CA2468117C - Airport map system with compact feature data storage - Google Patents

Airport map system with compact feature data storage Download PDF

Info

Publication number
CA2468117C
CA2468117C CA2468117A CA2468117A CA2468117C CA 2468117 C CA2468117 C CA 2468117C CA 2468117 A CA2468117 A CA 2468117A CA 2468117 A CA2468117 A CA 2468117A CA 2468117 C CA2468117 C CA 2468117C
Authority
CA
Canada
Prior art keywords
airport
data
taxi
location
runway
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA2468117A
Other languages
French (fr)
Other versions
CA2468117A1 (en
Inventor
Randy L. Walter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Aviation Systems LLC
Original Assignee
GE Aviation Systems LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GE Aviation Systems LLC filed Critical GE Aviation Systems LLC
Publication of CA2468117A1 publication Critical patent/CA2468117A1/en
Application granted granted Critical
Publication of CA2468117C publication Critical patent/CA2468117C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/06Traffic control systems for aircraft, e.g. air-traffic control [ATC] for control when on the ground
    • G08G5/065Navigation or guidance aids, e.g. for taxiing or rolling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C23/00Combined instruments indicating more than one navigational value, e.g. for aircraft; Combined measuring devices for measuring two or more variables of movement, e.g. distance, speed or acceleration
    • G01C23/005Flight directors
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0017Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
    • G08G5/0021Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located in the aircraft

Abstract

An airport map display system for an aircraft displays the airport paved surfaces and structures to a pilot or crew member. The system displays runways, taxiways, connectors, ramps, gates, and buildings. Hold and yield points may also be displayed. A compact set of specific data points and associated pavement width values is used to store unique data for each airport. Runway (21) is represented by location points (21B) and (21C). The runway width (21A) and elevation are determined at each of the two location points (21B) and (21C).

Description

AIRPORT MAP SYSTEM WITH COMPACT
FEATURE DATA STORAGE
BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
[0001] The present invention relates to aircraft surface guidance systems (SGS) and, in particular, to a method to format and store data regarding the paved surfaces, gates, and buildings of an airport and to display a map of the airport to the pilot.
TECHNICAL BACKGROUND
[0002] There is considerable interest in enhancing the field of surface guidance for aircraft. After an aircraft lands at an airport the next step is to taxi the aircraft to a desired destination such as a passenger loading/unloading gate. A pilot can become confused or lost amid the many runways, taxiways, ramps, and buildings. The problem is more significant at large airports and is particularly significant at night or in low visibility conditions when the multitude of lights can make it more difficult to taxi to the desired destination.
[0003] Efficient taxi operations save time and money. Airports are becoming more crowded. Aircraft often spend considerable time taxiing between runways and gates.
Taxi time is even longer if a pilot makes a wrong turn, becomes lost, or blunders onto the wrong runway or taxiway. In addition, a wrong turn or navigation blunder can cause delays for other aircraft at the airport.
[0004] A main feature of an airport surface guidance capability is the presentation of an airport map that is readily available to the pilot. One way to present such a map is on a head-down display (HDD) that is in the forward field of view of the pilot. The pilot identifies the aircraft's current position of the aircraft on the map and the destination location and is able to quickly understand the approved taxi route provided by ground controllers. The airport map may also indicate the current aircraft position and a selected taxi route overlaid on the airport map. The map gives a pilot situational awareness of the aircraft's position relative to the destination and the taxi instructions.
[0005] An obstacle for the practical implementation of an avionics systems to aid the pilot in finding his way safely to the active takeoff runway or, conversely, to the gate after landing, is the requirement to clearly display an airport map, preferably with taxi instructions and current aircraft position overlaid on the map. Prior avionics systems have attempted to display airport maps by storing the airport map as a digital picture.
While this approach works, representation of the airport map in this manner requires large amounts of memory for each airport. An airport map of a single airport can consume more than one gigabyte of memory. This requirement, coupled with the fact many avionics systems have limited data storage capability, have stymied efforts to implement airport maps on many aircraft. Another approach for displaying airport maps has been to upgrade aircraft avionics systems with new equipment that has large data storage capability. However, these systems must be designed, certified, integrated with the existing avionics suite, and installed. All this makes such an upgrade very costly and, therefore, this approach is economically infeasible for many aircraft.
[0006] It is generally desirable for an aircraft taxi planning and map system not only to accomplish the tasks of storing and displaying airport maps, but to also make the implementation cost-effective. The continuing goal, therefore, is to find ways to reduce costs, reduce taxi errors, save taxi time, and improve airport efficiency.
SUMMARY OF THE INVENTION
[0007] To address the goals stated above and other goals, the inventive airport map system includes a unique data storage method and structure that reduces the storage space required to represent an airport and also makes the map data easily accessible.
The data base is also useful for taxi planning purposes.
[0008] According to one embodiment, the airport map system is integrated into the flight management system (FMS) which provides the enroute planning function for the aircraft. The FMS comprises all of the components required to implement the airport map system including a user interface, processor, data storage devices, and communications links to a display screen such as a HDD.
[0009] One aspect of the airport map system is the selection of data used to represent airport features. Airport features, such as runways and taxiways, are represented by two location points that define the centerline. In addition, the runway or taxiway width is saved and therefore the edge of the runways and taxiways are defined.
Similarly, connectors are efficiently represented with two points and a width. Arc transitions between surfaces are represented by two points, a width and radius of the arc.
Other airport features are represented in memory efficient formats. Airport features such as terminal buildings and ramp areas are represented by a sequence of location points that represent the perimeter of the feature. Likewise, gates are represented by a single location point and a desired aircraft heading. The location points are either latitude and longitude coordinates or similar position determining values.
[00om] Another aspect of the airport map system is a linked list data structure by which the airport data is stored for efficient retrieval. The invention may use the linked list that is also flexible for storing airport data for various airport configurations. In addition, the database can be updated frequently without the need to alter program software. More preferably, the invention may use a linked list comprising two data tables as described below.
[00011] It is clear that the invention is a significant improvement over the prior art.
Further, those skilled in the art should recognize that the airport map system of the present invention is not limited to use with an FMS. Other processor, display screens, and data entry devices may also be used to practice the airport map system.
[00012] Additional features and advantages of the invention will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the invention as described in the detailed description which follows, the claims, as well as the appended drawings.
[00013] It is to be understood that the foregoing description is exemplary of the invention only and is intended to provide an overview for the understanding of the nature and character of the invention as it is defined by the claims. The accompanying drawings are included to provide a further understanding of the invention and are incorporated and constitute part of this specification. The drawings illustrate various features and embodiments of the invention which, together with their description, serve to explain the principals and operation of the invention.
BRIEF DESCRIPTION OF THE DRAWINGS
[00014] FIG. 1 is a block diagram of one embodiment of the airport map system according to the invention;
[00015] FIG. 2 is one example of an airport data representation according to the invention;

=
A.,49 =========1 = rv Ø,..4,tb 4 [00016] FIGS. 3A and 3B illustrate data tables comprising the linked list according to the invention; and [00017] FIG. 4 illustrates a linked list according to the invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[00018] Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings.
Wherever possible, the same reference numerals will be used throughout the drawings to refer to the same or like parts.
[00019] Referring to FIG. 1, an exemplary embodiment of the airport map system according to the present invention is shown, and is designated generally throughout by reference numeral 10. The components of the airport map system of the present invention will first be briefly described and then described in detail. The most common use for the airport map system 10 is as an integrated element in the FMS of an aircraft, such as a commercial passenger or cargo jet, and therefore the following discussion will describe the invention in relation to such an application.
[00020] The airport map system 10 according to the invention is shown with related aircraft systems. Any and all of the aircraft systems can comprise the airport map system of the invention, and therefore they are collectively referred to as airport map system 10. Airport map system 10 comprises flight management computer (FMC) 11, multifunction control display unit (MCDU)12, navigation database (NDB) 13, head-up display (HUD) 14, electronic flight instrument system (EFIS) 15, multi-mode receiver (MMR) 16, transponder 17, and communications management unit (CMU) 18. FMC 11 and MCDU
12 are generally referred to as a flight management system (FMS).
[00021] FMC 11 comprises a processor 11A, and memory 11B. Processor 11A
may include any data processor suitable for receiving and processing commands and data.
Processor 11A is preferably a microprocessor with sufficient throughput to complete the required FMS and airport map tasks in real-time. Memory 11B preferably comprises both random access memory (RAM) for storing dynamic data and variables, and read-only memory (ROM) for storing program data and static data. Processor 11A
communicates with memory 11B to retrieve program instructions and data and to manipulate and store variables. Processor 11A is also in communication with NDB 13.

[00022] NDB 13 comprises airport data describing airport runways, taxiways, gates, ramps, and various other airport structures as desired. The airport data is stored in the linked list 13A and standard taxi routes 13B are also preferably stored in the database.
NDB 13 is preferably rewritable or replaceable so that the airport data is easily updated as needed and so that the data remains current regarding changes to airport runways, taxiways, and the like. NDB 13 is constructed of any of various memory storage technologies such as PROM, EPROM, EEPROM, magnetic disk drives, optical disk drives, or various combinations of these and similar devices. The linked list described below is preferably stored in the NDB 13.
[00023] The user interface is accomplished through MCDU 12 which communicates with FMC 11 and processor 11A. MCDU 12 comprises a display screen 12A, line select keys 19, and a key pad 12B. MCDU 12 are commonly used to enter enroute flight planning commands to the FMC 11 and to output enroute flight data to the pilot, crew, or operator via display screen 12A. The operation of line select keys 19 allow quick selection and deletion of displayed items. The invention preferably uses this preexisting user interface device to accomplish the user interface for ground navigation at airports, although other user interfaces may also be used to practice the invention. For example, other displays such as the EFTS 15 or HUD 14 may be used as part of the user interface if desired.
[00024] HUD 14 and EFIS 15 are shown in communication with FMC 11. HUD 14 projects an image to a combiner positioned along the forward line of sight of the pilot such that a pilot can view the image and also look out the front windshield of the aircraft simultaneously. EFTS 15 (also referred to as a HDD) is typically positioned below the front windshield of the aircraft. EFIS 15 comprises one or more display screens which are typically implemented using cathode ray tubes (CRTs), flat panel displays, or functionally similar display devices. Once a taxi plan is selected, the plan is preferably displayed to the pilot on either the HUD 14 or EFTS 15.
[00025] Several communications systems are also coupled to the FMC 11. MMR

receives navigation or position signals such as global positioning system (GPS) signals, differential GPS (DGPS), local area augmentation system (LAAS) signals, wide area augmentation system (WAAS) signals, and the like. These signals are communicated to the FMC 11 where the position of the aircraft relative to airport features is determined.
This aircraft position information is then used to compute appropriate taxi selection options to the pilot.
[00026] Transponder 17 and CMU 18 provide additional input and output communications channels. Transponder 17, for example, may receive signals such as automatic dependent surveillance broadcast (ADS-B) from other aircraft or air traffic control (ATC). CMU 18 comprises a data link with ATC or similar controlling authority through which taxi plans and instructions are communicated, negotiated, modified, and approved or denied.
[00027] FIG. 2 illustrates an airport data representation according to the invention.
Runway 21 is represented by location points 21B and 21C. The runway width 21A
and elevation are determined at each of the two location points 21B and 21C, if desired. The taxiway 22 is represented by location points 22B and 22C and a taxiway width 22A.
The terminal building 23 is represented by a sequence of location points 23A
through 23L. The various connectors and intersections are represented by the remaining location points shown in FIG. 2. Examples of these points include 25A, 26A, and 27A as identifiers for points along taxiway 22. Gate 24 is represented by the single location point 24 and an aircraft heading 24A.
[00028] Another aspect of the invention is the database structure used to implement the airport map system of the invention. The database stores the airport map information for each airport. A linked list is preferably used to implement the database.
The linked list is illustrated in FIGS. 3A, 3B, and 4. Two tables of data are linked together. The first table is the Taxi Path ID Table (TPIDT) 41 that is comprised of Taxi Path ID
Records (TPIDR) 31.
[00029] The TPIDR 31 comprises an identifier field 31A such as 36L for a runway, A16 for a gate, or L5 for a taxiway connector. The taxi type field 31B identifies the instant path as a runway, taxiway, ramp, gate, or similar airport area. Pointer field 31C is a link to a TPR in the taxi point table that contains taxi points associated for this taxi path ID. The number field 31D tells the program of the number of taxi points for this taxi ID.
[00030] The second table is the Taxi Point Table (TPT) 42 that is comprised of Taxi uu wnY
NAWXY, YyyyW -=
Point Records (TPR) 32. Each TPR 32 comprises a latitude field 32A and a longitude field 32B for precisely identifying the horizontal location of the point. A
width field 32C identifies the width of the pavement at this point. The elevation field 32D contains the elevation of the point. This may be absolute elevation or a relative position relative to a reference point or monument on the airport. The point type field 32E
identifies the point as to a particular characteristic. For example, as part of a curve or straight surface, a hold point, or a gate. Certain points result in specific actions.
For example, a hold point causes the system to prompt the pilot to acknowledge the hold before continuing. This is preferably accomplished by halting the advancing or scrolling of the display screen until the hold is acknowledged by the pilot by actuating a line select key 19.
[00031] The taxi point record includes another link 32F, labeled the pointer to records in the TPIDT 41. This field can be comprised of multiple links. For example, if an aircraft is present on a runway, there are typically many connectors to the taxiways.
Using the Pointer field, the processor 11A can quickly identify the possible taxiway and connectors.
[000321 The linked list between the two tables is shown in FIG. 4. Each record in the TPIDT 41 contains a link to a record in the TPT 42. These are indicated by links 41A
and 41B. Similarly, many of the records in the TPT 42 contain multiple links to records in the TPIDT 41. This is illustrated by links 42A and 42B which show two links from record TPR 1 to records TPIDR 4 and TPlDR N-3.
[00033] The use of the linked list structure allows the invention to quickly identify appropriate taxi options and allows a pilot to quickly build a taxi plan comprising the taxi points in the NDB 13.
[00034] The method of the invention follows from the description of the structure of the database. The method begins with the runways, taxiways, and gates since these are important elements of an airport map. First, two runway location points for representing the centerline of each runway of the airport are determined. Preferably these two points represent each end of the runway. The width of the runway is also determined.
Using these three pieces of data in a runway can be defined, including the edges.
Each location point is representative of the latitude and longitude coordinates of the selected points on the runway. Other position identifying coordinates may also be used as long as the two points on the runway are determined with certainty and sufficient accuracy.
[00035] Each of the runway location points is stored in a taxi point record or similar record. The width of the runway is also stored in at least one of the taxi point records along with the location points.
[00036] An identifier for the runway is stored in a taxi path ID record.
The identifier is preferably the same as the conventional identifier used at the airport (e.g., 27L or 27R).
Similarly, the identifiers for the taxiways, connectors, intersections, and gates also use their familiar identifiers. However, this is not required to practice the invention. A
pointer is stored in the taxi path ID record indicating the location of the associated taxi point records. Each runway and taxiway are determined and stored in the database in a similar fashion. In this manner, the physical dimensions of every runway and taxiway are quickly found.
[00037] Other airport facilities are stored in a similar compact manner.
Some are stored in slightly different formats as can be deduced from the discussion above. For example, gates are defined by only one location point and, optionally, one heading value.
Consequently, gate information is stored in only one taxi point record and the aircraft heading may be stored in the width field of the record. However, the gate information is still stored in the linked list structure. The gate identifier and a pointer are stored in a taxi path ID record similar to the taxi path ID record for the runways and taxiways.
[00038] In a similar manner, airport structures, buildings, ramp areas and the like are represented as a sequence of location points that represent the perimeter of the structure.
The location points are stored in a sequence of taxi point records and the associated identifier is stored into a taxi path ID record along with a pointer to the taxi point records.
[00039] In addition to the location points discussed above, additional data for each airport facility may also be stored in the linked list without departing from the invention. For example, in one embodiment the elevation for each location point is also determined and stored in the taxi point record. Other information relevant to a particular location point may also be stored in the taxi point record. For example, if the point is a hold or yield location on the airport, this information may be stored in the taxi point record.

[00040] While there have been described herein what are considered to be preferred and exemplary embodiments of the present invention, other modifications of these embodiments falling within the invention described herein shall be apparent to those skilled in the art.
_

Claims (20)

WHAT IS CLAIMED IS:
1. An airport map system comprising:
a display screen suitable for displaying a map of an airport;
a data storage unit for storing airport map data representative of airport surface features comprising runways and taxiways, wherein runways are defined in said airport map data by two location data points and a width value;
a processor in communication with said display screen and said data storage unit;
said airport map data being stored in a linked list comprising a taxi path ID
table and a taxi point table for each of a plurality of runways and taxiways in the airport, the taxi path ID table comprising an identifier field and a pointer field, the identifier field for storing an identifier for a runway or a taxiway of the airport, the pointer field comprising a link to the taxi point table for the runway or taxiway, the taxi point table comprising at least one field for storing location points for the corresponding runway or taxiway.
2. The airport map system of claim 1, wherein said airport map data comprises runway data that includes one location point at each end of the runway.
3. The airport map system of claim 2, wherein said surface features comprise buildings and each of said buildings are defined by a sequence of location points that represent the outline of said buildings.
4. The airport map system of claim 3, wherein said location points are representative of latitude and longitude coordinates.
5. The airport map system of claim 1, wherein said runways are represented by runway data, and said runway data comprises two location points that define a centerline of a runway.
6. The airport map system of claim 1, wherein said taxiways are represented by taxiway data, and said taxiways are defined by two location points that define the centerline of the taxiway.
7. The airport map system of claim 1, wherein said surface features comprise ramp areas and wherein said ramp areas are represented by ramp data, said ramp data defined by a sequence of location points that define the outline of said ramp area.
8. The airport map system of claim 1, wherein said surface features comprise a hold and yield data and said hold and said yield data are defined by a single location point.
9. The airport map system of claim 1, wherein said surface features comprise gate data and said gate data is defined by a single location point and a desired aircraft heading.
10. The airport map system of claim 1, wherein the taxiways are defined in said airport map data by two location points and a width value.
11. The airport map system of claim 1, wherein said airport surface features comprise arc transitions, and wherein each of said arc transitions are defined in said airport map data by two location data points, a width value, and a radius of the arc transition.
12. The airport map system of claim 1, wherein the airport map data comprises data defining straight and arc shaped travel ways, wherein the straight travel ways are defined by two location data points and a width value, and the arc travel ways are defined by two location data points, a width value, and an arc radius.
13. The airport map system of claim 1, wherein said airport map data requires less than three thousand bytes of data storage space to represent said airport surface features of a single airport.
14. A
method of storing data representative of airport surface features comprising the steps of:
determining two runway location points defining the centerline for a runway;
determining a runway width value for said runway;

storing said two runway location points and said runway width value in at least one taxi point record;
storing an identifier for said runway and a first pointer in a first taxi path ID
record, said first pointer indicating the address of said taxi point records containing said runway location points; and defining a linked list comprising the first taxi path ID record and the taxi point record.
15. The method of storing data of claim 14 further comprising the steps of:
determining two taxiway location points defining the centerline for a taxiway; determining a taxiway width value for said taxiway;
storing said two taxiway location points and said taxiway width value in at least one taxi point record; and storing an identifier for said taxiway and a second pointer in a second taxi path ID record, said second pointer indicating the address of said taxi point records containing said taxiway location points.
16. The method of storing data of claim 14 further comprising the steps of:
determining a sequence of location points representative of the parameter of a structure;
storing said sequence of location points in a plurality of taxi point records;

and storing a structure identifier for said structure and a third pointer into a third taxi path ID record, said third pointer indicating the address of one of said plurality of taxi point records.
17. The method of storing data of claim 14 further comprising the steps of:
determining a gate location point representative of the location of a gate;
determining a desired aircraft heading for said gate;

storing said gate location point in a first taxi point record; storing said desired aircraft heading in said second taxi point record; and storing a gate identifier for said gate and a fourth pointer into a fourth taxi path ID record, said fourth pointer indicating the address of said first and second taxi point record.
18. The method of storing data of claim 14 further comprising the steps of:
determining two location data points defining an arc transition; determining a radius of the arc transition; determining a width value of the arc transition;
storing said location points, width value, and radius of the arc transition in at least one taxi point record; and storing an identifier for said arc transition in a third pointer at a third taxi path ID record, said third pointer indicating the address of said arc transition records containing said arc transition location points.
19. An airport map system comprising:
a display screen suitable for displaying a map of an airport;
a data storage unit for storing airport map data representative of airport surface features comprising runways and taxiways, wherein the airport map data comprises data defining straight and arc shaped taxiways, wherein the straight taxiways are defined by two location data points and a width value, and the arc shaped taxiways are defined by two location data points, a width value and an arc radius; and a processor in communication with said display screen and said data storage unit;
wherein said airport map data is stored in a linked list comprising a taxi path ID table and a taxi point table for each of a plurality of runways and taxiways in the airport, the taxi path ID table comprising an identifier field and a pointer field, the identifier field for storing an identifier for a runway or a taxiway of the airport, the pointer field comprising a link to the taxi point table for the runway or taxiway, the taxi point table comprising at least one field for storing location points for the corresponding runway or taxiway.
20. The airport map system of claim 19, wherein the runways are defined in said airport map data by two location data points and a width value.
CA2468117A 2001-12-04 2002-10-30 Airport map system with compact feature data storage Expired - Lifetime CA2468117C (en)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US33675201P 2001-12-04 2001-12-04
US33718201P 2001-12-04 2001-12-04
US33729501P 2001-12-04 2001-12-04
US33719201P 2001-12-04 2001-12-04
US60/337,295 2001-12-04
US60/337,182 2001-12-04
US60/337,192 2001-12-04
US60/336,752 2001-12-04
US10/079,204 2002-02-20
US10/079,204 US6862519B2 (en) 2001-12-04 2002-02-20 Airport map system with compact feature data storage
PCT/US2002/034738 WO2003048888A2 (en) 2001-12-04 2002-10-30 Airport map system with compact feature data storage

Publications (2)

Publication Number Publication Date
CA2468117A1 CA2468117A1 (en) 2003-06-12
CA2468117C true CA2468117C (en) 2014-12-09

Family

ID=27536196

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2468117A Expired - Lifetime CA2468117C (en) 2001-12-04 2002-10-30 Airport map system with compact feature data storage

Country Status (7)

Country Link
US (1) US6862519B2 (en)
EP (1) EP1461675B1 (en)
JP (1) JP4242776B2 (en)
CN (1) CN1630873B (en)
AU (1) AU2002359328A1 (en)
CA (1) CA2468117C (en)
WO (1) WO2003048888A2 (en)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7777675B2 (en) 1999-03-05 2010-08-17 Era Systems Corporation Deployable passive broadband aircraft tracking
US8446321B2 (en) 1999-03-05 2013-05-21 Omnipol A.S. Deployable intelligence and tracking system for homeland security and search and rescue
US7782256B2 (en) 1999-03-05 2010-08-24 Era Systems Corporation Enhanced passive coherent location techniques to track and identify UAVs, UCAVs, MAVs, and other objects
US8203486B1 (en) 1999-03-05 2012-06-19 Omnipol A.S. Transmitter independent techniques to extend the performance of passive coherent location
US7667647B2 (en) 1999-03-05 2010-02-23 Era Systems Corporation Extension of aircraft tracking and positive identification from movement areas into non-movement areas
US7908077B2 (en) 2003-06-10 2011-03-15 Itt Manufacturing Enterprises, Inc. Land use compatibility planning software
US7889133B2 (en) * 1999-03-05 2011-02-15 Itt Manufacturing Enterprises, Inc. Multilateration enhancements for noise and operations management
US7570214B2 (en) 1999-03-05 2009-08-04 Era Systems, Inc. Method and apparatus for ADS-B validation, active and passive multilateration, and elliptical surviellance
US7576695B2 (en) * 1999-03-05 2009-08-18 Era Systems Corporation Multilateration enhancements for noise and operations management
US7739167B2 (en) 1999-03-05 2010-06-15 Era Systems Corporation Automated management of airport revenues
US7612716B2 (en) * 1999-03-05 2009-11-03 Era Systems Corporation Correlation of flight track data with other data sources
US7117089B2 (en) * 2001-03-06 2006-10-03 Honeywell International Inc. Ground runway awareness and advisory system
US7587278B2 (en) * 2002-05-15 2009-09-08 Honeywell International Inc. Ground operations and advanced runway awareness and advisory system
US8145367B2 (en) 2001-03-06 2012-03-27 Honeywell International Inc. Closed airport surface alerting system
DE10131720B4 (en) * 2001-06-30 2017-02-23 Robert Bosch Gmbh Head-Up Display System and Procedures
ATE417247T1 (en) 2002-02-19 2008-12-15 Jeppesen Sanderson Inc AIRPORT TOLLWAY NAVIGATION SYSTEM
US7079951B2 (en) * 2002-05-15 2006-07-18 Honeywell International Inc. Ground operations and imminent landing runway selection
US7113202B2 (en) * 2002-09-20 2006-09-26 The Boeing Company Autotiller control system for aircraft utilizing camera sensing
US20040059474A1 (en) * 2002-09-20 2004-03-25 Boorman Daniel J. Apparatuses and methods for displaying autoflight information
US7460029B2 (en) * 2003-12-24 2008-12-02 The Boeing Company Systems and methods for presenting and obtaining flight control information
US7109889B2 (en) * 2004-03-01 2006-09-19 Honeywell International Inc. Methods and apparatus for surface movement situation awareness
FR2869419B1 (en) * 2004-04-22 2006-06-30 Airbus France Sas METHOD AND DEVICE FOR AIDING THE LANDING OF AN AIRCRAFT ON A LANDFALL TRAIL
US7222017B2 (en) 2004-06-17 2007-05-22 The Boeing Company Method and system for entering and displaying ground taxi instructions
US7382288B1 (en) * 2004-06-30 2008-06-03 Rockwell Collins, Inc. Display of airport signs on head-up display
US7382284B1 (en) * 2004-09-29 2008-06-03 Rockwell Collins, Inc. Aircraft surface operations guidance on head up display
FR2884019B1 (en) * 2005-04-04 2007-05-11 Airbus France Sas METHOD AND DEVICE FOR DISPLAYING A PART OF AN AIRPORT ON A DISPLAY SCREEN
US7965227B2 (en) 2006-05-08 2011-06-21 Era Systems, Inc. Aircraft tracking using low cost tagging as a discriminator
US7567187B2 (en) 2006-08-11 2009-07-28 Honeywell International Inc. Taxiway awareness and advisory system
US8812223B2 (en) * 2007-01-23 2014-08-19 Honeywell International Inc. Systems and methods for alerting aircraft crew members of a runway assignment for an aircraft takeoff sequence
US7962279B2 (en) * 2007-05-29 2011-06-14 Honeywell International Inc. Methods and systems for alerting an aircraft crew member of a potential conflict between aircraft on a taxiway
FR2919416B1 (en) * 2007-07-27 2011-02-11 Thales Sa METHODS OF GENERATING A CONNECTIVITY GRAPH OF ELEMENTS OF AN AIRPORT FOR ROLLING AID AND ASSOCIATED DEVICES.
US8180562B2 (en) * 2008-06-04 2012-05-15 The Boeing Company System and method for taxi route entry parsing
US8386167B2 (en) * 2008-11-14 2013-02-26 The Boeing Company Display of taxi route control point information
US7986249B2 (en) * 2008-11-24 2011-07-26 Honeywell International Inc. System and method for displaying graphical departure procedures
US9189964B1 (en) * 2009-02-03 2015-11-17 Rockwell Collins, Inc. System, module, and method for presenting runway traffic information
US8284997B2 (en) * 2009-03-11 2012-10-09 Honeywell International Inc. Vision-based vehicle navigation system and method
JP5609032B2 (en) * 2009-07-15 2014-10-22 三菱電機株式会社 Multi-lateration device and airport surface monitoring system
US8280618B2 (en) * 2010-02-10 2012-10-02 Honeywell International Inc. Methods and systems for inputting taxi instructions
US8666648B2 (en) 2010-06-16 2014-03-04 Airbus Engineering Centre India System and method for aircraft taxing and guidance using a communication network
CN102004852B (en) * 2010-11-18 2012-06-27 南京莱斯信息技术股份有限公司 Airport ground aircraft slide route automatic calculating method
FR2968111B1 (en) * 2010-11-30 2014-08-29 Airbus Operations Sas METHOD AND SYSTEM FOR AIDING THE DRIVING OF AN AIRCRAFT RUNNING ON THE GROUND ON AN AIRPORT DOMAIN.
US8494766B2 (en) * 2011-01-07 2013-07-23 Ge Aviation Systems, Llc Flight management system with integrated tactical commands for use with an aircraft and method of operating same
US8718911B2 (en) * 2011-04-01 2014-05-06 Honeywell International Inc. Systems and methods for presenting taxi instructions and reducing runway incursions
FR2976354B1 (en) 2011-06-10 2013-06-14 Thales Sa METHOD OF CREATING A RUNWAY ON AN AIRPORT AREA AND ASSOCIATED DEVICE.
US8731811B2 (en) 2011-10-20 2014-05-20 Honeywell International Inc. Methods and systems for displaying a taxi clearance
US9222800B1 (en) * 2012-08-06 2015-12-29 Rockwell Collins, Inc. Taxi information presentation system, device, and method
FR3004250B1 (en) * 2013-04-03 2015-03-27 Thales Sa METHOD FOR DETERMINING A TRACKING PATH OF AN AIRCRAFT ON AN AIRPORT ZONE.
US9406235B2 (en) 2014-04-10 2016-08-02 Honeywell International Inc. Runway location determination
US10431100B2 (en) * 2014-10-31 2019-10-01 Aircraft Owners And Pilots Association Interactive and customizable flight planning tool
US9666085B2 (en) 2014-11-14 2017-05-30 Honeywell International Inc. Methods and systems for displaying a taxi clearance
US11106329B2 (en) * 2015-09-18 2021-08-31 Honeywell International Inc. Flight deck display systems and methods for generating cockpit displays including dynamic taxi turnoff icons
CN109754643A (en) * 2019-01-29 2019-05-14 中国航空无线电电子研究所 Ground taxi based on map guides system
CN111651550A (en) * 2020-06-10 2020-09-11 民航数据通信有限责任公司 Airport scene map database establishing and data obtaining method

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3706989A (en) * 1970-10-28 1972-12-19 Us Air Force Digital motion compensation system for radar platforms
US3706969A (en) 1971-03-17 1972-12-19 Forney Eng Co Airport ground aircraft automatic taxi route selecting and traffic control system
US3971025A (en) * 1973-01-02 1976-07-20 International Telephone And Telegraph Corporation Airport ground surveiliance system with aircraft taxi control feature
FR2368771A1 (en) 1976-10-19 1978-05-19 Thomson Csf RUNNING CONTROL SYSTEM ON AERODROME
US4516125A (en) * 1982-09-20 1985-05-07 General Signal Corporation Method and apparatus for monitoring vehicle ground movement in the vicinity of an airport
US4845629A (en) * 1985-07-18 1989-07-04 General De Investigacion Y Desarrollo S.A. Airport surveillance systems
US5057835A (en) 1987-10-28 1991-10-15 Eventide, Inc. Map and text display system for vehicle navigation
US4876651A (en) * 1988-05-11 1989-10-24 Honeywell Inc. Digital map system
US6195609B1 (en) 1993-09-07 2001-02-27 Harold Robert Pilley Method and system for the control and management of an airport
US5200902A (en) 1990-10-09 1993-04-06 Pilley Harold R Airport control/management system
US5657009A (en) * 1991-10-31 1997-08-12 Gordon; Andrew A. System for detecting and viewing aircraft-hazardous incidents that may be encountered by aircraft landing or taking-off
US5268698A (en) 1992-07-31 1993-12-07 Smith Sr Louis P Target acquisition, locating and tracking system
US5343395A (en) * 1992-08-26 1994-08-30 Watts Alan B Aircraft landing guidance system and method
US5374932A (en) * 1993-08-02 1994-12-20 Massachusetts Institute Of Technology Airport surface surveillance system
US5519618A (en) * 1993-08-02 1996-05-21 Massachusetts Institute Of Technology Airport surface safety logic
US5654890A (en) 1994-05-31 1997-08-05 Lockheed Martin High resolution autonomous precision approach and landing system
US5629691A (en) * 1995-05-26 1997-05-13 Hughes Electronics Airport surface monitoring and runway incursion warning system
JP3401130B2 (en) 1995-11-17 2003-04-28 富士通株式会社 Flight strips management method and system
EP0883873B1 (en) 1996-02-29 1999-12-22 Siemens Aktiengesellschaft Airport guidance system, in particular airport surface movement guidance and control system
JP3067998B2 (en) 1996-03-29 2000-07-24 三菱電機株式会社 Road map creation device, road map display device, airport surface map creation device, airport surface map display device, road map creation method, road map display method, airport surface map creation method, and airport surface map display method
WO1997043666A1 (en) 1996-05-14 1997-11-20 Alliedsignal Inc. Radar based terrain and obstacle alerting function
DE19635679A1 (en) * 1996-09-03 1998-03-05 Siemens Ag Man-machine interface (MMI) for airports and air traffic purposes
US6199015B1 (en) * 1996-10-10 2001-03-06 Ames Maps, L.L.C. Map-based navigation system with overlays
US5745054A (en) 1996-11-18 1998-04-28 Honeywell Inc. Method and apparatus for conformal runway alignment on a head up display
JP3017956B2 (en) * 1997-03-26 2000-03-13 運輸省船舶技術研究所長 Airfield control support system
US6112141A (en) 1997-10-15 2000-08-29 Dassault Aviation Apparatus and method for graphically oriented aircraft display and control
US5978715A (en) 1997-10-15 1999-11-02 Dassault Aviation Apparatus and method for aircraft display and control
DE19752559B4 (en) 1997-11-27 2004-01-22 Honeywell Ag Procedure for guiding aircraft on taxiways
JPH11184375A (en) * 1997-12-25 1999-07-09 Toyota Motor Corp Apparatus and method for digital map data processing
US6463383B1 (en) 1999-04-16 2002-10-08 R. Michael Baiada Method and system for aircraft flow management by airlines/aviation authorities
US6157876A (en) * 1999-10-12 2000-12-05 Honeywell International Inc. Method and apparatus for navigating an aircraft from an image of the runway
US6353794B1 (en) 1999-10-19 2002-03-05 Ar Group, Inc. Air travel information and computer data compilation, retrieval and display method and system
JP4244107B2 (en) * 2000-03-17 2009-03-25 アルパイン株式会社 Destination information retrieval method for navigation device and navigation device
US6591170B2 (en) * 2000-10-10 2003-07-08 Sandel Avionics, Inc. Method and apparatus for reducing false taws warnings and navigating landing approaches
JP3664066B2 (en) * 2000-10-11 2005-06-22 三菱電機株式会社 Air traffic control support system

Also Published As

Publication number Publication date
WO2003048888B1 (en) 2004-04-15
EP1461675A4 (en) 2009-12-23
US20030105580A1 (en) 2003-06-05
WO2003048888A2 (en) 2003-06-12
AU2002359328A1 (en) 2003-06-17
WO2003048888A3 (en) 2004-02-26
JP4242776B2 (en) 2009-03-25
AU2002359328A8 (en) 2003-06-17
CN1630873A (en) 2005-06-22
EP1461675A2 (en) 2004-09-29
EP1461675B1 (en) 2013-09-11
CA2468117A1 (en) 2003-06-12
JP2005511394A (en) 2005-04-28
CN1630873B (en) 2010-09-15
US6862519B2 (en) 2005-03-01

Similar Documents

Publication Publication Date Title
CA2468117C (en) Airport map system with compact feature data storage
US6751545B2 (en) Aircraft taxi planning system and method
US6789010B2 (en) Airport map display system and data interchange method
US6731226B2 (en) Airport feature display system and data interchange method for conformal display
US8843255B2 (en) Methods for displaying aircraft procedure information
US9747807B2 (en) Systems and methods for displaying quick preview notices to airmen
US20110264313A1 (en) Flight planning with digital notam
US20100148990A1 (en) System and method for selectively displaying terminal procedure data
CN1742277B (en) Aircraft taxi planning system and method
US6832152B1 (en) Method and apparatus for providing an electronic chart with an aircraft having a flight management system

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20221031