CA2430161C - Data processor - Google Patents

Data processor Download PDF

Info

Publication number
CA2430161C
CA2430161C CA002430161A CA2430161A CA2430161C CA 2430161 C CA2430161 C CA 2430161C CA 002430161 A CA002430161 A CA 002430161A CA 2430161 A CA2430161 A CA 2430161A CA 2430161 C CA2430161 C CA 2430161C
Authority
CA
Canada
Prior art keywords
data
data item
clock
reference value
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CA002430161A
Other languages
French (fr)
Other versions
CA2430161A1 (en
Inventor
Hideki Yoshida
Jin Sato
Kazuyuki Ikeda
Takashi Norizuki
Kenichi Sakusabe
Daisuke Kawaguchi
Munehiro Yoshikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of CA2430161A1 publication Critical patent/CA2430161A1/en
Application granted granted Critical
Publication of CA2430161C publication Critical patent/CA2430161C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/4302Content synchronisation processes, e.g. decoder synchronisation
    • H04N21/4307Synchronising the rendering of multiple content streams or additional data on devices, e.g. synchronisation of audio on a mobile phone with the video output on the TV screen
    • H04N21/43072Synchronising the rendering of multiple content streams or additional data on devices, e.g. synchronisation of audio on a mobile phone with the video output on the TV screen of multiple content streams on the same device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/04Synchronising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B14/00Transmission systems not characterised by the medium used for transmission
    • H04B14/02Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation
    • H04B14/04Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation using pulse code modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L13/00Details of the apparatus or circuits covered by groups H04L15/00 or H04L17/00
    • H04L13/02Details not particular to receiver or transmitter
    • H04L13/08Intermediate storage means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/234Processing of video elementary streams, e.g. splicing of video streams, manipulating MPEG-4 scene graphs
    • H04N21/23406Processing of video elementary streams, e.g. splicing of video streams, manipulating MPEG-4 scene graphs involving management of server-side video buffer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/426Internal components of the client ; Characteristics thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/44Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream, rendering scenes according to MPEG-4 scene graphs
    • H04N21/44004Processing of video elementary streams, e.g. splicing a video clip retrieved from local storage with an incoming video stream, rendering scenes according to MPEG-4 scene graphs involving video buffer management, e.g. video decoder buffer or video display buffer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/47End-user applications
    • H04N21/478Supplemental services, e.g. displaying phone caller identification, shopping application
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/38Transmitter circuitry for the transmission of television signals according to analogue transmission standards

Abstract

A data processing apparatus constituting a low-cost audio/video data transmission and reception system is disclosed. A reception buffer monitoring circuit 21 monitors the size of receiver data being accumulated in a reception buffer 6. When the size of accumulated data is found to become higher than a high threshold, the circuit 21 causes a reception clock generation circuit 8 to generate a reception clock with a higher frequency. When the accumulated data size becomes lower than a low threshold, the reception clock is generated with a lower frequency. Based on the reception clock fed from the reception clock generation circuit 8, an audio/video decoder 7 decodes the audio/video data coming from the reception buffer 6. This invention applies advantageously to a television transmission and reception system for transmitting and receiving TV broadcast signals.

Description

' CA 02430161 2003-05-27 ,r DESCRIPTION
DATA PROCESSOR
Technical Field The present invention relates to a data processing apparatus and, more particularly, to a data processing apparatus which is simply structured to process data.
Background Art FIG. 1 shows an overall configuration of a conventional audio/video data transmissian and reception system. On the transmitting side, transmitter audio/video data to be sent out are input to an audio/video encoder 1.
In turn, the audio/video encoder 1 compresses the input transmitter audio/video data illustratively in MPEG
format based on a clock frequency generated by a transmission clock generation circuit 2 such as a crystal oscillator. The compressed data are accumulated in a transmission buffer 3 to absorb clock frequency differences. Every time a transmission device 4 sends data to a reception device 5, the transmission buffer 3 replenishes the transmission device 4 with more data.
Before transmission, the transmission device 4 subjects the transmitter data to such processes as code conversion f i f and modulation.
On the receiving side, the reception device 5 receives the transmitter data from the transmission device 4 and restores the original data by subjecting the received data to such processes as demodulation and decoding. The restored data are accumulated in a reception buffer 6. It is assumed that the data transfer rate between the transmission device 4 and the reception device 5 is sufficiently higher than the transfer rate of the audio/video data. From the reception buffer 6, the data are forwarded to an audio/video decoder 7 in properly timed relation with processing of the latter.
The audio/video decoder 7 decodes (i.e., decompresses) the data in accordance with a clock frequency generated by a reception clock generation circuit 8.
With the system in FIG. 1, it is difficult to keep the transmission clock frequency input to the audio/video encoder 1 exactly the same as the reception clock frequency entered into the audio/video decoder 7 because of variations in component parameters incurred during manufacturing. The resulting difference in processing speeds causes data overflows and underflows in the reception buffer,6, as will be discussed later with reference to FIGS. 2A through 2F and 3A through 3F. The fluctuating flow of data causes the audio/video decoder 7
2 to develop irregularities in reproducing the video or audio data.
FIGS. 2A through 2F illustrate how a data overflow occurs. An audio/video encoder synchronizing clock (FIG.
2A) is generated internally by the audio/video encoder 1 in keeping with the transmission clock generated by the transmission clock generation circuit 2. In synchronism with leading edges of the clock, encoded audio/video data Dn (FIG. 2B) of a fixed length each are accumulated in the transmission buffer 3 (of a two-packet size).
Transmitter data Dn are received by the reception device 5 following a predetermined transmission delay (FIG. 2C) and are accumulated in the reception buffer 6 (FIG. 2D). Receiver data Dn are forwarded from the reception buffer 6 to the audio/video decoder 7 (FIG. 7F) whereby the data are decoded and output as receiver audio/video data.
An audio/video decoder synchronizing clock (FIG.
2E) is generated internally by the audio/video decoder 7 in accordance with the reception clock generated by the reception clock generation circuit 8. The data input in synchronism with each leading edge of the clock are decoded by the audio/video decoder 7. In this example, the audio/video decoder synchronizing clock (FIG. 2E) is lower in frequency than the audio/video encoder
3 i I 1 synchronizing clock (FIG. 2A), so that a data overflow takes place when receiver data Dn+5 are placed into the reception buffer 6.
FIGS. 3A through 3F depict how-a data underflow occurs. Audio,/video data are processed in the same manner as with the case in FIGS. 2A through 2F. In this example, the audio/video decoder synchronizing clock (FIG. 3E) is higher in frequency than the audio/video encoder synchronizing clock (FIG. 3A), so that the reception buffer 6 is vacated before the reception of subsequent receiver data Dn+3 (FIG. 3D). With the reception buffer 6 incapable of transferring data to the audio/video decoder 7 at a leading edge of the audio/video decoder synchronizing clock (FIG. 3F), a data underflow takes place.
Disclosure of Invention The present invention has been made in view of the above circumstances and provides a data processing apparatus that constitutes a simply structured, low-cost system capable of preventing data overflows and underflows.
In carrying out the invention and according to a first aspect thereof, there is provided a data processing apparatus including: a receiving element for receiving
4 data; a separating element for separating the data received by the receiving element into a first data item and a second data item; a first storing element for storing the first data item; a second storing element for storing the second data item; a first processing element for decoding the first data item; a second processing element for decoding the second data item; a generating element for generating a first and a second clock for use by the first and the second processing element in processing the first data item and the second data item respectively; a first controlling element for raising a frequency of the first clock if a data size of the first data item stored in the first storing element is higher than a first reference value, the first controlling element further lowering the frequency of the first clock if the data size of the first data item is lower than a second reference value; and a second controlling element for raising the frequency of the second clock if the data size of the second data item is higher than a third reference value, the second controlling element further lowering the frequency of the second clock if the data size of the second data item is lower than a fourth reference value; wherein, if there occurs a difference in total processing time between a transmission block and a reception block handling the first data item and the Y
second data item, and if Buff is assumed to denote a data size processible by the first processing element and Buf2 to represent an average value of the first reference value and the second reference value, then the first controlling element causes a center value of a controllable range of data sizes accommodated by the first storing element to correspond to a sum of Bufl and Buf2.
In a still further preferred structure according to the first aspect of the invention, the first data item and the second data item may be made up of an audio data item and a video data item respectively.
According to a second aspect of the invention, there is provided a data processing method including the steps of: receiving data; separating the data received in the receiving step into a first data item and a second data item; firstly decoding the first data item; secondly decoding the second data item; generating a first and a second clock for use in the first and the second decoding steps for processing the first data item and the second data item respectively; firstly exerting control to raise a frequency of the first clock if a data size of the first data item stored in the first storing step is higher than a first reference value, the first controlling step further lowering the frequency of the first clock if the data size of the first data item is lower than a second reference value; and secondly exerting control to raise the frequency of the second clock if the data size of the second data item is higher than a third reference value, the second controlling step further lowering the frequency of the second clock if the data size of the second data item is lower than a fourth reference value; wherein, if there occurs a difference in total processing time between a transmission block and a reception block handling the first data item and the second data item, and if Bufl is assumed to denote a data size processible in the first decoding step and Buf2 to represent an average value of the first reference value and the second reference value, then the first controlling step causes a center value of a controllable range of data sizes accommodated in the first storing step to correspond to a sum of Bufl and Buf2.
According to a third aspect of the invention, there is provided a recording medium which stores a program readable by a computer, the program including the steps of: receiving data; separating the data received in the receiving step into a first data item and a second data item; firstly decoding the first data item; secondly decoding the second data item; generating a first and a second clock for use in the first and the second decoding steps for processing the first data item and the second data item respectively; firstly exerting control to raise a frequency of the first clock if a data size of the first data item stored in the first storing step is higher than a first reference value, the first controlling step further lowering the frequency of the first clock if the data size of the first data item is lower than a second reference value; and secondly exerting control to raise the frequency of the second clock if the data size of the second data item is higher than a third reference value, the second controlling step further lowering the frequency of the second clock if the data size of the second data item is lower than a fourth reference value; wherein, if there occurs a difference in total processing time between a transmission block and a reception block handling the first data item and the second data item, and if Bufl is assumed to denote a data size processible in the first decoding step and Buf2 to represent an average value of the first reference value and the second reference value, then the first controlling step causes a center value of a controllable range of data sizes accommodated in the first storing step to correspond to a sum of Bufl and Buf2.
The data processing apparatus of this invention is characterized in that if there occurs any difference in r total processing time between the transmission block and the reception block handling the first data item and the second data item, and if Bufl is assumed to denote a processible size of the first data item and Buf2 to represent an average value of the first reference value and the second reference value, then the center value of a controllable range of the first data item sizes is made to correspond to the sum of Buff and Buf2.
Brief Description of Drawings FIG. 1 is a block diagram showing a typical configuration of a conventional audio/video data transmission and reception system;
FIGS. 2A through 2F are explanatory views depicting how a data overflow occurs in the system of FIG. 1;

FIGS. 3A through 3F are explanatory views illustrating how a data underflow takes place in the system of FIG. 1;
FIG. 4 is a block diagram indicating a typical configuration of an audio/video data transmission and reception system embodying the invention;
FIG. 5 is a flowchart of steps performed by the system of FIG. 4;
FIG. 6 is an explanatory view sketching frequencies of a reception clock generated by a reception clock generation circuit included in FIG. 4;
FIG. 7 is an explanatory view graphically showing sizes o~ data accumulated in a reception buffer included in FIG. 4;
FIG. 8 is a block diagram depicting a typical configuration of another audio/video data transmission and reception system embodying the invention;
FIG. 9 is an explanatory view indicating differences in delay time between audio data and video data handled by the system of FIG. 8;
FIG. 10 is a schematic view sketching a typical setup of the inventive system;
FIG. 11 is a block diagram showing a typical structure of a channel selection device included in the setup of FIG. 10; and FIG. 12 is a block diagram depicting a typical structure of a display device included in the setup of FIG. 10.
Best Mode for Carrying out the Invention FIG. 4 shows a typical configuration of an audiolvideo data transmission and reception system practiced as a first embodiment of this invention. This system is basically the same in configuration as the conventional system indicated in FIG. 1. The major difference is that the system of FIG. 4 is supplemented with a reception buffer monitoring circuit 21 and that the reception clock generation circuit 8 controls the frequency of the generated clock based on the output of the reception buffer monitoring circuit 21. The other components and their functions are the same as those in the system of FIG. 1.
The basic workings of the system in FIG. 4 are the same as those of the system in FIG. 1 and thus will not be described further. The inventive system differs from the system of FIG. 1 in terms of how to generate the reception clock. This aspect of the invention is described below in more detail.
The reception buffer monitoring circuit 21 monitors the size of data being accumulated in the reception buffer 6. When the data size exceeds a predetermined level, the reception clock generation circuit 8, for example, raises the frequency of the clock generated per field or per frame. When the data size becomes lower than a predetermined level, the reception clock generation circuit 8 generates the clock with a lower frequency.
One way in which the reception clock generation circuit 8 varies the frequency of the clock it generates is by using a voltage controlled oscillator (VCO).
Another way to vary the clock frequency is by getting a counter to count a clock with frequencies higher than the frequency of the clock fed to the audia/video decoder 7 so as to vary the counter value for clock generation.
FIG. 5 is a flowchart of actual control steps carried out by the reception buffer monitoring circuit 21.
In step S1, a check is made to see if the size of data accumulated in the reception buffer 6 is lower than a predetermined low threshold. If the buffered data size is judged to be lower than the low threshold, step S4 is reached and a check is made to see if the clock frequency is lower than a predetermined high limit frequency. If the clock frequency is judged lower than the high limit frequency, then step S5 is reached in which the clock frequency is lowered. If the size of data accumulated in the reception buffer 6 is judged to be higher than the low threshold in step S1, then step S2 is reached and a check is made to see if the data size is higher than a predetermined high threshold. If the data size is judged to be higher than the high threshold in step S2, step S6 is reached and a check is made to see if the clock frequency is higher than a predetermined low limit frequency. If the clock frequency is judged higher than the low limit frequency in step S6, then step S7 is reached in which the clock frequency is raised. Nothing is carried out when the size of data accumulated in the reception buffer 6 falls within the range between the low threshold and the high threshold. The high and low limit frequencies of the clock are determined in a manner meeting the following~conditions:
(1) that the frequency should not exceed a clack range in which the audio/video decoder operates;
(2) that the size of data in the buffer should not wildly fluctuate; and (3) that continued system performance should be ensured under abnormal conditions (e. g., where data fail to come in) .
In step S3, a check is made to see a control stop command is issued. If the command is not judged to be issued, step S1 is reached again and the subsequent steps are repeated. If the control stop command is judged to be issued in step S3, then the process is brought to an end.
FIG. 6 depicts relations between the clock input to the audio/video encoder 1 on the one hand and the clock entered into the audio/video decoder 7 on the other hand.
It is assumed here that ftx stands for the clock input to the audio/video encoder 1 and frx for the clock entered into the audio/video decoder 7. The clock generated by the reception clock generation circuit 8 and input to the audio/video decoder 7 is controlled within the range between a low limit clock frequency (fl),and a high limit clock frequency (fh) by the reception buffer monitoring circuit 21. The audio/video decoder 7 is assumed to operate with its frequency frx in a range between fll and fhh. It is thus required that the frequencies fl and fh fall within the above range, that the low limit clock frequency fl be lower than the clock ftx, and that the clock ftx be lower than the high limit clock frequency fh.
FIG. 7 graphically depicts how data sizes in the reception buffer 6 vary over time. In this example, as shown in FIG. 6, when the clock is to be raised, it is brought up to the high limit clock frequency fh; when the clock is to be lowered, it is brought down to the low limit clock frequency fl. In an initial state B1 where the reception buffer 6 is empty, the clock frx is brought up to the high limit clock frequency fh so as to let data accumulate in the buffer 6. Later at a point B2 where the size of data in the reception buffer 6 exceeds the high threshold, the clock frx is judged to be in need of a reduction. The clock frx is then brought down to the low limit clock frequency fl. At a subsequent point B3 where the data size becomes lower than the low threshold, the clock frx is judged to be in need of an increase. The clock frx is then brought up again to the high limit clock frequency fh. These steps are repeated as described.
FIG. 8 shows a typical configuration of another audio/video data transmission and reception system practiced as a second embodiment of this invention. With this embodiment, the audio/video encoder 1 on the transmitting side is constituted by an audio encoder 1A
and a video encoder 1V. Correspondingly, the transmission clock generation circuit 2 is made up of a transmission clock generation circuit 2A and a transmission clock generation circuit 2V. The output of the audio encoder 1A
is fed to a packet assembly circuit 32 via a transmission buffer 31A. The output of the video encoder 1V is sent to the packet assembly circuit 32 through a transmission buffer 31V.
On the receiving side, a packet disassembly circuit 41 is furnished corresponding to the packet assembly circuit 32 installed on the transmitting side. The packet disassembly circuit 41 disassembles data received from the reception buffer 6 into an audio packet and a video packet. The audio packet is output to an audio decoder 7A
via a reception buffer 42A and the video packet is sent to a video decoder 7V through a reception buffer 42V.
The reception buffer 21 includes reception buffer monitoring circuits 21A and 21V. The reception buffer monitoring circuit 21A monitors the output from the reception buffer 42A, while the reception buffer monitoring circuit 21V monitors the size of data held in the reception buffer 42V. The reception clock generation circuit 8 comprises reception clock generation circuits 8A and 8V. The reception clock generation circuit 8A
generates a reception~clock based on the output of the reception buffer monitoring circuit 21A and outputs the generated clock to the audio decoder 7A. The reception clock generation circuit 8V generates a reception clock based on the output of the reception buffer monitoring circuit 21V and sends the generated clock to the video decoder 7V.
The other components and their functions are the same as those in the system of FIG. 4.
The audio encoder 1A compresses the input transmitter data (audio data) illustratively in MPEG
format and hands the compressed data over to the transmission buffer 31A. The audio encoder 1A acts in keeping with a transmission clock generated by the transmission clock generation circuit 2A. The video encoder 1V operating in keeping with a transmission clock generated by the transmission clock.generation circuit 2V
compresses the transmitter data (video data) illustratively in MPEG format and transfers the compressed data to the transmission buffer 31V. The package assembly circuit 32 assembles transmitter packets by multiplexing the audio and video data from the transmission buffers 31A and 31V and by supplementing the result of the multiplexing with header information or the like needed by the receiving side to disassemble the packets. The assembled transmitter packets are accumulated in the transmission buffer 3. Every time the transmission device 4 sends data, it is supplied with the next data from the transmission buffer 3.
On the receiving side, the reception device 5 receives data and accumulates the data in the reception buffer 6. The packet disassembly circuit 41 disassembles the buffered data into audio data and video data which are transferred to the reception buffers 42A and 42V
respectively. In an audio block, the reception buffer monitoring circuit 21A varies the frequency of the clock generated by the reception clock generation circuit 8A in keeping with the size of the data held in the reception buffer 42A. Based on the clock from the reception clock generation circuit 8A, the audio decoder 7A decodes the received audio data and outputs the decoded data as receiver data.
In a video block, the reception buffer monitoring circuit 21V similarly varies the frequency of the clock generated by the reception clock generation circuit $V in accordance with the size of the data retained in the reception buffer 42V. With this embodiment, audio data.
and video data are separately processed by the encoders 1A and 1V and by the decoders 7A and 7V, respectively.
Because the audio and video data go through different processing paths and are subject to differences in processing time, the receiving side is required to synchronize the two kinds of data in delay time.
FIG. 9 schematically indicates typical differences in delay time between audio data and video data handled by the audio and video blocks respectively. It is assumed here that transmitter data are input to the audio encoder 1A and video encoder 1V in synchronism. Along their processing path, the audio data are subject to a total delay time (Tda) which, except for delays in common with the video data, is made up of a delay time (Tdae) at the audio encoder 1A, a delay time (Tdat) at the transmission buffer 31A, a delay time (Tdar) at the reception buffer 42A, and a delay time (Tdad) at the audio decoder 7A. The delay time (Tdar) at the reception buffer 42A is defined as a delay time in effect at the average value (ABufAve) of the low threshold (in step S1 of FIG. 5) and the high threshold (in step S2 of FIG. 5) for the audio data:
Along their processing path, the video data are subject to a total delay time (Tdv) which, except for delays in common with the audio data, is composed of a delay time (Tdve) at the video encoder 1V, a delay time (Tdvt) at the transmission buffer 31V, a delay time (Tdvr) at the reception buffer 42V, and a delay time (Tdvd) at the video decoder 7V. The delay time (Tdvr) at the reception buffer 42V is defined as a delay time in effect at the average value (VBufAve) of the low threshold (in step S1 of FIG. 5) and the high threshold (in step S2 of FIG. 5) for the video data. In this example, the video data have a longer processing path than the audio data, which translates into a longer processing time for the video data (i.e., Tda < Tdv); the difference in processing time is Tdav between the audio data and the video data.
To synchronize the audio data with the video data requires delaying the processing of the audio data by the time period Tdav. That delay is brought about by setting suitable thresholds on the size of the data accumulated in the reception buffer 42A. More specifically, if the size of audio data processed in the time period Tdav is represented by ABufTdav, then the audio and video data may be synchronized by setting the center value of the accumulated audio data size as the size ABufTdav plus the average value ABufAve mentioned above. The high and low thresholds may then be set above and below that center value respectively.
Although the second embodiment is designed to have the difference in delay time between the audio and the video data all compensated on the receiving side, this is not limitative of the invention. Alternatively, the buffers on the transmitting side may be arranged to absorb some of the delay time difference. Whereas both the audio and the video blocks possess clock adjusting capabilities in the second embodiment, they are not mandatory for a system where synchronism between audio and video data matters little. In that kind of system, the clock adjusting function need only be furnished in either the audio block or the video block.
FIG. 10 schematically sketches a typical setup of the inventive system in FIG. 4. This setup is a TV
reception system that includes a channel selection device 101 and a display device 102 interconnected wirelessly, as shown in FIG. 10. The channel selection device 101 fabricated according to this invention is illustratively set up indoors in the household. The.display device 102 also fabricated according to this invention is employed by the user at his or her side.
As shown in FIG. 10, the channel selection device 101 is connected to an antenna cable lllcb which is led into the household from the outside where the cable is connected to an outdoor receiver antenna 111 for receiving TV broadcast signals. The channel selection device 101 is also connected to a telephone line L which is led into the household from the outside where the line is linked to a telephone network.
A TV broadcast signal selected after reception by the antenna 111 is demodulated by the channel selection device 101. The demodulated signal is sent wirelessly through a transmitter/receiver antenna 118 to the display device 102. In addition, signals transmitted over the telephone line L may be received, selected and decoded by the channel selection device 101. The decoded signal is likewise sent wirelessly via the transmitter/receiver antenna 118 to the display device 102.
The channel selection device 101 is also capable of receiving transmitter information such as instructions and e-mails from the display device 102 through the transmitter/receiver antenna 118. Based on the received instructions, the channel selection device 101 may change TV broadcast signals for a new program selection or send the transmitter information over the telephone line L.
The display device 102 receives the TV broadcast signal sent wirelessly from the channel selection device 101. On receiving the signal, the display device 102 causes pictures represented by the video signal contained in the received signal to appear on the screen of an LCD
(liquid crystal display) 125. At the same time, the sound corresponding to the audio signal contained in the received signal is produced by speakers, so that the user viewing the display screen can enjoy the desired TV
program.
The display device 102 also receives signals representing e-mails and Internet website pages which were received by the channel selection device 101 over the telephone line L and have been wirelessly transmitted therefrom. The display device 102 generates display signals based on the received signals and causes the LCD
125 to present the user with a display of pictures corresponding to the generated display signals.
Furthermore, a touch panel 351 is attached to the display screen of the LCD 125 on the display device 102.
With information displayed on the LCD 125, the user may touch on the touch panel 351 as needed to enter instructions into the system. The touch panel 351 is also used by the user in preparing and sending outgoing e-mails as well as receiving and opening incoming e-mails addressed to the user.
As described, the channel selection device 101 acts as an interface to admit TV broadcast signals and diverse kinds of information offered over the telephone line L
into the TV reception system of this invention, and to forward information from the inventive system onto a communication network through the telephone line L. The display device 102 works as a user interface to provide the user with information admitted into the TV reception system through the channel selection device 101 as well as to accept information entered by the user.
As shown in FIG. 10, the channel selection device 101 is installed in such a manner that it can be coupled securely to terminals T1 and T2 connecting to the antennal cable lllcb and telephone line L respectively, wherever the terminals are located. Since the channel selection device 101 and display device 102 are interconnected wirelessly as illustrated, the display device 102 may be. installed in any area where radio signals from the channel selection device 101 can be received. The setup thus allows the user to enjoy desired TV programs and use e-mails through an Internet connection at locations appreciably freed from conventional installation constraints.
FIG. 11 is a block diagram showing a more detailed structure of the channel selection device 101. The components of the channel selection device 101 are placed under control of a control unit 200.
The control unit 200, as shown in FIG. 11, is a microcomputer that comprises a CPU (central processing unit) 201, a ROM (read only memory) 202, a RAM (random access memory) 203, and an EEPROM (electrically erasable programmable read only memory) 204, all interconnected via a CPU bus 206.
The ROM 202 accommodates various processing programs executed by the channel selection device 101 as well as data needed for the program execution. The RAM
203 serves primarily as a work area in which the data obtained from various processes are retained temporarily.
The EEPROM 204 is a nonvolatile memory that retains the information held therein even when power is removed.
For example, the EEPROM 204 may be used to implement what is known as a last channel memory function. This function involves keeping information about the broadcast channel being selected just before the main power supply of the channel selection device 101 was switched off, and ' ' s allowing the last-selected channel to be automatically selected when power is restored.
As depicted in FIG. 11, the channel selection device 101 of this embodiment has a channel selection unit 112 connected to the antenna cable lllcb coming from the outdoor receiver antenna 111 for receiving TV
broadcast signals. The TV broadcast signals received by the receiver antenna 111 are supplied to the channel selection unit 112.
Out of those TV broadcast signals coming from the receiver antenna 111, the channel selection unit 112 selects the TV broadcast signal corresponding to a channel selection instruction signal sent from the control unit 200. The selected TV broadcast signal is fed to a demodulation unit 113. The demodulation unit 113 demodulates the supplied TV broadcast signal and sends the demodulated signal (i.e., TV program signal) to an input terminal "a" of a switching circuit 114.
The switching circuit 114, switched by a switching control signal from the control unit 200, allows TV
program signals from the demodulation unit 113 or signals from the control unit 200 to reach an input terminal "a"
or an input terminal "b" respectively. The signals sent from the control unit 200 to the switching circuit 114 are constituted by e-mails and Internet website pages which have reached the channel selection device 101 over the telephone line L and which are received through a modem 210.
The signal output from the switching circuit 114 is supplied to a compression processing unit 115. The compression processing unit 115 compresses the supplied signal using a predetermined compression format such as the MPEG (Moving Picture Expert Group) or Wavelet format.
A transmission clock generation circuit 401 placed under control of the CPU 201 generates a transmission clock and supplies the generated clock to the compression processing unit 115. The compressing processing unit 115 performs the above-described compression process in synchronism with the transmission clock.
The signal compressed by the compression processing unit 115 is fed to a transmitter signal generation unit 116. In turn, the transmitter signal generation unit 116 generates a transmitter signal based on a predetermined communication protocol. With this embodiment, the transmitter signal is generated on the basis of IEEE
(Institute of Electrical and Electronics Engineers) 802.11 or other protocols derived therefrom.
The transmitter signal generated by the transmitter signal generation unit 116 is sent to a transmission processing unit 1175 of wireless section 117. The ~ ~ , i transmission processing unit 117S modulates and amplifies the transmitter signal in keeping with control signals from the control unit 200. The transmitter signal processed by the transmission processing unit 117S is transmitted wirelessly through a sharing unit 117K and from the transmitter/receiver antenna 118.
The sharing unit 117K is provided to prevent interference between transmitter and receiver signals. As described earlier, the channel selection device 101 of this embodiment is structured to receive through the transmitter/receiver antenna 118 instruction information sent wirelessly from the display device 102. The sharing unit 117K acts to keep the transmitter signal from the transmission processing unit 1175 from interfering with the receiver signal received through the same antenna 118.
Signals such as channel selection instructions received from the display device 102 via the transmitter/receiver antenna 118 are forwarded to a reception processing unit 1178 via the sharing unit 117K.
The reception processing unit 1178 subjects the supplied signals to such processes as demodulation to turn the signals into a format that can be handled by the control unit 200. The signals thus processed are sent to the control unit 200.
If the signal received from the reception control unit 1178 is instruction information such as channel selection instructions, then the control unit 200 causes the relevant components to act accordingly. More specifically, if the signal sent from the reception processing unit 1178 to the control unit 200 turns out to be a channel selection instruction, then the control unit 200 supplies the channel selection unit 112 with a corresponding channel selection signal to select the designated TV broadcast signal.
If the signal sent from the reception processing unit 1178 to the control unit 200 turns out to be transmitter information such as an e-mail, then the control unit 200 establishes connection with the telephone network through the modem 210 and telephone line L, as will be described later, and outputs the transmitter information over the connected telephone network to a designated destination.
As shown in FIG. 11, the modem 210 includes an interface (I/F) unit 211 and a communication unit 212.
The interface unit 211 interfaces the channel selection device 101 with a communication line connected to the destination through the telephone network. The interface unit 211 receives signals coming over the telephone line L and transmits signals from the channel selection unit 101 over the same line L.

~ ~
a The communication unit 212 decodes the signal received through the interface unit 211 and supplies the decoded signal to the control unit 200. The communication unit 212 further encodes the transmitter signal from the control unit 200 and supplies the encoded signal to the interface unit 211. In this manner, various kinds of data are exchanged with the destination to which the telephone line L is connected.
As mentioned above, the channel selection device 101 of this embodiment is capable of connecting to the Internet through the modem 210, telephone line L, and a suitable ISP (Internet Service Provider). The channel selection device 101, once connected to the Internet, can obtain various kinds of information as well as send and receive e-mails through the Internet connection.
The control unit 200 is capable of causing the modern 210 to go off-hook and on-hook. Furnished with a so-called dialer function, the control unit 200 may cause the modem 210 to go off-hook and send a dial signal over the telephone line L.
As illustrated in FIG. 11, the control unit 200 is connected to a key input unit 215 having a power on/off key and diverse setting keys. Equipped with these keys, the key input unit 215 allows the user to switch on and off the main power supply of the channel selection device i , t 101 as well as to make various settings as needed.
As described above, the channel selection device 101 of this embodiment receives, selects, and demodulates TV broadcast signals. The demodulated TV broadcast signals are subjected to data compression before being sent out wirelessly in accordance with a predetermined communication protocol. Information supplied over the telephone line L is also received and decoded by the channel selection device 101. As with the TV broadcast signals, the decoded information is subjected to data compression before being sent out wirelessly in keeping with the communication protocol.
The channel selection unit 101 receives instruction information such as channel selection instructions transmitted wirelessly from the display device 102, to be described later in more detail. Given the instructions, the channel selection unit 101 performs corresponding processes. Transmitter information such as an e-mail sent from the display device 102 is transmitted to its destination by the channel selection unit 101 through the modem 210.
The display device 102 to be connected wirelessly with the channel selection device 101 will now be described. FIG. 12 is a block diagram depicting a typical structure of the display device 102. The display device ~ ~
102 is controlled by a control unit 300 which is a microcomputer having a CPU 301, a ROM 302, a RAM 303, and an EEPROM 304 interconnected by a CPU bus 305.
The ROM 302 retains various processing programs executed by the display device 102 as well as data needed for the program execution. The RAM 303 serves primarily as a work area in which the data acquired from various processes are held temporarily.
The EEPROM 304 is a nonvolatile memory that retains the information held therein even when power is removed.
For example, various setting parameters, drafted e-mails and received e-mails may be stored in nonvolatile fashion in the EEPROM 304.
What follows is a description of how the display device 102 works when receiving wireless signals from the channel selection device 101. A wireless signal based on the predetermined communication protocol is received from the channel selection device 101 by way of a transmitter/receiver antenna 121. The received signal passes through a sharing unit 122K to enter a reception processing unit 1228. The reception processing unit 1228 subjects the supplied signal to such processes as demodulation, before forwarding the processed signal to a decompression processing unit 123 via a reception buffer 501.

r A reception buffer monitoring circuit 502 monitors the size of data in the reception buffer 501 and controls a reception clock generation circuit 503 in accordance with the buffered data size. Under control of the reception buffer monitoring circuit 502, the reception clock generation circuit 503 generates a reception clock with a frequency corresponding to the size of data being held in the reception buffer 501. The generated clock is supplied to the decompression processing unit 123. The decompression processing unit 123 carries out data decompression in synchronism with the received clock.
Because the channel selection device 101 compresses all signals before sending them out as described above, the decompression processing unit 123 of the display device 102 restores the original signal by decompressing the demodulated signal coming from the channel selection device 101. If the restored signal is a TV program signal, then the signal is composed of a video signal and an audio signal which are to be separated. The video signal is fed to a video signal processing unit 124 and the audio signal to an audio signal processing unit 126.
The video signal processing unit 124 creates a display signal out of the video signal coming from the decompression processing unit 123, and sends the created display signal to an LCD 125. The LCD 125 displays pictures reflecting the video signal sent wirelessly from the channel selection device 101. Meanwhile, the audio signal processing unit 126 turns the supplied signal into an audio signal to be fed to a speaker 127. Given the signal, the speaker 127 produces a sound corresponding to the audio signal transmitted wirelessly from the channel selection unit 101.
As described, the display device 102 receives TV
broadcast programs and other signals sent wirelessly from the channel selection device 101. The video and audio signals contained in the received signal are reproduced and output by the display device 102 so that the user may enjoy or otherwise utilize what is being presented.
The series of steps and processes described above may be executed either by hardware or by software.
In this specification, the steps constituting the program to be stored on a recording medium and retrieved therefrom for execution represent not only the processes that are carried out in the depicted sequence (i.e., on a time series basis) but also processes that are conducted parallelly or individually.
In this specification, the term "system" refers to an entire configuration made up of a plurality of component devices.

' , Industrial Applicability This invention allows the transmitting and the receiving sides to synchronize the data being exchanged therebetween without recourse to having audio/video data packets equipped with time information. The invention also enables audio and video data to be synchronized as needed. This makes it possible to build an audio/video data transmission and reception system that operates in a stable manner without the use of MPEG transport streatinw packets or the like. In the inventive system, circuits for adding time-stamp information are not required on the transmitting side while the need for clock regeneration circuits is eliminated on the receiving side.
Consequently, the scale of the component circuits involved is reduced significantly so that a low-cost system can implemented.

Claims (4)

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A data processing apparatus comprising:
receiving means for receiving data;
separating means for separating said data received by said receiving means into a first data item and a second data item;
first storing means for storing said first data item;
second storing means for storing said second data item;
first processing means for decoding said first data item;
second processing means for decoding said second data item;
generating means for generating a first and a second clock for use by said first and said second processing means in processing said first data item and said second data item respectively;
first controlling means for raising a frequency of said first clock if a data size of said first data item stored in said first storing means is higher than a first reference value, said first controlling means further lowering the frequency of said first clock if the data size of said first data item is lower than a second reference value; and second controlling means for raising the frequency of said second clock if the data size of said second data item is higher than a third reference value, said second controlling means further lowering the frequency of said second clock if the data size of said second data item is lower than a fourth reference value;
wherein, if there occurs a difference in total processing time between a transmission block and a reception block handling said first data item and said second data item, and if Buf1 is assumed to denote a data size processible by said first processing means and Buf2 to represent an average value of said first reference value and said second reference value, then said first controlling means causes a center value of a controllable range of data sizes accommodated by said first storing means to correspond to a sum of Buf1 and Buf2.
2. A data processing apparatus according to claim 1, wherein said first data item and said second data item are made up of an audio data item and a video data item respectively.
3. A data processing method comprising the steps of:
receiving data;
separating said data received in said receiving step into a first data item and a second data item;
firstly storing said first data item;
secondly storing said second data item;
firstly decoding said first data item;
secondly decoding said second data item;
generating a first and a second clock for use in said first and said second decoding steps for processing said first data item and said second data item respectively;
firstly exerting control to raise a frequency of said first clock if a data size of said first data item stored in said first storing step is higher than a first reference value, said first controlling step further lowering the frequency of said first clock if the data size of said first data item is lower than a second reference value; and secondly exerting control to raise the frequency of said second clock if the data size of said second data item is higher than a third reference value, said second controlling step further lowering the frequency of said second clock if the data size of said second data item is lower than a fourth reference value;
wherein, if there occurs a difference in total processing time between a transmission block and a reception block handling said first data item and said second data item, and if Buf1 is assumed to denote a data size processible in said first decoding step and Buf2 to represent an average value of said first reference value and said second reference value, then said first controlling step causes a center value of a controllable range of data sizes accommodated in said first storing step to correspond to a sum of Buf1 and Buf2.
4. A recording medium which stores a program readable by a computer, said program comprising the steps of:
receiving data;
separating said data received in said receiving step into a first data item and a second data item;
firstly storing said first data item;
secondly storing said second data item;
firstly decoding said first data item;
secondly decoding said second data item;
generating a first and a second clock for use in said first and said second decoding steps for processing said first data item and said second data item respectively;
firstly exerting control to raise a frequency of said first clock if a data size of said first data item stored in said first storing step is higher than a first reference value, said first controlling step further lowering the frequency of said first clock if the data size of said first data item is lower than a second reference value; and secondly exerting control to raise the frequency of said second clock if the data size of said second data item is higher than a third reference value, said second controlling step further lowering the frequency of said second clock if the data size of said second data item is lower than a fourth reference value;
wherein, if there occurs a difference in total processing time between a transmission block and a reception block handling said first data item and said second data item, and if Buf1 is assumed to denote a data size processible in said first decoding step and Buf2 to represent an average value of said first reference value and said second reference value, then said first controlling step causes a center value of a controllable range of data sizes accommodated in said first storing step to correspond to a sum of Buf1 and Buf2.
CA002430161A 2000-11-29 2001-11-28 Data processor Expired - Fee Related CA2430161C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000362562A JP2002165148A (en) 2000-11-29 2000-11-29 Data processing apparatus and method, and record medium
JP2000-362562 2000-11-29
PCT/JP2001/010367 WO2002045415A1 (en) 2000-11-29 2001-11-28 Data processor

Publications (2)

Publication Number Publication Date
CA2430161A1 CA2430161A1 (en) 2002-06-06
CA2430161C true CA2430161C (en) 2007-05-01

Family

ID=18833819

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002430161A Expired - Fee Related CA2430161C (en) 2000-11-29 2001-11-28 Data processor

Country Status (7)

Country Link
US (2) US7389318B2 (en)
EP (1) EP1359748A4 (en)
JP (1) JP2002165148A (en)
KR (1) KR100796406B1 (en)
CN (1) CN1305301C (en)
CA (1) CA2430161C (en)
WO (1) WO2002045415A1 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002165148A (en) * 2000-11-29 2002-06-07 Sony Corp Data processing apparatus and method, and record medium
KR100824380B1 (en) * 2002-08-08 2008-04-22 삼성전자주식회사 Video recording/reproducing apparatus and method of displaying menu guide
JP3825007B2 (en) 2003-03-11 2006-09-20 沖電気工業株式会社 Jitter buffer control method
CA2520139A1 (en) * 2003-03-28 2004-11-04 Thomson Licensing Asynchronous jitter reduction technique
WO2004088944A1 (en) * 2003-03-31 2004-10-14 Fujitsu Limited Data transmitter, data transmitting system, and transmission speed converting method
JP3720347B2 (en) 2003-04-17 2005-11-24 シャープ株式会社 Display device, center device, video display system, display device control method, center device control method, display device control program, center device control program, and recording medium recording the program
US7405719B2 (en) * 2003-05-01 2008-07-29 Genesis Microchip Inc. Using packet transfer for driving LCD panel driver electronics
CN1864409A (en) * 2003-10-16 2006-11-15 日本电气株式会社 Medium signal transmission method, reception method, transmission/reception method, and device
US7366462B2 (en) 2003-10-24 2008-04-29 Qualcomm Incorporated Method and apparatus for seamlessly switching reception between multimedia streams in a wireless communication system
US8423643B2 (en) * 2003-11-19 2013-04-16 International Business Machines Corporation Autonomic assignment of communication buffers by aggregating system profiles
JP4452136B2 (en) 2004-03-30 2010-04-21 株式会社日立製作所 Data synchronized playback device and terminal device
JP2005328186A (en) * 2004-05-12 2005-11-24 Sony Corp Receiving device, data processing method thereof, and program
JP4479349B2 (en) * 2004-05-27 2010-06-09 日本電気株式会社 Radar equipment
JP3881992B2 (en) * 2004-07-30 2007-02-14 シャープ株式会社 Reception device, reception program, and recording medium on which reception program is recorded
JP3893392B2 (en) * 2004-07-30 2007-03-14 シャープ株式会社 Reception processing device, reception device, control program, and recording medium recording control program
JP4561240B2 (en) * 2004-08-26 2010-10-13 ソニー株式会社 Data processing apparatus, data processing method, and data transmission / reception system
JP2006101119A (en) * 2004-09-29 2006-04-13 Mitsubishi Materials Corp Data communication system, and device and method for data reproduction
JP4665505B2 (en) * 2004-12-15 2011-04-06 船井電機株式会社 Television receiver tuner and television receiver.
JP2006186580A (en) * 2004-12-27 2006-07-13 Toshiba Corp Reproducing device and decoding control method
US7944341B2 (en) * 2005-04-18 2011-05-17 Lg Electronics Inc. Network system using DC power bus and auto power control method
KR100770879B1 (en) * 2005-05-27 2007-10-26 삼성전자주식회사 Digital broadcasting reception terminal and a method for processing digital broadcasting data using that
JPWO2007004611A1 (en) * 2005-07-06 2009-01-29 シャープ株式会社 Output circuit, control program product, and control method
JP2007150855A (en) 2005-11-29 2007-06-14 Toshiba Corp Receiving system
JP2007235217A (en) * 2006-02-27 2007-09-13 Fujitsu Access Ltd Synchronization/asynchronization converter and clock control method
JP5006632B2 (en) * 2006-03-29 2012-08-22 キヤノン株式会社 Data processing apparatus and data processing method
JP4893363B2 (en) * 2007-02-23 2012-03-07 沖電気工業株式会社 Stream data receiving / reproducing device
JP2008287558A (en) * 2007-05-18 2008-11-27 Renesas Technology Corp Semiconductor device and microcomputer
US8279935B2 (en) * 2007-09-27 2012-10-02 Intel Corporation Method and apparatus for image quality control in video data
US8194756B2 (en) * 2008-05-28 2012-06-05 Broadcom Corporation Using program clock references to assist in transport of video stream to wireless device
CN102210148A (en) * 2008-11-25 2011-10-05 中兴通讯股份有限公司 Method for transmitting and receiving the service data of handset tv
JP5440839B2 (en) * 2009-06-10 2014-03-12 ソニー株式会社 Information processing apparatus and method, and program
CN101770385B (en) * 2010-02-04 2013-05-22 青岛海信移动通信技术股份有限公司 Device based on Linux system and method thereof for starting application
KR101018046B1 (en) 2010-09-06 2011-03-02 (주)아이엠피 Apparatus and method of processing data for multimedia ip broadcasting system
CN102469288A (en) * 2010-11-08 2012-05-23 均昂科技股份有限公司 Extender and control method thereof
JP2012129677A (en) * 2010-12-14 2012-07-05 Sony Corp Receiving device and method and program
JP2012134848A (en) * 2010-12-22 2012-07-12 Sony Corp Signal processor and signal processing method
US9167296B2 (en) * 2012-02-28 2015-10-20 Qualcomm Incorporated Customized playback at sink device in wireless display system
JP6509116B2 (en) * 2012-08-28 2019-05-08 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Audio transfer device and corresponding method
JP6171496B2 (en) * 2013-03-29 2017-08-02 富士通株式会社 COMMUNICATION DEVICE, COMMUNICATION SYSTEM, AND PROGRAM
JP6252615B2 (en) * 2016-03-25 2017-12-27 住友電気工業株式会社 Clock reproduction apparatus, stream processing apparatus, clock reproduction method, and clock reproduction program

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US565924A (en) 1896-08-18 Awning-bracket
JP2787599B2 (en) * 1989-11-06 1998-08-20 富士通株式会社 Image signal coding control method
JP2926900B2 (en) * 1990-06-01 1999-07-28 ソニー株式会社 Disc playback device
CA2054880C (en) * 1990-11-09 1997-07-08 Shigemi Maeda Information recording and reproducing device
ATE132648T1 (en) * 1991-02-04 1996-01-15 Dolby Lab Licensing Corp STORAGE MEDIUM AND DEVICE FOR RECOVERING DATA FROM THE MEDIUM BY OVERSCANNING
JPH0877691A (en) * 1994-05-26 1996-03-22 Toshiba Corp Disc reproducer and signal processing circuit
JP3622235B2 (en) * 1994-08-26 2005-02-23 三菱電機株式会社 Multiplexed data decoding apparatus
US5543853A (en) * 1995-01-19 1996-08-06 At&T Corp. Encoder/decoder buffer control for variable bit-rate channel
JP3301263B2 (en) * 1995-03-29 2002-07-15 株式会社日立製作所 Data decoding device
US5966387A (en) * 1995-09-25 1999-10-12 Bell Atlantic Network Services, Inc. Apparatus and method for correcting jitter in data packets
JP3052824B2 (en) * 1996-02-19 2000-06-19 日本電気株式会社 Audio playback time adjustment circuit
GB9606084D0 (en) * 1996-03-22 1996-05-22 D2B Systems Co Ltd Data frame buffering
JPH09270779A (en) * 1996-04-01 1997-10-14 Fuji Electric Co Ltd Data synchronization system
WO1997042734A1 (en) * 1996-05-07 1997-11-13 Yamaha Corporation Method and system for transmitting data
US5793436A (en) * 1996-06-17 1998-08-11 Samsung Electronics Co., Ltd. Buffer occupancy control method for use in video buffering verifier
US6188700B1 (en) * 1996-11-07 2001-02-13 Sony Corporation Method and apparatus for encoding MPEG signals using variable rate encoding and dynamically varying transmission buffers
JPH11112982A (en) * 1997-10-08 1999-04-23 Fujitsu Ltd Mpeg data receiver
US6289129B1 (en) * 1998-06-19 2001-09-11 Motorola, Inc. Video rate buffer for use with push dataflow
US6169747B1 (en) * 1998-07-08 2001-01-02 Ess Technology, Inc. Variable code frame length for multistream applications
JP3507708B2 (en) * 1998-08-18 2004-03-15 株式会社ナカヨ通信機 Voice control system for ATM button telephone
JP2000224129A (en) * 1999-02-03 2000-08-11 Hitachi Denshi Ltd Data transmitting system
JP3536792B2 (en) 2000-02-28 2004-06-14 ヤマハ株式会社 Synchronous control device and synchronous control method
US7031306B2 (en) * 2000-04-07 2006-04-18 Artel Video Systems, Inc. Transmitting MPEG data packets received from a non-constant delay network
JP2002165148A (en) * 2000-11-29 2002-06-07 Sony Corp Data processing apparatus and method, and record medium
US7574274B2 (en) * 2004-04-14 2009-08-11 Nvidia Corporation Method and system for synchronizing audio processing modules

Also Published As

Publication number Publication date
WO2002045415A1 (en) 2002-06-06
CN1305301C (en) 2007-03-14
US20040068482A1 (en) 2004-04-08
EP1359748A1 (en) 2003-11-05
KR20030055326A (en) 2003-07-02
US20080259213A1 (en) 2008-10-23
US7933949B2 (en) 2011-04-26
CN1631035A (en) 2005-06-22
KR100796406B1 (en) 2008-01-21
CA2430161A1 (en) 2002-06-06
JP2002165148A (en) 2002-06-07
US7389318B2 (en) 2008-06-17
EP1359748A4 (en) 2005-06-01

Similar Documents

Publication Publication Date Title
CA2430161C (en) Data processor
US8687114B2 (en) Video quality adaptation based upon scenery
KR100850577B1 (en) Device and method for processing multi-data in terminal having digital broadcasting receiver
US5898457A (en) TV conference communication device and method of controlling the same
JP3491626B2 (en) Transmission device, reception device, and transmission / reception device
US8199833B2 (en) Time shift and tonal adjustment to support video quality adaptation and lost frames
CN103248947A (en) Video multiple screen sharing method and system for achieving same
US8104067B2 (en) Apparatus for receiving and playing back data
US20070089144A1 (en) Wireless HDTV display link
US20160337671A1 (en) Method and apparatus for multiplexing layered coded contents
US7403139B2 (en) Electronic apparatus and control method thereof using sample rate converter
CN1929647B (en) Method for performing video communication service and mobile communication terminal employing the same
EP1746830A2 (en) Method for performing presentation in video telephone mode and wireless terminal implementing the same
EP0814612A2 (en) Method and apparatus of moving picture transmission
US20100037281A1 (en) Missing frame generation with time shifting and tonal adjustments
KR100243168B1 (en) Audio/video synchronizing circuit of digital receiver for simultaneously receiving multiful channel and method therefor
EP2417766A1 (en) Method and apparatus for asynchronous video transmission over a communication network
JP4013925B2 (en) High-definition video transmission system, high-definition video transmission apparatus, high-definition video transmission method and program used therefor
JP4196085B2 (en) Video signal encoding apparatus and video conference system using the same
JP4511008B2 (en) Image transmission device
JPH0767088A (en) Video telephone system

Legal Events

Date Code Title Description
EEER Examination request
MKLA Lapsed

Effective date: 20141128