14 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
US7914569B2 (en) 2005-05-13 2011-03-29 Medtronics Corevalve Llc Heart valve prosthesis and methods of manufacture and use
US8211169B2 (en) 2005-05-27 2012-07-03 Medtronic, Inc. Gasket with collar for prosthetic heart valves and methods for using them
US7238200B2 (en) 2005-06-03 2007-07-03 Arbor Surgical Technologies, Inc. Apparatus and methods for making leaflets and valve prostheses including such leaflets
US8012198B2 (en) 2005-06-10 2011-09-06 Boston Scientific Scimed, Inc. Venous valve, system, and method
US7780723B2 (en) 2005-06-13 2010-08-24 Edwards Lifesciences Corporation Heart valve delivery system
EP1898840A1 (en) * 2005-06-27 2008-03-19 The Cleveland Clinic Foundation Apparatus for placement in the annulus of a tricuspid valve
CN1701770B (en) * 2005-07-08 2011-04-27 北京佰仁医疗科技有限公司 Elastic artificial biological heart valve
US20070027528A1 (en) * 2005-07-29 2007-02-01 Cook Incorporated Elliptical implantable device
US7569071B2 (en) 2005-09-21 2009-08-04 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US20070078510A1 (en) 2005-09-26 2007-04-05 Ryan Timothy R Prosthetic cardiac and venous valves
US8167932B2 (en) 2005-10-18 2012-05-01 Edwards Lifesciences Corporation Heart valve delivery system with valve catheter
US8092525B2 (en) 2005-10-26 2012-01-10 Cardiosolutions, Inc. Heart valve implant
US8216302B2 (en) * 2005-10-26 2012-07-10 Cardiosolutions, Inc. Implant delivery and deployment system and method
US9259317B2 (en) * 2008-06-13 2016-02-16 Cardiosolutions, Inc. System and method for implanting a heart implant
US7785366B2 (en) 2005-10-26 2010-08-31 Maurer Christopher W Mitral spacer
US8449606B2 (en) * 2005-10-26 2013-05-28 Cardiosolutions, Inc. Balloon mitral spacer
US8778017B2 (en) * 2005-10-26 2014-07-15 Cardiosolutions, Inc. Safety for mitral valve implant
US8852270B2 (en) * 2007-11-15 2014-10-07 Cardiosolutions, Inc. Implant delivery system and method
US20070213813A1 (en) * 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US9078781B2 (en) 2006-01-11 2015-07-14 Medtronic, Inc. Sterile cover for compressible stents used in percutaneous device delivery systems
US7799038B2 (en) 2006-01-20 2010-09-21 Boston Scientific Scimed, Inc. Translumenal apparatus, system, and method
US7967857B2 (en) 2006-01-27 2011-06-28 Medtronic, Inc. Gasket with spring collar for prosthetic heart valves and methods for making and using them
WO2007097983A2 (en) 2006-02-14 2007-08-30 Sadra Medical, Inc. Systems and methods for delivering a medical implant
US8147541B2 (en) 2006-02-27 2012-04-03 Aortx, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
US8403981B2 (en) 2006-02-27 2013-03-26 CardiacMC, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
US8075615B2 (en) 2006-03-28 2011-12-13 Medtronic, Inc. Prosthetic cardiac valve formed from pericardium material and methods of making same
WO2007130881A2 (en) * 2006-04-29 2007-11-15 Arbor Surgical Technologies, Inc. Multiple component prosthetic heart valve assemblies and apparatus and methods for delivering them
US8585594B2 (en) 2006-05-24 2013-11-19 Phoenix Biomedical, Inc. Methods of assessing inner surfaces of body lumens or organs
CN101505686A (en) 2006-06-20 2009-08-12 奥尔特克斯公司 Prosthetic heart valves, support structures and systems and methods for implanting the same
JP2009540952A (en) 2006-06-20 2009-11-26 エーオーテックス, インコーポレイテッド Torque shaft and torque drive
CA2657446A1 (en) 2006-06-21 2007-12-27 Aortx, Inc. Prosthetic valve implantation systems
US20080004696A1 (en) * 2006-06-29 2008-01-03 Valvexchange Inc. Cardiovascular valve assembly with resizable docking station
US9408607B2 (en) 2009-07-02 2016-08-09 Edwards Lifesciences Cardiaq Llc Surgical implant devices and methods for their manufacture and use
US9585743B2 (en) 2006-07-31 2017-03-07 Edwards Lifesciences Cardiaq Llc Surgical implant devices and methods for their manufacture and use
WO2008016578A2 (en) 2006-07-31 2008-02-07 Cartledge Richard G Sealable endovascular implants and methods for their use
WO2008031103A2 (en) 2006-09-08 2008-03-13 Edwards Lifesciences Corporation Integrated heart valve delivery system
US8414643B2 (en) 2006-09-19 2013-04-09 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US8834564B2 (en) 2006-09-19 2014-09-16 Medtronic, Inc. Sinus-engaging valve fixation member
US11304800B2 (en) 2006-09-19 2022-04-19 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
WO2008047354A2 (en) 2006-10-16 2008-04-24 Ventor Technologies Ltd. Transapical delivery system with ventriculo-arterial overflow bypass
US8142805B1 (en) 2006-11-06 2012-03-27 Clemson University Research Foundation Implantable devices including fixed tissues
WO2008070797A2 (en) 2006-12-06 2008-06-12 Medtronic Corevalve, Inc. System and method for transapical delivery of an annulus anchored self-expanding valve
US8236045B2 (en) 2006-12-22 2012-08-07 Edwards Lifesciences Corporation Implantable prosthetic valve assembly and method of making the same
US8133270B2 (en) 2007-01-08 2012-03-13 California Institute Of Technology In-situ formation of a valve
US8388679B2 (en) 2007-01-19 2013-03-05 Maquet Cardiovascular Llc Single continuous piece prosthetic tubular aortic conduit and method for manufacturing the same
JP5313928B2 (en) 2007-02-05 2013-10-09 ボストン サイエンティフィック リミテッド Percutaneous valves and systems
US8623074B2 (en) 2007-02-16 2014-01-07 Medtronic, Inc. Delivery systems and methods of implantation for replacement prosthetic heart valves
US8092523B2 (en) * 2007-03-12 2012-01-10 St. Jude Medical, Inc. Prosthetic heart valves with flexible leaflets
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
FR2915087B1 (en) 2007-04-20 2021-11-26 Corevalve Inc IMPLANT FOR TREATMENT OF A HEART VALVE, IN PARTICULAR OF A MITRAL VALVE, EQUIPMENT INCLUDING THIS IMPLANT AND MATERIAL FOR PLACING THIS IMPLANT.
US8409274B2 (en) * 2007-04-26 2013-04-02 St. Jude Medical, Inc. Techniques for attaching flexible leaflets of prosthetic heart valves to supporting structures
US8480730B2 (en) * 2007-05-14 2013-07-09 Cardiosolutions, Inc. Solid construct mitral spacer
US20080294247A1 (en) * 2007-05-25 2008-11-27 Medical Entrepreneurs Ii, Inc. Prosthetic Heart Valve
US7815677B2 (en) * 2007-07-09 2010-10-19 Leman Cardiovascular Sa Reinforcement device for a biological valve and reinforced biological valve
DE102007034363A1 (en) * 2007-07-24 2009-01-29 Biotronik Vi Patent Ag endoprosthesis
US8828079B2 (en) 2007-07-26 2014-09-09 Boston Scientific Scimed, Inc. Circulatory valve, system and method
US9566178B2 (en) 2010-06-24 2017-02-14 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US8747458B2 (en) 2007-08-20 2014-06-10 Medtronic Ventor Technologies Ltd. Stent loading tool and method for use thereof
ES2586121T3 (en) 2007-08-21 2016-10-11 Symetis Sa Replacement valve
DE102007043830A1 (en) 2007-09-13 2009-04-02 Lozonschi, Lucian, Madison Heart valve stent
BRPI0817708A2 (en) 2007-09-26 2017-05-16 St Jude Medical prosthetic heart valve, and lamella structure for the same.
US9532868B2 (en) 2007-09-28 2017-01-03 St. Jude Medical, Inc. Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
US7803186B1 (en) 2007-09-28 2010-09-28 St. Jude Medical, Inc. Prosthetic heart valves with flexible leaflets and leaflet edge clamping
US10856970B2 (en) 2007-10-10 2020-12-08 Medtronic Ventor Technologies Ltd. Prosthetic heart valve for transfemoral delivery
US9848981B2 (en) 2007-10-12 2017-12-26 Mayo Foundation For Medical Education And Research Expandable valve prosthesis with sealing mechanism
US20090105810A1 (en) * 2007-10-17 2009-04-23 Hancock Jaffe Laboratories Biological valve for venous valve insufficiency
BRPI0819217B8 (en) 2007-10-25 2021-06-22 Symetis Sa replacement valve for use within a human body, system for replacing a valve within a human body, and heart valve release system with stent
US8597347B2 (en) * 2007-11-15 2013-12-03 Cardiosolutions, Inc. Heart regurgitation method and apparatus
EP4079261A1 (en) 2007-12-14 2022-10-26 Edwards Lifesciences Corporation Leaflet attachment frame for a prosthetic valve
US7892276B2 (en) 2007-12-21 2011-02-22 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US9393115B2 (en) 2008-01-24 2016-07-19 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US8157853B2 (en) 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US8628566B2 (en) * 2008-01-24 2014-01-14 Medtronic, Inc. Stents for prosthetic heart valves
US9089422B2 (en) 2008-01-24 2015-07-28 Medtronic, Inc. Markers for prosthetic heart valves
US9149358B2 (en) 2008-01-24 2015-10-06 Medtronic, Inc. Delivery systems for prosthetic heart valves
EP3572044B1 (en) 2008-01-24 2021-07-28 Medtronic, Inc. Stents for prosthetic heart valves
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
BR112012021347A2 (en) 2008-02-26 2019-09-24 Jenavalve Tecnology Inc stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart
US20090264989A1 (en) 2008-02-28 2009-10-22 Philipp Bonhoeffer Prosthetic heart valve systems
US9241792B2 (en) 2008-02-29 2016-01-26 Edwards Lifesciences Corporation Two-step heart valve implantation
CA2961051C (en) 2008-02-29 2020-01-14 Edwards Lifesciences Corporation Expandable member for deploying a prosthetic device
US8313525B2 (en) 2008-03-18 2012-11-20 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
US8430927B2 (en) 2008-04-08 2013-04-30 Medtronic, Inc. Multiple orifice implantable heart valve and methods of implantation
US8312825B2 (en) 2008-04-23 2012-11-20 Medtronic, Inc. Methods and apparatuses for assembly of a pericardial prosthetic heart valve
US8696743B2 (en) 2008-04-23 2014-04-15 Medtronic, Inc. Tissue attachment devices and methods for prosthetic heart valves
US20090276040A1 (en) 2008-05-01 2009-11-05 Edwards Lifesciences Corporation Device and method for replacing mitral valve
US9061119B2 (en) 2008-05-09 2015-06-23 Edwards Lifesciences Corporation Low profile delivery system for transcatheter heart valve
EP2119417B2 (en) 2008-05-16 2020-04-29 Sorin Group Italia S.r.l. Atraumatic prosthetic heart valve prosthesis
DK3263070T3 (en) 2008-06-06 2020-01-20 Edwards Lifesciences Corp Low profile transcatheter heart valve
US8591460B2 (en) * 2008-06-13 2013-11-26 Cardiosolutions, Inc. Steerable catheter and dilator and system and method for implanting a heart implant
US8323335B2 (en) 2008-06-20 2012-12-04 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves and methods for using
DE202009018961U1 (en) 2008-07-15 2014-11-26 St. Jude Medical, Inc. Heart valve prosthesis and arrangement for delivering a heart valve prosthesis
EP2334261B1 (en) 2008-07-21 2021-01-13 Jenesis Surgical, LLC Endoluminal support apparatus and method of fabricating it
US8652202B2 (en) 2008-08-22 2014-02-18 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
EP2331015A1 (en) 2008-09-12 2011-06-15 ValveXchange Inc. Valve assembly with exchangeable valve member and a tool set for exchanging the valve member
US8998981B2 (en) 2008-09-15 2015-04-07 Medtronic, Inc. Prosthetic heart valve having identifiers for aiding in radiographic positioning
US8721714B2 (en) 2008-09-17 2014-05-13 Medtronic Corevalve Llc Delivery system for deployment of medical devices
EP2344074B1 (en) * 2008-09-19 2019-03-27 Edwards Lifesciences Corporation Prosthetic heart valve configured to receive a percutaneous prosthetic heart valve implantation
US8287591B2 (en) * 2008-09-19 2012-10-16 Edwards Lifesciences Corporation Transformable annuloplasty ring configured to receive a percutaneous prosthetic heart valve implantation
US9375310B2 (en) 2012-12-31 2016-06-28 Edwards Lifesciences Corporation Surgical heart valves adapted for post-implant expansion
US9314335B2 (en) * 2008-09-19 2016-04-19 Edwards Lifesciences Corporation Prosthetic heart valve configured to receive a percutaneous prosthetic heart valve implantation
US8690936B2 (en) 2008-10-10 2014-04-08 Edwards Lifesciences Corporation Expandable sheath for introducing an endovascular delivery device into a body
ES2409693T3 (en) 2008-10-10 2013-06-27 Sadra Medical, Inc. Medical devices and supply systems to supply medical devices
US8137398B2 (en) 2008-10-13 2012-03-20 Medtronic Ventor Technologies Ltd Prosthetic valve having tapered tip when compressed for delivery
US8986361B2 (en) 2008-10-17 2015-03-24 Medtronic Corevalve, Inc. Delivery system for deployment of medical devices
BRPI0919911A2 (en) * 2008-10-29 2016-02-16 Symetis Sa Methods and Systems for Stent Valve Manufacturing and Assembly
EP2201911B1 (en) 2008-12-23 2015-09-30 Sorin Group Italia S.r.l. Expandable prosthetic valve having anchoring appendages
US20100217382A1 (en) 2009-02-25 2010-08-26 Edwards Lifesciences Mitral valve replacement with atrial anchoring
WO2010114941A1 (en) * 2009-03-31 2010-10-07 Medical Entrepreneurs Ii, Inc. Leaflet alignment fixture and methods therefor
EP2246011B1 (en) 2009-04-27 2014-09-03 Sorin Group Italia S.r.l. Prosthetic vascular conduit
US8439970B2 (en) 2009-07-14 2013-05-14 Edwards Lifesciences Corporation Transapical delivery system for heart valves
US8808369B2 (en) 2009-10-05 2014-08-19 Mayo Foundation For Medical Education And Research Minimally invasive aortic valve replacement
CA2778944C (en) 2009-11-02 2019-08-20 Symetis Sa Aortic bioprosthesis and systems for delivery thereof
US8449599B2 (en) 2009-12-04 2013-05-28 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
AU2010328106A1 (en) 2009-12-08 2012-07-05 Avalon Medical Ltd. Device and system for transcatheter mitral valve replacement
US9358109B2 (en) * 2010-01-13 2016-06-07 Vinay Badhwar Transcorporeal delivery system and method
US9226826B2 (en) 2010-02-24 2016-01-05 Medtronic, Inc. Transcatheter valve structure and methods for valve delivery
US8795354B2 (en) 2010-03-05 2014-08-05 Edwards Lifesciences Corporation Low-profile heart valve and delivery system
WO2011120050A1 (en) * 2010-03-26 2011-09-29 Thubrikar Aortic Valve, Inc. Valve component, frame component and prosthetic valve device including the same for implantation in a body lumen
US8652204B2 (en) 2010-04-01 2014-02-18 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
CN102883684B (en) * 2010-05-10 2015-04-08 爱德华兹生命科学公司 Prosthetic heart valve
IT1400327B1 (en) 2010-05-21 2013-05-24 Sorin Biomedica Cardio Srl SUPPORT DEVICE FOR VALVULAR PROSTHESIS AND CORRESPONDING CORRESPONDENT.
CA2799459A1 (en) * 2010-05-25 2011-12-01 Jenavalve Technology Inc. Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent
CN103153384B (en) 2010-06-28 2016-03-09 科利柏心脏瓣膜有限责任公司 For the device of device in the delivery of vascular of chamber
DK2590595T3 (en) 2010-07-09 2015-12-07 Highlife Sas Transcatheter atrioventricular heart valve prosthesis
EP4098227A1 (en) 2010-07-23 2022-12-07 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves
US9918833B2 (en) 2010-09-01 2018-03-20 Medtronic Vascular Galway Prosthetic valve support structure
EP4119107A3 (en) 2010-09-10 2023-02-15 Boston Scientific Limited Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device
US8845720B2 (en) 2010-09-27 2014-09-30 Edwards Lifesciences Corporation Prosthetic heart valve frame with flexible commissures
ES2891075T3 (en) 2010-10-05 2022-01-26 Edwards Lifesciences Corp prosthetic heart valve
US8568475B2 (en) 2010-10-05 2013-10-29 Edwards Lifesciences Corporation Spiraled commissure attachment for prosthetic valve
WO2012082952A2 (en) 2010-12-14 2012-06-21 Colibri Heart Valve Llc Percutaneously deliverable heart valve including folded membrane cusps with integral leaflets
AU2011349578B2 (en) 2010-12-23 2016-06-30 Twelve, Inc. System for mitral valve repair and replacement
US8696741B2 (en) 2010-12-23 2014-04-15 Maquet Cardiovascular Llc Woven prosthesis and method for manufacturing the same
ES2641902T3 (en) 2011-02-14 2017-11-14 Sorin Group Italia S.R.L. Sutureless anchoring device for cardiac valve prostheses
EP2486894B1 (en) 2011-02-14 2021-06-09 Sorin Group Italia S.r.l. Sutureless anchoring device for cardiac valve prostheses
US9155619B2 (en) 2011-02-25 2015-10-13 Edwards Lifesciences Corporation Prosthetic heart valve delivery apparatus
KR101312352B1 (en) * 2011-03-03 2013-09-27 부산대학교 산학협력단 Artificial cardiac valve and its manufacturing method and artificial valved conduit
US9968446B2 (en) 2011-03-23 2018-05-15 The Regents Of The University Of California Tubular scaffold for fabrication of heart valves
US8900862B2 (en) 2011-03-23 2014-12-02 The Regents Of The University Of California Mesh enclosed tissue constructs
US10610616B2 (en) 2011-03-23 2020-04-07 The Regents Of The University Of California Mesh enclosed tissue constructs
US9925296B2 (en) 2011-03-23 2018-03-27 The Regents Of The University Of California Mesh enclosed tissue constructs
US9744033B2 (en) 2011-04-01 2017-08-29 W.L. Gore & Associates, Inc. Elastomeric leaflet for prosthetic heart valves
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
EP2520251A1 (en) 2011-05-05 2012-11-07 Symetis SA Method and Apparatus for Compressing Stent-Valves
ES2841108T3 (en) 2011-05-26 2021-07-07 On X Life Tech Inc Heart valve sewing cuff
US9289282B2 (en) 2011-05-31 2016-03-22 Edwards Lifesciences Corporation System and method for treating valve insufficiency or vessel dilatation
US9011523B2 (en) 2011-06-20 2015-04-21 Jacques Seguin Prosthetic leaflet assembly for repairing a defective cardiac valve and methods of using the same
JP5872692B2 (en) 2011-06-21 2016-03-01 トゥエルヴ, インコーポレイテッド Artificial therapy device
US8603162B2 (en) 2011-07-06 2013-12-10 Waseda University Stentless artificial mitral valve
CA2835893C (en) 2011-07-12 2019-03-19 Boston Scientific Scimed, Inc. Coupling system for medical devices
US8795357B2 (en) 2011-07-15 2014-08-05 Edwards Lifesciences Corporation Perivalvular sealing for transcatheter heart valve
US9339384B2 (en) 2011-07-27 2016-05-17 Edwards Lifesciences Corporation Delivery systems for prosthetic heart valve
US9668859B2 (en) 2011-08-05 2017-06-06 California Institute Of Technology Percutaneous heart valve delivery systems
CA3040390C (en) 2011-08-11 2022-03-15 Tendyne Holdings, Inc. Improvements for prosthetic valves and related inventions
US9554806B2 (en) 2011-09-16 2017-01-31 W. L. Gore & Associates, Inc. Occlusive devices
US9039757B2 (en) 2011-10-19 2015-05-26 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9655722B2 (en) 2011-10-19 2017-05-23 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
CA3090422C (en) 2011-10-19 2023-08-01 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US11202704B2 (en) 2011-10-19 2021-12-21 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
WO2013059743A1 (en) 2011-10-19 2013-04-25 Foundry Newco Xii, Inc. Devices, systems and methods for heart valve replacement
US9763780B2 (en) 2011-10-19 2017-09-19 Twelve, Inc. Devices, systems and methods for heart valve replacement
US9827093B2 (en) 2011-10-21 2017-11-28 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US8951243B2 (en) 2011-12-03 2015-02-10 Boston Scientific Scimed, Inc. Medical device handle
CA3097364C (en) 2011-12-09 2023-08-01 Edwards Lifesciences Corporation Prosthetic heart valve having improved commissure supports
US8652145B2 (en) 2011-12-14 2014-02-18 Edwards Lifesciences Corporation System and method for crimping a prosthetic valve
US9827092B2 (en) 2011-12-16 2017-11-28 Tendyne Holdings, Inc. Tethers for prosthetic mitral valve
EP2609893B1 (en) 2011-12-29 2014-09-03 Sorin Group Italia S.r.l. A kit for implanting prosthetic vascular conduits
WO2013112547A1 (en) 2012-01-25 2013-08-01 Boston Scientific Scimed, Inc. Valve assembly with a bioabsorbable gasket and a replaceable valve implant
WO2013120082A1 (en) 2012-02-10 2013-08-15 Kassab Ghassan S Methods and uses of biological tissues for various stent and other medical applications
EP3424469A1 (en) 2012-02-22 2019-01-09 Syntheon TAVR, LLC Actively controllable stent, stent graft and heart valve
US9579198B2 (en) 2012-03-01 2017-02-28 Twelve, Inc. Hydraulic delivery systems for prosthetic heart valve devices and associated methods
US11207176B2 (en) 2012-03-22 2021-12-28 Boston Scientific Scimed, Inc. Transcatheter stent-valves and methods, systems and devices for addressing para-valve leakage
US20130274873A1 (en) 2012-03-22 2013-10-17 Symetis Sa Transcatheter Stent-Valves and Methods, Systems and Devices for Addressing Para-Valve Leakage
US9011515B2 (en) 2012-04-19 2015-04-21 Caisson Interventional, LLC Heart valve assembly systems and methods
US9427315B2 (en) 2012-04-19 2016-08-30 Caisson Interventional, LLC Valve replacement systems and methods
US9345573B2 (en) 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US9883941B2 (en) 2012-06-19 2018-02-06 Boston Scientific Scimed, Inc. Replacement heart valve
US9283072B2 (en) 2012-07-25 2016-03-15 W. L. Gore & Associates, Inc. Everting transcatheter valve and methods
WO2014022124A1 (en) 2012-07-28 2014-02-06 Tendyne Holdings, Inc. Improved multi-component designs for heart valve retrieval device, sealing structures and stent assembly
US9675454B2 (en) 2012-07-30 2017-06-13 Tendyne Holdings, Inc. Delivery systems and methods for transcatheter prosthetic valves
US20140067048A1 (en) 2012-09-06 2014-03-06 Edwards Lifesciences Corporation Heart Valve Sealing Devices
ES2931210T3 (en) 2012-11-21 2022-12-27 Edwards Lifesciences Corp Retention Mechanisms for Prosthetic Heart Valves
US10966820B2 (en) 2012-12-19 2021-04-06 W. L. Gore & Associates, Inc. Geometric control of bending character in prosthetic heart valve leaflets
US9737398B2 (en) 2012-12-19 2017-08-22 W. L. Gore & Associates, Inc. Prosthetic valves, frames and leaflets and methods thereof
US9968443B2 (en) 2012-12-19 2018-05-15 W. L. Gore & Associates, Inc. Vertical coaptation zone in a planar portion of prosthetic heart valve leaflet
US9101469B2 (en) 2012-12-19 2015-08-11 W. L. Gore & Associates, Inc. Prosthetic heart valve with leaflet shelving
US10039638B2 (en) 2012-12-19 2018-08-07 W. L. Gore & Associates, Inc. Geometric prosthetic heart valves
US9144492B2 (en) 2012-12-19 2015-09-29 W. L. Gore & Associates, Inc. Truncated leaflet for prosthetic heart valves, preformed valve
US10543085B2 (en) 2012-12-31 2020-01-28 Edwards Lifesciences Corporation One-piece heart valve stents adapted for post-implant expansion
US9439763B2 (en) 2013-02-04 2016-09-13 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
AU2014214700B2 (en) 2013-02-11 2018-01-18 Cook Medical Technologies Llc Expandable support frame and medical device
US9168129B2 (en) 2013-02-12 2015-10-27 Edwards Lifesciences Corporation Artificial heart valve with scalloped frame design
US9289297B2 (en) 2013-03-15 2016-03-22 Cardiosolutions, Inc. Mitral valve spacer and system and method for implanting the same
US9744037B2 (en) 2013-03-15 2017-08-29 California Institute Of Technology Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves
US9232998B2 (en) 2013-03-15 2016-01-12 Cardiosolutions Inc. Trans-apical implant systems, implants and methods
US11224510B2 (en) 2013-04-02 2022-01-18 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US9486306B2 (en) 2013-04-02 2016-11-08 Tendyne Holdings, Inc. Inflatable annular sealing device for prosthetic mitral valve
US10463489B2 (en) 2013-04-02 2019-11-05 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US10478293B2 (en) 2013-04-04 2019-11-19 Tendyne Holdings, Inc. Retrieval and repositioning system for prosthetic heart valve
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
EP2991586A1 (en) 2013-05-03 2016-03-09 Medtronic Inc. Valve delivery tool
CA2908342C (en) 2013-05-20 2021-11-30 Edwards Lifesciences Corporation Prosthetic heart valve delivery apparatus
CN108294846A (en) 2013-05-20 2018-07-20 托尔福公司 Implantable cardiac valve device, mitral valve repair device and related system and method
US9610159B2 (en) 2013-05-30 2017-04-04 Tendyne Holdings, Inc. Structural members for prosthetic mitral valves
JP6731339B2 (en) 2013-06-14 2020-07-29 カーディオソリューションズ インコーポレイテッドCardiosolutions, Inc. Mitral valve spacer and implantation system and method thereof
CA2914856C (en) 2013-06-25 2021-03-09 Chad Perrin Thrombus management and structural compliance features for prosthetic heart valves
US11911258B2 (en) 2013-06-26 2024-02-27 W. L. Gore & Associates, Inc. Space filling devices
CN105555231B (en) 2013-08-01 2018-02-09 坦迪尼控股股份有限公司 External membrane of heart anchor and method
CN113616381A (en) 2013-08-12 2021-11-09 米特拉尔维尔福科技有限责任公司 Apparatus and method for implanting a replacement heart valve
CN109717988B (en) 2013-08-14 2022-01-25 米特拉尔维尔福科技有限责任公司 Heart valve replacement devices and methods
US9867694B2 (en) 2013-08-30 2018-01-16 Jenavalve Technology Inc. Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
SG11201508895RA (en) * 2013-09-20 2015-11-27 Edwards Lifesciences Corp Heart valves with increased effective orifice area
WO2015058039A1 (en) 2013-10-17 2015-04-23 Robert Vidlund Apparatus and methods for alignment and deployment of intracardiac devices
US9421094B2 (en) 2013-10-23 2016-08-23 Caisson Interventional, LLC Methods and systems for heart valve therapy
US9414913B2 (en) 2013-10-25 2016-08-16 Medtronic, Inc. Stented prosthetic heart valve
CA2924389C (en) 2013-10-28 2021-11-09 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US9526611B2 (en) 2013-10-29 2016-12-27 Tendyne Holdings, Inc. Apparatus and methods for delivery of transcatheter prosthetic valves
US9913715B2 (en) 2013-11-06 2018-03-13 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak sealing mechanism
CN111419472B (en) 2013-11-11 2023-01-10 爱德华兹生命科学卡迪尔克有限责任公司 System and method for manufacturing stent frames
US9622863B2 (en) 2013-11-22 2017-04-18 Edwards Lifesciences Corporation Aortic insufficiency repair device and method
US10098734B2 (en) 2013-12-05 2018-10-16 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US9504565B2 (en) 2013-12-06 2016-11-29 W. L. Gore & Associates, Inc. Asymmetric opening and closing prosthetic valve leaflet
US9901444B2 (en) 2013-12-17 2018-02-27 Edwards Lifesciences Corporation Inverted valve structure
WO2015120122A2 (en) 2014-02-05 2015-08-13 Robert Vidlund Apparatus and methods for transfemoral delivery of prosthetic mitral valve
US9986993B2 (en) 2014-02-11 2018-06-05 Tendyne Holdings, Inc. Adjustable tether and epicardial pad system for prosthetic heart valve
EP4091581B1 (en) 2014-02-18 2023-12-27 Edwards Lifesciences Corporation Flexible commissure frame
CN115089349A (en) 2014-02-20 2022-09-23 米特拉尔维尔福科技有限责任公司 Convoluted anchor for supporting a prosthetic heart valve, prosthetic heart valve and deployment device
JP2017506119A (en) 2014-02-21 2017-03-02 マイトラル・ヴァルヴ・テクノロジーズ・エス・アー・エール・エル Devices, systems, and methods for delivering prosthetic mitral valves and anchor devices
CA2937566C (en) 2014-03-10 2023-09-05 Tendyne Holdings, Inc. Devices and methods for positioning and monitoring tether load for prosthetic mitral valve
US10154904B2 (en) 2014-04-28 2018-12-18 Edwards Lifesciences Corporation Intravascular introducer devices
EA034896B1 (en) 2014-05-09 2020-04-03 Фолдэкс, Инк. Replacement heart valve
US10195025B2 (en) 2014-05-12 2019-02-05 Edwards Lifesciences Corporation Prosthetic heart valve
US9532870B2 (en) 2014-06-06 2017-01-03 Edwards Lifesciences Corporation Prosthetic valve for replacing a mitral valve
US9974647B2 (en) 2014-06-12 2018-05-22 Caisson Interventional, LLC Two stage anchor and mitral valve assembly
US10195026B2 (en) 2014-07-22 2019-02-05 Edwards Lifesciences Corporation Mitral valve anchoring
AU2015305868B2 (en) 2014-08-18 2018-09-20 Edwards Lifesciences Corporation Frame with integral sewing cuff for prosthetic valves
US10058424B2 (en) 2014-08-21 2018-08-28 Edwards Lifesciences Corporation Dual-flange prosthetic valve frame
US10016272B2 (en) 2014-09-12 2018-07-10 Mitral Valve Technologies Sarl Mitral repair and replacement devices and methods
US9827094B2 (en) * 2014-09-15 2017-11-28 W. L. Gore & Associates, Inc. Prosthetic heart valve with retention elements
US20160095701A1 (en) * 2014-10-07 2016-04-07 St. Jude Medical, Cardiology Division, Inc. Bi-Leaflet Mitral Valve Design
FR3027212A1 (en) 2014-10-16 2016-04-22 Seguin Jacques INTERVALVULAR IMPLANT FOR MITRAL VALVE
US9750605B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
US9750607B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
US20160144156A1 (en) 2014-11-20 2016-05-26 Edwards Lifesciences Corporation Inflatable device with etched modifications
US9901445B2 (en) 2014-11-21 2018-02-27 Boston Scientific Scimed, Inc. Valve locking mechanism
CR20170245A (en) 2014-12-05 2017-09-14 Edwards Lifesciences Corp DIRIGIBLE CATETER WITH TRACTION CABLE
JP6826035B2 (en) 2015-01-07 2021-02-03 テンダイン ホールディングス,インコーポレイテッド Artificial mitral valve, and devices and methods for its delivery
US10449043B2 (en) 2015-01-16 2019-10-22 Boston Scientific Scimed, Inc. Displacement based lock and release mechanism
US9861477B2 (en) 2015-01-26 2018-01-09 Boston Scientific Scimed Inc. Prosthetic heart valve square leaflet-leaflet stitch
US9788942B2 (en) 2015-02-03 2017-10-17 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
US10201417B2 (en) 2015-02-03 2019-02-12 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
JP6718459B2 (en) 2015-02-05 2020-07-08 テンダイン ホールディングス,インコーポレイテッド Expandable epicardial pad and device and methods of delivery thereof
US10231834B2 (en) 2015-02-09 2019-03-19 Edwards Lifesciences Corporation Low profile transseptal catheter and implant system for minimally invasive valve procedure
US10039637B2 (en) 2015-02-11 2018-08-07 Edwards Lifesciences Corporation Heart valve docking devices and implanting methods
US10285809B2 (en) 2015-03-06 2019-05-14 Boston Scientific Scimed Inc. TAVI anchoring assist device
US10426617B2 (en) 2015-03-06 2019-10-01 Boston Scientific Scimed, Inc. Low profile valve locking mechanism and commissure assembly
US10080652B2 (en) 2015-03-13 2018-09-25 Boston Scientific Scimed, Inc. Prosthetic heart valve having an improved tubular seal
US10327896B2 (en) 2015-04-10 2019-06-25 Edwards Lifesciences Corporation Expandable sheath with elastomeric cross sectional portions
US10792471B2 (en) 2015-04-10 2020-10-06 Edwards Lifesciences Corporation Expandable sheath
WO2016168609A1 (en) 2015-04-16 2016-10-20 Tendyne Holdings, Inc. Apparatus and methods for delivery, repositioning, and retrieval of transcatheter prosthetic valves
US10064718B2 (en) 2015-04-16 2018-09-04 Edwards Lifesciences Corporation Low-profile prosthetic heart valve for replacing a mitral valve
US10010417B2 (en) 2015-04-16 2018-07-03 Edwards Lifesciences Corporation Low-profile prosthetic heart valve for replacing a mitral valve
US10232564B2 (en) 2015-04-29 2019-03-19 Edwards Lifesciences Corporation Laminated sealing member for prosthetic heart valve
EP3288495B1 (en) 2015-05-01 2019-09-25 JenaValve Technology, Inc. Device with reduced pacemaker rate in heart valve replacement
US9629720B2 (en) 2015-05-04 2017-04-25 Jacques Seguin Apparatus and methods for treating cardiac valve regurgitation
CA2986047C (en) 2015-05-14 2020-11-10 W. L. Gore & Associates, Inc. Devices and methods for occlusion of an atrial appendage
WO2017004377A1 (en) 2015-07-02 2017-01-05 Boston Scientific Scimed, Inc. Adjustable nosecone
EP3316823B1 (en) * 2015-07-02 2020-04-08 Edwards Lifesciences Corporation Integrated hybrid heart valves
CR20170577A (en) 2015-07-02 2019-05-03 Edwards Lifesciences Corp Hybrid heart valves adapted for post-implant expansion.-
US10195392B2 (en) 2015-07-02 2019-02-05 Boston Scientific Scimed, Inc. Clip-on catheter
US9974650B2 (en) 2015-07-14 2018-05-22 Edwards Lifesciences Corporation Prosthetic heart valve
US10136991B2 (en) 2015-08-12 2018-11-27 Boston Scientific Scimed Inc. Replacement heart valve implant
US10179041B2 (en) 2015-08-12 2019-01-15 Boston Scientific Scimed Icn. Pinless release mechanism
US10179046B2 (en) 2015-08-14 2019-01-15 Edwards Lifesciences Corporation Gripping and pushing device for medical instrument
US11026788B2 (en) 2015-08-20 2021-06-08 Edwards Lifesciences Corporation Loader and retriever for transcatheter heart valve, and methods of crimping transcatheter heart valve
EP3337428A1 (en) 2015-08-21 2018-06-27 Twelve Inc. Implantable heart valve devices, mitral valve repair devices and associated systems and methods
US10588744B2 (en) 2015-09-04 2020-03-17 Edwards Lifesciences Corporation Delivery system for prosthetic heart valve
US10080653B2 (en) 2015-09-10 2018-09-25 Edwards Lifesciences Corporation Limited expansion heart valve
US10327894B2 (en) 2015-09-18 2019-06-25 Tendyne Holdings, Inc. Methods for delivery of prosthetic mitral valves
US10314703B2 (en) 2015-09-21 2019-06-11 Edwards Lifesciences Corporation Cylindrical implant and balloon
US10478288B2 (en) 2015-09-30 2019-11-19 Clover Life Sciences Inc. Trileaflet mechanical prosthetic heart valve
US10350067B2 (en) 2015-10-26 2019-07-16 Edwards Lifesciences Corporation Implant delivery capsule
US11259920B2 (en) 2015-11-03 2022-03-01 Edwards Lifesciences Corporation Adapter for prosthesis delivery device and methods of use
US10470876B2 (en) 2015-11-10 2019-11-12 Edwards Lifesciences Corporation Transcatheter heart valve for replacing natural mitral valve
US10376364B2 (en) 2015-11-10 2019-08-13 Edwards Lifesciences Corporation Implant delivery capsule
US10321996B2 (en) 2015-11-11 2019-06-18 Edwards Lifesciences Corporation Prosthetic valve delivery apparatus having clutch mechanism
US10265169B2 (en) 2015-11-23 2019-04-23 Edwards Lifesciences Corporation Apparatus for controlled heart valve delivery
US11033387B2 (en) 2015-11-23 2021-06-15 Edwards Lifesciences Corporation Methods for controlled heart valve delivery
US10583007B2 (en) 2015-12-02 2020-03-10 Edwards Lifesciences Corporation Suture deployment of prosthetic heart valve
AU2016362474B2 (en) 2015-12-03 2021-04-22 Tendyne Holdings, Inc. Frame features for prosthetic mitral valves
US10357351B2 (en) 2015-12-04 2019-07-23 Edwards Lifesciences Corporation Storage assembly for prosthetic valve
JP6795591B2 (en) 2015-12-28 2020-12-02 テンダイン ホールディングス,インコーポレイテッド Atrial pocket closure for artificial heart valve
AU2016380345B2 (en) 2015-12-30 2021-10-28 Caisson Interventional, LLC Systems and methods for heart valve therapy
CN108882981B (en) 2016-01-29 2021-08-10 内奥瓦斯克迪亚拉公司 Prosthetic valve for preventing outflow obstruction
US10342660B2 (en) 2016-02-02 2019-07-09 Boston Scientific Inc. Tensioned sheathing aids
US10179043B2 (en) 2016-02-12 2019-01-15 Edwards Lifesciences Corporation Prosthetic heart valve having multi-level sealing member
US10779941B2 (en) 2016-03-08 2020-09-22 Edwards Lifesciences Corporation Delivery cylinder for prosthetic implant
US10799676B2 (en) 2016-03-21 2020-10-13 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US11219746B2 (en) 2016-03-21 2022-01-11 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US10799677B2 (en) 2016-03-21 2020-10-13 Edwards Lifesciences Corporation Multi-direction steerable handles for steering catheters
US10517722B2 (en) 2016-03-24 2019-12-31 Edwards Lifesciences Corporation Delivery system for prosthetic heart valve
EP3448316B1 (en) 2016-04-29 2023-03-29 Medtronic Vascular Inc. Prosthetic heart valve devices with tethered anchors
US10470877B2 (en) 2016-05-03 2019-11-12 Tendyne Holdings, Inc. Apparatus and methods for anterior valve leaflet management
US10583005B2 (en) 2016-05-13 2020-03-10 Boston Scientific Scimed, Inc. Medical device handle
EP4183371A1 (en) 2016-05-13 2023-05-24 JenaValve Technology, Inc. Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system
US10201416B2 (en) 2016-05-16 2019-02-12 Boston Scientific Scimed, Inc. Replacement heart valve implant with invertible leaflets
JP7013391B2 (en) * 2016-05-27 2022-01-31 テルモ カーディオバスキュラー システムズ コーポレイション Equipment for preparing valve leaflets from the membrane
WO2017218375A1 (en) 2016-06-13 2017-12-21 Tendyne Holdings, Inc. Sequential delivery of two-part prosthetic mitral valve
EP3478224B1 (en) 2016-06-30 2022-11-02 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus for delivery of same
US10856981B2 (en) 2016-07-08 2020-12-08 Edwards Lifesciences Corporation Expandable sheath and methods of using the same
EP3484411A1 (en) 2016-07-12 2019-05-22 Tendyne Holdings, Inc. Apparatus and methods for trans-septal retrieval of prosthetic heart valves
US11096781B2 (en) * 2016-08-01 2021-08-24 Edwards Lifesciences Corporation Prosthetic heart valve
US11026782B2 (en) 2016-08-11 2021-06-08 4C Medical Technologies, Inc. Heart chamber prosthetic valve implant with elevated valve section and single chamber anchoring for preservation, supplementation and/or replacement of native valve function
US10357361B2 (en) 2016-09-15 2019-07-23 Edwards Lifesciences Corporation Heart valve pinch devices and delivery systems
US10575944B2 (en) 2016-09-22 2020-03-03 Edwards Lifesciences Corporation Prosthetic heart valve with reduced stitching
EP3531978A4 (en) 2016-10-28 2020-06-03 Foldax, Inc. Prosthetic heart valves with elastic support structures and related methods
US10973631B2 (en) 2016-11-17 2021-04-13 Edwards Lifesciences Corporation Crimping accessory device for a prosthetic valve
US10463484B2 (en) 2016-11-17 2019-11-05 Edwards Lifesciences Corporation Prosthetic heart valve having leaflet inflow below frame
WO2018090148A1 (en) 2016-11-21 2018-05-24 Neovasc Tiara Inc. Methods and systems for rapid retraction of a transcatheter heart valve delivery system
US10603165B2 (en) 2016-12-06 2020-03-31 Edwards Lifesciences Corporation Mechanically expanding heart valve and delivery apparatus therefor
WO2018112429A1 (en) 2016-12-16 2018-06-21 Edwards Lifesciences Corporation Deployment systems, tools, and methods for delivering an anchoring device for a prosthetic valve
CN114617677A (en) 2016-12-20 2022-06-14 爱德华兹生命科学公司 System and mechanism for deploying a docking device for replacing a heart valve
US11654023B2 (en) 2017-01-23 2023-05-23 Edwards Lifesciences Corporation Covered prosthetic heart valve
US11013600B2 (en) 2017-01-23 2021-05-25 Edwards Lifesciences Corporation Covered prosthetic heart valve
US11185406B2 (en) 2017-01-23 2021-11-30 Edwards Lifesciences Corporation Covered prosthetic heart valve
WO2018138658A1 (en) 2017-01-27 2018-08-02 Jenavalve Technology, Inc. Heart valve mimicry
US10702378B2 (en) 2017-04-18 2020-07-07 Twelve, Inc. Prosthetic heart valve device and associated systems and methods
US11224511B2 (en) 2017-04-18 2022-01-18 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10433961B2 (en) 2017-04-18 2019-10-08 Twelve, Inc. Delivery systems with tethers for prosthetic heart valve devices and associated methods
LT3558169T (en) 2017-04-18 2022-02-10 Edwards Lifesciences Corporation Heart valve sealing devices and delivery devices therefor
US10575950B2 (en) 2017-04-18 2020-03-03 Twelve, Inc. Hydraulic systems for delivering prosthetic heart valve devices and associated methods
US10973634B2 (en) 2017-04-26 2021-04-13 Edwards Lifesciences Corporation Delivery apparatus for a prosthetic heart valve
US10959846B2 (en) 2017-05-10 2021-03-30 Edwards Lifesciences Corporation Mitral valve spacer device
US10792151B2 (en) 2017-05-11 2020-10-06 Twelve, Inc. Delivery systems for delivering prosthetic heart valve devices and associated methods
US10842619B2 (en) 2017-05-12 2020-11-24 Edwards Lifesciences Corporation Prosthetic heart valve docking assembly
US11135056B2 (en) 2017-05-15 2021-10-05 Edwards Lifesciences Corporation Devices and methods of commissure formation for prosthetic heart valve
EP3630013A4 (en) 2017-05-22 2020-06-17 Edwards Lifesciences Corporation Valve anchor and installation method
US20210401571A9 (en) 2017-05-31 2021-12-30 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US10646338B2 (en) 2017-06-02 2020-05-12 Twelve, Inc. Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods
US11026785B2 (en) 2017-06-05 2021-06-08 Edwards Lifesciences Corporation Mechanically expandable heart valve
US10869759B2 (en) 2017-06-05 2020-12-22 Edwards Lifesciences Corporation Mechanically expandable heart valve
US10709591B2 (en) 2017-06-06 2020-07-14 Twelve, Inc. Crimping device and method for loading stents and prosthetic heart valves
WO2018226915A1 (en) 2017-06-08 2018-12-13 Boston Scientific Scimed, Inc. Heart valve implant commissure support structure
US10639152B2 (en) 2017-06-21 2020-05-05 Edwards Lifesciences Corporation Expandable sheath and methods of using the same
CA3068311A1 (en) 2017-06-30 2019-01-03 Edwards Lifesciences Corporation Lock and release mechanisms for trans-catheter implantable devices
CN110996853B (en) 2017-06-30 2023-01-10 爱德华兹生命科学公司 Docking station for transcatheter valve
US10729541B2 (en) 2017-07-06 2020-08-04 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US10786352B2 (en) 2017-07-06 2020-09-29 Twelve, Inc. Prosthetic heart valve devices and associated systems and methods
US10857334B2 (en) 2017-07-12 2020-12-08 Edwards Lifesciences Corporation Reduced operation force inflator
WO2019014473A1 (en) 2017-07-13 2019-01-17 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus and methods for delivery of same
US10918473B2 (en) 2017-07-18 2021-02-16 Edwards Lifesciences Corporation Transcatheter heart valve storage container and crimping mechanism
EP3661458A1 (en) 2017-08-01 2020-06-10 Boston Scientific Scimed, Inc. Medical implant locking mechanism
BR112020002459A2 (en) 2017-08-11 2020-07-28 Edwards Lifesciences Corporation sealing element for prosthetic heart valve
US11083575B2 (en) 2017-08-14 2021-08-10 Edwards Lifesciences Corporation Heart valve frame design with non-uniform struts
US10932903B2 (en) 2017-08-15 2021-03-02 Edwards Lifesciences Corporation Skirt assembly for implantable prosthetic valve
CN111225633B (en) 2017-08-16 2022-05-31 波士顿科学国际有限公司 Replacement heart valve coaptation assembly
US10898319B2 (en) 2017-08-17 2021-01-26 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US10973628B2 (en) 2017-08-18 2021-04-13 Edwards Lifesciences Corporation Pericardial sealing member for prosthetic heart valve
US10722353B2 (en) 2017-08-21 2020-07-28 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US10806573B2 (en) 2017-08-22 2020-10-20 Edwards Lifesciences Corporation Gear drive mechanism for heart valve delivery apparatus
WO2019036810A1 (en) 2017-08-25 2019-02-28 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
WO2019046099A1 (en) 2017-08-28 2019-03-07 Tendyne Holdings, Inc. Prosthetic heart valves with tether coupling features
US11051939B2 (en) 2017-08-31 2021-07-06 Edwards Lifesciences Corporation Active introducer sheath system
US10973629B2 (en) 2017-09-06 2021-04-13 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US11147667B2 (en) 2017-09-08 2021-10-19 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
WO2019051476A1 (en) 2017-09-11 2019-03-14 Incubar, LLC Conduit vascular implant sealing device for reducing endoleak
AU2018334191B2 (en) 2017-09-12 2021-04-08 Edwards Lifesciences Corporation Leaflet frame attachment for prosthetic valves
CN111132636B (en) 2017-09-27 2022-04-08 W.L.戈尔及同仁股份有限公司 Prosthetic valves with expandable frames and associated systems and methods
CN111163728B (en) 2017-09-27 2022-04-29 W.L.戈尔及同仁股份有限公司 Prosthetic valve with mechanically coupled leaflets
EP3694445A1 (en) 2017-10-13 2020-08-19 W. L. Gore & Associates, Inc. Telescoping prosthetic valve and delivery system
US11173023B2 (en) 2017-10-16 2021-11-16 W. L. Gore & Associates, Inc. Medical devices and anchors therefor
SG11202002918YA (en) 2017-10-18 2020-05-28 Edwards Lifesciences Corp Catheter assembly
US11207499B2 (en) 2017-10-20 2021-12-28 Edwards Lifesciences Corporation Steerable catheter
JP7227240B2 (en) * 2017-10-31 2023-02-21 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド artificial heart valve
JP7052032B2 (en) 2017-10-31 2022-04-11 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド Medical valves and valve membranes that promote inward tissue growth
CA3078473C (en) 2017-10-31 2023-03-14 W. L. Gore & Associates, Inc. Transcatheter deployment systems and associated methods
US11154397B2 (en) 2017-10-31 2021-10-26 W. L. Gore & Associates, Inc. Jacket for surgical heart valve
CA3083533A1 (en) 2017-12-11 2019-06-20 California Institute Of Technology Systems, devices, and methods relating to the manufacture of intravascularly implantable prosthetic valves
EP3740160A2 (en) 2018-01-19 2020-11-25 Boston Scientific Scimed Inc. Inductance mode deployment sensors for transcatheter valve system
JP7047106B2 (en) 2018-01-19 2022-04-04 ボストン サイエンティフィック サイムド,インコーポレイテッド Medical device delivery system with feedback loop
US11464639B2 (en) 2018-01-31 2022-10-11 Oregon Health & Science University Methods for creating sinus-matched aortic valves
US11147668B2 (en) 2018-02-07 2021-10-19 Boston Scientific Scimed, Inc. Medical device delivery system with alignment feature
WO2019165394A1 (en) 2018-02-26 2019-08-29 Boston Scientific Scimed, Inc. Embedded radiopaque marker in adaptive seal
US11318011B2 (en) 2018-04-27 2022-05-03 Edwards Lifesciences Corporation Mechanically expandable heart valve with leaflet clamps
WO2019222367A1 (en) 2018-05-15 2019-11-21 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
WO2019224577A1 (en) 2018-05-23 2019-11-28 Sorin Group Italia S.R.L. A cardiac valve prosthesis
US11844914B2 (en) 2018-06-05 2023-12-19 Edwards Lifesciences Corporation Removable volume indicator for syringe
USD944398S1 (en) 2018-06-13 2022-02-22 Edwards Lifesciences Corporation Expanded heart valve stent
US11241310B2 (en) 2018-06-13 2022-02-08 Boston Scientific Scimed, Inc. Replacement heart valve delivery device
US11857441B2 (en) 2018-09-04 2024-01-02 4C Medical Technologies, Inc. Stent loading device
CN109172047B (en) * 2018-09-18 2023-09-15 上海工程技术大学 Prosthetic heart valve function test system
CN112867468A (en) 2018-10-19 2021-05-28 爱德华兹生命科学公司 Prosthetic heart valve with non-cylindrical frame
US11779728B2 (en) 2018-11-01 2023-10-10 Edwards Lifesciences Corporation Introducer sheath with expandable introducer
USD926322S1 (en) 2018-11-07 2021-07-27 W. L. Gore & Associates, Inc. Heart valve cover
US11737872B2 (en) 2018-11-08 2023-08-29 Neovasc Tiara Inc. Ventricular deployment of a transcatheter mitral valve prosthesis
WO2020123486A1 (en) 2018-12-10 2020-06-18 Boston Scientific Scimed, Inc. Medical device delivery system including a resistance member
US11497601B2 (en) 2019-03-01 2022-11-15 W. L. Gore & Associates, Inc. Telescoping prosthetic valve with retention element
EP3946161A2 (en) 2019-03-26 2022-02-09 Edwards Lifesciences Corporation Prosthetic heart valve
CA3135753C (en) 2019-04-01 2023-10-24 Neovasc Tiara Inc. Controllably deployable prosthetic valve
CA3136334A1 (en) 2019-04-10 2020-10-15 Neovasc Tiara Inc. Prosthetic valve with natural blood flow
US11439504B2 (en) 2019-05-10 2022-09-13 Boston Scientific Scimed, Inc. Replacement heart valve with improved cusp washout and reduced loading
WO2020236931A1 (en) 2019-05-20 2020-11-26 Neovasc Tiara Inc. Introducer with hemostasis mechanism
CN114144144A (en) 2019-06-20 2022-03-04 内奥瓦斯克迪亚拉公司 Low-profile prosthetic mitral valve
US11648110B2 (en) 2019-12-05 2023-05-16 Tendyne Holdings, Inc. Braided anchor for mitral valve
US11648114B2 (en) 2019-12-20 2023-05-16 Tendyne Holdings, Inc. Distally loaded sheath and loading funnel
US11678980B2 (en) 2020-08-19 2023-06-20 Tendyne Holdings, Inc. Fully-transseptal apical pad with pulley for tensioning
KR20230054857A (en) 2020-08-24 2023-04-25 에드워즈 라이프사이언시스 코포레이션 Commissural markers for prosthetic heart valves
EP4046601A1 (en) * 2021-02-18 2022-08-24 P+F Products + Features GmbH Mitral stent
EP4046600A1 (en) * 2021-02-18 2022-08-24 P+F Products + Features GmbH Aortic stent
CN117297839A (en) * 2022-06-24 2023-12-29 江苏臻亿医疗科技有限公司 Artificial heart valve
US11701224B1 (en) * 2022-06-28 2023-07-18 Seven Summits Medical, Inc. Prosthetic heart valve for multiple positions and applications

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3197788A (en) 1962-04-23 1965-08-03 Inst Of Medical Sciences Prosthetic valve for cardiac surgery
US3714671A (en) 1970-11-30 1973-02-06 Cutter Lab Tissue-type heart valve with a graft support ring or stent
US3755823A (en) 1971-04-23 1973-09-04 Hancock Laboratories Inc Flexible stent for heart valve
US4291420A (en) 1973-11-09 1981-09-29 Medac Gesellschaft Fur Klinische Spezialpraparate Mbh Artificial heart valve
US4084268A (en) 1976-04-22 1978-04-18 Shiley Laboratories, Incorporated Prosthetic tissue heart valve
US4297749A (en) 1977-04-25 1981-11-03 Albany International Corp. Heart valve prosthesis
AR221872A1 (en) 1979-03-16 1981-03-31 Liotta Domingo S IMPROVEMENTS IN IMPANTABLE HEART VALVES
GB2056023B (en) 1979-08-06 1983-08-10 Ross D N Bodnar E Stent for a cardiac valve
US4388735A (en) 1980-11-03 1983-06-21 Shiley Inc. Low profile prosthetic xenograft heart valve
US4470157A (en) 1981-04-27 1984-09-11 Love Jack W Tricuspid prosthetic tissue heart valve
US4501030A (en) 1981-08-17 1985-02-26 American Hospital Supply Corporation Method of leaflet attachment for prosthetic heart valves
US4451936A (en) 1981-12-21 1984-06-05 American Hospital Supply Corporation Supra-annular aortic valve
DE3365190D1 (en) 1982-01-20 1986-09-18 Martin Morris Black Artificial heart valves
US4500030A (en) * 1982-09-13 1985-02-19 Apx Group, Inc. Flange weld technique
US4626255A (en) 1983-09-23 1986-12-02 Christian Weinhold Heart valve bioprothesis
DE3541478A1 (en) 1985-11-23 1987-05-27 Beiersdorf Ag HEART VALVE PROSTHESIS AND METHOD FOR THE PRODUCTION THEREOF
US4778451A (en) * 1986-03-04 1988-10-18 Kamen Dean L Flow control system using boyle's law
US4725274A (en) 1986-10-24 1988-02-16 Baxter Travenol Laboratories, Inc. Prosthetic heart valve
US4851000A (en) 1987-07-31 1989-07-25 Pacific Biomedical Holdings, Ltd. Bioprosthetic valve stent
DE3910971C1 (en) 1989-04-05 1990-08-23 Alexander Prof. Dr. Bernhard
US5147391A (en) 1990-04-11 1992-09-15 Carbomedics, Inc. Bioprosthetic heart valve with semi-permeable commissure posts and deformable leaflets
US5037434A (en) 1990-04-11 1991-08-06 Carbomedics, Inc. Bioprosthetic heart valve with elastic commissures
US5411552A (en) 1990-05-18 1995-05-02 Andersen; Henning R. Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis
US5489298A (en) 1991-01-24 1996-02-06 Autogenics Rapid assembly concentric mating stent, tissue heart valve with enhanced clamping and tissue exposure
US5163955A (en) 1991-01-24 1992-11-17 Autogenics Rapid assembly, concentric mating stent, tissue heart valve with enhanced clamping and tissue alignment
IT1245750B (en) 1991-05-24 1994-10-14 Sorin Biomedica Emodialisi S R CARDIAC VALVE PROSTHESIS, PARTICULARLY FOR REPLACING THE AORTIC VALVE
US5153955A (en) * 1991-08-14 1992-10-13 Singleton Jr Albert L Hammock stand
US5489297A (en) 1992-01-27 1996-02-06 Duran; Carlos M. G. Bioprosthetic heart valve with absorbable stent
US5163953A (en) 1992-02-10 1992-11-17 Vince Dennis J Toroidal artificial heart valve stent
US5258023A (en) 1992-02-12 1993-11-02 Reger Medical Development, Inc. Prosthetic heart valve
GB9206449D0 (en) 1992-03-25 1992-05-06 Univ Leeds Artificial heart valve
US5449384A (en) 1992-09-28 1995-09-12 Medtronic, Inc. Dynamic annulus heart valve employing preserved porcine valve leaflets
GB9312666D0 (en) 1993-06-18 1993-08-04 Vesely Ivan Bioprostetic heart valve
WO1995028899A1 (en) 1994-04-22 1995-11-02 Medtronic, Inc. Stented bioprosthetic heart valve
US5522885A (en) 1994-05-05 1996-06-04 Autogenics Assembly tooling for an autologous tissue heart valve
US5554185A (en) 1994-07-18 1996-09-10 Block; Peter C. Inflatable prosthetic cardiovascular valve for percutaneous transluminal implantation of same
US5716417A (en) 1995-06-07 1998-02-10 St. Jude Medical, Inc. Integral supporting structure for bioprosthetic heart valve
US5728152A (en) 1995-06-07 1998-03-17 St. Jude Medical, Inc. Bioresorbable heart valve support
US5861028A (en) 1996-09-09 1999-01-19 Shelhigh Inc Natural tissue heart valve and stent prosthesis and method for making the same
AU2884197A (en) 1996-05-31 1998-01-05 University Of Western Ontario, The Expansible bioprosthetic valve stent
US5855601A (en) 1996-06-21 1999-01-05 The Trustees Of Columbia University In The City Of New York Artificial heart valve and method and device for implanting the same
US5928281A (en) 1997-03-27 1999-07-27 Baxter International Inc. Tissue heart valves
US5910170A (en) * 1997-12-17 1999-06-08 St. Jude Medical, Inc. Prosthetic heart valve stent utilizing mounting clips
US5935163A (en) 1998-03-31 1999-08-10 Shelhigh, Inc. Natural tissue heart valve prosthesis
US6254636B1 (en) 1998-06-26 2001-07-03 St. Jude Medical, Inc. Single suture biological tissue aortic stentless valve
ATE379998T1 (en) 1999-01-26 2007-12-15 Edwards Lifesciences Corp FLEXIBLE HEART VALVE
ES2307590T3 (en) * 2000-01-27 2008-12-01 3F Therapeutics, Inc HEART VALVE PROTESICA.

Also Published As

Publication number Publication date
DE60115273D1 (en) 2005-12-29
US7179290B2 (en) 2007-02-20
ATE310469T1 (en) 2005-12-15
AU2001290908B2 (en) 2005-06-02
WO2002024118A1 (en) 2002-03-28
US20050096739A1 (en) 2005-05-05
US20030014105A1 (en) 2003-01-16
EP1328215A1 (en) 2003-07-23
AU9090801A (en) 2002-04-02
US6461382B1 (en) 2002-10-08
CA2422009A1 (en) 2002-03-28
EP1328215B1 (en) 2005-11-23
DE60115273T2 (en) 2006-08-10

Similar Documents

Publication Publication Date Title
CA2422009C (en) Flexible heart valve having moveable commissures
US10342661B2 (en) Prosthetic mitral valve
US5549665A (en) Bioprostethic valve
JP4701276B2 (en) Flexible heart valve
EP1924223B1 (en) Four-leaflet stented mitral heart valve
US6558418B2 (en) Flexible heart valve
US20040225356A1 (en) Flexible heart valve
US20050228494A1 (en) Controlled separation heart valve frame
US20070168022A1 (en) Heart valve

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20210914