CA2443826A1 - Production of metal foams - Google Patents

Production of metal foams Download PDF

Info

Publication number
CA2443826A1
CA2443826A1 CA002443826A CA2443826A CA2443826A1 CA 2443826 A1 CA2443826 A1 CA 2443826A1 CA 002443826 A CA002443826 A CA 002443826A CA 2443826 A CA2443826 A CA 2443826A CA 2443826 A1 CA2443826 A1 CA 2443826A1
Authority
CA
Canada
Prior art keywords
metal
weight
group
metals
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA002443826A
Other languages
French (fr)
Inventor
Wilfried Knott
Andreas Weier
Dagmar Windbiel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2443826A1 publication Critical patent/CA2443826A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1103Making porous workpieces or articles with particular physical characteristics
    • B22F3/1112Making porous workpieces or articles with particular physical characteristics comprising hollow spheres or hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1125Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers involving a foaming process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1134Inorganic fillers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • C22C1/083Foaming process in molten metal other than by powder metallurgy

Abstract

The invention relates to a method for producing structure-regulated metal foams and to the foamy metal bodies obtained in this manner. The invention i s characterized in that metals of group IB to VIIIB of the periodic table of elements are added before and/or during foaming.

Description

' CA 02443826 2003-10-09 G o 1 d s c h m i d t AG, Essen Production of metal foams The invention relates to a process for producing metal foams of controlled structure and to the metal bodies in foam form which are obtained in this way.
The prior art for the production of metal foams substantially comprises five basic procedures:
1. the compacting of metal powders with suitable blowing agents and heating of the preforms obtained in this way to temperatures which are higher than the liquidus temperature of the metal matrix and higher than the decomposition temperature of the blowing agent used;
2. dissolving or blowing of blowing gases into metal melts;
3. stirring of blowing agents into metal melts;
4. sintering of metallic hollow spheres;
5. infiltration of metal melts into filler bodies, which are removed after the melt has solidified.
re 1) DE-A-197 44 300 deals with the production and use of porous light metal parts or light-metal alloy parts, the bodies which have been compressed from a powder mixture (light-metal or Al alloy and blowing agent) being heated, in a heatable, closed vessel with inlet and outlet openings, to temperatures which are higher than the decomposition temperature of the blowing agent and/or melting temperature of the metal or of the alloy.
re 2) JP 03017236 A describes a process for producing metallic articles with cavities by dissolving gases in a metal melt and then initiating the foaming operation by suddenly reducing the pressure. Cooling of the melt stabilizes the foam obtained in this way.
WO 92/21457 teaches the production of A1 foam or A1 alloy foam by blowing in gas beneath the surface of a molten metal, abrasives, such as for example SiC, Zr02 etc., being used as stabilizers.
re 3) According to the teaching given in JP 09241780 A, metallic foams are obtained with the controlled release of blowing gases as a result of the metals initially being melted at temperatures which lie below the decomposition temperature of the blowing agent used.
Subsequent dispersion of the blowing agent in the molten metal and heating of the matrix to above the temperature which is then required to release blowing gases leads to a metal foam being formed.
re 4) The production of ultralight Ti-6A1-4V hollow sphere foams is based on the sintering, which takes place at temperatures of > 1000°C, of hydrated Ti-6A1-4V hollow spheres at 600°C (Synth./ Process.
Lightweight Met. Mater. II, Proc. Symp. 2nd (1997), 289-300).
re 5) Foamed aluminum is obtained by, after infiltration of molten aluminum into a porous filler, by removal of the filler from the solidified metal (Zhuzao Bianjibu (1997) (2) 1-4; ZHUZET, ISSN: 1001-4977) .
Furthermore, components with a hollow profiled section are of particular interest for reducing weight and increasing rigidity. DE-A-195 01 508 deals with a component for the chassis of a motor vehicle which comprises die-cast aluminum and has a hollow profiled section, in the interior of which there is a core of aluminum foam. The integrated aluminum foam core is produced in advance by powder metallurgy and is then fixed to the inner wall of a casting die and surrounded with metal by die-casting.

' CA 02443826 2003-10-09 When assessing the prior art, it can be observed that the processes which provide for preliminary compacting of preforms which contain blowing agent are complex and expensive and are unsuitable for mass production.
Moreover, a common feature of these processes is that the desired temperature difference between the melting point of the metal which is to be foamed and the decomposition temperature of the blowing agent used should be as low as possible, since otherwise disruptive decomposition of blowing agent takes place even during compacting or later in the melting phase.
This observation applies in a similar way to the introduction of blowing agents into metal melts.
The sintering of preformed hollow spheres to form a metallic foam is at best of academic interest, since even the production of the hollow spheres requires a complex procedure.
The infiltration technique has to be considered in a similar way, since the porous filler has to be removed from the foam matrix, which is a difficult operation.
The dissolving or blowing of blowing gases into metal melts is not suitable for the production of near net shape components, since a system comprising the melt with occluded gas bubbles is not stable for a sufficient time for it to be processed in shaping dies.
The mechanical properties of metal foams are substantially - in addition to the selection of the 5 metal or alloy used - determined by their structure.
However, the linked procedures which take place during the production of porous metal bodies often - in particular in the case of the method which is based on the use of chemical blowing agents - do not provide the desired result of a uniform metal foam which has globular cells of similar dimensions. Associated with this is, for example, a lack of isotropy of the bulk density, which could be desirable for the subsequent function of the metal foam in numerous structural components. Instead, there are irregularities, in the form of thickened zones in the metal body (for example a pronounced foot and/or edge zone formation and/or associated cavities which result from individual gas bubbles combining with one another as a result of the cell membranes being destroyed). At the same time, the occurrence of irregularities of this nature may indicate a relatively inefficient utilization of blowing agent.
Therefore, the object of the present invention is defined as being that of finding a method which can be utilized on an industrial scale for specifically controlling the structure of the metal foams produced using chemical blowing agents. Linked to this is the aim of improving the utilization of blowing agent used (for example of a metal hydride) .
Therefore, a first embodiment which achieves the abovementioned object consists in a process for producing metal foams wherein metals from group IB to VIIIB of the periodic system of the elements are added before and/or during the formation of the foam.
Surprisingly, it has now been found that metals from groups IB - VIIIB of the periodic system of the elements, in particular as additives to systems acted on by hydride, act so as to control morphology in the sense of the above object, and significantly increase the efficiency of the blowing agent. The added metals from groups IB to VIIIB of the periodic system of the elements may be applied either individually or in the form of a mixture of a plurality of metals.
The process according to the invention therefore provides, in a preferred embodiment, for the matrix consisting of light metal or light metal alloy and _ 7 _ hydride blowing agent to be expanded by small amounts of titanium, copper, iron, vanadium and mixtures thereof. The metallic additives are particularly preferably used in amounts of from 0.001% by weight to 1% by weight, particularly preferably from 0.01% by weight to 0.1% by weight, based on the metal which is to be foamed, in particular on the light metal which is to be foamed.
A particularly preferred blowing agent in the context of the present invention is magnesium hydride, in particular autocatalytically produced magnesium hydride, the production of which is known from the literature. Furthermore, this magnesium hydride is commercially available under the name Tego Magnan~ from the Applicant. In general, the quantity of blowing agent may be varied within the standard limits of 0.1%
by weight to 5% by weight, preferably from 0.25% by weight to 2% by weight:
The exploitation of the observed phenomenon ensures the production of highly regular foam structures and the reproducibility of morphologically uniform metal foams which is required with a view to technical applications. Employing the process according to the invention during the foaming process can make a considerable contribution to suppressing the destruction of the cell membrane.
Criteria for assessing the quality of plastic foams and of metal foams include, in addition to the visually perceptible homogeneity, the expansion achieved and, as a corollary, the final density of the porous metal body.
The general principle of the present invention is to be demonstrated here using the powder metallurgy route (mixing of light metal powder with hydride blowing agent and, if appropriate, additives, pre-compacting and/or pressing the matrix to form preforms, heating the preforms to temperatures which are higher than the melting point of the metal which is to be foamed).
Naturally, applying the additives claimed in the present invention to a metal-hydride system in accordance with the invention is not restricted to the powder metallurgy route, but rather also covers systems which can be considered to form part of melt metallurgy.
Exemplary embodiments:
Example 1:

_ g _ 500 g of aluminum powder with a purity of 99.5% were mixed, with stirring, with 1% by weight of Tego Magnan~
(magnesium hydride, hydride content 95%), based on the quantity of aluminum powder, and 0.1% by weight of titanium powder, based on the quantity of aluminum powder, and 0.01% by weight of copper powder, based on the amount of aluminum powder. Cylindrical pressed bodies were produced from this mixture by cold isostatic pressing. The degree of compacting of the pressed bodies obtained in this way was 94 to 97% of the density which can theoretically be achieved.
In an induction furnace with a HF output power of 1.5 kW, the pressed bodies were foamed freely in a graphite crucible at a heating rate of 300°C/min. The foamed bodies were cooled rapidly 30 seconds after the foaming operation had commenced.
After the samples had been sawn open, homogeneously distributed globular cells with a mean diameter of 3 mm, as illustrated in Fig. 1, were apparent all the way to the edge regions. The density achieved was 0.5 g/cm3.
Example 2:

In a similar manner to Example 1, 500 g of aluminum powder were mixed with 1% by weight of Tego Magnan~
(magnesium hydride), based on the amount of aluminum powder, 0.1% by weight of titanium powder, based on the amount of aluminum powder, and 0.01% by weight of vanadium powder, based on the amount of aluminum powder. The mixture was compacted as described above.
The degree of compacting of the cylindrical pressed bodies obtained in this way was 94 to 96%.
After the foaming and sawing, a fine, homogeneous cell structure was visible, with a mean size of 1.5 to 2 mm and a density of 0.6 g/cm3.
The foam structure formed is documented by Fig. 2.
Example 3:
In a similar manner to Example 1, 500 g of aluminum powder, 1% by weight of Tego Magnari (magnesium hydride), based on the amount of aluminum powder, 0.1%
by weight of titanium powder, based on the amount of aluminum powder, and 0.01% by weight of iron powder, based on the amount of aluminum powder, were mixed and compacted, and the preforms obtained were foamed. After the sawing operation, a homogeneous structure with a mean cell size of 5 mm was visible. The measured density was 0.7 g/cm3.
The foam structure formed is documented by Fig. 3.
Example 4:
In a similar manner to Example l, 500 g of aluminum powder, 1% by weight of Tego Magnan~ (magnesium hydride), based on the amount of aluminum powder and 0.1% by weight of titanium powder, based on the amount of aluminum powder, were mixed and compacted. The degree of compacting was between 95 and 97% of the density which can theoretically be achieved. The preforms obtained in this way were foamed, and after sawing a homogeneous structure with a mean cell size of 3.5 to 4 mm was apparent. The measured density was 0.3 g/cm3.
The foam structure formed is documented by Fig. 4.
Reference Example 1:
In a similar manner to Example 1, 500 g of aluminum powder, 0.1% by weight of titanium hydride, based on the amount of aluminum powder, and 0.1~ by weight of titanium powder, based on the amount of aluminum powder, were mixed, compacted and foamed freely. After sawing, a coarse, highly heterogeneous foam structure with a mean cell size of 8 mm was visible. A number of pore membranes had broken open. The density achieved was 0.7 g/cm3.
The foam structure formed is documented by Fig. 5.
Reference Example 2:
In a similar manner to Comparative Example 1, 500 g of aluminum powder, 0.1% by weight of titanium hydride, based on the amount of aluminum powder, and 0.1~ by weight of copper powder, based on the amount of aluminum powder, were mixed and compacted. After the foaming and sawing, a broken-open, inhomogeneous structure with a mean pore size of 5.5 mm and a substantially solid base was revealed. The density achieved was 0.5 g/cm3.
The foam structure formed is documented by Fig. 6.
It was clearly demonstrated that the inventive addition of small quantities of transition metals and/or their mixtures had a considerable influence on the morphology and final density of the foamed metal bodies.

Claims (9)

Claims:
1. A process for producing metal foams, wherein metals from group IB to VIIIB of the periodic system of the elements are added before and/or during the formation of the foams.
2. The process as claimed in claim 1 wherein the foam formation is achieved by compacting metal powders with blowing agents and heating the preforms obtained in this way to temperatures which are higher than the liquidus temperatures of the metal matrix and higher than the decomposition temperatures of the blowing agent, dissolving and/or blowing blowing gases into metal melts, stirring blowing agents into metal melts, sintering metallic hollow spheres, or infiltrating metal melts into filler bodies, which are removed after the melt has solidified.
3. The process as claimed in claim 1 or 2, wherein the metals from group IB to VIIIB are added in the form of powders.
4. The process as claimed in one of claims 1 to 3, wherein metals from group IB to VIIIB which are selected from the group consisting of titanium, copper, iron, vanadium and their mixtures are used.
5. The process as claimed in one of claims 1 to 4, wherein the metals from group IB to VIIIB are added in an amount of from 0.001% by weight to 1% by weight, in particular in an amount of from 0.01% by weight to 0.1%
by weight, based on the metal which is to be foamed, in particular on the light metal which is to be foamed.
6. The process as claimed in one of claims 1 to 5, wherein blowing agent is used in an amount of from 0.1 to 5% by weight, in particular 0.25 to 2% by weight, based on the metal, in particular on the light metal which is to be foamed.
7. The process as claimed in one of claims 1 to 6, wherein the blowing agent used is magnesium hydride, in particular autocatalytically produced magnesium hydride.
8. The use of metals from group IB to VIIIB of the periodic system of the elements before and/or during the formation of metal foams to control the morphology of the foams and/or to increase the efficiency of the use of blowing agent.
9. A metal foam obtainable by the process as claimed in one of claims 1 to 7.
CA002443826A 2001-05-19 2002-04-30 Production of metal foams Abandoned CA2443826A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10124533 2001-05-19
DE10124533.5 2001-05-19
PCT/EP2002/004742 WO2002094483A2 (en) 2001-05-19 2002-04-30 Production of metal foams

Publications (1)

Publication Number Publication Date
CA2443826A1 true CA2443826A1 (en) 2002-11-28

Family

ID=7685460

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002443826A Abandoned CA2443826A1 (en) 2001-05-19 2002-04-30 Production of metal foams

Country Status (9)

Country Link
US (1) US6942716B2 (en)
EP (1) EP1397223B1 (en)
JP (1) JP4344141B2 (en)
AT (1) ATE357304T1 (en)
AU (1) AU2002314016A1 (en)
CA (1) CA2443826A1 (en)
DE (1) DE50209776D1 (en)
ES (1) ES2281521T3 (en)
WO (1) WO2002094483A2 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100985231B1 (en) * 2007-11-30 2010-10-05 이세린 Porous Light Weight Body and Method for Preparing Thereof
CN101220423B (en) * 2008-01-25 2010-04-21 太原科技大学 Method for manufacturing foam aluminum alloy
JP5402380B2 (en) * 2009-03-30 2014-01-29 三菱マテリアル株式会社 Method for producing porous aluminum sintered body
KR101321176B1 (en) 2009-03-30 2013-10-23 미쓰비시 마테리알 가부시키가이샤 Process for producing porous sintered aluminum, and porous sintered aluminum
DE102009003274A1 (en) * 2009-05-20 2010-11-25 Evonik Goldschmidt Gmbh Compositions containing polyether-polysiloxane copolymers
DE102014209408A1 (en) 2014-05-19 2015-11-19 Evonik Degussa Gmbh Ethoxylate preparation using highly active double metal cyanide catalysts
ES2676430T3 (en) 2015-11-11 2018-07-19 Evonik Degussa Gmbh Curable polymers
PL3321304T3 (en) 2016-11-15 2019-11-29 Evonik Degussa Gmbh Mixtures of cyclic branched d/t-type siloxanes and their ensuing products
CN106670466B (en) * 2017-01-21 2018-06-19 杨林 A kind of preparation method of foamed aluminium
CN106702199B (en) * 2017-01-21 2018-08-10 杨林 A kind of preparation method of foaming aluminum material
CN106756188B (en) * 2017-01-21 2018-07-10 杨林 A kind of uniform foamed aluminium preparation method of pore structure
EP3415547B1 (en) 2017-06-13 2020-03-25 Evonik Operations GmbH Method for producing sic-linked polyether siloxanes
EP3415548B1 (en) 2017-06-13 2020-03-25 Evonik Operations GmbH Method for producing sic-linked polyether siloxanes
EP3438158B1 (en) 2017-08-01 2020-11-25 Evonik Operations GmbH Production of sioc-linked siloxanes
DE102017121513A1 (en) * 2017-09-15 2019-03-21 Pohltec Metalfoam Gmbh Process for foaming metal in the liquid bath
EP3467006B1 (en) 2017-10-09 2022-11-30 Evonik Operations GmbH Mixtures of cyclic branched d/t-type siloxanes and their ensuing products
EP3492513B1 (en) 2017-11-29 2021-11-03 Evonik Operations GmbH Method of manufacturing sioc linked polyether branched in siloxane section
CN109205806A (en) * 2018-08-07 2019-01-15 厦门建霖健康家居股份有限公司 A kind of environment-friendly type non-phosphorus scale foamed alloy cluster and preparation method thereof
EP3611214A1 (en) 2018-08-15 2020-02-19 Evonik Operations GmbH Sioc-linked, linear polydimethylsiloxane polyoxyalkylene block copolymers
EP3611215A1 (en) 2018-08-15 2020-02-19 Evonik Operations GmbH Method for producing acetoxy groups carrying siloxanes
ES2913783T3 (en) 2019-05-28 2022-06-06 Evonik Operations Gmbh Procedure for the purification of acetoxysiloxanes
EP3744759A1 (en) 2019-05-28 2020-12-02 Evonik Operations GmbH Method of manufacturing sioc linked polyether branched in siloxane section
EP3744755A1 (en) 2019-05-28 2020-12-02 Evonik Operations GmbH Method for producing siloxanes bearing acetoxy groups
EP3744760A1 (en) 2019-05-28 2020-12-02 Evonik Operations GmbH Method of manufacturing sioc linked polyether branched in siloxane section
EP3744756A1 (en) 2019-05-28 2020-12-02 Evonik Operations GmbH Acetoxy systems
EP3744774B1 (en) 2019-05-28 2021-09-01 Evonik Operations GmbH Method for recycling of silicones
EP3744754A1 (en) 2019-05-28 2020-12-02 Evonik Operations GmbH Method for producing siloxanes bearing acetoxy groups

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3297431A (en) * 1965-06-02 1967-01-10 Standard Oil Co Cellarized metal and method of producing same
US3383207A (en) * 1967-01-03 1968-05-14 Gen Electric Method for making cellular material
US4013461A (en) * 1971-07-21 1977-03-22 Union Carbide Corporation High void porous sheet and process therefor
US3940262A (en) * 1972-03-16 1976-02-24 Ethyl Corporation Reinforced foamed metal
DE2362293A1 (en) * 1973-12-14 1975-06-19 Technical Operations Basel Sa Foamed or cellular metals prodn - from aluminium using titanium hydride, and reinforced with steel inclusions
JPH0317236A (en) 1989-06-14 1991-01-25 Nkk Corp Manufacture of foamed metal
ATE140169T1 (en) 1991-05-31 1996-07-15 Alcan Int Ltd METHOD AND DEVICE FOR PRODUCING PROFILED PANELS FROM PARTICLE-STABILIZED METAL FOAM
DE4206303C1 (en) * 1992-02-28 1993-06-17 Mepura Metallpulver Ges.M.B.H., Ranshofen, At
DE19501508C1 (en) 1995-01-19 1996-04-25 Lemfoerder Metallwaren Ag Section of a vehicle wheel support
JP3352584B2 (en) 1996-03-11 2002-12-03 神鋼鋼線工業株式会社 Manufacturing method of metal foam
AT406027B (en) * 1996-04-19 2000-01-25 Leichtmetallguss Kokillenbau W METHOD FOR PRODUCING MOLDED PARTS FROM METAL FOAM
AT408076B (en) 1996-10-07 2001-08-27 Mepura Metallpulver METHOD FOR THE PRODUCTION OF FOAM METAL OR FOAM / METAL COMPOSITE MOLDED BODIES, SYSTEM FOR THE PRODUCTION AND USE THEREOF
DE59807606D1 (en) * 1997-06-10 2003-04-30 Goldschmidt Ag Th Foamable metal body
ATE208435T1 (en) * 1997-08-30 2001-11-15 Honsel Gmbh & Co Kg ALLOY FOR PRODUCING METAL FOAM BODIES USING A POWDER WITH NUCLEAR-FORMING ADDITIVES
DE19907855C1 (en) * 1999-02-24 2000-09-21 Goldschmidt Ag Th Manufacture of metal foams
EP1031634A1 (en) * 1999-02-24 2000-08-30 Goldschmidt AG Separation refining of metal melts by addition of metal hydrides, especially MgH2
SK286714B6 (en) * 1999-06-23 2009-04-06 Grillo - Werke Ag Zinc-based metal foamed bodies
JP4207218B2 (en) * 1999-06-29 2009-01-14 住友電気工業株式会社 Metal porous body, method for producing the same, and metal composite using the same

Also Published As

Publication number Publication date
JP4344141B2 (en) 2009-10-14
ATE357304T1 (en) 2007-04-15
WO2002094483A2 (en) 2002-11-28
EP1397223A2 (en) 2004-03-17
AU2002314016A1 (en) 2002-12-03
JP2004525265A (en) 2004-08-19
DE50209776D1 (en) 2007-05-03
US6942716B2 (en) 2005-09-13
US20020170391A1 (en) 2002-11-21
ES2281521T3 (en) 2007-10-01
EP1397223B1 (en) 2007-03-21
WO2002094483A3 (en) 2003-03-13

Similar Documents

Publication Publication Date Title
US6942716B2 (en) Production of metal forms
EP1755809B1 (en) Method of production of porous metallic materials
US6659162B2 (en) Production of large-area metallic integral foams
CA2298348C (en) Production of metal foams
CA2444248C (en) Process for producing metal/metal foam composite components
CA2473120C (en) Metal porous body manufacturing method
EP0483184B1 (en) A process of manufacturing particle reinforced metal foam and product thereof
US8562904B2 (en) Method for the powder-metallurgical production of metal foamed material and of parts made of metal foamed material
JPH09241780A (en) Manufacture of metallic foamed body
KR101331027B1 (en) Manufacturing method of metal foam with uniformly distributed nano-sized pores and metal foam manufactured thereby
CN114672744B (en) Endogenetic porous titanium reinforced magnesium-based amorphous composite material and preparation method thereof
CN104625081A (en) Method for preparing aluminum alloy powder through salt melting method
US7396380B2 (en) Method for producing metal foam bodies
CN112427622B (en) Foamed aluminum casting forming method
JPH01127631A (en) Production of foamed metal
US20090165981A1 (en) Process For Recycling Light Metal Parts
JP3868546B2 (en) Method for producing porous silver
RU2360020C2 (en) Method of semi-finished product receiving for manufacturing of products made of foamed metal
Kathuria Net shaping via aluminium foaming
JP2002256358A (en) Method for manufacturing ceramics/metal composite material
Anfilov et al. Use of metal hydrides in the aluminium foam production process

Legal Events

Date Code Title Description
EEER Examination request
FZDE Discontinued