CA2481425A1 - Disposable sensor with enhanced sample port inlet - Google Patents

Disposable sensor with enhanced sample port inlet Download PDF

Info

Publication number
CA2481425A1
CA2481425A1 CA002481425A CA2481425A CA2481425A1 CA 2481425 A1 CA2481425 A1 CA 2481425A1 CA 002481425 A CA002481425 A CA 002481425A CA 2481425 A CA2481425 A CA 2481425A CA 2481425 A1 CA2481425 A1 CA 2481425A1
Authority
CA
Canada
Prior art keywords
layer
reagent
strip
electrode
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CA002481425A
Other languages
French (fr)
Other versions
CA2481425C (en
Inventor
Xiaohua Cai
Handani Winarta
Andy Vo
Chung Chang Young
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nova Biomedical Corp
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CA2481425A1 publication Critical patent/CA2481425A1/en
Application granted granted Critical
Publication of CA2481425C publication Critical patent/CA2481425C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels

Abstract

A disposable biosensor for testing a fluid sample including a laminated stri p with a first and second end, a reference electrode embedded in the laminated strip proximate to the first end, at least one working electrode embedded in the laminated strip proximate to the first end and the reference electrode, an open path for receiving a fluid sample beginning from the first end and connecting to a vent spaced from the first end, the open path being sufficiently long to expose the reference electrode and the working electrod e to the fluid sample, and conductive contacts located at the second end of th e laminated strip. The laminated strip has a base layer with a conductive coating, a reagent holding layer, a channel forming layer and a cover having an inlet notch at the first end. The working electrode contains a reagent having an enzyme.

Claims (30)

1. A disposable biosensor comprising:
a laminated strip having a first strip end, a second strip end and a vent opening spaced from said first strip end, said laminated strip comprising a base layer with a conductive coating disposed thereon, said base layer having at least two electrodes delineated thereon, a reagent holding layer carried on said base layer, said reagent holding layer having at least two cutouts, a channel forming layer carried on said reagent holding layer, and a cover having a notch at said first strip end;
an enclosed channel between said first strip end and said vent opening, said enclosed channel containing said at least two cutouts;
a reagent disposed in said at least two cutouts forming a first working electrode and a reference electrode, said reagent containing an enzyme; and conductive contacts at said second strip end and insulated from said enclosed channel.
2. The biosensor of Claim 1 wherein said enzyme is selected from the group consisting of glucose oxidase, lactate oxidase, cholesterol oxidase, and creatinine amidohydrolase.
3. The biosensor of Claim 1 wherein said reagent holding layer has a third cutout having said reagent disposed therein and forming a second working electrode.
4. The biosensor of Claim 1 wherein said reagent further contains at least one of a redox mediator, a stabilizer, a binder, a surfactant, and a buffer.
5. The biosensor of Claim 4 wherein said stabilizer is a polyalkylene glycol, said binder is a cellulose material, and said surfactant is a polyoxyethylene ether.
6. The biosensor of Claim 5 wherein said stabilizer is polyethylene glycol, said binder is methyl cellulose, said surfactant is t-octylphenoxypolyethoxyethanol, and said buffer is a citrate buffer.
7. The biosensor of Claim 6 wherein said reagent is made from a mixture having starting components comprising about 1wt% to about 6.5wt% of said redox mediator, about 2.5wt% of said stabilizer, about 1wt% of said binder, and about .03wt% of said surfactant in said buffer.
8. The biosensor of Claim 7 wherein said citrate buffer is about 0.05M.
9. The biosensor of Claim 4 wherein said redox mediator is at least one of potassium ferricyanide and other inorganic and organic redox mediators.
10. The biosensor of Claim 1 wherein said conductive coating is gold or a gold and tin oxide mix.
11. The biosensor of Claim 1 wherein said base layer, said reagent holding layer, said channel forming layer, and said cover are made of a plastic dielectric material.
12. The biosensor of Claim 1 wherein said channel forming layer has a thickness sufficient to optimize the flow of said fluid sample along said open path.
13. The biosensor of Claim 7 wherein said reagent forming said reference electrode is made of a mixture having starting components comprising about 1wt% of said potassium ferricyanide, about 2.5wt% of said polyethylene glycol, about 1wt% of said methyl cellulose, about .03wt% of said t-octylphenoxypolyethoxyethanol, and said citrate buffer is about 0.05M.
14. The biosensor of Claim 9 wherein said reagent of said first working electrode is made of a mixture having starting components comprising about 6.5wt% of said potassium ferricyanide, about 2.5wt% of said polyethylene glycol, about 1wt% of said methyl cellulose, about .03wt% of said t-octylphenoxypolyethoxyethanol, and said pH buffer is about a 0.05M citrate buffer, and about 1wt% of said enzyme.
15. The biosensor of Claim 14 wherein said enzyme is glucose oxidase.
16. The biosensor of Claim 3 wherein the surface area of said first working electrode is substantially same as the surface area of said second working electrode.
17. The biosensor of Claim 3 wherein said reagent forming said second working electrode is substantially similar to said reagent forming said reference electrode.
18. A disposable electrode strip for detecting or measuring the concentration of at least one analyte in a fluid sample, said electrode strip comprising:
an insulating base layer having a first base end and a second base end;
a conductive layer disposed on one side of said base layer delineating at least three electrically-distinct conductive paths insulated from each other;
a reagent holding layer sized smaller than said base layer and overlaying a substantial portion of said conductive layer, said reagent holding layer having at least a first cutout portion and a second cutout portion spaced from said first base end, said first cutout portion exposing a limited area of a first of said at least three conductive paths and said second cutout portion exposing a limited area of a second and a third of said at least three conductive paths;
at least two electrode materials wherein a first electrode material is a reagent for measuring the concentration of said at least one analyte and wherein a second electrode material is a material suitable for use as a reference material, each of said at least two electrode materials contains at least a polyalkylene glycol as a stabilizer, said first material being disposed in said first cutout potion and said second material being disposed in said second cutout portion;
a channel forming layer sized to fit over and coextensive with said reagent holding layer, said channel forming layer having an opening configured to expose an area of said reagent holding layer a limited distance from said first base end, said area including said at least two cutout portions of said reagent holding layer; and a top layer sized to fit over and coextensive with said channel forming layer creating a sample fluid channel, said top layer having an inlet notch at a first top layer end, said first top layer end being coextensive with said first base end, and a top layer vent spaced from said first base end and configured to expose at least a small portion of said opening of said channel forming layer.
19. The strip of Claim 18 wherein said sample fluid channel is hydrophilic.
20. The device of Claim 18 wherein said first material and said second material further include a redox mediator, a binder, a surfactant, and a buffer.
21. The strip of Claim 20 wherein said redox mediator is at least one metal complex selected from the group consisting of ferrocene, ferrocene derivatives and potassium ferricyanide, said binder is a cellulose material, said surfactant is a polyoxyethylene ether, and said buffer has a pH of about to about 6.
22. The strip of Claim 21 wherein said mediator is potassium ferricyanide, said stabilizer is polyethylene glycol, said binder is methyl cellulose, said surfactant is t-octylphenoxypolyethoxyethanol, and said buffer is a citrate buffer.
23. The strip of Claim 22 wherein said first electrode material is made of a mixture having starting components comprising about 1wt% of said potassium ferricyanide, about 2.5wt% of said polyethylene glycol, about 1wt% of said methyl cellulose, and about 0.03wt% of said t-octylphenoxypolyethoxyethanol in said citrate buffer.
24. The strip of Claim 22 wherein said second electrode material is made of a mixture having starting components comprising about 6.5wt% of said potassium ferricyanide, about 2.5wt% of said polyethylene glycol, about 1wt% of said methyl cellulose, about 0.03wt% of said t-octylphenoxypolyethoxyethanol, and about 1wt% of an enzyme in said citrate buffer.
25. The strip of Claim 24 wherein said enzyme is glucose oxidase.
26. A method of making a disposable biosensor comprising:
scribing a conductive coating disposed on one side of an elongated base layer having an electrode end and an electrical contact end forming at least two elongated electrical conduits along the length of said base layer wherein a first conduit of said at least two electrical conduits has an L-shape wherein the L-shaped portion of said first conduit is adjacent said second conduit wherein said L-shaped end of said first conduit and a portion of said second conduit are located near said electrode end;
adhering a reagent holding layer over said base layer that is shorter than the length of said base layer such that a portion of each of said at least two elongated conduits is exposed at said electrical contact end, said reagent holding layer having at least two reagent holding cutouts spaced from said electrode end wherein a first cutout exposes a portion of said first conduit and a second cutout exposes a portion of said second conduit;
adding a reagent mixture to said first cutout forming a reference electrode and said second cutout forming a first working electrode, said reagent mixture in at least said first working electrode having an enzyme capable of catalyzing a reaction involving a substrate for the enzyme;
drying said reagent mixture forming a reagent matrix;
disposing a channel forming layer over said reagent holding layer, said channel forming layer having a U-shaped end portion defining a central elongated channel sized to expose said at least two reagent cutouts of said reagent holding layer; and disposing a top layer over said channel forming layer, said top layer having a vent opening spaced from said electrode end and a notch at said electrode end, said top layer forming an inlet and a capillary space with said U-shaped end portion wherein said vent exposes a portion of said central channel at the end of said capillary space opposite said inlet and said notch exposes a portion of said central channel at said inlet.
27. The method of Claim 26 further comprising mixing a redox mediator, a stabilizer, a binder, a surfactant and a buffer forming said reagent mixture.
28. A method of making multiple, disposable sensors wherein each sensor has at least a first working electrode and a reference electrode, wherein said first working electrode contains an enzyme capable of catalyzing a reaction involving a substrate for the enzyme, said at least a first working electrode and said reference electrode being disposed in a fluid sample channel for measuring a fluid sample, said method comprising:
obtaining a base strip of an insulating material having a layer of conductive material disposed thereon, said base strip having a first edge and a second edge;

scribing in said conductive material a plurality of lines in a repetitive pattern wherein said plurality of lines contain a repetitive pattern forming three conductive paths in each of said repetitive pattern;
disposing a first middle layer of insulating material over said base strip, said first middle layer having a repetitive pattern of at least two cutouts wherein each cutout of each of said repetitive pattern exposes at least an electrode portion of said conductive layer wherein said repetitive pattern of said at least two cutouts are spaced from said first edge of said base strip, and wherein said first middle layer is sized to expose a contact portion of each of said three conductive paths of each repetitive pattern for a distance from said second edge of said base strip;
disposing a first reagent material on one of said at least two cutouts of each repetitive pattern and a second reagent material on the other of said at least two cutouts of each repetitive pattern;
drying said first reagent material and said second reagent material;
overlaying a second middle insulating layer over and coextensive with said first middle layer, said second middle layer having a plurality of elongated cutout portions in a repetitive pattern wherein each of said elongated cutout portions exposes a corresponding repetitive pattern of said at least two cutouts of said first middle layer;
disposing a top layer of insulating material over and coextensive with said second middle layer, said top layer having a plurality of vent openings and notch forming holes in a repetitive pattern wherein each of said vent openings exposes a portion of a corresponding repetitive pattern of said elongated cutout portion furthest from said first edge of said base strip and wherein each of said notch forming holes exposes a portion of said corresponding repetitive pattern of said elongated cutout portion closest to said first edge of said base strip, said base strip, said first middle layer, said second middle layer, and said top layer forming a laminated strip;
cutting along and parallel to said first edge of said laminated strip a predetermined distance creating a sample inlet port in each of said elongated cutout and an inlet notch in said top layer for each of said repetitive pattern;
cutting along and parallel to said second edge of said laminated strip a predetermined distance creating three separate contacts for each of said repetitive pattern; and separating each of said repetitive pattern forming one of each of said disposable sensors.
29. The method of Claim 28 further comprising drying said first reagent material and said second reagent material at a temperature and for a length of time sufficient to allow said first reagent material and said second reagent material to solidify and adhere to each of said electrode portion of each of said repetitive pattern of said three conductive paths.
30. The method of Claim 28 further comprising mixing a redox mediator, a stabilizer, a binder, a surfactant and a buffer forming said first reagent material, and mixing a redox mediator, a stabilizer, a binder, a surfactant, a buffer, and an enzyme forming said second reagent material.
CA2481425A 2002-04-19 2003-04-16 Disposable sensor with enhanced sample port inlet Expired - Lifetime CA2481425C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/126,819 US6837976B2 (en) 2002-04-19 2002-04-19 Disposable sensor with enhanced sample port inlet
US10/126,819 2002-04-19
PCT/US2003/011554 WO2003089658A1 (en) 2002-04-19 2003-04-16 Disposable sensor with enhanced sample port inlet

Publications (2)

Publication Number Publication Date
CA2481425A1 true CA2481425A1 (en) 2003-10-30
CA2481425C CA2481425C (en) 2010-03-16

Family

ID=29248425

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2481425A Expired - Lifetime CA2481425C (en) 2002-04-19 2003-04-16 Disposable sensor with enhanced sample port inlet

Country Status (8)

Country Link
US (1) US6837976B2 (en)
EP (1) EP1497449B1 (en)
JP (1) JP4620356B2 (en)
AU (1) AU2003228535A1 (en)
CA (1) CA2481425C (en)
DE (1) DE60319973T2 (en)
ES (1) ES2302927T3 (en)
WO (1) WO2003089658A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012006778A1 (en) * 2010-07-14 2012-01-19 红电医学科技股份有限公司 Test strip for detecting fluid

Families Citing this family (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
DE10057832C1 (en) * 2000-11-21 2002-02-21 Hartmann Paul Ag Blood analysis device has syringe mounted in casing, annular mounting carrying needles mounted behind test strip and being swiveled so that needle can be pushed through strip and aperture in casing to take blood sample
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US7344507B2 (en) 2002-04-19 2008-03-18 Pelikan Technologies, Inc. Method and apparatus for lancet actuation
EP1404232B1 (en) 2001-06-12 2009-12-02 Pelikan Technologies Inc. Blood sampling apparatus and method
US7025774B2 (en) 2001-06-12 2006-04-11 Pelikan Technologies, Inc. Tissue penetration device
JP4209767B2 (en) * 2001-06-12 2009-01-14 ペリカン テクノロジーズ インコーポレイテッド Self-optimized cutting instrument with adaptive means for temporary changes in skin properties
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US20070100255A1 (en) * 2002-04-19 2007-05-03 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
EP1404235A4 (en) * 2001-06-12 2008-08-20 Pelikan Technologies Inc Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
ES2352998T3 (en) 2001-06-12 2011-02-24 Pelikan Technologies Inc. LANCETA ELECTRIC ACTUATOR.
EP1404234B1 (en) 2001-06-12 2011-02-09 Pelikan Technologies Inc. Apparatus for improving success rate of blood yield from a fingerstick
US7410468B2 (en) * 2002-04-19 2008-08-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7331931B2 (en) * 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7491178B2 (en) * 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7717863B2 (en) * 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US9795334B2 (en) * 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7674232B2 (en) * 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7713214B2 (en) * 2002-04-19 2010-05-11 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US7524293B2 (en) * 2002-04-19 2009-04-28 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7244265B2 (en) * 2002-04-19 2007-07-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892185B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US8784335B2 (en) * 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US7291117B2 (en) 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US7648468B2 (en) * 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7547287B2 (en) * 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US20080044927A1 (en) * 2002-10-30 2008-02-21 Lien Ching H Medical test strip
US20040087034A1 (en) * 2002-10-30 2004-05-06 Ching Ho Lien Test strip
US7265881B2 (en) * 2002-12-20 2007-09-04 Hewlett-Packard Development Company, L.P. Method and apparatus for measuring assembly and alignment errors in sensor assemblies
US8574895B2 (en) * 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US7144485B2 (en) * 2003-01-13 2006-12-05 Hmd Biomedical Inc. Strips for analyzing samples
WO2004107975A2 (en) 2003-05-30 2004-12-16 Pelikan Technologies, Inc. Method and apparatus for fluid injection
DK1633235T3 (en) 2003-06-06 2014-08-18 Sanofi Aventis Deutschland Apparatus for sampling body fluid and detecting analyte
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
WO2004113917A2 (en) * 2003-06-20 2004-12-29 Roche Diagnostics Gmbh Method and reagent for producing narrow, homogenous reagent strips
EP1671096A4 (en) 2003-09-29 2009-09-16 Pelikan Technologies Inc Method and apparatus for an improved sample capture device
WO2005037095A1 (en) 2003-10-14 2005-04-28 Pelikan Technologies, Inc. Method and apparatus for a variable user interface
DE602004025960D1 (en) * 2003-10-31 2010-04-22 Lifescan Scotland Ltd MEASURING DEVICE FOR USE IN A METHOD OF REDUCING INTERFERENCE IN AN ELECTROCHEMICAL SENSOR USING TWO DIFFERENT APPROPRIATE POTENTIALS
JP4717636B2 (en) 2003-12-04 2011-07-06 パナソニック株式会社 Method for measuring hematocrit (Hct), sensor used therefor, and measuring apparatus
WO2005054840A1 (en) 2003-12-04 2005-06-16 Matsushita Electric Industrial Co., Ltd. Blood component measuring method, sensor used therefor, and measuring instrument
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
US8668656B2 (en) 2003-12-31 2014-03-11 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
JP4689601B2 (en) * 2004-04-19 2011-05-25 パナソニック株式会社 Blood component measuring method, biosensor and measuring apparatus used therefor
EP1751546A2 (en) 2004-05-20 2007-02-14 Albatros Technologies GmbH & Co. KG Printable hydrogel for biosensors
US7118667B2 (en) * 2004-06-02 2006-10-10 Jin Po Lee Biosensors having improved sample application and uses thereof
US9775553B2 (en) * 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US9820684B2 (en) 2004-06-03 2017-11-21 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
CA2614299C (en) 2005-06-13 2014-06-03 Nippon Kayaku Kabushiki Kaisha Method of assaying blood component by using whole blood and measurement kit
US7611621B2 (en) * 2005-06-13 2009-11-03 Nova Biomedical Corporation Disposable oxygen sensor and method for correcting oxygen effect on oxidase-based analytical devices
JP4501793B2 (en) * 2005-06-24 2010-07-14 パナソニック株式会社 Biosensor
US8617366B2 (en) * 2005-12-12 2013-12-31 Nova Biomedical Corporation Disposable urea sensor and system for determining creatinine and urea nitrogen-to-creatinine ratio in a single device
US20080006530A1 (en) * 2006-06-19 2008-01-10 Handani Winarta Capillary Flow Control in a Flow Channel
WO2008040998A2 (en) * 2006-10-05 2008-04-10 Lifescan Scotland Limited Systems and methods for determining a substantially hematocrit independent analyte concentration
US9046480B2 (en) 2006-10-05 2015-06-02 Lifescan Scotland Limited Method for determining hematocrit corrected analyte concentrations
ATE550642T1 (en) * 2006-12-14 2012-04-15 Nippon Kayaku Kk METHOD FOR MEASURING 1,5-ANHYDROGLUCITOL IN WHOLE BLOOD
US7802467B2 (en) * 2006-12-22 2010-09-28 Abbott Diabetes Care Inc. Analyte sensors and methods of use
US8299317B2 (en) * 2007-03-29 2012-10-30 Kimberly-Clark Worldwide, Inc. Absorbent articles with external access to internal conductors
TW200914826A (en) * 2007-09-21 2009-04-01 Apex Biotechnology Corp Electrochemical quantitative analysis system and method for the same
KR100890988B1 (en) * 2007-10-29 2009-03-31 주식회사 아이센스 Electrochemical biosensor equipped with sampling port which enables uniform introduction of a small amount of sample
US8603768B2 (en) * 2008-01-17 2013-12-10 Lifescan, Inc. System and method for measuring an analyte in a sample
EP2265324B1 (en) 2008-04-11 2015-01-28 Sanofi-Aventis Deutschland GmbH Integrated analyte measurement system
US20100187132A1 (en) * 2008-12-29 2010-07-29 Don Alden Determination of the real electrochemical surface areas of screen printed electrodes
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
KR100918027B1 (en) * 2009-02-19 2009-09-18 주식회사 올메디쿠스 Bio-sensor provided with code electrode, method for manufacturing the same, and method for taking sensor information from the same
US8500990B2 (en) * 2009-04-22 2013-08-06 Nova Biomedical Corporation Electrochemical biosensors based on NAD(P)-dependent dehydrogenase enzymes
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8603309B2 (en) 2011-09-12 2013-12-10 Nova Biomedical Corporation Disposable sensor for electrochemical detection of hemoglobin
US20130084590A1 (en) * 2011-09-30 2013-04-04 Lifescan Scotland Ltd. Analytical test strip with bodily fluid phase-shift measurement electrodes
US20130098775A1 (en) * 2011-10-20 2013-04-25 Nova Biomedical Corporation Glucose biosensor with improved shelf life
KR101466222B1 (en) * 2012-06-01 2014-12-01 주식회사 아이센스 Electrochemical biosensor with improved accuracy
TW201415015A (en) * 2012-10-15 2014-04-16 Ichia Tech Inc Method for manufacturing test plate for biologic liquid and structure for the same
CN103091377B (en) * 2013-02-05 2015-01-21 三诺生物传感股份有限公司 Biosensor
US10898116B2 (en) * 2013-03-15 2021-01-26 Cambridge Medical Technologies LLC Methods of manufacture to optimize performance of transdermal sampling and analysis device
EP2781919A1 (en) 2013-03-19 2014-09-24 Roche Diagniostics GmbH Method / device for generating a corrected value of an analyte concentration in a sample of a body fluid
CN104062319A (en) * 2013-03-22 2014-09-24 毅嘉科技股份有限公司 Manufacturing method of test sheet for biological liquid and structure of test sheet
CN104007150A (en) * 2013-12-04 2014-08-27 西南大学 Conductive polymer-based all-print biological and environmental sensor and making method thereof
CN104450864A (en) * 2014-12-18 2015-03-25 三诺生物传感股份有限公司 Composition and application thereof
US9891209B2 (en) * 2015-05-29 2018-02-13 C A Casyso Gmbh Electrode assembly for measurement of platelet function in whole blood
US10802071B2 (en) * 2017-12-01 2020-10-13 International Business Machines Corporation Elemental mercury-containing probe card
US11633129B2 (en) 2019-04-05 2023-04-25 Cambridge Medical Technologies LLC Non-invasive transdermal sampling and analysis device incorporating redox cofactors
US11375931B2 (en) 2019-08-08 2022-07-05 Cambridge Medical Technologies LLC Non-invasive transdermal sampling and analysis device incorporating an electrochemical bioassay

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH559912A5 (en) 1971-09-09 1975-03-14 Hoffmann La Roche
US3979274A (en) 1975-09-24 1976-09-07 The Yellow Springs Instrument Company, Inc. Membrane for enzyme electrodes
US4137495A (en) 1976-03-27 1979-01-30 Brown David M B Oil detector
US4053381A (en) 1976-05-19 1977-10-11 Eastman Kodak Company Device for determining ionic activity of components of liquid drops
FR2387659A1 (en) 1977-04-21 1978-11-17 Armines GLYCEMIA CONTROL AND REGULATION DEVICE
US4133735A (en) 1977-09-27 1979-01-09 The Board Of Regents Of The University Of Washington Ion-sensitive electrode and processes for making the same
JPS5912135B2 (en) 1977-09-28 1984-03-21 松下電器産業株式会社 enzyme electrode
US4321123A (en) 1978-04-21 1982-03-23 Matsushita Electric Industrial Co., Ltd. Coenzyme immobilized electrode
US4185131A (en) 1978-06-28 1980-01-22 United Technologies Corporation Screen printing method for making an electrochemical cell electrode
US4184936A (en) 1978-07-24 1980-01-22 Eastman Kodak Company Device for determining ionic activity
US4233029A (en) 1978-10-25 1980-11-11 Eastman Kodak Company Liquid transport device and method
US4225410A (en) 1978-12-04 1980-09-30 Technicon Instruments Corporation Integrated array of electrochemical sensors
US4273639A (en) 1979-06-20 1981-06-16 Eastman Kodak Company Capillary bridge in apparatus for determining ionic activity
US4310399A (en) 1979-07-23 1982-01-12 Eastman Kodak Company Liquid transport device containing means for delaying capillary flow
US4303887A (en) 1979-10-29 1981-12-01 United States Surgical Corporation Electrical liquid conductivity measuring system
US4301414A (en) 1979-10-29 1981-11-17 United States Surgical Corporation Disposable sample card and method of making same
US4413407A (en) 1980-03-10 1983-11-08 Eastman Kodak Company Method for forming an electrode-containing device with capillary transport between electrodes
US4356074A (en) 1980-08-25 1982-10-26 The Yellow Springs Instrument Company, Inc. Substrate specific galactose oxidase enzyme electrodes
GB2096825A (en) 1981-04-09 1982-10-20 Sibbald Alastair Chemical sensitive semiconductor field effect transducer
FR2508305B1 (en) 1981-06-25 1986-04-11 Slama Gerard DEVICE FOR CAUSING A LITTLE BITE TO COLLECT A BLOOD DROP
DE3278334D1 (en) 1981-10-23 1988-05-19 Genetics Int Inc Sensor for components of a liquid mixture
US4418148A (en) 1981-11-05 1983-11-29 Miles Laboratories, Inc. Multilayer enzyme electrode membrane
US4473457A (en) 1982-03-29 1984-09-25 Eastman Kodak Company Liquid transport device providing diversion of capillary flow into a non-vented second zone
EP0096095B1 (en) 1982-06-14 1988-11-09 Corporation Ohmicron Semiconductor device, sensor and method for determining the concentration of an analyte in a medium
US4454007A (en) 1983-01-27 1984-06-12 E. I. Du Pont De Nemours And Company Ion-selective layered sensor and methods of making and using the same
US4490216A (en) 1983-02-03 1984-12-25 Molecular Devices Corporation Lipid membrane electroanalytical elements and method of analysis therewith
WO1984003562A1 (en) 1983-03-11 1984-09-13 Matsushita Electric Ind Co Ltd Biosensor
GB8308389D0 (en) 1983-03-26 1983-05-05 Cambridge Life Sciences Assay technique
US5682884A (en) 1983-05-05 1997-11-04 Medisense, Inc. Strip electrode with screen printing
US5509410A (en) 1983-06-06 1996-04-23 Medisense, Inc. Strip electrode including screen printing of a single layer
US4591550A (en) 1984-03-01 1986-05-27 Molecular Devices Corporation Device having photoresponsive electrode for determining analytes including ligands and antibodies
US4654127A (en) 1984-04-11 1987-03-31 Sentech Medical Corporation Self-calibrating single-use sensing device for clinical chemistry and method of use
AU581669B2 (en) 1984-06-13 1989-03-02 Applied Research Systems Ars Holding N.V. Photometric instruments, their use in methods of optical analysis, and ancillary devices therefor
US5141868A (en) 1984-06-13 1992-08-25 Internationale Octrooi Maatschappij "Octropa" Bv Device for use in chemical test procedures
US5185256A (en) 1985-06-21 1993-02-09 Matsushita Electric Industrial Co., Ltd. Method for making a biosensor
WO1986007632A1 (en) 1985-06-21 1986-12-31 Matsushita Electric Industrial Co., Ltd. Biosensor and method of manufacturing same
GB8618022D0 (en) 1986-07-23 1986-08-28 Unilever Plc Electrochemical measurements
GB8626081D0 (en) 1986-10-31 1986-12-03 Unilever Plc Printing processes
US4900405A (en) 1987-07-15 1990-02-13 Sri International Surface type microelectronic gas and vapor sensor
DE68924026T3 (en) 1988-03-31 2008-01-10 Matsushita Electric Industrial Co., Ltd., Kadoma BIOSENSOR AND ITS MANUFACTURE.
AU634863B2 (en) 1989-12-15 1993-03-04 Roche Diagnostics Operations Inc. Redox mediator reagent and biosensor
US5508171A (en) 1989-12-15 1996-04-16 Boehringer Mannheim Corporation Assay method with enzyme electrode system
JPH0820412B2 (en) 1990-07-20 1996-03-04 松下電器産業株式会社 Quantitative analysis method and device using disposable sensor
JP3118015B2 (en) 1991-05-17 2000-12-18 アークレイ株式会社 Biosensor and separation and quantification method using the same
US5264103A (en) 1991-10-18 1993-11-23 Matsushita Electric Industrial Co., Ltd. Biosensor and a method for measuring a concentration of a substrate in a sample
JP3135959B2 (en) 1991-12-12 2001-02-19 アークレイ株式会社 Biosensor and separation and quantification method using the same
FR2701117B1 (en) 1993-02-04 1995-03-10 Asulab Sa Electrochemical measurement system with multizone sensor, and its application to glucose measurement.
US5762770A (en) 1994-02-21 1998-06-09 Boehringer Mannheim Corporation Electrochemical biosensor test strip
US5437999A (en) 1994-02-22 1995-08-01 Boehringer Mannheim Corporation Electrochemical sensor
US5628890A (en) 1995-09-27 1997-05-13 Medisense, Inc. Electrochemical sensor
AUPN661995A0 (en) * 1995-11-16 1995-12-07 Memtec America Corporation Electrochemical cell 2
US5755953A (en) 1995-12-18 1998-05-26 Abbott Laboratories Interference free biosensor
US5708247A (en) 1996-02-14 1998-01-13 Selfcare, Inc. Disposable glucose test strips, and methods and compositions for making same
US5759364A (en) 1997-05-02 1998-06-02 Bayer Corporation Electrochemical biosensor
US5997817A (en) * 1997-12-05 1999-12-07 Roche Diagnostics Corporation Electrochemical biosensor test strip
US6258229B1 (en) * 1999-06-02 2001-07-10 Handani Winarta Disposable sub-microliter volume sensor and method of making
US6287451B1 (en) 1999-06-02 2001-09-11 Handani Winarta Disposable sensor and method of making
US6645359B1 (en) * 2000-10-06 2003-11-11 Roche Diagnostics Corporation Biosensor
KR100445489B1 (en) * 1999-11-15 2004-08-21 마츠시타 덴끼 산교 가부시키가이샤 Biosensor, method of forming thin-film electrode, and method and apparatus for quantitative determination
US6767441B1 (en) * 2001-07-31 2004-07-27 Nova Biomedical Corporation Biosensor with peroxidase enzyme

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012006778A1 (en) * 2010-07-14 2012-01-19 红电医学科技股份有限公司 Test strip for detecting fluid

Also Published As

Publication number Publication date
EP1497449B1 (en) 2008-03-26
US20040224369A1 (en) 2004-11-11
EP1497449A1 (en) 2005-01-19
CA2481425C (en) 2010-03-16
AU2003228535A1 (en) 2003-11-03
ES2302927T3 (en) 2008-08-01
US6837976B2 (en) 2005-01-04
JP4620356B2 (en) 2011-01-26
DE60319973D1 (en) 2008-05-08
DE60319973T2 (en) 2009-04-16
JP2005523443A (en) 2005-08-04
WO2003089658A1 (en) 2003-10-30

Similar Documents

Publication Publication Date Title
CA2481425A1 (en) Disposable sensor with enhanced sample port inlet
CA2481426A1 (en) Disposable sub-microliter volume biosensor with enhanced sample inlet
CN101014851B (en) Electrochemical cell and method of making an electrochemical cell
KR100741187B1 (en) Electrochemical Sensor
CA2375089C (en) Disposable sub-microliter volume sensor and method of making
CA2375092C (en) Disposable sensor and method of making
JP3821685B2 (en) Biosensor
US5985116A (en) Biosensor
ATE299947T1 (en) ELECTROCHEMICAL DISPOSABLE BIOSENSOR FOR THE QUANTITATIVE DETERMINATION OF ANALYTE CONCENTRATIONS IN LIQUIDS
JP5313876B2 (en) Biosensor manufacturing method
CA2694085A1 (en) Electrochemical test strip
JP4318084B2 (en) Analysis tool
EP1304570A1 (en) Electrochemical electrode test strip and process for preparation thereof

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20230417