CA2438871A1 - Solid-state quantum dot devices and quantum computing using nanostructured logic gates - Google Patents

Solid-state quantum dot devices and quantum computing using nanostructured logic gates Download PDF

Info

Publication number
CA2438871A1
CA2438871A1 CA002438871A CA2438871A CA2438871A1 CA 2438871 A1 CA2438871 A1 CA 2438871A1 CA 002438871 A CA002438871 A CA 002438871A CA 2438871 A CA2438871 A CA 2438871A CA 2438871 A1 CA2438871 A1 CA 2438871A1
Authority
CA
Canada
Prior art keywords
layer
quantum dot
dot device
quantum
gates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002438871A
Other languages
French (fr)
Other versions
CA2438871C (en
Inventor
Mark A. Eriksson
Mark G. Friesen
Robert J. Joynt
Max G. Lagally
Daniel W. Van Der Weide
Paul Rugheimer
Donald E. Savage
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wisconsin Alumni Research Foundation
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2438871A1 publication Critical patent/CA2438871A1/en
Application granted granted Critical
Publication of CA2438871C publication Critical patent/CA2438871C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N10/00Quantum computing, i.e. information processing based on quantum-mechanical phenomena
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/933Spintronics or quantum computing

Abstract

Semiconductor dot devices include a multiple layer semiconductor structure having a substrate, a back gate electrode layer, a quantum well layer, a tunnel barrier layer between the quantum well layer and the back gate, and a barrier layer above the quantum well layer. Multiple electrode gates are formed on the multi-layer semiconductor with the gates spaced from each other by a region beneath which quantum dots may be defined. Appropriate voltages applied to the electrodes allow the development and appropriate positioning of the quantum dots, allowing a large number of quantum dots be formed in a series with appropriate coupling between the dots.

Claims (23)

1. A semiconductor quantum dot device comprising:

(a) a multi-layer semiconductor structure including a semiconductor substrate, a back gate electrode layer, a quantum well layer, a tunnel barrier layer between the quantum well layer and the back gate layer, and an upper barrier layer above the quantum well layer; and (b) a plurality of spaced electrode gates formed on the multi-layer semiconductor structure, the electrode gates spaced from each other by a region beneath which quantum dots may be defined.
2. A semiconductor quantum dot device comprising:

(a) a multi-layer semiconductor structure including a semiconductor substrate, a back gate electrode layer, a quantum well layer, a tunnel barrier layer between the quantum well layer and the back gate layer, and a barrier layer above the quantum well layer;

(b) a plurality of spaced electrode gates formed on the multi-layer semiconductor structure, the electrode gates spaced from each other by a region beneath which quantum dots may be defined; and (c) a bias voltage supply connected to the back gate layer to apply a bias voltage thereto and a voltage source connected to apply selected voltages to one or more of the electrode gates.
3. The quantum dot device of Claim 1 or 2 whereby the multi-layer semiconductor structure is a heterostructure.
4. The quantum dot device of Claim 1 or 2 wherein the semiconductor structure includes a capping layer as a top layer and wherein the gates are formed on the capping layer.
5. The quantum dot device of Claim 4 wherein the capping layer is formed of silicon.
6. The quantum dot device of Claim 4 wherein the capping layer is formed of gallium-arsenide.
7. The quantum dot device of Claim 1 or 2 wherein there are at least two pairs of opposed gates.
8. The quantum dot device of Claim 1 or 2 wherein the substrate is formed of silicon-germanium, the back gate layer is formed of doped silicon-germanium, and the barrier layers are formed of silicon-germanium.
9. The quantum dot device of Claim 8 including a capping layer formed of silicon as the top layer formed over the barrier layer, the gates formed on the capping layer.
10. The quantum dot device of Claim 8 wherein the quantum well layer comprises two layers of semiconductor material, one layer of silicon-germanium and another layer of germanium.
11. The quantum dot device of Claim 8 wherein the quantum well layer is formed of pure silicon.
12. The quantum dot device of Claim 8 wherein the silicon-germanium barrier layers are formed with a graded silicon-germanium composition for strain relaxation.
13. The quantum dot device of Claim 12 wherein the composition of the barrier layers is graded in discrete steps.
14. The quantum dot device of Claim 8 wherein the quantum well layer has a thickness of about 6 nm, and the barrier layers have a thickness in the range of 10 to 20 nm.
15. The quantum dot device of Claim 1 or 2 wherein the substrate is formed of gallium-arsenide, the back gate is formed of doped gallium arsenide, and the barrier layers are formed of aluminum-gallium-arsenide.
16. The quantum dot device of Claim 15 including a capping layer formed of gallium arsenide as a top layer formed over the barrier layer, the gates formed on the capping layer.
17. The quantum dot device of Claim 15 wherein the quantum well layer is formed of gallium arsenide.
18. The quantum dot device of Claim 17 wherein the quantum well layer has a thickness of about 15 nm, and the barrier layers have a thickness in the range of 10 to 30 nm.
19. The quantum dot device of Claim 1 further including a bias voltage supply connected to the back gate layer to apply a bias voltage thereto and a voltage source connected to apply selected voltages to one or more of the electrode gates.
20. The quantum dot device of Claim 2 or 19 including a charge sensor coupled to a gate to detect changes in charge.
21. The quantum dot device of Claim 20 wherein the charge sensor includes an FET having a gate that is electrically connected to the gate of the quantum dot device.
22. The quantum dot device of Claim 1 or 2 wherein the electrode gates are spaced from each other a distance in the range of 10 nm to 50 nm.
23. The quantum dot device of Claim 1 or 2 wherein there are an array of quantum dots, and the electrode gates include gates that extend to positions between quantum dots and have inwardly extending portions that squeeze qubits and further including electrode gates that extend to positions spaced from each other on opposite sides of each quantum dot.
CA2438871A 2001-03-09 2002-03-08 Solid-state quantum dot devices and quantum computing using nanostructured logic gates Expired - Lifetime CA2438871C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US27485301P 2001-03-09 2001-03-09
US60/274,853 2001-03-09
PCT/US2002/007356 WO2002073527A2 (en) 2001-03-09 2002-03-08 Solid-state quantum dot devices and quantum computing using nanostructured logic dates

Publications (2)

Publication Number Publication Date
CA2438871A1 true CA2438871A1 (en) 2002-09-19
CA2438871C CA2438871C (en) 2011-01-04

Family

ID=23049866

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2438871A Expired - Lifetime CA2438871C (en) 2001-03-09 2002-03-08 Solid-state quantum dot devices and quantum computing using nanostructured logic gates

Country Status (6)

Country Link
US (1) US6597010B2 (en)
EP (1) EP1386283A2 (en)
JP (1) JP2004533107A (en)
AU (1) AU2002306692A1 (en)
CA (1) CA2438871C (en)
WO (1) WO2002073527A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017210790A1 (en) 2016-06-08 2017-12-14 Socpra Sciences Et Génie S.E.C. Electronic circuit for control or coupling of single charges or spins and methods therefor

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4029420B2 (en) * 1999-07-15 2008-01-09 独立行政法人科学技術振興機構 Millimeter-wave / far-infrared photodetector
US20090182542A9 (en) * 2001-12-22 2009-07-16 Hilton Jeremy P Hybrid classical-quantum computer architecture for molecular modeling
JP4044453B2 (en) * 2003-02-06 2008-02-06 株式会社東芝 Quantum memory and information processing method using quantum memory
US7364923B2 (en) * 2003-03-03 2008-04-29 The Governing Council Of The University Of Toronto Dressed qubits
US6926921B2 (en) * 2003-05-05 2005-08-09 Hewlett-Packard Development Company, L.P. Imprint lithography for superconductor devices
FR2862151B1 (en) * 2003-11-07 2007-08-24 Commissariat Energie Atomique DEVICE FOR RESETTING A QUANTUM BIT DEVICE WITH TWO ENERGY CONDITIONS
US7135697B2 (en) * 2004-02-25 2006-11-14 Wisconsin Alumni Research Foundation Spin readout and initialization in semiconductor quantum dots
US7737432B2 (en) * 2004-06-15 2010-06-15 National Research Council Of Canada Voltage controlled computing element for quantum computer
US20060007025A1 (en) * 2004-07-08 2006-01-12 Manish Sharma Device and method for encoding data, and a device and method for decoding data
US7533068B2 (en) 2004-12-23 2009-05-12 D-Wave Systems, Inc. Analog processor comprising quantum devices
JP2009506588A (en) * 2005-06-07 2009-02-12 ザ ルーテル ユニバーシティ アソシエイション、インコーポレイテッド Quantum dot cellular automaton method and device
US7624088B2 (en) * 2005-08-03 2009-11-24 D-Wave Systems Inc. Analog processor comprising quantum devices
US8164082B2 (en) * 2005-09-30 2012-04-24 Wisconsin Alumni Research Foundation Spin-bus for information transfer in quantum computing
WO2007052273A2 (en) * 2005-11-02 2007-05-10 Ben Gurion University Of The Negev Research And Development Authority Novel material and process for integrated ion chip
US8895072B2 (en) * 2006-09-11 2014-11-25 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Quantum dot barcode structures and uses thereof
US7830695B1 (en) * 2006-10-30 2010-11-09 Hrl Laboratories Capacitive arrangement for qubit operations
WO2008085974A2 (en) * 2007-01-08 2008-07-17 Unniversity Of Connecticut Nonvolatile memory and three-state fets using cladded quantum dot gate structure
EP2145294A4 (en) 2007-04-05 2010-12-22 Dwave Sys Inc Physical realizations of a universal adiabatic quantum computer
JP5397905B2 (en) * 2007-12-07 2014-01-22 独立行政法人科学技術振興機構 Electronic devices using quantum dots
JP5306377B2 (en) * 2008-02-11 2013-10-02 クコー ピーティーワイ リミテッド Control and reading of electron or hole spin
WO2009153669A2 (en) 2008-06-17 2009-12-23 National Research Council Of Canada Atomistic quantum dots
US7880496B1 (en) 2009-02-09 2011-02-01 University Of South Florida Conservative logic gate for design of quantum dot cellular automata circuits
EP2264653A1 (en) * 2009-06-19 2010-12-22 Hitachi Ltd. Qubit device
US9842921B2 (en) * 2013-03-14 2017-12-12 Wisconsin Alumni Research Foundation Direct tunnel barrier control gates in a two-dimensional electronic system
US10002107B2 (en) 2014-03-12 2018-06-19 D-Wave Systems Inc. Systems and methods for removing unwanted interactions in quantum devices
US9619754B2 (en) * 2014-08-13 2017-04-11 The United States Of America, As Represented By The Secretary Of The Navy Single photon source based on a quantum dot molecule in an optical cavity
US9971970B1 (en) 2015-04-27 2018-05-15 Rigetti & Co, Inc. Microwave integrated quantum circuits with VIAS and methods for making the same
US9748976B2 (en) * 2015-05-22 2017-08-29 Northrop Grumman Systems Corporation Fault tolerant syndrome extraction and decoding in Bacon-Shor quantum error correction
EP3214038A1 (en) * 2016-03-04 2017-09-06 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Quantum dot circuit and a method of operating such a circuit
EP3225587B1 (en) 2016-03-31 2021-07-28 Hitachi, Ltd. Silicon-based quantum dot device
US10763349B2 (en) * 2016-06-29 2020-09-01 Intel Corporation Quantum dot devices with modulation doped stacks
WO2018031006A1 (en) * 2016-08-10 2018-02-15 Intel Corporation Quantum dot array devices
US11594599B2 (en) 2016-08-10 2023-02-28 Intel Corporation Quantum dot array devices
WO2018031027A1 (en) * 2016-08-12 2018-02-15 Intel Corporation Quantum dot array devices
WO2018044268A1 (en) 2016-08-30 2018-03-08 Intel Corporation Quantum dot devices
WO2018044267A1 (en) * 2016-08-30 2018-03-08 Intel Corporation Quantum dot devices
US11075293B2 (en) 2016-09-24 2021-07-27 Intel Corporation Qubit-detector die assemblies
CN109791945B (en) 2016-09-24 2022-11-08 英特尔公司 Quantum dot array device with shared gate
WO2018057013A1 (en) * 2016-09-24 2018-03-29 Intel Corporation Quantum well stack structures for quantum dot devices
US10804399B2 (en) 2016-09-24 2020-10-13 Intel Corporation Double-sided quantum dot devices
US10615160B2 (en) 2016-09-25 2020-04-07 Intel Corporation Quantum dot array devices
WO2018057023A1 (en) * 2016-09-25 2018-03-29 Intel Corporation Quantum dot qubits with iii-v compounds
WO2018057027A1 (en) * 2016-09-26 2018-03-29 Intel Corporation Quantum dot devices with strained gates
US11288586B2 (en) 2016-09-27 2022-03-29 Intel Corporation Independent double-gate quantum dot qubits
WO2018063205A1 (en) * 2016-09-29 2018-04-05 Intel Corporation On-chip wireless communication devices for qubits
WO2018063203A1 (en) * 2016-09-29 2018-04-05 Intel Corporation Strained quantum dot devices
WO2018063204A1 (en) * 2016-09-29 2018-04-05 Intel Corporation Quantum computing assemblies
WO2018063202A1 (en) * 2016-09-29 2018-04-05 Intel Corporation Strained quantum dot devices
WO2018063270A1 (en) * 2016-09-30 2018-04-05 Intel Corporation Quantum dot devices with single electron transistor detectors
US11164966B2 (en) 2016-09-30 2021-11-02 Intel Corporation Single electron transistors (SETs) and set-based qubit-detector arrangements
EP3535707A4 (en) * 2016-11-03 2020-06-17 Intel Corporation Quantum dot devices
US10763347B2 (en) 2016-12-14 2020-09-01 Intel Corporation Quantum well stacks for quantum dot devices
WO2018118098A1 (en) * 2016-12-24 2018-06-28 Intel Corporation Quantum dot devices with screening plates
WO2018143986A1 (en) * 2017-02-02 2018-08-09 Intel Corporation Quantum dot array devices
CN110447106A (en) * 2017-02-20 2019-11-12 新南创新有限公司 Parametric amplifier
US11121301B1 (en) 2017-06-19 2021-09-14 Rigetti & Co, Inc. Microwave integrated quantum circuits with cap wafers and their methods of manufacture
US11038021B2 (en) 2017-06-24 2021-06-15 Intel Corporation Quantum dot devices
US11322591B2 (en) 2017-06-24 2022-05-03 Intel Corporation Quantum dot devices
WO2018236404A1 (en) * 2017-06-24 2018-12-27 Intel Corporation Quantum dot devices
EP3685323A4 (en) * 2017-09-18 2021-04-14 INTEL Corporation Substrate engineering for qubits
US11557630B2 (en) 2017-09-28 2023-01-17 Intel Corporation Quantum dot devices with selectors
WO2019066840A1 (en) * 2017-09-28 2019-04-04 Intel Corporation Quantum well stacks for quantum dot devices
FR3072375B1 (en) * 2017-10-18 2021-04-16 Commissariat Energie Atomique QUANTUM DEVICE WITH QUBITS OF SPIN COUPLES IN A MODULAR WAY
CN111788588A (en) 2017-12-20 2020-10-16 D-波系统公司 System and method for coupling qubits in a quantum processor
US10361353B2 (en) * 2018-02-08 2019-07-23 Intel Corporation Sidewall metal spacers for forming metal gates in quantum devices
WO2019168721A1 (en) 2018-02-27 2019-09-06 D-Wave Systems Inc. Systems and methods for coupling a superconducting transmission line to an array of resonators
US10903413B2 (en) 2018-06-20 2021-01-26 Equal!.Labs Inc. Semiconductor process optimized for quantum structures
US10854738B2 (en) 2018-06-20 2020-12-01 equal1.labs Inc. Semiconductor process for quantum structures with staircase active well
US11366345B2 (en) 2018-06-20 2022-06-21 equal1.labs Inc. Semiconductor controlled quantum Pauli interaction gate
US10845496B2 (en) 2018-06-20 2020-11-24 equal1.labs Inc. Multistage semiconductor quantum detector circuit incorporating anticorrelation
US10873019B2 (en) 2018-06-20 2020-12-22 equal1.labs Inc. Topological programmable scalable quantum computing machine utilizing chord line quasi unidimensional aperature tunneling semiconductor structures
US10868119B2 (en) 2018-06-20 2020-12-15 equal1.labs Inc. Semiconductor quantum structures using preferential tunneling through thin insulator layers
US11423322B2 (en) 2018-06-20 2022-08-23 equal1.labs Inc. Integrated quantum computer incorporating quantum core and associated classical control circuitry
US10861940B2 (en) 2018-06-20 2020-12-08 equal1.labs Inc. Semiconductor process for quantum structures with staircase active well incorporating shared gate control
US11450760B2 (en) 2018-06-20 2022-09-20 equal1.labs Inc. Quantum structures using aperture channel tunneling through depletion region
US11183564B2 (en) 2018-06-21 2021-11-23 Intel Corporation Quantum dot devices with strain control
US10482388B1 (en) * 2018-06-29 2019-11-19 National Technology & Engineering Solutions Of Sandia, Llc Spin-orbit qubit using quantum dots
US11616126B2 (en) 2018-09-27 2023-03-28 Intel Corporation Quantum dot devices with passive barrier elements in a quantum well stack between metal gates
GB201903888D0 (en) * 2019-03-21 2019-05-08 Quantum Motion Tech Limited Control of charge carriers in quantum information processing architectures
US11699747B2 (en) * 2019-03-26 2023-07-11 Intel Corporation Quantum dot devices with multiple layers of gate metal
US11621386B2 (en) 2019-04-02 2023-04-04 International Business Machines Corporation Gate voltage-tunable electron system integrated with superconducting resonator for quantum computing device
US11727295B2 (en) 2019-04-02 2023-08-15 International Business Machines Corporation Tunable superconducting resonator for quantum computing devices
US11422958B2 (en) 2019-05-22 2022-08-23 D-Wave Systems Inc. Systems and methods for efficient input and output to quantum processors
US11133388B1 (en) 2020-07-23 2021-09-28 Wisconsin Alumni Research Foundation Silicon-germanium heterostructures with quantum wells having oscillatory germanium concentration profiles for increased valley splitting
PT116602B (en) 2020-07-24 2024-01-26 Inst Superior Tecnico EXTERNALLY CLASSICAL FREDKIN AND C-NOT LOGIC GATE BASED ON REVERSIBLE QUANTUM DYNAMICS COMPOSED OF ONE-LEVEL QUANTUM DOTS, RESPECTIVE FULL ADDER AND METHOD OF OPERATION THEREOF
KR20230082607A (en) 2020-08-07 2023-06-08 퀀텀 모션 테크놀로지스 리미티드 Silicon quantum device structures bounded by metal structures
US11533046B2 (en) 2020-11-12 2022-12-20 equal1.labs Inc. System and method of generating quantum unitary noise using silicon based quantum dot arrays
US11164677B1 (en) * 2021-01-18 2021-11-02 SpinQ Biophysics, Inc. System, method and container delivery system for manipulating the functioning of a target
CN117480615A (en) * 2021-06-14 2024-01-30 亚琛工业大学 Quantum bit element
WO2022262934A1 (en) * 2021-06-14 2022-12-22 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Qubit element
WO2024023397A1 (en) * 2022-07-26 2024-02-01 Stmicroelectronics Sa Quantum electronic device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3125332B2 (en) 1991-06-21 2001-01-15 ソニー株式会社 Quantum dot tunnel device, information processing device and information processing method using the same
US5243206A (en) * 1991-07-02 1993-09-07 Motorola, Inc. Logic circuit using vertically stacked heterojunction field effect transistors
US5677637A (en) 1992-03-25 1997-10-14 Hitachi, Ltd. Logic device using single electron coulomb blockade techniques
US5530263A (en) 1994-08-16 1996-06-25 International Business Machines Corporation Three dot computing elements
GB9506735D0 (en) * 1995-03-31 1995-05-24 Univ Dundee Light emitters and detectors
DE19522351A1 (en) * 1995-06-20 1997-01-09 Max Planck Gesellschaft Process for producing quantum structures, in particular quantum dots and tunnel barriers, and components with such quantum structures
GB2303246A (en) * 1995-07-07 1997-02-12 Toshiba Cambridge Res Center Resonant tunneling semiconductor device
US5714766A (en) 1995-09-29 1998-02-03 International Business Machines Corporation Nano-structure memory device
US5917322A (en) 1996-10-08 1999-06-29 Massachusetts Institute Of Technology Method and apparatus for quantum information processing
US5768287A (en) * 1996-10-24 1998-06-16 Micron Quantum Devices, Inc. Apparatus and method for programming multistate memory device
JP4138930B2 (en) 1998-03-17 2008-08-27 富士通株式会社 Quantum semiconductor device and quantum semiconductor light emitting device
US6081882A (en) * 1998-04-09 2000-06-27 Silicon Graphics, Inc. Quantum acceleration of conventional non-quantum computers
GB2341722B (en) * 1998-09-16 2001-01-17 Toshiba Res Europ Ltd An optical semiconductor device
US6459097B1 (en) * 2000-01-07 2002-10-01 D-Wave Systems Inc. Qubit using a Josephson junction between s-wave and d-wave superconductors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017210790A1 (en) 2016-06-08 2017-12-14 Socpra Sciences Et Génie S.E.C. Electronic circuit for control or coupling of single charges or spins and methods therefor
EP3469636A4 (en) * 2016-06-08 2020-03-11 SOCPRA - Sciences et Génie s.e.c. Electronic circuit for control or coupling of single charges or spins and methods therefor

Also Published As

Publication number Publication date
JP2004533107A (en) 2004-10-28
WO2002073527A2 (en) 2002-09-19
CA2438871C (en) 2011-01-04
US6597010B2 (en) 2003-07-22
AU2002306692A1 (en) 2002-09-24
EP1386283A2 (en) 2004-02-04
US20020179897A1 (en) 2002-12-05
WO2002073527A3 (en) 2003-11-27

Similar Documents

Publication Publication Date Title
CA2438871A1 (en) Solid-state quantum dot devices and quantum computing using nanostructured logic gates
US7868319B2 (en) Organic semiconductor device, display using same, and imager
US5285087A (en) Heterojunction field effect transistor
Yu et al. Vertical organic field-effect transistors for integrated optoelectronic applications
JP2016004997A (en) Electronic element including graphene and quantum dot
US5989947A (en) Method for the manufacture of quantum structures, in particular quantum dots and tunnel barriers as well as components with such quantum structures
WO2006135337A1 (en) Semiconductor nanowire vertical device architecture
AU2003301055A1 (en) Methods of forming semiconductor devices having self aligned semiconductor mesas and contact layers and related devices
US4777516A (en) Monolithic integration of light emitting elements and driver electronics
US5289015A (en) Planar fet-seed integrated circuits
US20070145347A1 (en) Coupled quantum well devices (CQWD) containing two or more direct selective contacts and methods of making same
JPH03155125A (en) Semiconductor device and manufacture thereof
JP2656018B2 (en) Read-only memory
KR101392451B1 (en) Infrared rays emitting device using graphene
US5701017A (en) Semiconductor device and method for its manufacture
JPS6331165A (en) Resonant tunneling semiconductor device
JPS6424467A (en) Field effect transistor
JPH0227739A (en) Semiconductor device
JPS63196084A (en) Pnpn photo thyristor
ATE357045T1 (en) MATRIX ADDRESSABLE ARRAY OF INTEGRATED TRANSISTOR/MEMORY STRUCTURES
Ravariu et al. Technology of fabrication and functional validations of planar-Nothing On Insulator devices with oxide instead vacuum
JPH0311767A (en) Velocity modulation type field-effect transistor
JP4007560B2 (en) Semiconductor device
KR20210138897A (en) Three-dimensional inverter with multiple transistors vertically integrated
JPH0244735A (en) Quantum interference transistor

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20220308