CA2443175A1 - Control system for progressing cavity pumps - Google Patents

Control system for progressing cavity pumps Download PDF

Info

Publication number
CA2443175A1
CA2443175A1 CA002443175A CA2443175A CA2443175A1 CA 2443175 A1 CA2443175 A1 CA 2443175A1 CA 002443175 A CA002443175 A CA 002443175A CA 2443175 A CA2443175 A CA 2443175A CA 2443175 A1 CA2443175 A1 CA 2443175A1
Authority
CA
Canada
Prior art keywords
pump
suction pressure
progressing cavity
pump suction
values
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002443175A
Other languages
French (fr)
Other versions
CA2443175C (en
Inventor
Thomas L. Beck
Robb G. Anderson
Steven J. Olson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unico LLC
Original Assignee
Unico LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unico LLC filed Critical Unico LLC
Publication of CA2443175A1 publication Critical patent/CA2443175A1/en
Application granted granted Critical
Publication of CA2443175C publication Critical patent/CA2443175C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/08Units comprising pumps and their driving means the pump being electrically driven for submerged use
    • F04D13/10Units comprising pumps and their driving means the pump being electrically driven for submerged use adapted for use in mining bore holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B47/00Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps
    • F04B47/02Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps the driving mechanisms being situated at ground level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0066Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0088Testing machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0201Current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0202Voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0207Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0208Power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/05Pressure after the pump outlet

Abstract

A control system for the operation of a progressing cavity pump which may be used for production of gas and/or oil from a well. The control system includes vector feedback model to derive values of torque and speed from signals indicative of instantaneous current and voltage drawn by the pump motor, a pump model which derives values of the fluid flow rate and the head pressure for the pump from torque and speed inputs, a pumping system model that derives from the estimated values of the pump operating parameters an estimated value of a pumping system parameter and controllers responsive to the estimated values of the pumping system parameters to control the pump to maintain fluid level at the pump input near an optimum level.

Claims (91)

1. A method of measuring the performance of a progressing cavity pump for transferring fluid within a fluid system, the method comprising the steps of:
determining values of torque and speed inputs to the progressing cavity pump; and using the values of torque and speed inputs to calculate one or more values representing the performance of the progressing cavity pump, wherein the values of torque and speed inputs are determined using measured or calculated values without requiring downhole sensors.
2. The method. of claim 1, wherein the values representing the performance of the progressing cavity pump are one or more values selected from the group consisting of pump flow rate, pump head pressure and pump efficiency.
3. The method of claim 1 wherein the progressing cavity pump is coupled to an electric motor and the step of determining the torque and speed inputs to the progressing cavity pump comprises the steps of:
measuring electrical voltages applied to the motor and currents drawn by the motor; and using the measured values of electrical voltages applied to the motor and currents drawn by the motor to calculate at least one of the values selected from the group consisting of motor torque and motor speed.
4. The method of claim 3, wherein the values representing the performance of the progressing cavity pump are one or more values selected from the group consisting of pump flow rate, pump head pressure and pump efficiency.
5. The method of claim 1, further comprising the steps of:
using at or above ground sensors to determine measured progressing cavity pump performance values for one or more of the calculated pump performance values;
comparing the measured progressing cavity pump performance values determined by the sensors with the corresponding calculated progressing cavity pump performance values; and generating a fault sequence if the difference between corresponding values exceeds an allowable limit.
6. The method of claim 2, further comprising the steps of:
using at or above ground sensors to determine measured progressing cavity pump performance values for one or more of the calculated progressing cavity pump performance values;
comparing each measured progressing cavity pump performance value with the corresponding calculated progressing cavity pump performance value; and generating a fault sequence if the difference between corresponding values exceeds an allowable limit.
7. The method of claim 3, further comprising the steps of:
using at or above ground sensors to determine measured progressing cavity pump performance values for one or more of the calculated progressing cavity pump performance values;
comparing each measured progressing cavity pump performance value with the corresponding calculated progressing cavity pump performance value; and generating a fault sequence if the difference between corresponding values exceeds an allowable limit.
8. The method of claim 4, further comprising the steps of:
using at or above ground sensors to determine measured progressing cavity pump performance values for one or more of the calculated progressing cavity pump performance values;
comparing each measured progressing cavity pump performance value with the corresponding calculated progressing cavity pump performance value; and generating a fault sequence if the difference between corresponding values exceeds an allowable limit.
9. A method of measuring the performance of a fluid system wherein a progressing cavity pump is used for transferring fluid within said fluid system, the method comprising the steps of:
determining values of torque and speed inputs to the progressing cavity pump;
using the values of torque and speed inputs to calculate one or more values representing the performance of the progressing cavity pump; and using the values representing the performance of the progressing cavity pump to calculate values representing the performance of the fluid system, wherein the values of torque and speed inputs are determined using measured or calculated values without requiring downhole sensors.
10. The method of claim 9, wherein the values representing the performance of the fluid system are one or more values selected from the group consisting of pump suction pressure, pump discharge pressure, flow head loss and fluid level.
11. The method of claim 9 wherein the progressing cavity pump is coupled to an electric motor and the step of determining the torque and speed inputs to the progressing cavity pump comprises the steps of:
measuring the electrical voltages applied to the motor and currents drawn by the motor; and using the measured values of electrical voltages applied to the motor and currents drawn by the motor to calculate at least one of the values selected from the group consisting of motor torque and motor speed.
12. The method of claim 11, wherein the values representing the performance of the fluid system are one or more values selected from the group consisting of pump suction pressure, pump discharge pressure, flow head loss and fluid level.
13. The method of claim 9, further comprising the steps of:
using at or above ground sensors to determine measured fluid system performance values for one or more of the calculated fluid system performance values;

comparing each measured fluid system performance value with the corresponding calculated fluid system performance value; and generating a fault sequence if the difference between corresponding values exceeds an allowable limit.
14. The method of claim 10, further comprising the steps of:
using at or above ground sensors to determine measured fluid system performance values for one or more of the calculated fluid system performance values;
comparing each measured fluid system performance value with the corresponding calculated fluid system performance value; and generating a fault sequence if the difference between corresponding values exceeds an allowable limit.
15. The method of claim 11, further comprising the steps of:
using at or above ground sensors to determine measured fluid system performance values for one or more of the calculated fluid system performance values;
comparing each measured fluid system performance value with the corresponding calculated fluid system performance value; and generating a fault sequence if the difference between corresponding values exceeds an allowable limit.
16. The method of claim 12, further comprising the steps of:
using at or above ground sensors to determine measured fluid system performance values for one or more of the calculated fluid system performance values;
comparing each measured fluid system performance value with the corresponding calculated fluid system performance value; and generating a fault sequence if the difference between corresponding values exceeds an allowable limit.
17. A method of controlling a progressing cavity pump for transferring fluid within a fluid system, the method comprising the steps of:
determining values of torque and speed inputs to the progressing cavity pump;
using the values of torque and speed inputs to calculate one or more values representing the performance of the progressing cavity pump;
using the progressing cavity pump performance values to produce one or more command signals; and using the command signals to control the speed of the progressing cavity pump, wherein the values of torque and speed inputs are determined using measured or calculated values without requiring downhole sensors.
18. The method of claim 17, wherein the step of using progressing cavity pump performance values to produce command signals comprises the steps of:
selecting a progressing cavity pump performance parameter to control;

determining a setpoint for the selected progressing cavity pump performance parameter;
calculating a control signal using the setpoint value of the selected progressing cavity pump performance parameter; and calculating the command signals from the control signal.
19. The method of claim 18, wherein the selected progressing cavity pump performance parameter is the pump flow.
20. The method of claim 29, wherein the step of using the command signals to control the speed of the progressing cavity pump includes repetitively switching the speed of the progressing cavity pump between a set pump speed for a portion of a cycle period and zero speed for the remainder of the cycle period to achieve an average pump flow equal to the setpoint value of the pump flow.
21. The method of claim 18, wherein the selected progressing cavity pump performance parameter is the pump head pressure,
22. The method of claim 17 wherein the progressing cavity pump is coupled to an electric motor and the step of determining the torque and speed inputs to the progressing cavity pump comprises the steps of:
measuring the electrical voltages applied to the motor and currents drawn by the motor; and using the measured values of electrical voltages applied to the motor and currents drawn by the motor to calculate at least one of the values selected from the group consisting of motor torque and motor speed.
23. The method of claim 22, wherein the step of using progressing cavity pump performance values to produce command signals comprises the steps of:
selecting a progressing cavity pump performance parameter to control;
determining a setpoint for the selected progressing cavity pump performance parameter;
calculating a control signal using the setpoint value of the selected progressing cavity pump performance parameter; and calculating the command signals from the control signal.
24. The method of claim 23, wherein the selected progressing cavity pump performance parameter is the pump flow.
25. The method of claim 24, wherein the step of using the command signals to control the speed of the progressing cavity pump includes repetitively switching the speed of the progressing cavity pump between a set pump speed for a portion of a cycle period and zero speed for the remainder of the cycle period to achieve an average pump flow equal to the setpoint value of the pump flow.
26. The method of claim 23, wherein the selected progressing cavity pump performance parameter is the pump head pressure.
27. A method of controlling the performance of a fluid system wherein a progressing cavity pump is used for transferring fluid within said fluid system, the method comprising the steps of:
determining values of torque and speed inputs to the progressing cavity pump;
using the values of torque and speed inputs to calculate one or more values representing the performance of the progressing cavity pump;
using the values representing the performance of the progressing cavity pump to calculate values representing the performance of the fluid system;
using the system performance values to produce one or more command signals; and using the command signals to control the speed of the progressing cavity pump, wherein the values of torque and speed inputs are determined using measured or calculated values without requiring downhole sensors.
28. The method of claim 27, wherein the step of using fluid system performance values to produce command signals comprises the steps of:
selecting a fluid system performance parameter to control;
determining a setpoint for the selected fluid system performance parameter;
calculating a control signal using the setpoint value of the selected fluid system performance parameter; and calculating the command signals from the control signal.
29. The method of claim 28, wherein the selected fluid system performance parameter to control is the pump suction pressure.
30. The method of claim 29, further comprising the step of deriving the setpoint value for pump suction pressure from a fluid level command.
31. The method of claim 28, further comprising the step of determining the fluid level command, said step of determining the fluid level command comprising the steps of:

defining a fluid system performance characteristic to optimize;

varying the fluid level incrementally through a range of values;

determining a value representing the fluid system performance characteristic for each value of fluid level;

determining for which value of fluid level the value representing the fluid system performance characteristic is optimized; and setting the fluid level command at the level which produces the optimized value.
32. The method of claim 31, wherein the step of determining the fluid level command is automatically repeated at predetermined times.
33. The method of claim 31, further comprising the step of periodically determining the pump efficiency and repeating the step of determining the fluid level command when a decrease in pump efficiency relative to prior determinations of pump efficiency is detected.
34. The method of claim 31, wherein the fluid system is a gas well, further comprising the step of periodically determining the gas production and repeating the step of determining the fluid level command when a decrease in gas production relative to prior determinations of gas production is detected.
35. The method of claim 29, wherein the step of using the command signals to control the speed of the progressing cavity pump includes repetitively performing the method comprising the steps of:

operating the progressing cavity pump at a set speed until the pump suction. pressure decreases to a value less than or equal to a pump suction pressure lower limit, said pump suction pressure lower limit calculated as the pump suction pressure setpoint minus a tolerance; and operating the progressing cavity pump at zero speed until the pump suction pressure increases to a value greater than or equal to a pump suction pressure upper limit, said pump suction pressure upper limit calculated as the pump suction pressure setpoint plus a tolerance.
36. The method of claim 30, wherein the step of using the command signals to control the speed of the progressing cavity pump includes repetitively performing the method comprising the steps of:

operating the progressing cavity pump at a set speed until the pump suction pressure decreases to a value less than or equal to a pump suction pressure lower limit, said pump suction pressure lower limit calculated as the pump suction pressure setpoint minus a tolerance; and operating the progressing cavity pump at zero speed until the pump suction pressure increases to a value greater than or equal to a pump suction pressure upper limit, said pump suction pressure upper limit calculated as the pump suction pressure setpoint plus a tolerance.
37. The method of claim 31, wherein the step of using the command signals to control the speed of the progressing cavity pump includes repetitively performing the method comprising the steps of:

operating the progressing cavity pump at a set speed until the pump suction pressure decreases to a value less than or equal to a pump suction pressure lower limit, said pump suction pressure lower limit calculated as the pump suction pressure setpoint minus a tolerance; and operating the progressing cavity pump at zero speed until the pump suction pressure increases to a value greater than or equal to a pump suction pressure upper limit, said pump suction pressure upper limit calculated as the pump suction pressure setpoint plus a tolerance.
38. The method of claim 32, wherein the step of using the command signals to control the speed of the progressing cavity pump includes repetitively performing the method comprising the steps of:

operating the progressing cavity pump at a set speed until the pump suction pressure decreases to a value less than or equal to a pump suction pressure lower limit, said pump suction pressure lower limit calculated as the pump suction pressure setpoint minus a tolerance; and operating the progressing cavity pump at zero speed until the pump suction pressure increases to a value greater than or equal to a pump suction pressure upper limit, said pump suction pressure upper limit calculated as the pump suction pressure setpoint plus a tolerance.
39. The method of claim 33, wherein the step of using the command signals to control the speed of the progressing cavity pump includes repetitively performing the method comprising the steps of:

operating the progressing cavity pump at a set speed until the pump suction pressure decreases to a value less than or equal to a pump suction pressure lower limit, said pump suction pressure lower limit calculated as the pump suction pressure setpoint minus a tolerance; and operating the progressing cavity pump at zero speed until the pump suction pressure increases to a value greater than or equal to a pump suction pressure upper limit, said pump suction pressure upper limit calculated as the pump suction pressure setpoint plus a tolerance.
40. The method of claim 34, wherein the step of using the command signals to control the speed of the progressing cavity pump includes repetitively performing the method comprising the steps of:

operating the progressing cavity pump at a set speed until the pump suction pressure decreases to a value less than or equal to a pump suction pressure lower limit, said pump suction pressure lower limit calculated as the pump suction pressure setpoint minus a tolerance; and operating the progressing cavity pump at zero speed until the pump suction pressure increases to a value greater than or equal to a pump suction pressure upper limit, said pump suction pressure upper limit calculated as the pump suction pressure setpoint plus a tolerance.
41. The method of claim 27 wherein the progressing cavity pump is coupled to an electric motor and the step of determining the torque and speed inputs to the progressing cavity pump comprises the steps of:

measuring the electrical voltages applied to the motor and currents drawn by the motor; and using the measured values of electrical voltages applied to the motor and currents drawn by the motor to calculate at least one of the values selected from the group consisting of motor torque and motor speed.
42. The method of claim 41, wherein the step of using fluid system performance values to produce command signals comprises the steps of:

selecting a fluid system performance parameter to control;

determining a setpoint for the selected fluid system performance parameter;

calculating a control signal using the selected fluid system performance parameter; and calculating the command signals from the control signal.
43. The method of claim 42, wherein the selected fluid system performance parameter to control is the pump suction pressure.
44. The method of claim 43, further comprising the step of deriving the setpoint value for pump suction pressure from a fluid level command.
45. The method of claim 44, further comprising the step of determining the fluid level command, said step of determining the fluid level command comprising the steps of:

defining a fluid system performance characteristic to optimize;

varying the fluid level incrementally through a range of values;

determining a value representing the fluid system performance characteristic for each value of fluid level;

determining for which value of fluid level the value representing the fluid system performance characteristic is optimized; and setting the fluid level command at the level which produces the optimized value.
46. The method of claim 45, wherein the step of determining the fluid level command is automatically repeated at predetermined times.
47. The method of claim 45, further comprising the step of periodically determining the pump efficiency and repeating the step of determining the fluid level command when a decrease in pump efficiency relative to prior determinations of pump efficiency is detected.
48. The method of claim 45, wherein the system is a gas well, further comprising the step of periodically determining the gas production and repeating the step of determining the fluid level command when a decrease in gas production is detected.
49. The method of claim 43, wherein the step of using the command signals to control the speed of the progressing cavity pump includes repetitively performing the method comprising the steps of:

operating the progressing cavity pump at a set speed until the pump suction pressure decreases to a value less than or equal to a pump suction pressure lower limit, said pump suction pressure lower limit calculated as the pump suction pressure setpoint minus a tolerance; and operating the progressing cavity pump at zero speed until the pump suction pressure increases to a value greater than or equal to a pump suction pressure upper limit, said pump suction pressure upper limit calculated as the pump suction pressure setpoint plus a tolerance.
50. The method of claim 44, wherein the step of using the command signals to control the speed of the progressing cavity pump includes repetitively performing the method comprising the steps of:

operating the progressing cavity pump at a set speed until the pump suction pressure decreases to a value less than or equal to a pump suction pressure lower limit, said pump suction pressure lower limit calculated as the pump suction pressure setpoint minus a tolerance; and operating the progressing cavity pump at zero speed until the pump suction pressure increases to a value greater than or equal to a pump suction pressure upper limit, said pump suction pressure upper limit calculated as the pump suction pressure setpoint plus a tolerance.
51. The method of claim 45, wherein the step of using the command signals to control the speed of the progressing cavity pump includes repetitively performing the method comprising the steps of:

operating the progressing cavity pump at a set speed until the pump suction pressure decreases to a value less than or equal to a pump suction pressure lower limit, said pump suction pressure lower limit calculated as the pump suction pressure setpoint minus a tolerance; and operating the progressing cavity pump at zero speed until the pump suction pressure increases to a value greater than or equal to a pump suction pressure upper limit, said pump suction pressure upper limit calculated as the pump suction pressure setpoint plus a tolerance.
52. The method of claim 46, wherein the step of using the command signals to control the speed of the progressing cavity pump includes repetitively performing the method comprising the steps of:

operating the progressing cavity pump at a set speed until the pump suction pressure decreases to a value less than or equal to a pump suction pressure lower limit, said pump suction pressure lower limit calculated as the pump suction pressure setpoint minus a tolerance; and
53 operating the progressing cavity pump at zero speed until the pump suction pressure increases to a value greater than or equal to a pump suction pressure upper limit, said pump suction pressure upper limit calculated as the pump suction pressure setpoint plus a tolerance.

53. The method of claim 47, wherein the step of using the command signals to control the speed of the progressing cavity pump includes repetitively performing the method comprising the steps of:

operating the progressing cavity pump at a set speed until the pump suction pressure decreases to a value less than or equal to a pump suction pressure lower limit, said pump suction pressure lower limit calculated as the pump suction pressure setpoint minus a tolerance; and operating the progressing cavity pump at zero speed until the pump suction pressure increases to a value greater than ar equal to a pump suction pressure upper limit, said pump suction pressure upper limit calculated as the pump suction pressure setpoint plus a tolerance.
54. The method of claim 48, wherein the step of using the command signals to control the speed of the progressing cavity pump includes repetitively performing the method comprising the steps of:

operating the progressing cavity pump at a set speed until the pump suction pressure decreases to a value less than or equal to a pump suction pressure lower limit, said pump suction pressure lower limit calculated as the pump suction pressure setpoint minus a tolerance; and operating the progressing cavity pump at zero speed until the pump suction pressure increases to a value greater than or equal to a pump suction pressure upper limit, said pump suction pressure upper limit calculated as the pump suction pressure setpoint plus a tolerance.
55. A method of controlling the performance of a fluid system wherein a progressing cavity pump is used for transferring fluid within said fluid system, the method comprising the steps of:

selecting a fluid system performance parameter to control;
determining a setpoint for the selected fluid system performance parameter;

determining values representing the performance of the progressing cavity pump;

determining values representing the performance of the fluid system;
using the pump performance values and fluid system performance values to calculate a feedforward signal by predicting a value of mechanical input to the progressing cavity pump when operating with the selected progressing cavity pump performance value at the setpoint value;

using the feedforward signal to generate command signals; and using the command signals to control the speed of the progressing cavity pump.
56. The method of claim 55, wherein the selected fluid system performance parameter to control is the pump suction pressure.
57. The method of claim 56, further comprising the step of deriving the setpoint value for pump suction pressure from a fluid level command.
58. The method of claim 57, further comprising the step of determining the fluid level command, said step of determining the fluid level command comprising the steps of defining a fluid system performance characteristic to optimize;

varying the fluid level incrementally through a range of values;

determining a value representing the fluid system performance characteristic for each value of fluid level;
determining for which value of fluid level the value representing the fluid system performance characteristic is optimized; and setting the fluid level command at the level which produces the optimized value.
59. The method of claim 58, wherein the step of determining the fluid level command is automatically repeated at predetermined times.
60. The method of claim 58, further comprising the step of periodically determining the pump efficiency and repeating the step of determining the fluid level command when a decrease in pump efficiency relative to prior determinations of pump efficiency is detected.
61. The method of claim 58, wherein the system is a gas well, further comprising the step of periodically determining the gas production and repeating the step of determining the fluid level command when a decrease in gas production is detected.
62. The method of claim 56, wherein the step of using the command signals to control the speed of the progressing cavity pump includes repetitively performing the method comprising the steps of:

operating the progressing cavity pump at a set speed until the pump suction pressure decreases to a value less than or equal to a pump suction pressure lower limit, said pump suction pressure lower limit calculated as the pump suction pressure setpoint minus a tolerance; and operating the progressing cavity pump at zero speed until the pump suction pressure increases to a value greater than or equal to a pump suction pressure upper limit, said pump suction pressure upper limit calculated as the pump suction pressure setpoint plus a tolerance.
63. The method of claim 57, wherein the step of using the command signals to control the speed of the progressing cavity pump includes repetitively performing the method comprising the steps of:

operating the progressing cavity pump at a set speed until the pump suction pressure decreases to a value less than or equal to a pump suction pressure lower limit, said pump suction pressure lower limit calculated as the pump suction pressure setpoint minus a tolerance; and operating the progressing cavity pump at zero speed until the pump suction pressure increases to a value greater than or equal to a pump suction pressure upper limit, said pump suction pressure upper limit calculated as the pump suction pressure setpoint plus a tolerance.
64. The method of claim 58, wherein the step of using the command signals to control the speed of the progressing cavity pump includes repetitively performing the method comprising the steps of:

operating the progressing cavity pump at a set speed until the pump suction pressure decreases to a value less than or equal to a pump suction pressure lower limit, said pump suction pressure lower limit calculated as the pump suction pressure setpoint minus a tolerance; and operating the progressing cavity pump at zero speed until the pump suction pressure increases to a value greater than or equal to a pump suction pressure upper limit, said pump suction pressure upper limit calculated as the pump suction pressure setpoint plus a tolerance.
65. The method of claim 59, wherein the step of using the command signals to control the speed of the progressing cavity pump includes repetitively performing the method comprising the steps of:

operating the progressing cavity pump at a set speed until the pump suction pressure decreases to a value less than or equal to a pump suction pressure lower limit, said pump suction pressure lower limit calculated as the pump suction pressure setpoint minus a tolerance; and operating the progressing cavity pump at zero speed until the pump suction pressure increases to a value greater than or equal to a pump suction pressure upper limit, said pump suction pressure upper limit calculated as the pump suction pressure setpoint plus a tolerance.
66. The method of claim 60, wherein the step of using the command signals to control the speed of the progressing cavity pump includes repetitively performing the method comprising the steps of:

operating the progressing cavity pump at a set speed until the pump suction pressure decreases to a value less than or equal to a pump suction pressure lower limit, said pump suction pressure lower limit calculated as the pump suction pressure setpoint minus a tolerance; and operating the progressing cavity pump at zero speed until the pump suction pressure increases to a value greater than or equal to a pump suction pressure upper limit, said pump suction pressure upper limit calculated as the pump suction pressure setpoint plus a tolerance.
67. The method of claim 61, wherein the step of using the command signals to control the speed of the progressing cavity pump includes repetitively performing the method comprising the steps of:
operating the progressing cavity pump at a set speed until the pump suction pressure decreases to a value less than or equal to a pump suction pressure lower limit, said pump suction pressure lower limit calculated as the pump suction pressure setpoint minus a tolerance; and operating the progressing cavity pump at zero speed until the pump suction pressure increases to a value greater than or equal to a pump suction pressure upper limit, said pump suction pressure upper limit calculated as the pump suction pressure setpoint plus a tolerance.
68. A method of controlling the performance of a fluid system wherein a progressing cavity pump is used for transferring fluid within said fluid system, the method comprising the steps of:

using a check valve to prevent back flow through the pump; and repetitively switching the speed of the progressing cavity pump between a set pump speed for a portion of a cycle period and zero speed for the remainder of the cycle period to achieve an average pump flow rate equal to a desired value of pump flow rate.
69. A pump control system for controlling a progressing cavity pump for transferring fluid within a fluid system, the pump control system comprising:

a plurality of sensors located at or above ground level;
means responsive to the sensors for determining values of torque and speed inputs to the progressing cavity pump;
means for using the values of torque and speed inputs to calculate one or more values representing the performance of the progressing cavity pump; and means for using the progressing cavity pump performance values to produce one or more command signals for controlling the speed of the progressing cavity pump, the values of torque and speed inputs being derived using measured or calculated values without requiring downhole sensors.
70. The pump control system of claim 69, wherein said means using the progressing cavity pump performance values to produce command signals includes means for calculating a feedback signal indicative of the difference between a current value of a selected progressing cavity pump performance parameter and a setpoint value of the selected progressing cavity pump performance parameter, and means for calculating the command signals from the feedback signal.
71. The pump control system of claim 70, wherein the selected progressing cavity pump performance parameter is the pump flow.
72. The pump control system of claim 70, wherein the selected progressing cavity pump performance parameter is the pump head pressure.
73. The pump control system of claim 69, wherein said means using the progressing cavity pump performance values to produce command signals includes means for calculating a feedforward signal by predicting a value of mechanical input to the progressing cavity pump when operating with a selected progressing cavity pump performance value at a setpoint value, and means for calculating the command signals from the feedforward signal.
74. The pump control system of claim 71, including means for repetitively switching the speed of the progressing cavity pump between a set pump speed for a portion of a cycle period and zero speed for the remainder of the cycle period to achieve an average pump flow equal to the setpoint value of the pump flow.
75. A pump control system for controlling a progressing cavity pump for transferring fluid within a gas or oil well, the pump control system comprising:
a plurality of sensors located at or above ground level;
means responsive to the sensors for determining values of torque and speed inputs to the progressing cavity pump;
means for using the values of torque and speed inputs to calculate one or more values representing the performance of the progressing cavity pump;
means for using the values representing the performance of the progressing cavity pump to calculate values representing the performance of the well; and means for using the system performance values to produce one or more command signals for controlling the speed of the progressing cavity pump, the values of torque and speed inputs being derived using measured or calculated values without requiring downhole sensors.
76. The pump control system of claim 75, wherein said means for using the performance values to produce command signals includes means for calculating a feedback signal indicative of the difference between a current value of the selected performance parameter and a setpoint value of the selected performance parameter; and means for using the feedback signal to calculate the command signals.
77. The pump control system of claim 75, wherein said means using the progressing cavity pump performance values to produce command signals includes means for calculating a feedforward signal by predicting a value of mechanical input to the progressing cavity pump when operating with a selected progressing cavity pump performance value at a setpoint value, and means for calculating the command signals from the feedforward signal.
78. The pump control system of claim 76, wherein the selected performance parameter is the pump suction pressure.
79. The pump control system of claim 78, wherein said means for using the performance values to produce command signals includes means for calculating the setpoint for pump suction pressure from a fluid level command.
80. The pump control system of claim 79, wherein said means for using the system performance values to produce command signals includes means for periodically determining gas or oil production and adjusting fluid level command in response to detection of a decrease in gas or oil production.
81. The pump control system of claim 78, wherein said means for using the command signals to control the speed of the progressing cavity pump includes means for operating the progressing cavity pump at a set speed until the pump suction pressure decreases to a value less than or equal to a pump suction pressure lower limit that is calculated as the pump suction pressure setpoint minus a tolerance; and means for operating the progressing cavity pump at zero speed until the pump suction pressure increases to a value greater than or equal to a pump suction pressure upper limit that is calculated as the pump suction pressure setpoint plus a tolerance.
82. A pump control system for controlling a progressing cavity pump for transferring fluid within a fluid system, the pump control system comprising:
means for determining values representing the performance of the progressing cavity pump;
means for determining values representing the performance of the fluid system;
means for calculating a feedforward signal by predicting a value of mechanical input to the progressing cavity pump when operating with a selected progressing cavity pump performance value at a setpoint value; and means for calculating from the feedforward signal one or more command signals for controlling the speed of the progressing cavity pump.
83. The pump control system of claim 82, wherein the selected performance parameter is the pump suction pressure.
84. The pump control system of claim 83, wherein said means for means for calculating a feedforward signal includes means for calculating the setpoint for pump suction pressure from a fluid level command.
85. The pump control system of claim 84, wherein said means for means for calculating a feedforward signal includes means for periodically determining gas or oil production and adjusting fluid level command in response to detection of a decrease in gas or oil production.
86. The pump control system of claim 83, wherein said means for using the command signals to control the speed of the progressing cavity pump includes means for operating the progressing cavity pump at a set speed until the pump suction pressure decreases to a value less than or equal to a pump suction pressure lower limit that is calculated as the pump suction pressure setpoint minus a tolerance; and means for operating the progressing cavity pump at zero speed until the pump suction pressure increases to a value greater than or equal to a pump suction pressure upper limit that is calculated as the pump suction pressure setpoint plus a tolerance.
87. A pump control system for controlling a progressing cavity pump for transferring fluid within a gas or oil well, the pump control system comprising:
means for determining values representing the performance of the progressing cavity pump;
means for determining values representing the performance of the well;
means for calculating a feedforward signal by predicting a value of mechanical input to the progressing cavity pump when operating with a selected progressing cavity pump performance value at a setpoint value; and means for calculating from the feedforward signal one or more Command signals for controlling the speed of the progressing cavity pump.
88. The pump control system of claim 87, wherein the selected performance parameter is the pump suction pressure.
89. The pump control system of claim 88, wherein said means for means for calculating a feedforward signal includes means for calculating the setpoint for pump suction pressure from a fluid level command.
90. The pump control system of claim 89, wherein said means for means for calculating a feedforward signal includes means for periodically determining gas or oil production and adjusting fluid level command in response to detection of a decrease in gas or oil production.
91. The pump control system of claim 88, wherein said means for using the command signals to control the speed of the progressing cavity pump includes means for operating the progressing cavity pump at a set speed until the pump suction pressure decreases to a value less than or equal to a pump suction pressure lower limit that is calculated as the pump suction pressure setpoint minus a tolerance; and means for operating the progressing cavity pump at zero speed until the pump suction pressure increases to a value greater than or equal to a pump suction pressure upper limit that is calculated as the pump suction pressure setpoint plus a tolerance.
CA002443175A 2002-09-27 2003-09-26 Control system for progressing cavity pumps Expired - Lifetime CA2443175C (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US41419702P 2002-09-27 2002-09-27
US60/414,197 2002-09-27
US42915802P 2002-11-26 2002-11-26
US60/429,158 2002-11-26
US10/655,778 2003-09-04
US10/655,778 US20040062658A1 (en) 2002-09-27 2003-09-05 Control system for progressing cavity pumps

Publications (2)

Publication Number Publication Date
CA2443175A1 true CA2443175A1 (en) 2004-03-27
CA2443175C CA2443175C (en) 2009-12-29

Family

ID=32233406

Family Applications (4)

Application Number Title Priority Date Filing Date
CA002443175A Expired - Lifetime CA2443175C (en) 2002-09-27 2003-09-26 Control system for progressing cavity pumps
CA002443010A Expired - Lifetime CA2443010C (en) 2002-09-27 2003-09-26 Rod pump control system including parameter estimator
CA002442973A Expired - Lifetime CA2442973C (en) 2002-09-27 2003-09-26 Control system for centrifugal pumps
CA2644149A Expired - Lifetime CA2644149C (en) 2002-09-27 2003-09-26 Control system for centrifugal pumps

Family Applications After (3)

Application Number Title Priority Date Filing Date
CA002443010A Expired - Lifetime CA2443010C (en) 2002-09-27 2003-09-26 Rod pump control system including parameter estimator
CA002442973A Expired - Lifetime CA2442973C (en) 2002-09-27 2003-09-26 Control system for centrifugal pumps
CA2644149A Expired - Lifetime CA2644149C (en) 2002-09-27 2003-09-26 Control system for centrifugal pumps

Country Status (2)

Country Link
US (5) US20040062658A1 (en)
CA (4) CA2443175C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10428629B2 (en) 2014-12-30 2019-10-01 Yueli Electric (Jiangsu) Co., Ltd. Methods and systems for directly driving a beam pumping unit by a rotating motor

Families Citing this family (239)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7668694B2 (en) * 2002-11-26 2010-02-23 Unico, Inc. Determination and control of wellbore fluid level, output flow, and desired pump operating speed, using a control system for a centrifugal pump disposed within the wellbore
US20040062658A1 (en) * 2002-09-27 2004-04-01 Beck Thomas L. Control system for progressing cavity pumps
US20050047944A1 (en) * 2003-08-26 2005-03-03 Howard William F. Surface driven well pump
US8083499B1 (en) 2003-12-01 2011-12-27 QuaLift Corporation Regenerative hydraulic lift system
US8540493B2 (en) 2003-12-08 2013-09-24 Sta-Rite Industries, Llc Pump control system and method
GB0404458D0 (en) * 2004-03-01 2004-03-31 Zenith Oilfield Technology Ltd Apparatus & method
US8177520B2 (en) * 2004-04-09 2012-05-15 Regal Beloit Epc Inc. Controller for a motor and a method of controlling the motor
US8133034B2 (en) * 2004-04-09 2012-03-13 Regal Beloit Epc Inc. Controller for a motor and a method of controlling the motor
US20080095639A1 (en) * 2006-10-13 2008-04-24 A.O. Smith Corporation Controller for a motor and a method of controlling the motor
US20110002792A1 (en) * 2004-04-09 2011-01-06 Bartos Ronald P Controller for a motor and a method of controlling the motor
US7314349B2 (en) * 2004-04-26 2008-01-01 Djax Corporation Fluid level control system for progressive cavity pump
US7317260B2 (en) * 2004-05-11 2008-01-08 Clipper Windpower Technology, Inc. Wind flow estimation and tracking using tower dynamics
US7845913B2 (en) 2004-08-26 2010-12-07 Pentair Water Pool And Spa, Inc. Flow control
US7686589B2 (en) 2004-08-26 2010-03-30 Pentair Water Pool And Spa, Inc. Pumping system with power optimization
US8480373B2 (en) 2004-08-26 2013-07-09 Pentair Water Pool And Spa, Inc. Filter loading
US8019479B2 (en) 2004-08-26 2011-09-13 Pentair Water Pool And Spa, Inc. Control algorithm of variable speed pumping system
US7874808B2 (en) 2004-08-26 2011-01-25 Pentair Water Pool And Spa, Inc. Variable speed pumping system and method
US8043070B2 (en) 2004-08-26 2011-10-25 Pentair Water Pool And Spa, Inc. Speed control
US8469675B2 (en) 2004-08-26 2013-06-25 Pentair Water Pool And Spa, Inc. Priming protection
US8602745B2 (en) 2004-08-26 2013-12-10 Pentair Water Pool And Spa, Inc. Anti-entrapment and anti-dead head function
WO2006032234A1 (en) * 2004-09-25 2006-03-30 Luk Fahrzeug-Hydraulik Gmbh & Co. Kg Compressor
US8281425B2 (en) 2004-11-01 2012-10-09 Cohen Joseph D Load sensor safety vacuum release system
US7664618B2 (en) * 2004-12-17 2010-02-16 Korea Research Institute Of Standards And Science Trend monitoring and diagnostic analysis method and system for failure protection and for predictive maintenance of a vacuum pump
JP4721235B2 (en) * 2004-12-17 2011-07-13 コリア リサーチ インスティチュート オブ スタンダーズ アンド サイエンス Precision diagnosis method for failure protection and predictive maintenance of vacuum pump and precision diagnosis system therefor
US7911996B2 (en) * 2005-02-11 2011-03-22 Research In Motion Limited System and method for registration and packet data reconnect
US7500390B2 (en) * 2005-06-29 2009-03-10 Weatherford/Lamb, Inc. Method for estimating pump efficiency
US20070028632A1 (en) * 2005-08-03 2007-02-08 Mingsheng Liu Chiller control system and method
US7749600B1 (en) * 2005-10-13 2010-07-06 Patrick Yarn Mills Microfiber core mop yarn and method for producing same
WO2007041823A1 (en) 2005-10-13 2007-04-19 Pumpwell Solutions Ltd. Method and system for optimizing downhole fluid production
US7645124B2 (en) * 2005-11-29 2010-01-12 Unico, Inc. Estimation and control of a resonant plant prone to stick-slip behavior
US20090246039A1 (en) * 2006-01-09 2009-10-01 Grundfos Pumps Corporation Carrier assembly for a pump
US8303260B2 (en) * 2006-03-08 2012-11-06 Itt Manufacturing Enterprises, Inc. Method and apparatus for pump protection without the use of traditional sensors
CN101033744B (en) * 2006-03-08 2013-07-24 Itt制造企业公司 Method and apparatus for pump protection without the use of traditional sensors
US7321211B2 (en) * 2006-04-28 2008-01-22 Unico, Inc. Power variation control system for cyclic loads
DE102006025762B3 (en) * 2006-05-31 2007-06-14 Siemens Ag Pumping device for delivery of medium to be pumped, has motor which can be connected with pump by torque-transmission means, which penetrates over the side of bore pipe work
US8668475B2 (en) 2006-06-12 2014-03-11 Unico, Inc. Linear rod pump apparatus and method
EP2035702B1 (en) 2006-06-12 2018-08-22 Unico, Inc. Linear rod pump apparatus and method
US8152492B2 (en) 2006-06-12 2012-04-10 Unico, Inc. Linear rod pump apparatus and method
US8944783B2 (en) * 2006-06-27 2015-02-03 Schlumberger Technology Corporation Electric progressive cavity pump
US20080040052A1 (en) * 2006-08-11 2008-02-14 Toshimichi Wago Pump Monitor
US7946810B2 (en) * 2006-10-10 2011-05-24 Grundfos Pumps Corporation Multistage pump assembly
US8172523B2 (en) * 2006-10-10 2012-05-08 Grudfos Pumps Corporation Multistage pump assembly having removable cartridge
US7690897B2 (en) * 2006-10-13 2010-04-06 A.O. Smith Corporation Controller for a motor and a method of controlling the motor
US20080095638A1 (en) 2006-10-13 2008-04-24 A.O. Smith Corporation Controller for a motor and a method of controlling the motor
MY167120A (en) * 2006-11-10 2018-08-10 Oyl Res & Development Centre Sdn Bhd An apparatus for controlling an air distribution system
US7857577B2 (en) * 2007-02-20 2010-12-28 Schlumberger Technology Corporation System and method of pumping while reducing secondary flow effects
MY151881A (en) * 2007-05-07 2014-07-14 Oyl Res And Dev Ct Sdn Bhd Airflow control for variable speed blowers
US8774972B2 (en) * 2007-05-14 2014-07-08 Flowserve Management Company Intelligent pump system
US20090000790A1 (en) * 2007-06-29 2009-01-01 Blackhawk Environmental Co. Short stroke piston pump
US8619443B2 (en) 2010-09-29 2013-12-31 The Powerwise Group, Inc. System and method to boost voltage
US8085009B2 (en) 2007-08-13 2011-12-27 The Powerwise Group, Inc. IGBT/FET-based energy savings device for reducing a predetermined amount of voltage using pulse width modulation
US20110182094A1 (en) * 2007-08-13 2011-07-28 The Powerwise Group, Inc. System and method to manage power usage
AU2008290585B2 (en) * 2007-08-17 2011-10-06 Shell Internationale Research Maatschappij B.V. Method for controlling production and downhole pressures of a well with multiple subsurface zones and/or branches
US20090053072A1 (en) * 2007-08-21 2009-02-26 Justin Borgstadt Integrated "One Pump" Control of Pumping Equipment
US8698447B2 (en) 2007-09-14 2014-04-15 The Powerwise Group, Inc. Energy saving system and method for devices with rotating or reciprocating masses
US8810190B2 (en) 2007-09-14 2014-08-19 The Powerwise Group, Inc. Motor controller system and method for maximizing energy savings
US7757781B2 (en) * 2007-10-12 2010-07-20 Halliburton Energy Services, Inc. Downhole motor assembly and method for torque regulation
WO2009052175A1 (en) 2007-10-15 2009-04-23 Unico, Inc. Cranked rod pump apparatus and method
US8708671B2 (en) 2007-10-15 2014-04-29 Unico, Inc. Cranked rod pump apparatus and method
WO2009151680A2 (en) 2008-03-12 2009-12-17 Baker Hughes Incorporated Cable loss compensation in an electrical submersible pump system
US8314583B2 (en) * 2008-03-12 2012-11-20 Baker Hughes Incorporated System, method and program product for cable loss compensation in an electrical submersible pump system
US8157537B2 (en) * 2008-06-13 2012-04-17 Petrolog Automation, Inc Method, system, and apparatus for operating a sucker rod pump
DE102008029910C5 (en) * 2008-06-24 2020-03-05 BSH Hausgeräte GmbH Method for recognizing the load status of a pump
DE102008030544B4 (en) * 2008-06-27 2014-05-22 Siemens Aktiengesellschaft Model-based method for monitoring micromechanical pumps
US8473119B2 (en) * 2008-09-15 2013-06-25 Lockheed Martin Corporation Optimal guidance blender for a hovering/flying vehicle
EP2345124B1 (en) 2008-10-01 2018-12-19 Regal Beloit America, Inc. Controller for a motor and a method of controlling the motor
AU2009302593B2 (en) 2008-10-06 2015-05-28 Danfoss Low Power Drives Method of operating a safety vacuum release system
US8428915B1 (en) * 2008-12-23 2013-04-23 Nomis Solutions, Inc. Multiple sources of data in a bayesian system
US8418550B2 (en) 2008-12-23 2013-04-16 Little Giant Pump Company Method and apparatus for capacitive sensing the top level of a material in a vessel
US9360017B2 (en) * 2009-01-23 2016-06-07 Grundfos Pumps Corporation Pump assembly having an integrated user interface
US8080950B2 (en) * 2009-03-16 2011-12-20 Unico, Inc. Induction motor torque control in a pumping system
US8032256B1 (en) * 2009-04-17 2011-10-04 Sje-Rhombus Liquid level control systems
US8425200B2 (en) 2009-04-21 2013-04-23 Xylem IP Holdings LLC. Pump controller
US20100284831A1 (en) * 2009-05-06 2010-11-11 Grundfos Pumps Corporation Adaptors for multistage pump assemblies
DE102009026592B4 (en) 2009-05-29 2014-08-28 Sorin Group Deutschland Gmbh Device for determining the venous inflow to a blood reservoir of an extracorporeal blood circulation
US8436559B2 (en) 2009-06-09 2013-05-07 Sta-Rite Industries, Llc System and method for motor drive control pad and drive terminals
US9556874B2 (en) 2009-06-09 2017-01-31 Pentair Flow Technologies, Llc Method of controlling a pump and motor
US8564233B2 (en) 2009-06-09 2013-10-22 Sta-Rite Industries, Llc Safety system and method for pump and motor
DE102009027195A1 (en) * 2009-06-25 2010-12-30 Sorin Group Deutschland Gmbh Device for pumping blood in an extracorporeal circuit
US8698446B2 (en) * 2009-09-08 2014-04-15 The Powerwise Group, Inc. Method to save energy for devices with rotating or reciprocating masses
JP5824453B2 (en) 2009-09-08 2015-11-25 ザ パワーワイズ グループ,インコーポレイテッドThe Powerwise Group,Inc. Energy saving system and method for apparatus having rotating mass or reciprocating mass
PL218694B1 (en) * 2009-10-20 2015-01-30 Smay Spółka Z Ograniczoną Odpowiedzialnością Overpressure fogging protection system for vertical evacuation routes
RU2513812C2 (en) 2009-10-21 2014-04-20 Шлюмбергер Текнолоджи Б.В. System, method and carrier read by computer for calculation of well injection flow rates produced by electric submersible pumps
US9140253B2 (en) * 2009-10-26 2015-09-22 Harold Wells Associates, Inc. Control device, oil well with device and method
US8196464B2 (en) 2010-01-05 2012-06-12 The Raymond Corporation Apparatus and method for monitoring a hydraulic pump on a material handling vehicle
BR112012016806A2 (en) * 2010-01-11 2016-04-19 Inergy Automotive Systems Res method for setting a pump of a scr
DE102010003218A1 (en) * 2010-03-24 2011-09-29 Prominent Dosiertechnik Gmbh Method for controlling and / or regulating a metering pump
US9341178B1 (en) 2010-07-26 2016-05-17 Lincoln Williams Energy optimization for variable speed pumps
US8844626B1 (en) 2010-09-28 2014-09-30 Rodmax Oil & Gas, Inc. Method and apparatus for autonomous oil and gas well down-hole pump leakage testing
CN101956694B (en) * 2010-10-09 2013-04-10 中国石油大学(华东) Coal powder-prevention tubular discharging and extracting pump
US9097247B1 (en) 2010-11-05 2015-08-04 Cushing Pump Regulator, Llc Methods and apparatus for control of oil well pump
US10227969B1 (en) 2010-11-05 2019-03-12 Cushing Pump Regulator, Llc Methods and apparatus for control of oil well pump
BR112013014476A2 (en) 2010-12-08 2016-09-20 Pentair Water Pool & Spa Inc vacuum relief relief valve for a vacuum release safety system
SK1692010A3 (en) * 2010-12-16 2012-07-03 Naftamatika, S. R. O. Method of diagnosis and management of pumping oil or gas wells and device there of
US10119545B2 (en) * 2013-03-01 2018-11-06 Fluid Handling Llc 3-D sensorless conversion method and apparatus for pump differential pressure and flow
US8700221B2 (en) 2010-12-30 2014-04-15 Fluid Handling Llc Method and apparatus for pump control using varying equivalent system characteristic curve, AKA an adaptive control curve
AU2012214560B2 (en) * 2011-02-09 2016-03-31 Allison Transmission, Inc. Scavenge pump oil level control system and method
EP2675682B1 (en) 2011-02-17 2019-12-11 Allison Transmission, Inc. Hydraulic system and method for a hybrid vehicle
WO2012125337A2 (en) 2011-03-11 2012-09-20 Allison Transmission, Inc. Clogged filter detection system and method
US8812264B2 (en) * 2011-03-23 2014-08-19 General Electric Company Use of wattmeter to determine hydraulic fluid parameters
US9127678B2 (en) * 2011-04-06 2015-09-08 Field Intelligence, Inc. Fast-response pump monitoring and in-situ pump data recording system
US20120270325A1 (en) * 2011-04-19 2012-10-25 Ronald Kent Sperry System and method for evaluating the performance of a pump
US9091262B2 (en) 2011-05-27 2015-07-28 General Electric Company Use of wattmeter to obtain diagnostics of hydraulic system during transient-state start-up operation
CN103619683B (en) 2011-06-22 2016-08-17 艾里逊变速箱公司 Low level oil detection system and method
CA2744324C (en) 2011-06-27 2018-10-16 Pumpwell Solutions Ltd. System and method for determination of polished rod position for reciprocating rod pumps
EP2754458B1 (en) 2011-07-12 2017-02-01 Sorin Group Italia S.r.l. Dual chamber blood reservoir
US8892372B2 (en) * 2011-07-14 2014-11-18 Unico, Inc. Estimating fluid levels in a progressing cavity pump system
US9574433B2 (en) 2011-08-05 2017-02-21 Petrohawk Properties, Lp System and method for quantifying stimulated rock quality in a wellbore
US20130054159A1 (en) 2011-08-31 2013-02-28 E. Strode Pennebaker Wireless tank level monitoring system
US9041332B2 (en) * 2011-08-31 2015-05-26 Long Meadow Technologies, Llc System, method and apparatus for computing, monitoring, measuring, optimizing and allocating power and energy for a rod pumping system
RU2567567C1 (en) * 2011-10-28 2015-11-10 Везерфорд/Лэм, Инк. Plotting of borehole charts for deflected wells
BR112014010665A2 (en) 2011-11-01 2017-12-05 Pentair Water Pool & Spa Inc flow blocking system and process
KR20130066837A (en) * 2011-12-13 2013-06-21 현대자동차주식회사 Oil pump control system for vehicle
US8775052B2 (en) * 2011-12-15 2014-07-08 GM Global Technology Operations LLC Sensors bias detection for electronic returnless fuel system
US9846416B2 (en) 2011-12-16 2017-12-19 Fluid Handling Llc System and flow adaptive sensorless pumping control apparatus for energy saving pumping applications
RU2611071C2 (en) 2011-12-16 2017-02-21 Флюид Хэндлинг ЭлЭлСи Dynamic linear control method and pump control device with variable speed
US9938970B2 (en) 2011-12-16 2018-04-10 Fluid Handling Llc Best-fit affinity sensorless conversion means or technique for pump differential pressure and flow monitoring
US9574442B1 (en) * 2011-12-22 2017-02-21 James N. McCoy Hydrocarbon well performance monitoring system
US20130204546A1 (en) * 2012-02-02 2013-08-08 Ghd Pty Ltd. On-line pump efficiency determining system and related method for determining pump efficiency
EP2817639A4 (en) 2012-02-21 2016-04-20 Chevron Usa Inc System and method for measuring well flow rate
US9546652B2 (en) * 2012-03-28 2017-01-17 Imo Industries, Inc. System and method for monitoring and control of cavitation in positive displacement pumps
US20130255933A1 (en) * 2012-04-03 2013-10-03 Kuei-Hsien Shen Oil pumping system using a switched reluctance motor to drive a screw pump
US9745979B2 (en) * 2012-04-11 2017-08-29 Itt Manufacturing Enterprises Llc Method for rotary positive displacement pump protection
US10451471B2 (en) 2012-04-12 2019-10-22 Itt Manufacturing Enterprises Llc Method of determining pump flow in twin screw positive displacement pumps
US9678511B2 (en) * 2012-04-12 2017-06-13 Itt Manufacturing Enterprises Llc. Method of determining pump flow in rotary positive displacement pumps
US9611931B2 (en) * 2012-05-24 2017-04-04 GM Global Technology Operations LLC Method to detect loss of fluid or blockage in a hydraulic circuit using exponentially weighted moving average filter
JP5948165B2 (en) * 2012-06-28 2016-07-06 川崎重工業株式会社 Horsepower limiting device and horsepower limiting method
EP2696175B1 (en) 2012-08-07 2021-09-15 Grundfos Holding A/S Method for detecting the flow rate of a centrifugal pump
CN104521136B (en) * 2012-08-09 2017-03-29 松下知识产权经营株式会社 Control device of electric motor, method of motor control and air-supply arrangement
US9115705B2 (en) 2012-09-10 2015-08-25 Flotek Hydralift, Inc. Synchronized dual well variable stroke and variable speed pump down control with regenerative assist
WO2014040627A1 (en) * 2012-09-13 2014-03-20 Abb Technology Ag Device and method for operating parallel centrifugal pumps
US20140079560A1 (en) 2012-09-14 2014-03-20 Chris Hodges Hydraulic oil well pumping system, and method for pumping hydrocarbon fluids from a wellbore
WO2014051070A1 (en) * 2012-09-27 2014-04-03 アイ’エムセップ株式会社 Liquid transport device
US9885360B2 (en) 2012-10-25 2018-02-06 Pentair Flow Technologies, Llc Battery backup sump pump systems and methods
US9638193B2 (en) 2012-10-25 2017-05-02 Pentair Flow Technologies, Llc Sump pump remote monitoring systems and methods
US9353617B2 (en) * 2012-11-06 2016-05-31 Unico, Inc. Apparatus and method of referencing a sucker rod pump
FR2999664A1 (en) * 2012-12-17 2014-06-20 Schneider Toshiba Inverter CONTROL METHOD FOR MULTIPUMP SYSTEM IMPLEMENTED WITHOUT SENSOR
AU2013204013B2 (en) * 2013-03-15 2015-09-10 Franklin Electric Company, Inc. System and method for operating a pump
KR101833865B1 (en) 2013-09-30 2018-03-02 지멘스 악티엔게젤샤프트 Method for operating a turbo-machine, wherein an efficiency characteristic value of a stage is determined, and turbo-machine having a device for carrying out the method
US9702214B2 (en) 2013-10-31 2017-07-11 Bulldog Services, LLP Abandonment cap and method of sealing production wells
WO2015073600A1 (en) 2013-11-13 2015-05-21 Schlumberger Canada Limited Well alarms and event detection
CN105765476B (en) * 2013-11-27 2019-08-23 流体处理有限责任公司 For pumping the 3D of differential pressure and flow without sensor conversion method and equipment
US9938805B2 (en) 2014-01-31 2018-04-10 Mts Systems Corporation Method for monitoring and optimizing the performance of a well pumping system
CA2943065C (en) * 2014-03-17 2021-03-02 Conocophillips Company Vapor blow through avoidance in oil production
US10844671B2 (en) 2014-03-24 2020-11-24 Materion Corporation Low friction and high wear resistant sucker rod string
US10753192B2 (en) 2014-04-03 2020-08-25 Sensia Llc State estimation and run life prediction for pumping system
CA2946135A1 (en) 2014-04-25 2015-10-29 Schlumberger Canada Limited Esp pump flow rate estimation and control
US9689251B2 (en) 2014-05-08 2017-06-27 Unico, Inc. Subterranean pump with pump cleaning mode
CA2947986C (en) * 2014-05-14 2023-01-03 General Electric Company Methods and systems for monitoring a fluid lifting device
RU2554692C1 (en) * 2014-05-15 2015-06-27 Акционерное общество "Новомет-Пермь" (АО "Новомет-Пермь") Electric equipment for lifting of reservoir fluid in well pad and method of its control
WO2015173611A1 (en) 2014-05-16 2015-11-19 Sorin Group Italia S.R.L. Blood reservoir with fluid volume measurement based on pressure sensor
CA2949533C (en) 2014-05-23 2022-07-12 Schlumberger Canada Limited Submerisible electrical system assessment
US9702246B2 (en) 2014-05-30 2017-07-11 Scientific Drilling International, Inc. Downhole MWD signal enhancement, tracking, and decoding
CN114737890A (en) 2014-06-05 2022-07-12 美题隆公司 Coupling for rod
US10844670B2 (en) 2014-06-05 2020-11-24 Materion Corporation Couplings for well pumping components
US10408206B2 (en) * 2014-07-01 2019-09-10 Bristol, Inc. Methods and apparatus to determine parameters of a pumping unit for use with wells
US10094371B2 (en) 2014-07-01 2018-10-09 Bristol, Inc. Methods and apparatus to determine operating parameters of a pumping unit for use with wells
US10107286B2 (en) * 2014-07-08 2018-10-23 Control Microsystems, Inc. System and method for control and optimization of PCP pumped well operating parameters
US9684311B2 (en) * 2014-07-08 2017-06-20 Bernardo Martin Mancuso System and method for control and optimization of PCP pumped well
WO2016043866A1 (en) * 2014-09-15 2016-03-24 Schlumberger Canada Limited Centrifugal pump degradation monitoring without flow rate measurement
NO338576B1 (en) * 2014-09-16 2016-09-05 Fmc Kongsberg Subsea As System for pumping a fluid and process for its operation.
US10400536B2 (en) * 2014-09-18 2019-09-03 Halliburton Energy Services, Inc. Model-based pump-down of wireline tools
US10145230B2 (en) 2014-10-10 2018-12-04 Henry Research And Development, Llc Systems and methods for real-time monitoring of downhole pump conditions
US10385857B2 (en) 2014-12-09 2019-08-20 Schlumberger Technology Corporation Electric submersible pump event detection
US9605670B2 (en) 2014-12-18 2017-03-28 General Electric Company Method and systems for enhancing flow of a fluid induced by a rod pumping unit
US10788031B2 (en) 2014-12-18 2020-09-29 Ravdos Holdings Inc. Methods and system for enhancing flow of a fluid induced by a rod pumping unit
CN104632192A (en) * 2014-12-29 2015-05-20 长沙力阳电子科技有限公司 Pumping well downhole indicator diagram dynamic acquisition instrument
CN104612631B (en) * 2014-12-31 2018-07-27 新疆维吾尔自治区第三机床厂 Power-balance digital automatic control oil pumping method and oil recovery robot
GB201502578D0 (en) * 2015-02-16 2015-04-01 Pulsar Process Measurement Ltd Pump monitoring method
CN104763621B (en) * 2015-03-27 2017-03-01 中联煤层气有限责任公司 A kind of sucker rod pump equipment for coal-bed gas exploitation
WO2017023303A1 (en) 2015-08-05 2017-02-09 Stren Microlift Technology, Llc Hydraulic pumping system for use with a subterranean well
CN104929928B (en) * 2015-06-01 2017-09-01 中国科学院力学研究所 A kind of oil well pump and its manufacture method
RU2724390C2 (en) 2015-06-04 2020-06-23 Флюид Хэндлинг ЭлЭлСи Direct numerical affine sensorless converter for pumps
RU2605871C1 (en) * 2015-06-08 2016-12-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный технический университет" Submersible electric-centrifugal pump control system
US10233919B2 (en) 2015-06-10 2019-03-19 Unico, Llc Dual completion linear rod pump
RU2604473C1 (en) * 2015-06-15 2016-12-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный технический университет" System for controlling submersible centrifugal pump and cluster pump station
WO2016205101A1 (en) * 2015-06-16 2016-12-22 Schlumberger Technology Corporation Electric submersible pump monitoring
US10100623B2 (en) * 2015-06-30 2018-10-16 KLD Energy Nano-Grid Systems, Inc. Intra-stroke cycle timing for pumpjack fluid pumping
NO340118B1 (en) * 2015-07-03 2017-03-13 Fmc Kongsberg Subsea As Method and a system for operating a variable speed motor
US10024314B2 (en) 2015-07-30 2018-07-17 General Electric Company Control system and method of controlling a rod pumping unit
US10393107B2 (en) * 2015-08-03 2019-08-27 General Electric Company Pumping control unit and method of computing a time-varying downhole parameter
RU2602774C1 (en) * 2015-08-04 2016-11-20 Общество с ограниченной ответственностью "ТатАСУ" System for monitoring operation of submersible pump equipment
US10167865B2 (en) 2015-08-05 2019-01-01 Weatherford Technology Holdings, Llc Hydraulic pumping system with enhanced piston rod sealing
DE202015105177U1 (en) * 2015-09-30 2017-01-02 Ebm-Papst St. Georgen Gmbh & Co. Kg Arrangement for determining a pressure
US10197048B2 (en) * 2015-10-14 2019-02-05 Unico, Llc Tandem motor linear rod pump
US11028844B2 (en) 2015-11-18 2021-06-08 Ravdos Holdings Inc. Controller and method of controlling a rod pumping unit
US20170146007A1 (en) * 2015-11-20 2017-05-25 Weatherford Technology Holdings, Llc Operational control of wellsite pumping unit with displacement determination
WO2017087802A1 (en) * 2015-11-20 2017-05-26 Baker Hughes Incorporated Systems and methods for detecting pump-off conditions and controlling a motor to prevent fluid pound
US20170146006A1 (en) * 2015-11-20 2017-05-25 Weatherford Technology Holdings, Llc Operational control of wellsite pumping unit with continuous position sensing
US10450851B2 (en) 2015-11-30 2019-10-22 Weatherford Technology Holdings, Llc Calculating downhole card in deviated wellbore using parameterized segment calculations
US10781813B2 (en) * 2015-12-10 2020-09-22 Baker Hughes Oilfield Operations, Llc Controller for a rod pumping unit and method of operation
US10711788B2 (en) 2015-12-17 2020-07-14 Wayne/Scott Fetzer Company Integrated sump pump controller with status notifications
US10415562B2 (en) 2015-12-19 2019-09-17 Schlumberger Technology Corporation Automated operation of wellsite pumping equipment
ES2928158T3 (en) * 2015-12-21 2022-11-15 Suez Int Procedure to monitor the performance of wells or perforations and system
DK3199809T3 (en) * 2016-01-28 2021-08-09 Abb Schweiz Ag CONTROL PROCEDURE FOR A COMPRESSOR SYSTEM
WO2017155788A1 (en) 2016-03-08 2017-09-14 Weatherford Technology Holdings, Llc Position sensing for wellsite pumping unit
HUE049173T2 (en) 2016-04-08 2020-09-28 Husqvarna Ab Intelligent watering system
US10955825B2 (en) 2016-05-13 2021-03-23 General Electric Company Beam pumping unit and method of operation
HUE042540T2 (en) * 2016-05-17 2019-07-29 Xylem Europe Gmbh Method for identifying snoring
CA3027041C (en) 2016-06-07 2022-01-25 Fluid Handling Llc Direct numeric 3d sensorless converter for pump flow and pressure
US10408205B2 (en) 2016-08-04 2019-09-10 Schneider Electric Systems Canada Inc. Method of determining pump fill and adjusting speed of a rod pumping system
GB2567775A (en) * 2016-10-19 2019-04-24 Halliburton Energy Services Inc Multi-gauge communications over an ESP power bus
WO2018075942A1 (en) * 2016-10-21 2018-04-26 Franklin Electric Co., Inc. Motor drive system and method
US10340755B1 (en) * 2016-11-14 2019-07-02 George R Dreher Energy harvesting and converting beam pumping unit
US10428638B2 (en) * 2016-12-06 2019-10-01 Epiroc Drilling Solutions, Llc System and method for controlling a drilling machine
CA3057529C (en) 2017-03-21 2021-06-22 Fluid Handling Llc Adaptive water level controls for water empty or fill applications
US9977433B1 (en) 2017-05-05 2018-05-22 Hayward Industries, Inc. Automatic pool cleaner traction correction
US10260500B2 (en) 2017-05-15 2019-04-16 General Electric Company Downhole dynamometer and method of operation
CN109084967A (en) * 2017-06-14 2018-12-25 鸿富锦精密电子(天津)有限公司 Push and pull test device
USD893552S1 (en) 2017-06-21 2020-08-18 Wayne/Scott Fetzer Company Pump components
US10605051B2 (en) * 2017-06-22 2020-03-31 Unseated Tools LLC Method of pumping fluids down a wellbore
US10546159B2 (en) * 2017-07-07 2020-01-28 Weatherford Technology Holdings, Llc System and method for handling pumping units in out-of-balance condition
EP3435065A1 (en) * 2017-07-27 2019-01-30 Sulzer Management AG Method for measuring the viscosity of a conveyed fluid conveyed by means of a pump
USD890211S1 (en) 2018-01-11 2020-07-14 Wayne/Scott Fetzer Company Pump components
US11035209B2 (en) 2018-02-02 2021-06-15 Magnetic Pumping Solutions Method and system for controlling downhole pumping systems
US10871058B2 (en) 2018-04-24 2020-12-22 Guy Morrison, III Processes and systems for injecting a fluid into a wellbore
CN112262260B (en) 2018-06-08 2023-01-13 流体处理有限责任公司 Device for pumping and method for pumping
NO344620B1 (en) * 2018-08-16 2020-02-10 Fmc Kongsberg Subsea As System for pumping a fluid and method for its operation
US11041349B2 (en) 2018-10-11 2021-06-22 Schlumberger Technology Corporation Automatic shift detection for oil and gas production system
US11913444B2 (en) 2018-11-08 2024-02-27 Sensia Llc Electrical submersible pump control
CN110043246B (en) * 2019-04-19 2021-12-03 中国石油天然气股份有限公司 Method for identifying insufficient liquid supply by utilizing electric parameter indicator diagram
WO2020227462A1 (en) * 2019-05-07 2020-11-12 Power It Perfect, Inc. Controlling electric power consumption by a pump jack at a well site
US11885324B2 (en) 2019-05-07 2024-01-30 Power It Perfect, Inc. Systems and methods of controlling an electric motor that operates a pump jack
US11408271B2 (en) 2019-06-11 2022-08-09 Noven, Inc. Well pump diagnostics using multi-physics sensor data
US11560784B2 (en) 2019-06-11 2023-01-24 Noven, Inc. Automated beam pump diagnostics using surface dynacard
DE102019210003A1 (en) * 2019-07-08 2021-01-14 Robert Bosch Gmbh Real-time capable trajectory planning for axial piston pumps in swash plate design with systematic consideration of system restrictions
CN110346082B (en) * 2019-07-18 2021-03-09 青岛江林驱动科技有限公司 Calibration method of beam-pumping unit suspension point stress measurement system
CN112302917B (en) * 2019-07-29 2022-05-06 中国石油天然气股份有限公司 Balance adjusting method and control device for auxiliary balance weight of beam-pumping unit
CN110444301B (en) * 2019-08-13 2022-07-01 中国核动力研究设计院 Experimental device and experimental method for simulating supercritical pressure transient working condition
CN110552685B (en) * 2019-08-19 2022-08-19 大庆油田有限责任公司 Method for calculating working fluid level of oil well by utilizing ground indicator diagram in wax precipitation well
CN111162719B (en) * 2020-02-06 2021-12-17 深圳市测力佳控制技术有限公司 Asynchronous motor operation parameter measuring method and device and computer equipment
CN111734674B (en) * 2020-04-26 2021-11-16 上海凯泉泵业(集团)有限公司 Centrifugal pump multi-working-condition energy-saving optimization method based on genetic algorithm
US11592018B2 (en) * 2020-05-22 2023-02-28 Saudi Arabian Oil Company Surface driven downhole pump system
CN113404483B (en) * 2020-07-14 2023-07-18 辽宁瑞邦石油技术发展有限公司 Method for measuring oil well yield by utilizing electric parameters of beam-pumping unit
EP3952099B1 (en) * 2020-08-06 2024-01-24 Schneider Toshiba Inverter Europe SAS Backspinning motor control
CN112761594B (en) * 2021-02-04 2023-03-21 苏州伟创电气科技股份有限公司 Method for acquiring rotation angle of crank, method for positioning bottom dead center and frequency converter
EP4295048A1 (en) * 2021-02-22 2023-12-27 Edwards Technologies Vacuum Engineering (Qingdao) Co Ltd Control of liquid ring pump
CN113279812B (en) * 2021-07-05 2024-04-09 太原科技大学 Method and system for state monitoring and residual life prediction of mine main drainage equipment
DE102021118075A1 (en) 2021-07-13 2023-01-19 Danfoss Power Electronics A/S Method of reducing regenerated energy and reverse stress in an electric motor driven reciprocating load by modulating motor speed using a variable frequency drive drive and variable frequency drive provided for carrying out the method

Family Cites Families (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US497326A (en) * 1893-05-16 kitterman
US2691300A (en) * 1951-12-17 1954-10-12 Phillips Petroleum Co Torque computer
US3343409A (en) * 1966-10-21 1967-09-26 Shell Oil Co Method of determining sucker rod pump performance
US3585484A (en) 1970-01-06 1971-06-15 D T E Imperial Corp Axial ampere-turn balancing in multiple, segregated secondary winding transformers
US3765234A (en) * 1970-07-09 1973-10-16 J Sievert Method for determining the net torque and the instantaneous horsepower of a pumping unit
US3915225A (en) 1971-08-11 1975-10-28 George A Swink Method and apparatus for producing hydrocarbons from wells which make water
US3963374A (en) * 1972-10-24 1976-06-15 Sullivan Robert E Well pump control
US3930752A (en) * 1973-06-01 1976-01-06 Dresser Industries, Inc. Oil well pumpoff control system utilizing integration timer
US3854846A (en) * 1973-06-01 1974-12-17 Dresser Ind Oil well pumpoff control system utilizing integration timer
US3851995A (en) * 1973-08-06 1974-12-03 M Mills Pump-off control apparatus for a pump jack
US3918843A (en) 1974-03-20 1975-11-11 Dresser Ind Oil well pumpoff control system utilizing integration timer
US3938910A (en) * 1974-05-13 1976-02-17 Dresser Industries, Inc. Oil well pumpoff control system
US3936231A (en) * 1974-05-13 1976-02-03 Dresser Industries, Inc. Oil well pumpoff control system
US3965983A (en) * 1974-12-13 1976-06-29 Billy Ray Watson Sonic fluid level control apparatus
US3998568A (en) * 1975-05-27 1976-12-21 Hynd Ike W Pump-off control responsive to time changes between rod string load
US3951209A (en) * 1975-06-09 1976-04-20 Shell Oil Company Method for determining the pump-off of a well
US4058757A (en) * 1976-04-19 1977-11-15 End Devices, Inc. Well pump-off controller
US4118148A (en) * 1976-05-11 1978-10-03 Gulf Oil Corporation Downhole well pump control system
US4108574A (en) * 1977-01-21 1978-08-22 International Paper Company Apparatus and method for the indirect measurement and control of the flow rate of a liquid in a piping system
US4102394A (en) * 1977-06-10 1978-07-25 Energy 76, Inc. Control unit for oil wells
US4145161A (en) * 1977-08-10 1979-03-20 Standard Oil Company (Indiana) Speed control
US4194393A (en) * 1978-04-13 1980-03-25 Stallion Corporation Well driving and monitoring system
US4171185A (en) * 1978-06-19 1979-10-16 Operational Devices, Inc. Sonic pump off detector
US4480980A (en) * 1978-11-02 1984-11-06 Beehive Machinery, Inc. Apparatus for extruding composite food products
US4508487A (en) * 1979-04-06 1985-04-02 Cmd Enterprises, Inc. Automatic load seeking control for a pumpjack motor
US4220440A (en) 1979-04-06 1980-09-02 Superior Electric Supply Co. Automatic load seeking control for a pumpjack motor
US4286925A (en) * 1979-10-31 1981-09-01 Delta-X Corporation Control circuit for shutting off the electrical power to a liquid well pump
US4480960A (en) * 1980-09-05 1984-11-06 Chevron Research Company Ultrasensitive apparatus and method for detecting change in fluid flow conditions in a flowline of a producing oil well, or the like
US4390321A (en) 1980-10-14 1983-06-28 American Davidson, Inc. Control apparatus and method for an oil-well pump assembly
US4370098A (en) * 1980-10-20 1983-01-25 Esco Manufacturing Company Method and apparatus for monitoring and controlling on line dynamic operating conditions
US4363605A (en) * 1980-11-03 1982-12-14 Mills Manuel D Apparatus for generating an electrical signal which is proportional to the tension in a bridle
US4406122A (en) * 1980-11-04 1983-09-27 Mcduffie Thomas F Hydraulic oil well pumping apparatus
US4438628A (en) * 1980-12-19 1984-03-27 Creamer Reginald D Pump jack drive apparatus
US4474002A (en) * 1981-06-09 1984-10-02 Perry L F Hydraulic drive pump apparatus
US4490094A (en) 1982-06-15 1984-12-25 Gibbs Sam G Method for monitoring an oil well pumping unit
US4476418A (en) * 1982-07-14 1984-10-09 Werner John W Well pump control system
US4661751A (en) * 1982-07-14 1987-04-28 Claude C. Freeman Well pump control system
US4631954A (en) 1982-11-18 1986-12-30 Mills Manuel D Apparatus for controlling a pumpjack prime mover
US4487061A (en) * 1982-12-17 1984-12-11 Fmc Corporation Method and apparatus for detecting well pump-off
US4534706A (en) * 1983-02-22 1985-08-13 Armco Inc. Self-compensating oscillatory pump control
US4483188A (en) * 1983-04-18 1984-11-20 Fmc Corporation Method and apparatus for recording and playback of dynagraphs for sucker-rod wells
US4534168A (en) * 1983-06-30 1985-08-13 Brantly Newby O Pump jack
US4507055A (en) * 1983-07-18 1985-03-26 Gulf Oil Corporation System for automatically controlling intermittent pumping of a well
US4583915A (en) 1983-08-01 1986-04-22 End Devices, Inc. Pump-off controller
US4508488A (en) 1984-01-04 1985-04-02 Logan Industries & Services, Inc. Well pump controller
JPS60150618A (en) * 1984-01-17 1985-08-08 Mitsubishi Electric Corp Manufacture of semiconductor device
US4594665A (en) * 1984-02-13 1986-06-10 Fmc Corporation Well production control system
US4541274A (en) * 1984-05-10 1985-09-17 Board Of Regents For The University Of Oklahoma Apparatus and method for monitoring and controlling a pump system for a well
US4681167A (en) * 1984-06-08 1987-07-21 Soderberg Research & Development, Inc. Apparatus and method for automatically and periodically introducing a fluid into a producing oil well
US5324170A (en) * 1984-12-31 1994-06-28 Rule Industries, Inc. Pump control apparatus and method
US4695779A (en) * 1986-05-19 1987-09-22 Sargent Oil Well Equipment Company Of Dover Resources, Incorporated Motor protection system and process
US5222867A (en) 1986-08-29 1993-06-29 Walker Sr Frank J Method and system for controlling a mechanical pump to monitor and optimize both reservoir and equipment performance
US4873635A (en) 1986-11-20 1989-10-10 Mills Manual D Pump-off control
US4741397A (en) 1986-12-15 1988-05-03 Texas Independent Tools & Unlimited Services, Incorporated Jet pump and technique for controlling pumping of a well
US4973226A (en) * 1987-04-29 1990-11-27 Delta-X Corporation Method and apparatus for controlling a well pumping unit
US4747451A (en) * 1987-08-06 1988-05-31 Oil Well Automation, Inc. Level sensor
US4935685A (en) * 1987-08-12 1990-06-19 Sargent Oil Well Equipment Company Motor controller for pumping units
US5006044A (en) * 1987-08-19 1991-04-09 Walker Sr Frank J Method and system for controlling a mechanical pump to monitor and optimize both reservoir and equipment performance
US4830112A (en) * 1987-12-14 1989-05-16 Erickson Don J Method and apparatus for treating wellbores
US4859151A (en) * 1988-01-19 1989-08-22 Reed John H Pump-off control for a pumpjack unit
ATE126071T1 (en) * 1988-12-29 1995-08-15 Chang Ann Lois DIAPHRAGM PUMP.
US5204595A (en) * 1989-01-17 1993-04-20 Magnetek, Inc. Method and apparatus for controlling a walking beam pump
US5044888A (en) 1989-02-10 1991-09-03 Teledyne Industries, Inc. Variable speed pump control for maintaining fluid level below full barrel level
US4971522A (en) 1989-05-11 1990-11-20 Butlin Duncan M Control system and method for AC motor driven cyclic load
DE8910049U1 (en) * 1989-08-22 1989-11-23 Cooper Industries, Inc., Houston, Tex., Us
US5064349A (en) 1990-02-22 1991-11-12 Barton Industries, Inc. Method of monitoring and controlling a pumped well
US5129267A (en) * 1990-03-01 1992-07-14 Southwest Research Institute Flow line sampler
EP0465731B1 (en) * 1990-07-10 1997-08-20 Services Petroliers Schlumberger Method and apparatus for determining the torque applied to a drillstring at the surface
GB9017599D0 (en) * 1990-08-10 1990-09-26 Dowty Aerospace Gloucester A propeller control system
US5129264A (en) 1990-12-07 1992-07-14 Goulds Pumps, Incorporated Centrifugal pump with flow measurement
US5240380A (en) * 1991-05-21 1993-08-31 Sundstrand Corporation Variable speed control for centrifugal pumps
US5335338A (en) * 1991-05-31 1994-08-02 Micro Solutions, Inc. General purpose parallel port interface
US5180289A (en) * 1991-08-27 1993-01-19 Baker Hughes Incorporated Air balance control for a pumping unit
US5237863A (en) 1991-12-06 1993-08-24 Shell Oil Company Method for detecting pump-off of a rod pumped well
US5224834A (en) * 1991-12-24 1993-07-06 Evi-Highland Pump Company, Inc. Pump-off control by integrating a portion of the area of a dynagraph
US5246076A (en) * 1992-03-10 1993-09-21 Evi-Highland Pump Company Methods and apparatus for controlling long-stroke pumping units using a variable-speed drive
US5441389A (en) 1992-03-20 1995-08-15 Eaton Corporation Eddy current drive and motor control system for oil well pumping
US5230607A (en) 1992-03-26 1993-07-27 Mann Clifton B Method and apparatus for controlling the operation of a pumpjack
US5167490A (en) 1992-03-30 1992-12-01 Delta X Corporation Method of calibrating a well pumpoff controller
US5230807A (en) * 1992-03-31 1993-07-27 Miriam Peterson Electrical water treatment system with indicators displaying whether control limits are maintained
US5251696A (en) * 1992-04-06 1993-10-12 Boone James R Method and apparatus for variable speed control of oil well pumping units
US5281100A (en) * 1992-04-13 1994-01-25 A.M.C. Technology, Inc. Well pump control system
US5316085A (en) * 1992-04-15 1994-05-31 Exxon Research And Engineering Company Environmental recovery system
US5252031A (en) * 1992-04-21 1993-10-12 Gibbs Sam G Monitoring and pump-off control with downhole pump cards
US5372206A (en) * 1992-10-01 1994-12-13 Makita Corporation Tightening tool
US5284422A (en) * 1992-10-19 1994-02-08 Turner John M Method of monitoring and controlling a well pump apparatus
US5372482A (en) * 1993-03-23 1994-12-13 Eaton Corporation Detection of rod pump fillage from motor power
US5425623A (en) * 1993-03-23 1995-06-20 Eaton Corporation Rod pump beam position determination from motor power
US5318409A (en) * 1993-03-23 1994-06-07 Westinghouse Electric Corp. Rod pump flow rate determination from motor power
US5444609A (en) * 1993-03-25 1995-08-22 Energy Management Corporation Passive harmonic filter system for variable frequency drives
US5362206A (en) 1993-07-21 1994-11-08 Automation Associates Pump control responsive to voltage-current phase angle
US5458466A (en) 1993-10-22 1995-10-17 Mills; Manuel D. Monitoring pump stroke for minimizing pump-off state
US5819849A (en) * 1994-11-30 1998-10-13 Thermo Instrument Controls, Inc. Method and apparatus for controlling pump operations in artificial lift production
CA2235134C (en) * 1995-10-23 2007-01-09 Baker Hughes Incorporated Closed loop drilling system
US5714687A (en) * 1995-10-31 1998-02-03 Dunegan; Harold L. Transducer for measuring acoustic emission events
US5634522A (en) 1996-05-31 1997-06-03 Hershberger; Michael D. Liquid level detection for artificial lift system control
CA2163137A1 (en) * 1995-11-17 1997-05-18 Ben B. Wolodko Method and apparatus for controlling downhole rotary pump used in production of oil wells
US5715890A (en) * 1995-12-13 1998-02-10 Nolen; Kenneth B. Determing fluid levels in wells with flow induced pressure pulses
US5823262A (en) * 1996-04-10 1998-10-20 Micro Motion, Inc. Coriolis pump-off controller
US6129110A (en) 1996-04-17 2000-10-10 Milton Roy Company Fluid level management system
US6449567B1 (en) * 1996-05-20 2002-09-10 Crane Nuclear, Inc. Apparatus and method for determining shaft speed of a motor
US5996691A (en) * 1996-10-25 1999-12-07 Norris; Orley (Jay) Control apparatus and method for controlling the rate of liquid removal from a gas or oil well with a progressive cavity pump
US5868029A (en) * 1997-04-14 1999-02-09 Paine; Alan Method and apparatus for determining fluid level in oil wells
DE19818741A1 (en) * 1997-06-26 1999-01-07 Heidelberger Druckmasch Ag Printing technology machine thin workpiece supplying device
US6092600A (en) * 1997-08-22 2000-07-25 Texaco Inc. Dual injection and lifting system using a rod driven progressive cavity pump and an electrical submersible pump and associate a method
US6079491A (en) * 1997-08-22 2000-06-27 Texaco Inc. Dual injection and lifting system using a rod driven progressive cavity pump and an electrical submersible progressive cavity pump
US5941305A (en) * 1998-01-29 1999-08-24 Patton Enterprises, Inc. Real-time pump optimization system
US6045333A (en) * 1997-12-01 2000-04-04 Camco International, Inc. Method and apparatus for controlling a submergible pumping system
US6265786B1 (en) * 1998-01-05 2001-07-24 Capstone Turbine Corporation Turbogenerator power control system
DE19807236C2 (en) * 1998-02-20 2000-06-21 Biedermann Motech Gmbh Intervertebral implant
US6043569A (en) 1998-03-02 2000-03-28 Ferguson; Gregory N. C. Zero phase sequence current filter apparatus and method for connection to the load end of six or four-wire branch circuits
US6592340B1 (en) * 1998-06-11 2003-07-15 Sulzer Pumpen Ag Control system for a vacuum pump used for removing liquid and a method of controlling said pump
US6464464B2 (en) * 1999-03-24 2002-10-15 Itt Manufacturing Enterprises, Inc. Apparatus and method for controlling a pump system
CA2268480C (en) * 1999-04-09 2001-06-19 1061933 Ontario Inc. Universal harmonic mitigating system
US6155347A (en) 1999-04-12 2000-12-05 Kudu Industries, Inc. Method and apparatus for controlling the liquid level in a well
AUPP995999A0 (en) * 1999-04-23 1999-05-20 University Of Technology, Sydney Non-contact estimation and control system
US6176682B1 (en) * 1999-08-06 2001-01-23 Manuel D. Mills Pumpjack dynamometer and method
WO2001063091A1 (en) * 2000-02-22 2001-08-30 Weatherford/Lamb, Inc. Artificial lift apparatus with automated monitoring characteristics
US6343656B1 (en) * 2000-03-23 2002-02-05 Intevep, S.A. System and method for optimizing production from a rod-pumping system
US6879129B2 (en) * 2001-03-29 2005-04-12 Matsushita Electric Industrial Co., Ltd. Brushless motor control method and controller
BRPI0113565B1 (en) * 2001-06-21 2016-07-26 Lg Electronics Inc apparatus and method for controlling piston position in reciprocating compressor
JP4075338B2 (en) * 2001-07-18 2008-04-16 株式会社豊田自動織機 Control method of electric compressor
US6585041B2 (en) 2001-07-23 2003-07-01 Baker Hughes Incorporated Virtual sensors to provide expanded downhole instrumentation for electrical submersible pumps (ESPs)
SE0103371D0 (en) * 2001-10-09 2001-10-09 Abb Ab Flow measurements
US6683428B2 (en) * 2002-01-30 2004-01-27 Ford Global Technologies, Llc Method for controlling torque in a rotational sensorless induction motor control system with speed and rotor flux estimation
US7010393B2 (en) * 2002-06-20 2006-03-07 Compressor Controls Corporation Controlling multiple pumps operating in parallel or series
US20040062658A1 (en) * 2002-09-27 2004-04-01 Beck Thomas L. Control system for progressing cavity pumps
US7668694B2 (en) * 2002-11-26 2010-02-23 Unico, Inc. Determination and control of wellbore fluid level, output flow, and desired pump operating speed, using a control system for a centrifugal pump disposed within the wellbore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10428629B2 (en) 2014-12-30 2019-10-01 Yueli Electric (Jiangsu) Co., Ltd. Methods and systems for directly driving a beam pumping unit by a rotating motor

Also Published As

Publication number Publication date
US20040062657A1 (en) 2004-04-01
CA2644149A1 (en) 2004-03-27
CA2644149C (en) 2011-05-03
US20040064292A1 (en) 2004-04-01
US7558699B2 (en) 2009-07-07
US20040062658A1 (en) 2004-04-01
CA2443010A1 (en) 2004-03-27
US20060276999A1 (en) 2006-12-07
CA2443010C (en) 2008-02-26
CA2442973A1 (en) 2004-03-27
CA2442973C (en) 2009-01-27
US7168924B2 (en) 2007-01-30
US7117120B2 (en) 2006-10-03
CA2443175C (en) 2009-12-29
US20060251525A1 (en) 2006-11-09
US8444393B2 (en) 2013-05-21

Similar Documents

Publication Publication Date Title
CA2443175A1 (en) Control system for progressing cavity pumps
JP6305756B2 (en) Pumped-storage power generator
US7668694B2 (en) Determination and control of wellbore fluid level, output flow, and desired pump operating speed, using a control system for a centrifugal pump disposed within the wellbore
EP2324807A2 (en) Constant Low-Flow Air Source Control System And Method
CN102741549A (en) Method and apparatus for extracting energy from a fluctuating energy flow from a renewable energy source
CN102597510A (en) Method and apparatus for extracting energy from a fluctuating energy flow from a renewable energy source
CN101761105B (en) Power matching method of hydraulic excavator
EP3387191B1 (en) Ship lock system for a canal
CN103154518B (en) Feed water pump control apparatus
KR101602475B1 (en) The optimal control method of inverter booster pump
JP2013519815A (en) Positive displacement pump operation control device, pump system, and operating method thereof
CN108138761B (en) Pneumatic system operation control device and control method
GB2615654A (en) A building facility water management method and system
CN108396714B (en) Constant head control method and control device for high-pressure water tank of virtual pumped storage power station
EP3513073A2 (en) Displacement pump and control system
CN111927814A (en) Centrifugal air compressor set energy-saving method based on edge calculation
Halkijevic et al. Frequency pressure regulation in water supply systems
CN103557207B (en) A kind of hydraulic system, hydraulic system pressure controlling method and engineering machinery
CN112695842B (en) Constant-pressure water supply control method without pressure tank
CN113266318B (en) Self-learning-based stroke frequency adjusting method for rod-type pumping unit well
CN102817394A (en) Hydraulic pump control system of excavator, method and excavator
EP2562424B1 (en) Method and equipment for controlling a multipoint fluid distribution system
CN113236617A (en) Hydraulic active suspension flow control system
CN111884557A (en) Pumping unit control method based on motor power torque
KR101045791B1 (en) Method for controlling pump system including multiple pumps

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20230926