CA2441846A1 - Artificial heart valve - Google Patents

Artificial heart valve Download PDF

Info

Publication number
CA2441846A1
CA2441846A1 CA002441846A CA2441846A CA2441846A1 CA 2441846 A1 CA2441846 A1 CA 2441846A1 CA 002441846 A CA002441846 A CA 002441846A CA 2441846 A CA2441846 A CA 2441846A CA 2441846 A1 CA2441846 A1 CA 2441846A1
Authority
CA
Canada
Prior art keywords
flap
annular body
valve
valve according
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002441846A
Other languages
French (fr)
Inventor
Hans-Hinrich Sievers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2441846A1 publication Critical patent/CA2441846A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2403Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with pivoting rigid closure members

Abstract

In an artificial heart valve for the replacement of an aortic or a mitral valve, including an annular body, which is provided at its outer circumference with means for mounting the artificial valve in place by surgical procedures and which defines in its interior a blood flow passage in which valve flap elements are pivotally supported so as to open or close the blood flow passage depending on their pivot positions, the annular body includes circumferentially spaced projections extending into the flow passage and being provided at their inner ends with pivot joints on which the valve flap elements are pivotally supported.

Description

ARTIFICIAL HEART VALVE
BACKGROUND OF THE INVENTION
The invention relates to artificial heart valves, that is, to a prosthesis for the replacement of aortic and mitral valves of a heart, comprising an annular body receiving a plurality of pivotal flap elements which annular body can be mounted into the aorta or the mitral valve ring and can be retained therein by surgical procedures so that the flap elements open or close the passage through the valve ring depending on their pivot po-sitions.
A prosthesis, that is an artificial heart valve, of this to type is known from WO-A-8504094. For some decades now, heart valve prostheses have been implanted into the aorta leading away from the heart. The first artificial heart valves were ball-type check valves which, with time, were replaced by more sophisticated designs. Heart valves with single flap elements and also with three-flap elements are known. The valve dis-closed in WO-A-85 04094, for example, is a three-flap valve.
Heart valves with flap elements use an annular support body on which the flap elements are pivotally supported and which is inserted for example into the aorta and is secured in position by a surgical procedure such as suturing.
The annular body is generally provided with shaft-like projections, which extend into corresponding openings of the flap element thereby forming a pivot joint. The flap element generally is provided with such openings at opposite sides with a shaft extending from the annular body into each of the oppo-site openings. However, also other solutions are known from the state of the art, wherein shaft-like projections extend from the flap elements into corresponding openings formed in the annular support body.
The opening and closing of the flap element, or of the flap elements, if more than one flap element are provided in the annular body, occurs in principle over long periods of use in a trouble-free manner since certain components of the blood act as lubricants which reduce friction in the joint parts.
However, all artificial heart valves of this type have the l0 disadvantage that the joint area between the annular body and the flap elements negatively affect the flow dynamics of the blood through the opening of the annular body so that zones are formed in the joint areas in which blood is stagnant. This ef fect is generated also by the fact that the flap elements never move fully away from the annular body during the heart pumping cycle. In the areas in which the blood is stagnant in these valves blood clots are formed which are released from time to time and are then transported with the blood flowing through the aorta into remote body parts for example into the brain where they may block the blood passages with catastrophic re-sults for the person affected thereby.
It has been tried with sophisticated designs to reduce to a minimum the areas near the j oints where the blood can stag-nate in order to minimize the chances of blood clot formation and it has also been tried to arrange the joints or the joint areas in such a way that the areas between the joint and the annular body are flushed by the blood flowing through the annu-lar body so that these areas are kept pclean", in order to avoid the formation of blood clots but no really satisfactory solutions have been found. Consequently, heart valves with two flap elements (so-called double wing flaps) or ball-type heart valves which have no joints but which have substantial other disadvantages are still being used.
It is therefore the object of the present invention to provide a heart valve of the type described above which however does not have the disadvantages of the state of the art heart valves as pointed out above. The heart valve should, in its design, be adapted with regard to its physical-mechanical op-eration to the design of the natural heart valve and be capable of remaining in the body indefinitely after implantation while providing for trouble-free operation without the danger of forming blood clots. Also, the decreasing and increasing pres-sure of the blood as it occurs during opening and closing of the valve should correspond essentially to the pressure gradi-ents occurring naturally in the heart during the opening and closing of the natural heart valves. It is further an essen-tial object of the invention to provide an artificial heart valve of the type described above, which, after implantation, does not require the continuous administration of medication in order to prevent the formation of blood clots so that, in prin-ciple, the patient can live after heart valve implantation nor-mally, that is, without having to take medications.
SUMMARY OF THE INVENTION
In an artificial heart valve for the replacement of an aortic or a mitral valve, including an annular body which is provided, at its outer circumference, with means for mounting the artificial valve in place by surgical procedures and which defines in its interior a blood flow passage in which valve flap elements are pivotally supported so as to open or close the blood flow passage depending on their pivot positions, the annular body includes circumferentially spaced projections ex-tending into the flow passage and being provided at their inner ends with pivot joints by which the valve flap elements are pivotally supported.
The heart valve according to the invention employs princi-ples for the design of the joints between the flap elements and the annular body, which are completely different from those used in the prior art designs. The joint at the annular body, which forms with the joint at the flap element a pivot joint, is intentionally so arranged that the pivot axis for the flap element is moved toward the center of the annular body that is toward the longitudinal center axis of the aorta in order to move the joint as far as possible into the area of the highest flow speed of the blood. As a result, all areas of the respec-tive joint between the flap elements and the annular body are in contact with the fast flowing blood through the center area of the annular body so that no areas of stagnant blood can de-velop in the joint areas and the formation of blood clots is essentially prevented.
Another important advantage of the arrangement according to the invention is that in this way closing is initiated timely during the forward flow of the blood (systolic). In the artificial heart valves presently in use the valve closing oc curs mainly passively during the relaxation phase of the heart by a return blood flow.
In an advantageous embodiment of the artificial heart valve, the pivot joints are formed on projections, which extend inwardly from the annular body and have at their inward ends remote from the annular body a pair of spaced webs which are oriented in the flow direction of the blood through the annular body and which form together a body-based joint structure. The joint structure at the annular body is therefore exposed to the fast blood flow in the center area of the annular body. Also, the space between the two webs is exposed to the fast blood flow, since the two webs extend into the blood flow path in spaced relationship from each other so that the blood can flow along both sides of each web. At the end of the joint next to the annular body, there are therefore no areas, in which blood can become stagnant so that also no blood clots can form.
In another advantageous embodiment, at least one of the webs may be formed integrally with the support web for an adja cent flap element so that fewer edges or recesses are present on which blood can be deposited and the blood flow flushes the joint area even more thoroughly.
In still another advantageous embodiment of the artificial heart valve, the joints of the flap elements are formed at the flaps by two shallow recesses disposed essentially symmetri-cally with respect to a centerline of the essentially flat flap l0 elements, that is, the joint structure at the flap element has no projections or bores or similar areas which are not exposed to the stream of blood.
The joint part of the annular housing and the joint part of the flap element form therefore a joint in that the flap element is pivotally engaged in the area of the recess between the spaced webs of the respective projections of the annular body. Between the two webs of the annular housing joint part and the joint part of the flap element engaged between the two webs, there is sufficient play that the blood flowing through the annular housing opening can also flow through all areas of the joint, that is, that there are no areas in which any blood stagnates. The part of the projection into which the flap ele ment extends between the webs is preferably spherically shaped so that no, or only little, resistance is provided in the joint area to the passage of blood.
In order to prevent the flap elements from abruptly reach-ing the closed position which could result in cavitation ef-fects because of the high pressure gradients occuring thereby and which therefore could cause damage to, or even destroy, the blood, the web of the pair of webs which is disposed at the up-stream side of the heart valve may be provided with a joint surface which extends essentially orthogonally to the flow di-rection of the blood through the annular body and on which the flap element rolls during its opening and closing movements.
With this measure, the flap elements are closed in a controlled manner while the blood is still flowing into the aorta and the force with which the flap elements engages the annular housing upon closing of the valve is reduced. Since, with this meas-ure, extreme pressure gradients in the blood can be avoided, the blood is also not subjected during the closing of the flap elements to cavitation effects which might destroy the blood.
In a further advantageous embodiment of the artificial heart valve, the web at the downstream side that is remote from l0 the heart is provided with two stop surfaces, which extend es sentially orthogonally to the flow direction of the blood through the annular body and which define the open and the closed positions of the flap element. In this way, no other stops or limits are required which may have to extend into the flow passage of the blood and which form areas in which the blood may stagnate.
Preferably, the flap elements of the artificial heart valve are spherically shaped wherein the sphere may be formed with any degree of freedom. Such a belly-like" shape of the flap elements prevents a so-called flow equilibrium, that is, the flap elements may open completely during the opening phase until they reach the stop and provide for an effective flow of blood over the surfaces and through the joints which addition-ally prevents the deposition of particles and the formation of clots of blood. The spherical shape of the flap elements re-sults also in an early initiation of the closing of the flap element because, the blood flow becomes smaller already in the systolic phase (forward flow) of the heart pumping cycle.
Therefore, for the final closing step only a small back flow volume is required, with the advantageous result that also the strain on the heart is reduced.
Preferably, the inner part of the flap element, which spans the area between the pivot axis of the valve flap and the center tip of the valve flap which extends in the case of the aorta toward the heart when the valve is open, is angled with respect to the outer part of the valve flap so that, with the valve fully open, the inner part of the valve flap extends par-allel to the flow direction of the blood and prevents therefore the generation of turbulence. The angled part of the valve flap may also be spherical in shape.
As a result of the arrangement of the joints at the free ends of the projections extending inwardly from the annular body and the flaps supported in recesses formed about in the middle along their sides and because of the spherical shape of the flap elements, the flap elements move fully away from the annular body during opening so that all areas of the artificial valve are exposed to the flowing blood when the valve is open.
The artificial heart valve according to the invention is basically operable with only one or two flap elements arranged in the annular body. It is however very advantageous to pro vide three flap elements which are arranged in the annular body with their pivot axes forming an equal-sided triangle extending between the support webs. In this way, a very advantageous "three-wing-valve" is provided by the arrangement according to the invention whereby an artificial valve is formed which is very close in design to the natural heart valve.
On the basis of this arrangement, the artificial valve may be refined by selection of suitable arrangements and sizes of the flap elements in the annular body such that four flow pas sages are formed in the annular body which have about the same flow cross-section. With a three-wing-valve" four passages with equal flow cross-sections can be provided, i.e. a central flow passage and three flow passages delimited by the annular support body for permitting a large essentially uninhibited blood flow through the open valve.
It is also advantageous if the inner flow cross-section of the annular body from the blood inlet adjacent the heart toward the outlet at the end remote from the heart becomes first smaller up to the plane in which the projections are disposed and then becomes again larger by the outwardly curved surfaces of the flaps to provide a venturi nozzle flow profile similar to the flow profile of the natural heart valve.
During implantation of the artificial heart valve, the di-ameter of the aorta is relatively small because there is no in-ternal pressure. For this reason, the outer circumference of the annular body has a conical shape that is it increases to-ward the axial center of the annular body so that the annular to body can be inserted easily into the aorta while dilating the aorta to its normal diameter which it has when exposed to the pressure of the blood.
In order to fix the artificial heart valve at the implan tation location in a sealed fashion, the annular body has formed in its outer wall two spaced annular grooves of which the first groove, which is closer to the heart accommodates the remaining tissue of the natural heart valve.
Preferably, a suturing ring is received in the second groove, which is more remote from the heart than the first groove by way of which the tissue is sutured to the artificial heart valve during implantation.
As materials for the annular body and/or the flap elements basically any material is suitable which has a high durability and a low weight and which furthermore is compatible with the biological tissue.
Metal alloys or elemental metals may be used for the annu-lar body and/or the flap elements. But also plastic materials and plastic compound materials may be used for the annular body and/or the flap elements.
It is particularly advantageous if the annular body and/or the flap elements are made from titanium or a titanium alloy since titanium and titanium alloys are high-strength metals with a relatively low weight and low wear which is particularly advantageous for the joint areas of the artificial heart valve.
Particularly suitable are titanium-tantalum alloys.
In order to increase the resistance to wear of the materi als, from which the annular body and/or the flap elements are formed, and to increase their biocompatibility, it is advanta geous to coat the annular body and/or the flap elements with a hard material layer for example of boron-carbide or a similar layer which may be applied by well-known classic coating proc-esses such as the PVD process (physical vapor deposition) and/or the CVP process (chemical vapor deposition).
The invention will be described below in greater detail on the basis of the accompanying drawings:
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. I is an enlarged representation of an artificial heart valve according to the invention shown in a top view and in a closed position, Fig. 2 is a perspective view of the artificial heart valve shown in Fig. l, Fig. 3 is a cross-sectional view taken along line A-B of Fig. 1, Fig. 4 is a sectional view taken along line C - D of Fig.
3, Fig. 5 is a sectional view taken along line A-B of Fig. 1, wherein, in this representation, two grooves extend around the annular body and a suturing ring for anchoring the artificial heart valve in the tissue is shown in one of the grooves, Fig. 6 is an enlarged representation of the detail encir-cled in Fig. 3, Fig. 7 shows the artificial valve in a top view with the flap elements in open positions, Fig. 8 is a perspective view of the valve as shown in Fig.
7.
Fig. 9 is a sectional view taken along line E - F of Fig.
7.
Fig. 10 is an enlarged view of the detail encircled in Fig. 9, Fig. 11 is an enlarged view of the detail encircled in Fig. 4, Fig. 12 is an enlarged representation of a valve flap, Fig. 13 is a side view of the flap element as shown in Fig. 12, Fig. 14 is a side view of a flap element as shown in Fig.
12, wherein however the flap has a spherically curved top sur-f ace, Fig. 15 shows an annular body of the artificial heart valve according to the invention with the flap elements removed to show more clearly the projections extending into the inte rior of the annular valve body, one of the projection carrying the joint being shown in cross-section, Fig. 16 is a sectional view taken along line G-H of Fig.
15, and Fig. 17 shows the annular body in a top view from the rear without flap elements.
DESCRIPTION OF PREFERRED EMBODIMENTS
First reference is made to Fig. 1 where the artificial heart valve 10 is shown in a closed position and to Fig. 7 where the artificial heart valve 10 is shown in an open posi tion. The Figs. 1 and 7 are top views showing the heart valve 10 from that side, which, after implantation of the heart 14, faces the heart 14.
The artificial heart valve 10 comprises essentially an an-nular body 11, which has a shape resembling an equal-sided tri-angle with rounded corners. The annular body 11 however may also be circular or have a cross-section of another form. The artificial heart valve 10, described below as an example, in-eludes three flap elements 12, 120, 121, however, in principle, the inventive concept can be realized also with a valve having only one flap element or two flap elements. Also designs with more than three flap elements 12, 120, 121 are conceivable.
The annular body lI, which is insertable into the aorta 13 and the heart 14 in a known manner and which can be fixed there in place supports the three flap elements 12, 120 and 121 in a pivotable manner such that, depending on the pivot position of the flap elements 12, 120 121 the passage for the blood pumped by the heart 14 to the aorta l3 is open and the blood can flow through the inner passage 15 of the annular body 11, see Fig. 7 or the passages is closed as shown in Fig. 1. The mechanism as such is well known in principle in connection with all artifi cial valves of this type so that the operation of a heart valve does not need to be described.
The annular body 11 includes three essentially identical projections 19, 190, 191 arranged equally spaced on the annular body 11 and formed integrally with the annular body so as to extend inwardly. The projections 19, 190, 191 are shaped in the longitudinal and transverse cross-section in such a way, that an essentially laminar flow of the blood through the inner opening 15 of the annular body 11 is ensured. To this end, the projections are provided with transverse and longitudinal pro-files which generate the lowest possible hydrodynamic resis-tance for the blood flowing through annular body 11, see also the cross-sectional view of Fig. 3 taken along line A-B of Fig.
1, and the detail of Fig. 3 shown in Fig. 6.
The projections 19, 190, 191 extend into the interior 15 of the annular housing for a length of about 45~ of the dis tance between the inner housing wall 110 and the axial center line 111. It is noted however, that the projections 19, 190, 191 may have different lengths, which may be selected in adap-tation to the conditions of a patients heart, into which the valve is to be implanted. The length of 45~ of the distance between the inner annular housing wall and the center thereof is exemplary to show that the projections may be relatively long so that the ends 20, 200, 201 are disposed in the area of the largest blood flow through the flow passage Z5 of the annu-lar body 11. The flap elements 12, 120 121 are supported at the ends 20, 200, 201 of the projections 19, 190, 191 by pivot joints 18, 180, 181. In the embodiment as shown in the fig-ures, the respective joints 18, 180, 181 are double joints so that each projection 19, 190, 191 carries actually two joints l0 18, 180, 181, see particularly Figs. 1 and 7, each projection supporting one end of adjacent flap elements 12, 120, 12I. As a result, only three projections with joints are needed to pro-ject into the flow passage 15 of the artificial valve, which provides for minimal disturbance of the laminar flow through the valve, whereas in prior art valves six joint support struc-tures were needed with all the disadvantages of such a design, particularly the higher hydrodynamic resistance. At each pro-jection 19, 190, 191, the pivot joints 18, 180, 181 are formed by two spaced webs 21, 22, which are oriented toward the longi-tudinal axes 111 and in the flow direction 25 of the blood through the valves, see Figs. 3, 6, 9 and 10. The two webs 21, 22 form jointly a pivot joint part 18, 180, 181. In the arti-ficial valve 10 described herein which has three flap elements 12, 120, 121, six such pivot joints (joint pairs 18, 180, 181) consisting of web pairs 21, 22 are formed.
The web 21 remote from the heart extends essentially nor-mal to the flow direction 25 of the blood through the annular body 11. It is provided with a curved joint surface 210. The curved joint surface 210 supports the valve flap in such a way that, during the opening and closing pivot movement, it can roll on the curved surface 210, see Fig. 3, the detail of Fig.
6, Fig. 9 and the detail of Fig. 10. The web 22 of the pair of webs at the side next to the heart, that is at the pressure side, extends also essentially normal to the flow direction 25 of the blood through the annular body 11. Instead of the curved pivot surface 210 of the web 21, the web 22 is prov ided with two stop surface areas 232, 233. The stop surface areas 232, 233 delimit the open end position 26, see Fig. 9 and the detail of Fig. 10, and the closed position 27 of the flap ele-ments 12, 120, 121, see Fig. 3 and the detail Fig. 6.

The joint areas 23, 230, 231 at the flap elements 12 that is the joint 23, 230, 231 of each flap element 12, 120, 121 are provided by recesses 122, 123 arranged at opposite sides of the flap 12, 120, 121 at the pivot center line 240, see Fig. 12.

The flap elements 12, 120, 121 are curved at least in one cross-sectional plane, see Fig. 13, but the flap elements 12, 120, 121 may also be curved spherically as indicated in Fig.

14. The joints, or respectively, the joint parts 23, 230, 231 of the flap elements 12, 120, 121 are represented merely by re-cesses 122, 123 in the surfaces of the flap elements 12, 120, 121. With this simple, but highly effective and function ally optimized form, wherein no bores or shaft bolts or similar de-vices are provided, the full joint between the joint parts of 2o the annular body, that is, the joint parts 18, 180, 181 and the flap-side joint parts 23, 230, 231 are formed in that the flap element 12, 120, 121 is engaged from opposite sides in the area of the recesses between the spaced webs 21, 22.

The flap element 12, 120, 121 is therefore pivotally sup-ported on the annular body by ways of the webs 21, 22 forme d on the respective projections 19, 190, 191.

As shown particularly in Figs. 7 and 8, in the open posi-tion of the flap elements 12, 120, 121, four flow passages 150, 151, 152, 153 of essentially equal flow cross-sections are 3o formed in the flow passage 15 through the annular body 11. By suitably arranging and dimensioning the flap elements 12, 120, 121 in the annular body 11, the flow passages 150, 151, 152 and 153, which consequently provide essentially for the same flow restriction in all the flow passages and therefore for essen-tially the same flow volumes and flow speeds in the different passages so that turbulence effects at the downstream end of the individual passages is avoided.
As shown particularly in Figs. 3 and 9, which show a cross-section through the annular body 11, the flow passage 15 is so shaped that, in the flow direction of the blood, it be comes first smaller up to the plane in which the projections 19, 190, 191 extend, but then becomes wider again toward the outlet opening 17 into the aorta. The narrowing flow inlet l0 section is substantially shorter than the widening outlet sec-tion of the flow cross-section 15 so as to provide a low-restriction venturi-type passage. Also the outer diameter of the annular body 11 increases from the inlet opening 16 essen-tially up to the plan in which the projections 19, 190, 191 are disposed so that stretching of the aorta 13 during implantation of the artificial valve is facilitated since, during implanta-tion, the aorta 13 is not subjected to internal blood pressure and is therefore smaller than when subjected to pressure. With the design of the annular body 11 as described above the arti-ficial valve may be relatively large so that the pressure gra-dient in the blood flow through the valve is relatively small and there is little pressure loss generated by the valve and flow turbulence is minimal.
At its outer surface 115, the annular body has grooves 113, 112 of a semicircular cross-section extending circumferen tially around the annular housing 11 in an axially spaced rela tionship. In the groove 1I3, closer to the heart 14, the re maining tissue is accommodated. In the groove 112, remote from the heart a suturing ring 114 is disposed which also surrounds the annular body 11. The suturing ring 114 is firmly and seal-ingly received in the groove 113. The suturing ring 114 may consist of a suitable plastic material so that the aorta tissue can be attached by a suitable suturing procedure.
As mentioned already earlier, the annular body may be formed integrally as an injection molding component or it may be manufactured by powder metallurgical methods, which is also true for the flap elements. The annular body 11 and/or the flap elements 12, 120, 121 may also be coated with a hard mate-rial layer in order to avoid a necrologic effect of some of the metal alloys which may be used for the manufacture of an arti-ficial heart valve 10 and to ensure biocompatibility with the biological tissue. They also may be provided with a hard and l0 wear resistant layer, particularly in the area of the joints 23, 18, 230, 180 and 231, 181 between the annular body 11 and the flap elements 12, 120, 121. With the application of such a layer no wear occurs between, or in, the joints of the artifi-cial valve 10.
Basically, the annular body may also be assembled of dif-ferent, that is separate, parts; it may consist for example of three parts which are joined suitably after the mounting of the flap elements 12, 120, 121 in the joints 18, 23, 180, 230, 181, 231.
With a one-piece configuration of the annular body 11 the flap elements 12, 120, 121 could be somewhat elastic so that they could be snapped into position between the respective webs 21, 22 of the proj ections 19, 190, 191 by way of the recesses 122, 123.
The artificial heart valve 10 according to the invention has been described essentially in connection with an implanta-tion thereof into an aorta 13. However, the heart valve 10 ac-cording to the invention may be used essentially with the same design as described also as a mitral valve.

Claims (18)

1. An artificial valve for the replacement of an aortic or mitral heart valve, comprising: an annular body for installa-tion into a valve flap ring of an aortic or initial heart valve, said annular body including, at its outer circumference, means for mounting by surgical procedures and defining in its interior a blood flow passage, flap elements which are pivo-tally supported in said blood flow passage by pivot support structures and which, depending on their pivot positions, open or close said blood flow passage, said annular body including circumferentially spaced projections extending inwardly into said flow passage, said spaced projections being provided at their inwardly extending ends with pivot joints on which said flap elements or pivotally supported.
2. An artificial valve according to claim 1, wherein, at their inwardly projecting ends, said projections are provided withspaced webs extending further inwardly from said circumfer-entially spaced projections and being oriented in the flow di-rection of the blood through said passage and engaging said flaps so as to form said pivot support structure.
3. An artificial valve according to claim 1, wherein said flap elements have partial circular recesses formed therein symmetrically at opposite sides along a pivot axis of said flap elements and said projections have spherical ends received in said recesses and pivotally engaging said flap elements.
4. An artificial valve according to claim 2, wherein at least one of said webs on each of said projection is formed in-tegrally with said projection.
5. An artificial valve according to claim 3, wherein, in the area of said recesses, said flap element is engaged between two spaced webs arranged and formed so as to permit pivoting of said flap element between said spaced webs.
6. An artificial valve according to claim 5, wherein the, with respect to the blood flow through the valve, downstream web of the webs engaging a valve flap extends essentially nor-mal to the direction of the blood flow through the annular body and has a curved joint surface on which said flap element rolls during the opening and closing movement thereof.
7. An artificial valve according to claim 6, wherein the upstream web of the webs engaging a valve flap extends essen-tially normal to the flow direction of the blood through the annular body and is provided with two stops defining the open and respectively, the closed position of the valve flap.
8. An artificial valve according to claim 1, wherein said flap elements are spherically curved.
9. An artificial valve according to claim 3, wherein said flap element has a pointed portion extending, in the closed po-sition of the flap element inwardly from said pivot axis of said valve flap and a rounded portion disposed at the opposite side of pivot axis, said pointed and said rounded portions be-ing angled with respect to each other.
10. An artificial valve according to claim 1, wherein said valve includes three flap elements.
11. An artificial valve according to claim 10, wherein, in the open position of said valve, four flow passages are pro-vided, one central and three circumferential passages, between the projections and the respective valve elements, and wherein the location of the valve pivot axis and the form of the valve ring are so selected that all four blood flow passages have about the same flow cross-section.
12. An artificial valve according to claim 1, wherein the interior flow passage through said annular body has a cross-section which decreases from the upstream end thereof toward said projections and then again increases from the area of said projections toward the downstream end of said passage.
13. An artificial valve according to claim 1, wherein the outside cross-section of said annular body increases toward the cross-sectional plane in which the projections are disposed.
14. An artificial valve according to claim 1, wherein said annular body is provided with two spaced annular grooves.
15. An artificial valve according to claim 14, wherein a suturing ring is firmly engaged in one of said circumferential grooves.
16. An artificial valve according to claim 1, wherein said annular body and said flap elements consist of one of titanium and a titanium alloy.
17. An artificial valve according to claim 1, wherein at least one of said annular body and said flap elements is coated by a hard material layer.
18
CA002441846A 2003-08-29 2003-09-19 Artificial heart valve Abandoned CA2441846A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10340265A DE10340265A1 (en) 2003-08-29 2003-08-29 Prosthesis for the replacement of the aortic and / or mitral valve of the heart
DE10340265.9 2003-08-29

Publications (1)

Publication Number Publication Date
CA2441846A1 true CA2441846A1 (en) 2005-02-28

Family

ID=34202304

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002441846A Abandoned CA2441846A1 (en) 2003-08-29 2003-09-19 Artificial heart valve

Country Status (7)

Country Link
US (1) US6991649B2 (en)
EP (1) EP1703865B1 (en)
JP (1) JP4545149B2 (en)
AT (1) ATE458455T1 (en)
CA (1) CA2441846A1 (en)
DE (2) DE10340265A1 (en)
WO (1) WO2005023155A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10182907B2 (en) 2007-05-02 2019-01-22 Novostia Sa Mechanical prosthetic heart valve

Families Citing this family (223)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6006134A (en) * 1998-04-30 1999-12-21 Medtronic, Inc. Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers
US6254564B1 (en) 1998-09-10 2001-07-03 Percardia, Inc. Left ventricular conduit with blood vessel graft
US8579966B2 (en) 1999-11-17 2013-11-12 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US7018406B2 (en) * 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
US8016877B2 (en) * 1999-11-17 2011-09-13 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US20070043435A1 (en) * 1999-11-17 2007-02-22 Jacques Seguin Non-cylindrical prosthetic valve system for transluminal delivery
US8241274B2 (en) 2000-01-19 2012-08-14 Medtronic, Inc. Method for guiding a medical device
US7749245B2 (en) 2000-01-27 2010-07-06 Medtronic, Inc. Cardiac valve procedure methods and devices
US6692513B2 (en) * 2000-06-30 2004-02-17 Viacor, Inc. Intravascular filter with debris entrapment mechanism
AU2001271667A1 (en) * 2000-06-30 2002-01-14 Viacor Incorporated Method and apparatus for performing a procedure on a cardiac valve
US20020022860A1 (en) 2000-08-18 2002-02-21 Borillo Thomas E. Expandable implant devices for filtering blood flow from atrial appendages
US6602286B1 (en) 2000-10-26 2003-08-05 Ernst Peter Strecker Implantable valve system
US8623077B2 (en) 2001-06-29 2014-01-07 Medtronic, Inc. Apparatus for replacing a cardiac valve
US7544206B2 (en) 2001-06-29 2009-06-09 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
US8771302B2 (en) * 2001-06-29 2014-07-08 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
FR2826863B1 (en) * 2001-07-04 2003-09-26 Jacques Seguin ASSEMBLY FOR PLACING A PROSTHETIC VALVE IN A BODY CONDUIT
FR2828091B1 (en) 2001-07-31 2003-11-21 Seguin Jacques ASSEMBLY ALLOWING THE PLACEMENT OF A PROTHETIC VALVE IN A BODY DUCT
US7097659B2 (en) 2001-09-07 2006-08-29 Medtronic, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US6752828B2 (en) 2002-04-03 2004-06-22 Scimed Life Systems, Inc. Artificial valve
US8721713B2 (en) 2002-04-23 2014-05-13 Medtronic, Inc. System for implanting a replacement valve
CO5500017A1 (en) * 2002-09-23 2005-03-31 3F Therapeutics Inc MITRAL PROTESTIC VALVE
US6945957B2 (en) 2002-12-30 2005-09-20 Scimed Life Systems, Inc. Valve treatment catheter and methods
US7393339B2 (en) * 2003-02-21 2008-07-01 C. R. Bard, Inc. Multi-lumen catheter with separate distal tips
US9579194B2 (en) * 2003-10-06 2017-02-28 Medtronic ATS Medical, Inc. Anchoring structure with concave landing zone
US7854761B2 (en) 2003-12-19 2010-12-21 Boston Scientific Scimed, Inc. Methods for venous valve replacement with a catheter
US8128681B2 (en) * 2003-12-19 2012-03-06 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US20120041550A1 (en) 2003-12-23 2012-02-16 Sadra Medical, Inc. Methods and Apparatus for Endovascular Heart Valve Replacement Comprising Tissue Grasping Elements
US20050137694A1 (en) 2003-12-23 2005-06-23 Haug Ulrich R. Methods and apparatus for endovascularly replacing a patient's heart valve
US8579962B2 (en) 2003-12-23 2013-11-12 Sadra Medical, Inc. Methods and apparatus for performing valvuloplasty
US7381219B2 (en) 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
US7329279B2 (en) 2003-12-23 2008-02-12 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
EP2526898B1 (en) 2003-12-23 2013-04-17 Sadra Medical, Inc. Repositionable heart valve
US7780725B2 (en) 2004-06-16 2010-08-24 Sadra Medical, Inc. Everting heart valve
US9005273B2 (en) 2003-12-23 2015-04-14 Sadra Medical, Inc. Assessing the location and performance of replacement heart valves
US7988724B2 (en) 2003-12-23 2011-08-02 Sadra Medical, Inc. Systems and methods for delivering a medical implant
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US8343213B2 (en) 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US9526609B2 (en) 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US8052749B2 (en) 2003-12-23 2011-11-08 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US8603160B2 (en) 2003-12-23 2013-12-10 Sadra Medical, Inc. Method of using a retrievable heart valve anchor with a sheath
US20050137687A1 (en) 2003-12-23 2005-06-23 Sadra Medical Heart valve anchor and method
US11278398B2 (en) 2003-12-23 2022-03-22 Boston Scientific Scimed, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US7445631B2 (en) 2003-12-23 2008-11-04 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
ITTO20040135A1 (en) 2004-03-03 2004-06-03 Sorin Biomedica Cardio Spa CARDIAC VALVE PROSTHESIS
US20060025857A1 (en) 2004-04-23 2006-02-02 Bjarne Bergheim Implantable prosthetic valve
US7566343B2 (en) 2004-09-02 2009-07-28 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
US20060052867A1 (en) * 2004-09-07 2006-03-09 Medtronic, Inc Replacement prosthetic heart valve, system and method of implant
US8562672B2 (en) * 2004-11-19 2013-10-22 Medtronic, Inc. Apparatus for treatment of cardiac valves and method of its manufacture
CA2588140C (en) * 2004-11-19 2013-10-01 Medtronic Inc. Method and apparatus for treatment of cardiac valves
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
US20060173490A1 (en) 2005-02-01 2006-08-03 Boston Scientific Scimed, Inc. Filter system and method
US7854755B2 (en) * 2005-02-01 2010-12-21 Boston Scientific Scimed, Inc. Vascular catheter, system, and method
US7878966B2 (en) * 2005-02-04 2011-02-01 Boston Scientific Scimed, Inc. Ventricular assist and support device
US7670368B2 (en) 2005-02-07 2010-03-02 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7780722B2 (en) 2005-02-07 2010-08-24 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
ITTO20050074A1 (en) 2005-02-10 2006-08-11 Sorin Biomedica Cardio Srl CARDIAC VALVE PROSTHESIS
US7867274B2 (en) 2005-02-23 2011-01-11 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US7722666B2 (en) 2005-04-15 2010-05-25 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US7962208B2 (en) 2005-04-25 2011-06-14 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
US7914569B2 (en) 2005-05-13 2011-03-29 Medtronics Corevalve Llc Heart valve prosthesis and methods of manufacture and use
US8012198B2 (en) 2005-06-10 2011-09-06 Boston Scientific Scimed, Inc. Venous valve, system, and method
US7569071B2 (en) 2005-09-21 2009-08-04 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
WO2007038540A1 (en) 2005-09-26 2007-04-05 Medtronic, Inc. Prosthetic cardiac and venous valves
JP5361392B2 (en) * 2005-12-15 2013-12-04 ジョージア テック リサーチ コーポレイション System and method enabling heart valve replacement
JP2009519784A (en) * 2005-12-15 2009-05-21 ジョージア テック リサーチ コーポレイション System and method for controlling heart valve dimensions
WO2007100408A2 (en) * 2005-12-15 2007-09-07 Georgia Tech Research Corporation Papillary muscle position control devices, systems & methods
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US9078781B2 (en) 2006-01-11 2015-07-14 Medtronic, Inc. Sterile cover for compressible stents used in percutaneous device delivery systems
US7799038B2 (en) 2006-01-20 2010-09-21 Boston Scientific Scimed, Inc. Translumenal apparatus, system, and method
US7749249B2 (en) * 2006-02-21 2010-07-06 Kardium Inc. Method and device for closing holes in tissue
US8075615B2 (en) * 2006-03-28 2011-12-13 Medtronic, Inc. Prosthetic cardiac valve formed from pericardium material and methods of making same
RU2325874C2 (en) * 2006-04-04 2008-06-10 Александр Васильевич Самков Cardiac valve prosthesis
US8449605B2 (en) 2006-06-28 2013-05-28 Kardium Inc. Method for anchoring a mitral valve
US7837610B2 (en) 2006-08-02 2010-11-23 Kardium Inc. System for improving diastolic dysfunction
US20080033541A1 (en) * 2006-08-02 2008-02-07 Daniel Gelbart Artificial mitral valve
US8834564B2 (en) * 2006-09-19 2014-09-16 Medtronic, Inc. Sinus-engaging valve fixation member
US11304800B2 (en) 2006-09-19 2022-04-19 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US8348995B2 (en) 2006-09-19 2013-01-08 Medtronic Ventor Technologies, Ltd. Axial-force fixation member for valve
EP2083901B1 (en) 2006-10-16 2017-12-27 Medtronic Ventor Technologies Ltd. Transapical delivery system with ventriculo-arterial overflow bypass
US9232997B2 (en) 2006-11-07 2016-01-12 Corvia Medical, Inc. Devices and methods for retrievable intra-atrial implants
WO2008055301A1 (en) 2006-11-07 2008-05-15 Univ Sydney Devices and methods for the treatment of heart failure
US10413284B2 (en) 2006-11-07 2019-09-17 Corvia Medical, Inc. Atrial pressure regulation with control, sensing, monitoring and therapy delivery
US20110257723A1 (en) 2006-11-07 2011-10-20 Dc Devices, Inc. Devices and methods for coronary sinus pressure relief
CN101641061B (en) 2006-12-06 2013-12-18 美顿力科尔瓦有限责任公司 System and method for transapical delivery of annulus anchored self-expanding valve
US8133270B2 (en) 2007-01-08 2012-03-13 California Institute Of Technology In-situ formation of a valve
US7967853B2 (en) 2007-02-05 2011-06-28 Boston Scientific Scimed, Inc. Percutaneous valve, system and method
WO2008100599A1 (en) * 2007-02-15 2008-08-21 Medtronic, Inc. Multi-layered stents and methods of implanting
EP2129333B1 (en) * 2007-02-16 2019-04-03 Medtronic, Inc Replacement prosthetic heart valves
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
FR2915087B1 (en) 2007-04-20 2021-11-26 Corevalve Inc IMPLANT FOR TREATMENT OF A HEART VALVE, IN PARTICULAR OF A MITRAL VALVE, EQUIPMENT INCLUDING THIS IMPLANT AND MATERIAL FOR PLACING THIS IMPLANT.
US8828079B2 (en) 2007-07-26 2014-09-09 Boston Scientific Scimed, Inc. Circulatory valve, system and method
US8747458B2 (en) 2007-08-20 2014-06-10 Medtronic Ventor Technologies Ltd. Stent loading tool and method for use thereof
US20090076597A1 (en) * 2007-09-19 2009-03-19 Jonathan Micheal Dahlgren System for mechanical adjustment of medical implants
US10856970B2 (en) 2007-10-10 2020-12-08 Medtronic Ventor Technologies Ltd. Prosthetic heart valve for transfemoral delivery
US9848981B2 (en) 2007-10-12 2017-12-26 Mayo Foundation For Medical Education And Research Expandable valve prosthesis with sealing mechanism
US8679176B2 (en) 2007-12-18 2014-03-25 Cormatrix Cardiovascular, Inc Prosthetic tissue valve
US8257434B2 (en) 2007-12-18 2012-09-04 Cormatrix Cardiovascular, Inc. Prosthetic tissue valve
US7892276B2 (en) 2007-12-21 2011-02-22 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US9149358B2 (en) * 2008-01-24 2015-10-06 Medtronic, Inc. Delivery systems for prosthetic heart valves
EP3744291B1 (en) 2008-01-24 2022-11-23 Medtronic, Inc. Stents for prosthetic heart valves
US8157852B2 (en) * 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US20090287290A1 (en) * 2008-01-24 2009-11-19 Medtronic, Inc. Delivery Systems and Methods of Implantation for Prosthetic Heart Valves
US9393115B2 (en) 2008-01-24 2016-07-19 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
EP2254512B1 (en) * 2008-01-24 2016-01-06 Medtronic, Inc. Markers for prosthetic heart valves
WO2009094197A1 (en) * 2008-01-24 2009-07-30 Medtronic, Inc. Stents for prosthetic heart valves
EP2695587A1 (en) 2008-01-25 2014-02-12 JenaValve Technology Inc. Medical apparatus for the therapeutic treatment of an insufficient cardiac valve
BR112012021347A2 (en) 2008-02-26 2019-09-24 Jenavalve Tecnology Inc stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
WO2009108355A1 (en) 2008-02-28 2009-09-03 Medtronic, Inc. Prosthetic heart valve systems
US8313525B2 (en) 2008-03-18 2012-11-20 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
US8430927B2 (en) * 2008-04-08 2013-04-30 Medtronic, Inc. Multiple orifice implantable heart valve and methods of implantation
US8312825B2 (en) 2008-04-23 2012-11-20 Medtronic, Inc. Methods and apparatuses for assembly of a pericardial prosthetic heart valve
US8696743B2 (en) * 2008-04-23 2014-04-15 Medtronic, Inc. Tissue attachment devices and methods for prosthetic heart valves
US20090287304A1 (en) * 2008-05-13 2009-11-19 Kardium Inc. Medical Device for Constricting Tissue or a Bodily Orifice, for example a mitral valve
EP2119417B2 (en) 2008-05-16 2020-04-29 Sorin Group Italia S.r.l. Atraumatic prosthetic heart valve prosthesis
EP4018967A1 (en) 2008-09-15 2022-06-29 Medtronic Ventor Technologies Ltd Prosthetic heart valve having identifiers for aiding in radiographic positioning
US8721714B2 (en) 2008-09-17 2014-05-13 Medtronic Corevalve Llc Delivery system for deployment of medical devices
WO2010042950A2 (en) 2008-10-10 2010-04-15 Sadra Medical, Inc. Medical devices and delivery systems for delivering medical devices
US8137398B2 (en) * 2008-10-13 2012-03-20 Medtronic Ventor Technologies Ltd Prosthetic valve having tapered tip when compressed for delivery
US8986361B2 (en) 2008-10-17 2015-03-24 Medtronic Corevalve, Inc. Delivery system for deployment of medical devices
US8834563B2 (en) 2008-12-23 2014-09-16 Sorin Group Italia S.R.L. Expandable prosthetic valve having anchoring appendages
EP2246011B1 (en) 2009-04-27 2014-09-03 Sorin Group Italia S.r.l. Prosthetic vascular conduit
US9757107B2 (en) 2009-09-04 2017-09-12 Corvia Medical, Inc. Methods and devices for intra-atrial shunts having adjustable sizes
US20110082538A1 (en) 2009-10-01 2011-04-07 Jonathan Dahlgren Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve
US8808369B2 (en) * 2009-10-05 2014-08-19 Mayo Foundation For Medical Education And Research Minimally invasive aortic valve replacement
US9277995B2 (en) * 2010-01-29 2016-03-08 Corvia Medical, Inc. Devices and methods for reducing venous pressure
CN102905626A (en) 2010-01-29 2013-01-30 Dc设备公司 Devices and systems for treating heart failure
US9226826B2 (en) 2010-02-24 2016-01-05 Medtronic, Inc. Transcatheter valve structure and methods for valve delivery
US8652204B2 (en) 2010-04-01 2014-02-18 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
IT1400327B1 (en) 2010-05-21 2013-05-24 Sorin Biomedica Cardio Srl SUPPORT DEVICE FOR VALVULAR PROSTHESIS AND CORRESPONDING CORRESPONDENT.
BR112012029896A2 (en) 2010-05-25 2017-06-20 Jenavalve Tech Inc prosthetic heart valve for stent graft and stent graft
US9050066B2 (en) 2010-06-07 2015-06-09 Kardium Inc. Closing openings in anatomical tissue
WO2012030598A2 (en) 2010-09-01 2012-03-08 Medtronic Vascular Galway Limited Prosthetic valve support structure
CA2808673C (en) 2010-09-10 2019-07-02 Symetis Sa Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device
US8940002B2 (en) 2010-09-30 2015-01-27 Kardium Inc. Tissue anchor system
US8845717B2 (en) 2011-01-28 2014-09-30 Middle Park Medical, Inc. Coaptation enhancement implant, system, and method
US8888843B2 (en) 2011-01-28 2014-11-18 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valve regurgitation
CN107334512B (en) 2011-02-10 2021-04-13 可维亚媒体公司 Device for creating and maintaining an intra-atrial pressure relief opening
EP2486894B1 (en) 2011-02-14 2021-06-09 Sorin Group Italia S.r.l. Sutureless anchoring device for cardiac valve prostheses
ES2641902T3 (en) 2011-02-14 2017-11-14 Sorin Group Italia S.R.L. Sutureless anchoring device for cardiac valve prostheses
US9072511B2 (en) 2011-03-25 2015-07-07 Kardium Inc. Medical kit for constricting tissue or a bodily orifice, for example, a mitral valve
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
EP2520251A1 (en) 2011-05-05 2012-11-07 Symetis SA Method and Apparatus for Compressing Stent-Valves
AU2012262549B2 (en) 2011-05-27 2016-02-11 Cormatrix Cardiovascular, Inc. Extracellular matrix material valve conduit and methods of making thereof
WO2012166554A2 (en) * 2011-05-27 2012-12-06 Cormatrix Cardiovascular, Inc. Extracellular matrix material conduits and methods of making and using same
US8998976B2 (en) 2011-07-12 2015-04-07 Boston Scientific Scimed, Inc. Coupling system for medical devices
EP2736456B1 (en) * 2011-07-29 2018-06-13 Carnegie Mellon University Artificial valved conduits for cardiac reconstructive procedures and methods for their production
US9668859B2 (en) 2011-08-05 2017-06-06 California Institute Of Technology Percutaneous heart valve delivery systems
US8951243B2 (en) 2011-12-03 2015-02-10 Boston Scientific Scimed, Inc. Medical device handle
US9205236B2 (en) 2011-12-22 2015-12-08 Corvia Medical, Inc. Methods, systems, and devices for resizable intra-atrial shunts
EP2609893B1 (en) 2011-12-29 2014-09-03 Sorin Group Italia S.r.l. A kit for implanting prosthetic vascular conduits
US10172708B2 (en) 2012-01-25 2019-01-08 Boston Scientific Scimed, Inc. Valve assembly with a bioabsorbable gasket and a replaceable valve implant
CN104334119B (en) * 2012-02-28 2016-10-12 M阀门技术有限公司 Monocycle cardiac valve support structure
US9427315B2 (en) 2012-04-19 2016-08-30 Caisson Interventional, LLC Valve replacement systems and methods
US9011515B2 (en) 2012-04-19 2015-04-21 Caisson Interventional, LLC Heart valve assembly systems and methods
US9345573B2 (en) 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
US9883941B2 (en) 2012-06-19 2018-02-06 Boston Scientific Scimed, Inc. Replacement heart valve
AU2013224679A1 (en) * 2012-09-04 2014-03-20 Negri, Justin MR "Prosthetic heart valve"
DE102012216742A1 (en) 2012-09-19 2014-03-20 Hans-Hinrich Sievers Heart valve prosthesis
WO2014144247A1 (en) 2013-03-15 2014-09-18 Arash Kheradvar Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
WO2014179763A1 (en) 2013-05-03 2014-11-06 Medtronic Inc. Valve delivery tool
RU2541740C2 (en) * 2013-06-14 2015-02-20 Леонид Антонович Бокерия Mitral valve prosthesis
JP6563394B2 (en) 2013-08-30 2019-08-21 イェーナヴァルヴ テクノロジー インコーポレイテッド Radially foldable frame for an artificial valve and method for manufacturing the frame
US9050188B2 (en) 2013-10-23 2015-06-09 Caisson Interventional, LLC Methods and systems for heart valve therapy
US10166098B2 (en) 2013-10-25 2019-01-01 Middle Peak Medical, Inc. Systems and methods for transcatheter treatment of valve regurgitation
US10675450B2 (en) 2014-03-12 2020-06-09 Corvia Medical, Inc. Devices and methods for treating heart failure
US9974647B2 (en) 2014-06-12 2018-05-22 Caisson Interventional, LLC Two stage anchor and mitral valve assembly
EP3157469B1 (en) 2014-06-18 2021-12-15 Polares Medical Inc. Mitral valve implants for the treatment of valvular regurgitation
CA2958065C (en) 2014-06-24 2023-10-31 Middle Peak Medical, Inc. Systems and methods for anchoring an implant
JP6799526B2 (en) 2014-07-23 2020-12-16 コルヴィア メディカル インコーポレイテッド Equipment and methods for the treatment of heart failure
US9750605B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
US9750607B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
US9901445B2 (en) 2014-11-21 2018-02-27 Boston Scientific Scimed, Inc. Valve locking mechanism
WO2016115375A1 (en) 2015-01-16 2016-07-21 Boston Scientific Scimed, Inc. Displacement based lock and release mechanism
US9861477B2 (en) 2015-01-26 2018-01-09 Boston Scientific Scimed Inc. Prosthetic heart valve square leaflet-leaflet stitch
WO2016126524A1 (en) 2015-02-03 2016-08-11 Boston Scientific Scimed, Inc. Prosthetic heart valve having tubular seal
US9788942B2 (en) 2015-02-03 2017-10-17 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
US10285809B2 (en) 2015-03-06 2019-05-14 Boston Scientific Scimed Inc. TAVI anchoring assist device
US10426617B2 (en) 2015-03-06 2019-10-01 Boston Scientific Scimed, Inc. Low profile valve locking mechanism and commissure assembly
US10080652B2 (en) 2015-03-13 2018-09-25 Boston Scientific Scimed, Inc. Prosthetic heart valve having an improved tubular seal
CN107530168B (en) 2015-05-01 2020-06-09 耶拿阀门科技股份有限公司 Device and method with reduced pacemaker ratio in heart valve replacement
US10335277B2 (en) 2015-07-02 2019-07-02 Boston Scientific Scimed Inc. Adjustable nosecone
US10195392B2 (en) 2015-07-02 2019-02-05 Boston Scientific Scimed, Inc. Clip-on catheter
US10136991B2 (en) 2015-08-12 2018-11-27 Boston Scientific Scimed Inc. Replacement heart valve implant
US10179041B2 (en) 2015-08-12 2019-01-15 Boston Scientific Scimed Icn. Pinless release mechanism
US9592121B1 (en) 2015-11-06 2017-03-14 Middle Peak Medical, Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
EP3960127A1 (en) 2015-12-30 2022-03-02 Caisson Interventional, LLC Systems and methods for heart valve therapy
CA3007670A1 (en) 2016-01-29 2017-08-03 Neovasc Tiara Inc. Prosthetic valve for avoiding obstruction of outflow
US10342660B2 (en) 2016-02-02 2019-07-09 Boston Scientific Inc. Tensioned sheathing aids
EP3454795B1 (en) 2016-05-13 2023-01-11 JenaValve Technology, Inc. Heart valve prosthesis delivery system for delivery of heart valve prosthesis with introducer sheath and loading system
US10583005B2 (en) 2016-05-13 2020-03-10 Boston Scientific Scimed, Inc. Medical device handle
US10201416B2 (en) 2016-05-16 2019-02-12 Boston Scientific Scimed, Inc. Replacement heart valve implant with invertible leaflets
US10631979B2 (en) 2016-10-10 2020-04-28 Peca Labs, Inc. Transcatheter stent and valve assembly
CN113893064A (en) 2016-11-21 2022-01-07 内奥瓦斯克迪亚拉公司 Methods and systems for rapid retrieval of transcatheter heart valve delivery systems
CN110392557A (en) 2017-01-27 2019-10-29 耶拿阀门科技股份有限公司 Heart valve simulation
US10653524B2 (en) 2017-03-13 2020-05-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
EP3595587A4 (en) 2017-03-13 2020-11-11 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
US10478303B2 (en) 2017-03-13 2019-11-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation
EP3634311A1 (en) 2017-06-08 2020-04-15 Boston Scientific Scimed, Inc. Heart valve implant commissure support structure
CN111163729B (en) 2017-08-01 2022-03-29 波士顿科学国际有限公司 Medical implant locking mechanism
EP3668449A1 (en) 2017-08-16 2020-06-24 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
WO2019036810A1 (en) 2017-08-25 2019-02-28 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
EP3740160A2 (en) 2018-01-19 2020-11-25 Boston Scientific Scimed Inc. Inductance mode deployment sensors for transcatheter valve system
EP3740170A1 (en) 2018-01-19 2020-11-25 Boston Scientific Scimed, Inc. Medical device delivery system with feedback loop
WO2019157156A1 (en) 2018-02-07 2019-08-15 Boston Scientific Scimed, Inc. Medical device delivery system with alignment feature
US11439732B2 (en) 2018-02-26 2022-09-13 Boston Scientific Scimed, Inc. Embedded radiopaque marker in adaptive seal
WO2019222367A1 (en) 2018-05-15 2019-11-21 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
US11504231B2 (en) 2018-05-23 2022-11-22 Corcym S.R.L. Cardiac valve prosthesis
US11241310B2 (en) 2018-06-13 2022-02-08 Boston Scientific Scimed, Inc. Replacement heart valve delivery device
AU2019374743B2 (en) 2018-11-08 2022-03-03 Neovasc Tiara Inc. Ventricular deployment of a transcatheter mitral valve prosthesis
US11241312B2 (en) 2018-12-10 2022-02-08 Boston Scientific Scimed, Inc. Medical device delivery system including a resistance member
EP3946163A4 (en) 2019-04-01 2022-12-21 Neovasc Tiara Inc. Controllably deployable prosthetic valve
EP3952792A4 (en) 2019-04-10 2023-01-04 Neovasc Tiara Inc. Prosthetic valve with natural blood flow
US11439504B2 (en) 2019-05-10 2022-09-13 Boston Scientific Scimed, Inc. Replacement heart valve with improved cusp washout and reduced loading
CA3140925A1 (en) 2019-05-20 2020-11-26 Neovasc Tiara Inc. Introducer with hemostasis mechanism
AU2020295566B2 (en) 2019-06-20 2023-07-20 Neovasc Tiara Inc. Low profile prosthetic mitral valve
US11464634B2 (en) 2020-12-16 2022-10-11 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation with secondary anchors
US11759321B2 (en) 2021-06-25 2023-09-19 Polares Medical Inc. Device, system, and method for transcatheter treatment of valvular regurgitation

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4306319A (en) * 1980-06-16 1981-12-22 Robert L. Kaster Heart valve with non-circular body
US4406022A (en) * 1981-11-16 1983-09-27 Kathryn Roy Prosthetic valve means for cardiovascular surgery
US4655772A (en) * 1984-09-19 1987-04-07 Liotta Holga E T De Cardiac valvular prosthesis
FR2587614B1 (en) * 1985-09-23 1988-01-15 Biomasys Sa PROSTHETIC HEART VALVE
US4743308A (en) * 1987-01-20 1988-05-10 Spire Corporation Corrosion inhibition of metal alloys
DE3701704C1 (en) * 1987-01-22 1988-08-18 Braun Melsungen Ag Heart valve prosthesis
DK163338C (en) * 1989-11-14 1992-07-13 John Michael Hasenkam HEART VALVE PROSTHESIS
DE69325042T2 (en) * 1992-02-07 1999-11-18 Smith & Nephew Inc Surface hardened biocompatible medical metal implant
US6296663B1 (en) * 1995-03-29 2001-10-02 Medical Cv, Inc. Bileaflet heart valve having open channel and swivel pivots
DE19624948A1 (en) * 1996-06-24 1998-01-02 Adiam Medizintechnik Gmbh & Co Prosthetic heart valve
DE19625202A1 (en) * 1996-06-24 1998-01-02 Adiam Medizintechnik Gmbh & Co Prosthetic mitral heart valve
US5843183A (en) * 1997-05-13 1998-12-01 Bokros; Jack C. Trileaflet heart valve
US6395024B1 (en) * 1997-05-20 2002-05-28 Triflo Medical, Inc. Mechanical heart valve
US5919226A (en) * 1997-07-22 1999-07-06 Medtronic, Inc. Mechanical heart valve prosthesis
US6761736B1 (en) * 1999-11-10 2004-07-13 St. Jude Medical, Inc. Medical article with a diamond-like carbon coated polymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10182907B2 (en) 2007-05-02 2019-01-22 Novostia Sa Mechanical prosthetic heart valve

Also Published As

Publication number Publication date
WO2005023155A1 (en) 2005-03-17
US20050049697A1 (en) 2005-03-03
ATE458455T1 (en) 2010-03-15
JP4545149B2 (en) 2010-09-15
US6991649B2 (en) 2006-01-31
EP1703865A1 (en) 2006-09-27
DE502004010822D1 (en) 2010-04-08
DE10340265A1 (en) 2005-04-07
JP2007503856A (en) 2007-03-01
EP1703865B1 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
CA2441846A1 (en) Artificial heart valve
US5078739A (en) Bileaflet heart valve with external leaflets
US5139515A (en) Ascending aortic prosthesis
US4114202A (en) Prosthetic valve assembly for use in cardiovascular surgery
US4263680A (en) Prosthetic closure devices to replace the valves in human hearts
KR100702874B1 (en) Mechanical heart valve
US5123918A (en) Prosthetic heart valve
US4692165A (en) Heart valve
JP4067128B2 (en) Heart valve prosthesis
US4597767A (en) Split leaflet heart valve
JP4494421B2 (en) Heart valve
US5061278A (en) Artificial heart valve
US4488318A (en) Prosthetic heart valve
JP2000513248A (en) Prosthetic mitral and heart valves
EP0966239A1 (en) Prosthetic heart valve
US7112220B2 (en) Valve
JPH02114967A (en) Artificial heart valve
CA1245401A (en) Heart valve
US20080086202A1 (en) Mechanical heart valve
SU1572602A1 (en) Heart valve prosthesis
CN2189913Y (en) Artificial aortic valve
RU2395253C1 (en) Heart valve prosthesis
CZ9804342A3 (en) Spherical two-valve mechanical prosthesis of cardiac valve
JPH042051B2 (en)

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued